Open Access Publications
Permanent URI for this collection
Open access publications by faculty, postdocs, and graduate students in the Department of Earth Sciences.
Browse
Browsing Open Access Publications by Issue Date
Now showing 1 - 20 of 41
Results Per Page
Sort Options
Item Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge(Elsevier, 2015-12-07) D’Errico, Megan E.; Warren, Jessica M.; Godard, Marguerite; Megan E. D’Errico, Jessica M. Warren, Marguerite Godard; Warren, Jessica M.Ultraslow spreading at mid-ocean ridges limits melting due to on-axis conductive cooling, leading to the prediction that peridotites from these ridges are relatively fertile. To test this, we examined abyssal peridotites from the Gakkel Ridge, the slowest spreading ridge in the global ocean ridge system. Major and trace element concentrations in pyroxene and olivine minerals are reported for 14 dredged abyssal peridotite samples from the Sparsely Magmatic (SMZ) and Eastern Volcanic (EVZ) Zones. We observe large compositional variations among peridotites from the same dredge and among dredges in close proximity to each other. Modeling of lherzolite trace element compositions indicates varying degrees of non-modal fractional mantle melting, whereas most harzburgite samples require open-system melting involving interaction with a percolating melt. All peridotite chemistry suggests significant melting that would generate a thick crust, which is inconsistent with geophysical observations at Gakkel Ridge. The refractory harzburgites and thin overlying oceanic crust are best explained by low present-day melting of a previously melted heterogeneous mantle. Observed peridotite compositional variations and evidence for melt infiltration demonstrates that fertile mantle components are present and co-existing with infertile mantle components. Melt generated in the Gakkel mantle becomes trapped on short length-scales, which produces selective enrichments in very incompatible rare earth elements. Melt migration and extraction may be significantly controlled by the thick lithosphere induced by cooling at such slow spreading rates. We propose the heterogeneous mantle that exists beneath Gakkel Ridge is the consequence of ancient melting, combined with subsequent melt percolation and entrapment.Item Mantle Sulfides and their Role in Re–Os and Pb Isotope Geochronology(Mineralogical Society of America, 2015-12-14) Harvey, Jason; Warren, Jessica M.; Shirey, Steven B.; Jason Harvey, Jessica M. Warren, Steven B. Shirey; Warren, Jessica M.Item Mechanisms of extracellular S0 globule production and degradation in Chlorobaculum tepidum via dynamic cell–globule interactions(Microbiology Society, 2016-01-07) Marnocha, C. L.; Levy, A. T.; Powell, D. H.; Hanson, T. E.; Chan, C. S.; C. L. Marnocha, A. T. Levy, D. H. Powell, T. E. Hanson and C. S. Chan; Marnocha, C. L.; Levy, A. T.; Powell, D. H.; Hanson, T. E.; Chan, C. S.The Chlorobiales are anoxygenic phototrophs that produce solid, extracellular elemental sulfur globules as an intermediate step in the oxidation of sulfide to sulfate. These organisms must export sulfur while preventing cell encrustation during S0 globule formation; during globule degradation they must find and mobilize the sulfur for intracellular oxidation to sulfate. To understand how the Chlorobiales address these challenges, we characterized the spatial relationships and physical dynamics of Chlorobaculum tepidum cells and S0 globules by light and electron microscopy. Cba. tepidum commonly formed globules at a distance from cells. Soluble polysulfides detected during globule production may allow for remote nucleation of globules. Polysulfides were also detected during globule degradation, probably produced as an intermediate of sulfur oxidation by attached cells. Polysulfides could feed unattached cells, which made up over 80% of the population and had comparable growth rates to attached cells. Given that S0 is formed remotely from cells, there is a question as to how cells are able to move toward S0 in order to attach. Time-lapse microscopy shows that Cba. tepidum is in fact capable of twitching motility, a finding supported by the presence of genes encoding type IV pili. Our results show how Cba. tepidum is able to avoid mineral encrustation and benefit from globule degradation even when not attached. In the environment, Cba. tepidum may also benefit from soluble sulfur species produced by other sulfur-oxidizing or sulfur-reducing bacteria as these organisms interact with its biogenic S0 globules.Item Global variations in abyssal peridotite compositions(Elsevier, 2016-01-09) Warren, Jessica M.; Jessica M.Warren; Warren, Jessica M.Abyssal peridotites are ultramafic rocks collected frommid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt–rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for N1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0–15% modal clinopyroxene and spinel Cr#=0.1–0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt–rock interaction and pre-existing compositional variability, where melt–rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, ~10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# N 0.5, bulk Al2O3 b 1wt.%) and someridge sections are dominated by harzburgiteswhile lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle ismulti-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional rangeamong residual andmelt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.Item Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy(AGU Publications, 2016-04-22) Hansen, Lars N.; Warren, Jessica M.; Zimmerman, Mark E.; Kohlstedt, David L.; Lars N.Hansen, Jessica M.Warren, Mark E.Zimmerman, David L.Kohlstedt; Warren, Jessica M.The development of crystallographic textures in olivine-rich rocks leads to a marked anisotropy in viscosity of the upper mantle, strongly influencing a variety of large-scale geodynamic processes. Most estimates of the magnitude of viscous anisotropy in the upper mantle are derived from micromechanical models that predict textural and mechanical evolution numerically. Unfortunately, relatively few data exist with which to benchmark these models, and therefore their applicability to geodynamic processes remains in question. Here we present the results from a series of laboratory deformation experiments that yield insight into the magnitude and evolution of the anisotropy of olivine aggregates during deformation along complex loading paths. Aggregates of Fo50olivine were first deformed in extension in a gas-medium apparatus at a temperature of 1473K, confining pressure of 300MPa, and a variety of stresses and strain rates. Early in the extension experiments, samples exhibited viscosities similar to those previously determined for isotropic aggregates. Extensional deformation was accompanied by formation of crystallographic textures with [100] axes dominantly aligned with the extension axis. Samples were subsequently deformed in torsion under similar conditions to shear strains of up to 15.5. Early in the torsion experiments, samples supported stresses a factor of ∼2 larger than measured at the end of extension experiments, demonstrating a marked anisotropy in viscosity. Textures at the end of torsion experiments exhibited [100] axes dominantly aligned with the shear direction, comparable to previous experimental observations. Evolution of the textures resulting from extension to those resulting from torsion was analyzed through examination of radial sections of torsion samples. Our results confirm that texture produces viscous anisotropy in olivine aggregates, and we provide a simple, calibrated parameterization of viscous anisotropy for use in geodynamic models. Our results also provide an extensive dataset for future calibration of micromechanical models that track the evolution of anisotropy in upper mantle rocks.Item Assessing the use of a camera system within an autonomous underwater vehicle for monitoring the distribution and density of sea scallops (Placopecten magellanicus) in the Mid-Atlantic Bight(National Marine Fisheries Service., 2016-04-26) Walker, Justin H.; Trembanis, Arthur C.; Miller, Douglas C.; Justin H. Walker, Arthur C. Trembanis and Douglas C. Miller; Walker, Justin H.; Trembanis, Arthur C.; Miller, Douglas C.The sea scallop (Placopecten magellanicus) fishery in the Atlantic is assessed during annual surveys by using both dredging and surface-deployed imaging techniques. In this pilot study in the Mid-Atlantic Bight, we used an autonomous underwater vehicle (AUV) to photograph the seafloor and to evaluate its use for determining scallop density and size. During 22 surveys in 2011, 257 km of seafloor were photographed, resulting in over 203,000 color images. Using trained annotators and photogrammetric software, we determined scallop density and shell heights for 15,252 scallops. The inshore scallop grounds near Long Island (at depths <40 m) had a density of 0.077 scallops per m2, whereas the inshore grounds of the New York Bight had a density of 0.012 scallops per m2. Shell heights derived from images were found to agree well with measurements from scallops collected with a commercial dredge. We show that images obtained with an AUV can be used to reliably estimate both density and shell height consistent with direct sampling from the same area. Moreover, side-scan sonar images obtained with an AUV can be used to detect dredge scars and, therefore, can provide a simultaneous, relative estimate of fishing effort in that area. AUVs provide a highly accurate suite of data for each survey site and therefore allow the design of experimental studies of fishing practices.Item Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry(Geological Society of America, 2016-06-01) Birner, Suzanne K.; Warren, Jessica M.; Cottrell, Elizabeth; Davis, Fred A.; Suzanne K. Birner, Jessica M. Warren, Elizabeth Cottrell, and Fred A. Davis; Warren, Jessica M.Olivine, orthopyroxene, and spinel compositions within seafloor peridotites yield important information about the nature of Earth’s mantle. Major element compositions of these minerals can be used to calculate oxygen fugacity, a thermodynamic property critical to understanding phase equilibria in the upper mantle. This study examines how hydrothermal alteration at the seafloor influences peridotite chemistry. The Tonga Trench (South Pacific Ocean) exposes lithospheric forearc peridotites that range from highly altered to completely unaltered and provides an ideal sample suite for investigating the effect of alteration on spinel peridotite major element chemistry and calculated oxygen fugacity. Using the Tonga peridotites, we develop a qualitative alteration scale rooted in traditional point-counting methodology. We show that high degrees of serpentinization do not affect mineral parameters such as forsterite number in olivine, iron site occupancy in orthopyroxene, and Fe3+/SFe ratio in spinel. Additionally, while serpentinization is a redox reaction that leaves behind an oxidized residue, the oxygen fugacity recorded by mantle minerals is unaffected by nearby low-temperature serpentinization. As a result, oxygen fugacity measured by spinel oxybarometry in seafloor peridotites is representative of mantle processes, rather than an artifact of late-stage seafloor alteration.Item Impact of topography on groundwater salinization due to ocean surge inundation(American Geophysical Union, 2016-08-05) Yu, Xuan; Graf, Thomas; Koneshloo, Mohammad; O'Neal, Michael A.; Michael, Holly A.; Yang, Jie; Xuan Yu, Jie Yang, Thomas Graf, Mohammad Koneshloo, Michael A. O'Neal, Holly A. Michael; Yu, Xuan; Koneshloo, Mohammad; O'Neal, Michael A; Michael, Holly A.Sea-level rise and increases in the frequency and intensity of ocean surges caused by climate change are likely to exacerbate adverse effects on low-lying coastal areas. The landward flow of water during ocean surges introduces salt to surficial coastal aquifers and threatens groundwater resources. Coastal topographic features (e.g., ponds, dunes, barrier islands, and channels) likely have a strong impact on overwash and salinization processes, but are generally highly simplified in modeling studies. To understand topographic impacts on groundwater salinization, we modeled a theoretical overwash event and variable-density groundwater flow and salt transport in 3-D using the fully coupled surface and subsurface numerical simulator, HydroGeoSphere. The model simulates the coastal aquifer as an integrated system considering overland flow, coupled surface and subsurface exchange, variably saturated flow, and variable-density groundwater flow. To represent various coastal landscape types, we simulated both synthetic fields and real-world coastal topography from Delaware, USA. The groundwater salinization assessment suggested that the topographic connectivity promoting overland flow controls the volume of aquifer that is salinized. In contrast, the amount of water that can be stored in surface depressions determines the amount of seawater that infiltrates the subsurface and the time for seawater to flush from the aquifer. Our study suggests that topography has a significant impact on groundwater salinization due to ocean surge overwash, with important implications for coastal land management and groundwater vulnerability assessment.Item Megacity pumping and preferential flow threaten groundwater quality(Nature Publishing Group, 2016-09-27) Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S.K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.; Mahfuzur R. Khan, Mohammad Koneshloo, Peter S.K. Knappett, Kazi M. Ahmed, Benjamin C. Bostick, Brian J. Mailloux, Rajib H. Mozumder, Anwar Zahid, Charles F. Harvey, Alexander van Geen & Holly A. Michael; Khan, Mahfuzur R.; Koneshloo, Mohammad; Michael, Holly A.Many of the world’s megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arseniccontaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (4150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.Item Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model(AGU Publications, 2016-10-25) Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.; Lars N. Hansen, Clinton P. Conrad, Yuval Boneh, Philip Skemer, Jessica M. Warren, and David L. Kohlstedt; Warren, Jessica M.The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.Item Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites(Mineralogical Society of America, 2017-02-09) Davis, Fred A.; Cottrell, Elizabeth; Birner, Suzanne K.; Warren, Jessica M.; Lopez, Oscar G.; Fred A. Davis, Elizabeth Cottrell, Suzanne K. Birner, Jessica M. Warren, and Oscar G. Lopez; Warren, Jessica M.Natural peridotite samples containing olivine, orthopyroxene, and spinel can be used to assess the oxygen fugacity (fO2) of the upper mantle. The calculation requires accurate and precise quantification of spinel Fe3+/∑Fe ratios. Wood and Virgo (1989) presented a correction procedure for electron microprobe (EPMA) measurements of spinel Fe3+/∑Fe ratios that relies on a reported correlation between the difference in Fe3+/∑Fe ratio by Mössbauer spectroscopy and by electron microprobe (ΔFe3+/∑FeMöss-EPMA) and the Cr# [Cr/(Al+Cr)] of spinel. This procedure has not been universally adopted, in part, because of debate as to the necessity and effectiveness of the correction. We have performed a series of replicate EPMA analyses of several spinels, previously characterized by Mössbauer spectroscopy, to test the accuracy and precision of the Wood and Virgo correction. While we do not consistently observe a correlation between Cr# and ΔFe3+/∑FeMöss-EPMA in measurements of the correction standards, we nonetheless find that accuracy of Fe3+/ZFe ratios determined for spinel samples treated as unknowns improves when the correction is applied. Uncorrected measurements have a mean ΔFe3+/∑FeMöss-EPMA = 0.031 and corrected measurements have a mean ΔFe3+/∑FeMöss-EPMA = −0.004. We explain how the reliance of the correction on a global correlation between Cr# and MgO concentration in peridotitic spinels improves the accuracy of Fe3+/ZFe ratios despite the absence of a correlation between ΔFe3+/∑FeMöss-EPMA and Cr# in some analytical sessions. Precision of corrected Fe3+/∑Fe ratios depends on the total concentration of Fe, and varies from ±0.012 to ±0.032 (1σ) in the samples analyzed; precision of uncorrected analyses is poorer by approximately a factor of two. We also present an examination of the uncertainties in the calculation contributed by the other variables used to derive fO2. Because there is a logarithmic relationship between the activity of magnetite and logfO2, the uncertainty in fO2 relative to the QFM buffer contributed by the electron microprobe analysis of spinel is asymmetrical and larger at low ferric Fe concentrations (+0.3/−0.4 log units, 1σ, at Fe3+/∑Fe = 0.10) than at higher ferric Fe concentrations (±0.1 log units, 1σ, at Fe3+/EFe = 0.40). Electron microprobe analysis of olivine and orthopyroxene together contribute another ±0.1 to ±0.2 log units of uncertainty (1σ). Uncertainty in the temperature and pressure of equilibration introduce additional errors on the order of tenths of log units to the calculation of relative fO2. We also document and correct errors that appear in the literature when formulating fO2 that, combined, could yield errors in absolute fO2 of greater than 0.75 log units—even with perfectly accurate Fe3+/∑Fe ratios. Finally, we propose a strategy for calculating the activity of magnetite in spinel that preserves information gained during analysis about the ferric iron content of the spinel. This study demonstrates the superior accuracy and precision of corrected EPMA measurements of spinel Fe3+/∑Fe ratios compared to uncorrected measurements. It also provides an objective method for quantifying uncertainties in the calculation of fO2 from spinel peridotite mineral compositions.Item Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria(mBio, 2021-07-27) Keffer, Jessica L.; McAllister, Sean M.; Garber, Arkadiy I.; Hallahan, Beverly J.; Sutherland, Molly C.; Rozovsky, Sharon; Chan, Clara S.Iron (Fe) oxidation is one of Earth’s major biogeochemical processes, key to weathering, soil formation, water quality, and corrosion. However, our understanding of microbial contribution is limited by incomplete knowledge of microbial iron oxidation mechanisms, particularly in neutrophilic iron oxidizers. The genomes of many diverse iron oxidizers encode a homolog to an outer membrane cytochrome (Cyc2) shown to oxidize iron in two acidophiles. Phylogenetic analyses show Cyc2 sequences from neutrophiles cluster together, suggesting a common function, though this function has not been verified in these organisms. Therefore, we investigated the iron oxidase function of heterologously expressed Cyc2 from a neutrophilic iron oxidizer Mariprofundus ferrooxydans PV-1. Cyc2PV-1 is capable of oxidizing iron, and its redox potential is 208 ± 20 mV, consistent with the ability to accept electrons from Fe2+ at neutral pH. These results support the hypothesis that Cyc2 functions as an iron oxidase in neutrophilic iron-oxidizing organisms. The results of sequence analysis and modeling reveal that the entire Cyc2 family shares a unique fused cytochrome-porin structure, with a defining consensus motif in the cytochrome region. On the basis of results from structural analyses, we predict that the monoheme cytochrome Cyc2 specifically oxidizes dissolved Fe2+, in contrast to multiheme iron oxidases, which may oxidize solid Fe(II). With our results, there is now functional validation for diverse representatives of Cyc2 sequences. We present a comprehensive Cyc2 phylogenetic tree and offer a roadmap for identifying cyc2/Cyc2 homologs and interpreting their function. The occurrence of cyc2 in many genomes beyond known iron oxidizers presents the possibility that microbial iron oxidation may be a widespread metabolism.Item Linking the Surface and Subsurface in River Deltas—Part 2: Relating Subsurface Geometry to Groundwater Flow Behavior(Water Resources Research, 2021-08-02) Xu, Zhongyuan; Hariharan, Jayaram; Passalacqua, Paola; Steel, Elisabeth; Paola, Chris; Michael, Holly A.Understanding subsurface structure and groundwater flow in deltaic aquifers is essential for evaluating the vulnerability of groundwater resources in delta systems. Deltaic aquifers contain coarse-grained paleochannels that preserve a record of former surface river channels as well as fine-grained floodplain deposits. The distribution of these deposits and how they are interconnected control groundwater flow and contaminant transport. In this work, we link depositional environments of deltaic aquifers to stratigraphic (static) and flow and transport (dynamic) connectivity metrics. Numerical models of deltaic stratigraphy were generated using a reduced-complexity numerical model (DeltaRCM) with different input sand fractions (ISF) and rates of sea-level rise (SLR). The groundwater flow and advective transport behavior of these deltas were simulated using MODFLOW and MODPATH. By comparing the static and dynamic metrics calculated from these numerical models, we show that groundwater behavior can be predicted by particular aspects of the subsurface architecture, and that horizontal and vertical connectivity display different characteristics. We also evaluate relationships between connectivity metrics and two environmental controls on delta evolution: ISF and SLR rate. The results show that geologic setting strongly influences both static and dynamic connectivity in different directions. These results provide insights into quantitatively differentiated subsurface hydraulic behavior between deltas formed under different external forcing (ISF and SLR rate) and they are a potential link in using information from delta surface networks and depositional history to predict vulnerability to aquifer contamination. Plain Language Summary: Geologic structure and groundwater flow behaviors influence groundwater resources in delta plains. In deltaic aquifers, channel structures were created by past surface rivers. These channels in the subsurface are “fast-travel” pathways for groundwater and contaminants. We created synthetic delta structures with a numerical model and then simulated groundwater flow through them in order to tie geologic structure to groundwater flow behavior. By using many different models, we investigate how structure and flow relate, and how the subsurface geology and groundwater system are affected by different sediment inputs and sea-level rise rates. The findings will help us better manage delta groundwater resources and provide an opportunity to predict groundwater contamination from surface characteristics.Item Along-Shore Movement of Groundwater and Its Effects on Seawater-Groundwater Interactions in Heterogeneous Coastal Aquifers(Water Resources Research, 2021-12-14) Geng, Xiaolong; Michael, Holly A.Studies of coastal groundwater dynamics often assume two-dimensional (2D) flow and transport along a shore-perpendicular cross-section. We show that along-shore movement of groundwater may also be significant in heterogeneous coastal aquifers. Simulations of groundwater flow and salt transport incorporating different geologic structure show highly three-dimensional (3D) preferential flow paths. The along-shore movement of groundwater on average accounts for 40%–50% of the total flowpath length in both conduit-type (e.g., volcanic) heterogeneous aquifers and statistically equivalent (e.g., deltaic) systems generated with sequential indicator simulation (SIS). Our results identify a critical role of three-dimensionality in systems with connected high-permeability geological features. 3D conduit features connecting land and sea cause more terrestrial groundwater flow through the inland boundary and intensify water exchange along the land-sea interface. Therefore, conduits increase the rate of SGD compared to equivalent homogeneous, SIS and corresponding 2D models. In contrast, in SIS-type systems, less-connected high-permeability features produce mixing zones and SGD nearer to shore, with comparable rates in 3D and 2D models. Onshore, 3D heterogeneous cases have longer flowpaths and travel times from recharge to discharge compared to 2D cases, but offshore travel times are much shorter, particularly for conduit-type models in which flow is highly preferential. Flowpath lengths and travel times are also highly variable in 3D relative to 2D for all heterogeneous simulations. The results have implications for water resources management, biogeochemical reactions within coastal aquifers, and subsequent chemical fluxes to the ocean. Plain Language Summary: The findings of this study provide insight into the complex patterns of groundwater flow under the influence of geologic variability in coastal aquifers. In coastal regions, studies of solute transport processes mainly rely on an assumption of 2D groundwater flow and solute transport in the shore-perpendicular direction. Our results reveal that groundwater does not only flow toward the sea, it also can flow along-shore, especially in aquifers with features that connect the onshore and offshore. This affects exchange and mixing between fresh and saline groundwater, which can strongly impact delivery of contaminants and nutrients to sensitive nearshore marine ecosystems. Results highlight the importance of characterizing the geology of coastal aquifers and representing it in models of groundwater flow and contaminant transport.Item Floodplain Sediment Storage Timescales of the Laterally Confined Meandering Powder River, USA(Journal of Geophysical Research: Earth Surface, 2022-01-11) Huffman, Max E.; Pizzuto, James E.; Trampush, Sheila M.; Moody, John A.; Schook, Derek M.; Gray, Harrison J.; Mahan, Shannon A.As sediment is transported through river corridors, it typically spends more time in storage than transport, and as a result, sediment delivery timescales are controlled by the duration of storage. Present understanding of storage timescales is largely derived from models or from field studies covering relatively short (≤102 year) time spans. Here we quantify the storage time distribution for a 17 km length of Powder River in Montana, USA by determining the age distribution of eroded sediment. Our approach integrates surveyed cross-sections, analysis of historical aerial imagery, aerial LiDAR, geomorphic mapping, and age control provided by optically stimulated luminescence (OSL) and dendrochronology. Sediment eroded by Powder River from 1998 to 2013 ranges from a few years to ∼5,000 years in age; ages are exponentially distributed (r2 = 0.78; Anderson-Darling p value 0.003). Eroded sediment is derived from Powder River's meander belt (∼900 m wide), which is only 1.25 times its meander wavelength, a value reflecting valley confinement rather than free meandering. The mean storage time, 824 years (95% C.I. 610–1030 years), is similar to the time required to rework deposits of Powder River's meander belt based on an average meander migration rate of ∼1 m/yr, implying that storage time distributions of confined meandering rivers can be quantified from remotely sensed estimates of meander belt width and channel migration rates. Heavy-tailed storage time distributions, frequently cited from physical and numerical modeling studies, may be restricted to unconfined meandering rivers. Plain Language Summary: As sediment moves downstream through a watershed it is intermittently stored in a river's deposits before being eroded and transported farther downstream. Storage times vary from less than a decade to millennia. Storage time greatly exceeds the time sediment is being transported by the river. Consequently, the time required for sediment to reach a point downstream is largely controlled by the time spent in storage. This can influence how the movement of contaminants are monitored and restoration strategies are developed. Sediment particles spend different amounts of time in storage, which can be represented as a probability distribution. Here we date sediment eroded by Powder River in southeastern Montana from 1998 to 2013 and find that the storage time distribution is exponential. Furthermore, the mean storage time of 824 years (which fully characterizes the exponential distribution) can be determined from the meander belt width and the channel migration rate, both of which can be measured using aerial imagery, providing a simple method for assessing storage times in laterally confined rivers.Item Spatially averaged stratigraphic data to inform watershed sediment routing: An example from the Mid-Atlantic United States(Geological Society of America Bulletin, 2022-05-05) Pizzuto, James E.; Skalak, K.J.; Benthem, A.; Mahan, S.A.; Sherif, M.; Pearson, A.J.New and previously published stratigraphic data define Holocene to present sediment storage time scales for Mid-Atlantic river corridors. Empirical distributions of deposit ages and thicknesses were randomly sampled to create synthetic age-depth records. Deposits predating European settlement accumulated at a (median) rate of 0.06 cm yr−1, range from ∼18,000 to 225 yr old, and represent 39% (median) of the total accumulation. Sediments deposited from 1750 to 1950 (“legacy sediments”) accumulated at a (median) rate of 0.39 cm yr−1 and comprise 47% (median) of the total, while “modern sediments” (1950−present) represent 11% of the total and accumulated at a (median) rate of 0.25 cm yr−1. Synthetic stratigraphic sequences, recast as age distributions for the presettlement period, in 1900 A.D., and at present, reflect rapid postsettlement alluviation, with enhanced preservation of younger sediments related to postsettlement watershed disturbance. An averaged present age distribution for vertically accreted sediment has modal, median, and mean ages of 190, 230, and 630 yr, reflecting the predominance of stored legacy sediments and the influence of relatively few, much older early Holocene deposits. The present age distribution, if represented by an exponential approximation (mean age ∼300 yr), and naively assumed to represent steady-state conditions, implies median sediment travel times on the order of centuries for travel distances greater than ∼100 km. The percentage of sediment reaching the watershed outlet in 30 yr (a reasonable time horizon to achieve watershed restoration efficacy) is ∼60% for a distance of 50 km, but this decreases to <20% for distances greater than 200 km. Age distributions, evaluated through time, not only encapsulate the history of sediment storage, but they also provide data for calibrating watershed-scale sediment-routing models over geological time scales.Item Dynamic Steady State in Coastal Aquifers Is Driven by Multi-Scale Cyclical Processes, Controlled by Aquifer Storativity(Geophysical Research Letters, 2022-05-24) Paldor, Anner; Frederiks, Ryan S.; Michael, Holly A.Coastal aquifers supply freshwater to nearly half the global population, yet they are threatened by salinization. Salinities are typically estimated assuming steady-state, neglecting the effect of cyclical forcings on average salinity distributions. Here, numerical modeling is used to test this assumption. Multi-scale fluctuations in sea level (SL) are simulated, from tides to glacial cycles. Results show that high-frequency fluctuations alter average salinities compared with the steady-state distribution produced by average SL. Low-frequency forcing generates discrepancies between present-day salinities estimated with and without considering the cyclical forcing due to overshoot effects. This implies that salinities in coastal aquifers may be erroneously estimated when assuming steady-state conditions, since present distributions are likely part of a dynamic steady state that includes forcing on multiple timescales. Further, typically neglected aquifer storage characteristics can strongly control average salinity distributions. This has important implications for managing vulnerable coastal groundwater resources and for calibration of hydrogeological models. Key Points: - Average salinities in coastal aquifers are affected by low-frequency cyclical changes in sea level (SL) - High-frequency cyclical forcings generate episodic discrepancies in salinity when modeled with and without considering these processes - Under these multi-scale fluctuations in SL, dynamic steady states of coastal aquifers are affected by aquifer storage properties Plain Language Summary: Coastal communities rely heavily on groundwater for freshwater supply, and the primary risk for this vital resource is salinization. Multiple processes in the ocean-land interface control the salinity of coastal aquifers, and assessments of salinities typically neglect some of these processes. In this work, we show that some of the typically neglected processes may be responsible for large-scale, systematic discrepancies between actual and estimated salinities. This has important implications for the assessment of risks to coastal groundwater reservoirs and for the long-term management of these resources.Item Effects of Geologic Setting on Contaminant Transport in Deltaic Aquifers(Water Resources Research, 2022-08-25) Xu, Zhongyuan; Hariharan, Jayaram; Passalacqua, Paola; Steel, Elisabeth; Chadwick, Austin; Paola, Chris; Paldor, Anner; Michael, Holly A.Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea-level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process-based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. Plain Language Summary: The findings of this study provide insight into the vulnerability of deltaic aquifers to three contamination processes: (a) widespread contaminant transport from the land surface, (b) river water infiltration, and (c) seawater intrusion. We consider how contamination is affected by the location of contaminants and the processes associated with the accumulation of sediments in deltas. Our work shows that vulnerability to contamination depends on how the aquifer is deposited. The results also demonstrate that the distribution of sandy channels preserved in the subsurface, as well as rivers on the surface, controls vertical contaminant transport. We find that these effects vary from upstream to downstream in the delta because of spatial differences in depositional processes. These findings will help to improve predictions of groundwater contamination and manage groundwater development in deltas around the world.Item Surface Water-Groundwater Connections as Pathways for Inland Salinization of Coastal Aquifers(Groundwater, 2022-11-17) Hingst, Mary C.; McQuiggan, Rachel W.; Peters, Chelsea N.; He, Changming; Andres, A. Scott; Michael, Holly A.Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4 m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18 m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience.Item Critical facility accessibility and road criticality assessment considering flood-induced partial failure(Sustainable and Resilient Infrastructure, 2022-11-25) Gangwal, Utkarsh; Siders, A. R.; Horney, Jennifer; Michael, Holly A.; Dong, ShangjiaThis paper examines communities’ accessibility to critical facilities such as hospitals, emergency medical services, and emergency shelters when facing flooding. We use travel speed reduction to account for flood-induced partial road failure. A modified betweenness centrality metric is also introduced to calculate the criticality of roads for connecting communities to critical facilities. The proposed model and metric are applied to the Delaware road network under 100-year floods. This model highlights the severe critical facility access loss risk due to flood isolation of facilities. The mapped post-flooding accessibility suggests a significant travel time increase to critical facilities and reveals disparities among communities, especially for vulnerable groups such as long-term care facility residents. We also identified critical roads that are vital for post-flooding access to critical facilities. The results of this research can help inform targeted infrastructure investment decisions and hazard mitigation strategies that contribute to equitable community resilience enhancement.
- «
- 1 (current)
- 2
- 3
- »