A Physically-Based Model of Vertical TFET--Part II: Drain Current Model

Author(s)Cheng, Qi
Author(s)Khandelwal, Sourabh
Author(s)Zeng, Yuping
Date Accessioned2022-03-28T14:41:39Z
Date Available2022-03-28T14:41:39Z
Publication Date2022-02-08
DescriptionCopyright 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This article was originally published in IEEE Transactions on Electron Devices. The version of record is available at: https://doi.org/10.1109/TED.2022.3146091.en_US
AbstractA physically based model for the tunneling current of vertical tunneling field transistors (TFET) is proposed. In part I, the expression of φ1D(x,) is derived from the multi-branch general solutions of Poisson's equation. The model's results are verified with TCAD simulation for transistors with different materials, device geometries, and biases. In this article, a surface potential model is validated at different device regions which include channel and drain. Based on the above two electric potential models, Kane's tunneling formula is utilized for the calculation of band-to-band tunneling current. The proposed current model is valid for all transistors' operating regions. The quantum effect on the band-structure parameters is taken into account in the modeling of InAs vertical TFET. It is shown that the channel thickness needs to be optimized to achieve the highest drive current.en_US
SponsorThis work was supported in part by NASA International Space Station under Grant 80NSSC20M0142 and in part by Air Force Office of Scientific Research under Grant FA9550-19-1-0297 and Grant FA9550-21-1-0076.en_US
CitationQ. Cheng, S. Khandelwal and Y. Zeng, "A Physically-Based Model of Vertical TFET--Part II: Drain Current Model," in IEEE Transactions on Electron Devices, doi: 10.1109/TED.2022.3146091.en_US
ISSN1557-9646
URLhttps://udspace.udel.edu/handle/19716/30711
Languageen_USen_US
PublisherIEEE Transactions on Electron Devicesen_US
KeywordsBand-to-band tunnelingen_US
Keywordscompact modelen_US
Keywordsline tunnelingen_US
Keywordstunneling FETen_US
TitleA Physically-Based Model of Vertical TFET--Part II: Drain Current Modelen_US
TypeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Physically-Based Model of Vertical.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
124 B
Format:
Item-specific license agreed upon to submission
Description: