Open Access Publications
Permanent URI for this collection
Open access publications by faculty, postdocs, and graduate students in the Department of Electrical and Computer Engineering
Browse
Recent Submissions
Now showing 1 - 5 of 70
- ItemHyperspectral image reconstruction via patch attention driven network(Optics Express, 2023-06-01) Qiu, Yechuan; Zhao, Shengjie; Ma, Xu; Zhang, Tong; Arce, Gonzalo R.Coded aperture snapshot spectral imaging (CASSI) captures 3D hyperspectral images (HSIs) with 2D compressive measurements. The recovery of HSIs from these measurements is an ill-posed problem. This paper proposes a novel, to our knowledge, network architecture for this inverse problem, which consists of a multilevel residual network driven by patch-wise attention and a data pre-processing method. Specifically, we propose the patch attention module to adaptively generate heuristic clues by capturing uneven feature distribution and global correlations of different regions. By revisiting the data pre-processing stage, we present a complementary input method that effectively integrates the measurements and coded aperture. Extensive simulation experiments illustrate that the proposed network architecture outperforms state-of-the-art methods.
- ItemMulti-axis Manufacture of Conformal Metasurface Antennas(IEEE Antennas and Wireless Propagation Letters, 2023-06-09) Gupta, Ellen; Bonner, Colin; Lazarus, Nathan; Mirotznik, Mark S.; Nicholson, Kelvin J.A conformal metasurface antenna exhibiting a pencil beam radiation pattern at 10.0 GHz has been designed using the Voronoi partition approach, and fabricated on the Kahu Uninhabited Aerial System (UAS) fuselage. Two manufacturing methods are presented and compared. The first approach utilized a 3-axis Trotec fiber laser to etch the flattened metasurface geometry in copper foil. The etched pattern was then ‘stretched’ over the UAS geometry. The second approach utilized a 6-axis nScrypt (retrofitted with an IDS aerosol jetting tool) to conformally print the metasurface pattern directly on the UAS fuselage. An electroless copper plating step was then utilized to improve the radiofrequency (RF) conductivity of the printed silver. Both manufacturing methods yielded functional metasurface antennas with equivalent performance at the operating frequency. However, the first method is limited to geometries that can be ‘flattened’ with acceptable tolerances, whereas the second approach is amenable to all practical geometries. This demonstration of two manufacturing techniques is a critical step forward in the cost-effective deployment of truly conformal metasurface antennas on realistic geometries.
- ItemJoint Resource Allocation and 3D Deployment for Multi-UAV Covert Communications(IEEE Internet of Things Journal, 2023-07-05) Mao, Haobin; Liu, Yanming; Xiao, Zhenyu; Han, Zhu; Xia, Xiang-GenUnmanned aerial vehicles (UAVs) assisted wireless communication will play an important role in the next-generation mobile communication network. However, the inherent open nature of the signal propagation environment may cause illegal eavesdropping and surveillance from adversaries. In addition, the intergroup co-channel interference among different cells further degrades the system performance. Hence, we consider a generic scenario of multiple UAV base stations (UAV-BSs) and ground users, where multiple terrestrial wardens attempt to detect the transmissions from UAV-BSs to users and a UAV-mounted jammer is employed to generate artificial noise to assist the covert communications. To ensure fairness, we formulate an optimization problem to maximize the minimum of the average rate lower bounds of all users by jointly optimizing user association, bandwidth allocation, UAV transmit power control, and UAV three-dimensional (3D) deployment, subject to the constraints of the detection error probability of each warden. To solve this mixed-integer non-convex problem, we propose a suboptimal algorithm by applying block coordinate descent (BCD) method to solve three subproblems iteratively. Specifically, in each iteration, the subproblem of user association and bandwidth allocation is solved by a customized genetic algorithm (GA) first, where a closed-form expression for bandwidth allocation is obtained. Second, the subproblem of UAV transmit power control is solved by using successive convex approximation (SCA) techniques. Finally, suboptimal 3D positions of the UAVs are obtained through particle swarm optimization (PSO) based algorithm. Extensive simulation results demonstrate the effectiveness and superiority of our proposed algorithm compared to benchmark schemes in terms of improving the minimum of the average rate lower bounds of all users.
- ItemAir Moving Target Indication in Nadir Region for Spaceborne Surveillance Radar Systems(IEEE Geoscience and Remote Sensing Letters, 2023-06-02) Zou, Zihao; Huang, Penghui; Lin, Xin; Xia, Xiang-Gen; Xi, Peili; Sun, Yongyan; Liu, XingzhaoFor air moving target indication (AMTI) in nadir region, due to the fact that a spaceborne radar beam can illuminate the top of fuselage, the target radar cross Section is usually high, which is beneficial for the detection of a low-observable target. However, due to the short slant range, specular reflection effect, and relatively low radar ground resolution, the power of clutter component from nadir region is comparatively high, leading to the insufficient clutter suppression and the degradation of target detection performance. Fortunately, when an air moving target is adequately high, the target echo can be separated from the main clutter echoes due to a shorter time delay, making it possible to be only mixed with low-power ambiguous clutter echoes. Based on these considerations, this letter analyzes the performance of AMTI in nadir region for a spaceborne surveillance radar system. It analyzes the target minimum detectable velocities with different target heights and beam center elevation angles. Also, an effective sample selection method based on adaptive range segmentation is proposed to solve the power heterogeneity issue between the main clutter area and the range ambiguous clutter area. As a conclusion, the larger the elevation angle of an air moving target is, the higher the minimum target detectable height is.
- ItemFast Transceiver Design for RIS-Assisted MIMO mmWave Wireless Communications(IEEE Transactions on Wireless Communications, 2023-05-17) Jing, Haiyue; Cheng, Wenchi; Xia, Xiang-GenDue to high bandwidth and small antenna size, millimeter-wave (mmWave) integrated line-of-sight (LOS) multiple-input-multiple-output (MIMO) systems have attracted much attention. Reconfigurable intelligent surfaces (RISs), which have the potential to change the characteristics of incident electromagnetic waves with low power cost, can improve the performance for the MIMO mmWave wireless communications. Uniform circular array (UCA) is an effective antenna structure with low complexity transceiver. In this paper, UCA based RIS-assisted MIMO mmWave wireless communications with transmit UCA, the RIS UCAs, and receive UCA are investigated. Since the rotation angles between the transceiver make the channel matrix noncirculant, an algorithm is developed to derive the ranges of the rotation angles based on an acceptable error and reduce the impact of rotation angles on channel matrix. Then, we propose a low-complexity precoding scheme at the transmitter, phase designs at the RIS UCAs, and a phase compensation scheme at the receiver, which can convert the channel matrix into an equivalent circulant channel matrix with a small error. Then, a fast symbol-wise maximum likelihood (ML) detection scheme is proposed to recover the signals with low computational complexity. Simulation results are presented to illustrate the theory.