Open Access Publications

Permanent URI for this collection

Open access publications by faculty, postdocs, and graduate students in the Department of Kinesiology & Applied Physiology.

Browse

Recent Submissions

Now showing 1 - 5 of 18
  • Item
    Effects of contact/collision sport history on gait in early- to mid-adulthood
    (Journal of Sport and Health Science, 2023-05-01) Hunzinger, Katherine J.; Caccese, Jaclyn B.; Mannix, Rebekah; Meehan, William P. III; Hafer, Jocelyn F.; Swanik, C. Buz; Buckley, Thomas A.
    Background: To determine the effect of contact/collision sport participation on measures of single-task (ST) and dual-task (DT) gait among early- to middle-aged adults. Methods: The study recruited 113 adults (34.88 ± 11.80 years, (mean ± SD); 53.0% female) representing 4 groups. Groups included (a) former non-contact/collision athletes and non-athletes who are not physically active (n = 28); (b) former non-contact/collision athletes who are physically active (n = 29); (c) former contact/collision sport athletes who participated in high-risk sports and are physically active (n = 29); and (d) former rugby players with prolonged repetitive head impact exposure history who are physically active (n = 27). Gait parameters were collected using inertial measurement units during ST and DT gait. DT cost was calculated for all gait parameters (double support, gait speed, and stride length). Groups were compared first using one-way analysis of covariance. Then a multiple regression was performed for participants in the high-risk sport athletes and repetitive head impact exposure athletes groups only to predict gait outcomes from contact/collision sport career duration. Results: There were no significant differences between groups on any ST, DT, or DT cost outcomes (p > 0.05). Contact/collision sport duration did not predict any ST, DT, or DT cost gait outcomes. Conclusion: Years and history of contact/collision sport participation does not appear to negatively affect or predict neurobehavioral function in early- to mid-adulthood among physically active individuals. Graphical abstract available at: https://doi.org/10.1016/j.jshs.2022.12.004
  • Item
    Oral nicotinamide riboside raises NAD+ and lowers biomarkers of neurodegenerative pathology in plasma extracellular vesicles enriched for neuronal origin
    (Aging Cell, 2023-01-12) Vreones, Michael; Mustapic, Maja; Moaddel, Ruin; Pucha, Krishna A.; Lovett, Jacqueline; Seals, Douglas R.; Kapogiannis, Dimitrios; Martens, Christopher R.
    Declining nicotinamide adenine dinucleotide (NAD+) concentration in the brain during aging contributes to metabolic and cellular dysfunction and is implicated in the pathogenesis of aging-associated neurological disorders. Experimental therapies aimed at boosting brain NAD+ levels normalize several neurodegenerative phenotypes in animal models, motivating their clinical translation. Dietary intake of NAD+ precursors, such as nicotinamide riboside (NR), is a safe and effective avenue for augmenting NAD+ levels in peripheral tissues in humans, yet evidence supporting their ability to raise NAD+ levels in the brain or engage neurodegenerative disease pathways is lacking. Here, we studied biomarkers in plasma extracellular vesicles enriched for neuronal origin (NEVs) from 22 healthy older adults who participated in a randomized, placebo-controlled crossover trial (NCT02921659) of oral NR supplementation (500 mg, 2x /day, 6 weeks). We demonstrate that oral NR supplementation increases NAD+ levels in NEVs and decreases NEV levels of Aβ42, pJNK, and pERK1/2 (kinases involved in insulin resistance and neuroinflammatory pathways). In addition, changes in NAD(H) correlated with changes in canonical insulin–Akt signaling proteins and changes in pERK1/2 and pJNK. These findings support the ability of orally administered NR to augment neuronal NAD+ levels and modify biomarkers related to neurodegenerative pathology in humans. Furthermore, NEVs offer a new blood-based window into monitoring the physiologic response of NR in the brain.
  • Item
    Stress deprivation of tendon explants or Tpm3.1 inhibition in tendon cells reduces F-actin to promote a tendinosis-like phenotype
    (Molecular Biology of the Cell, 2022-12-01) Inguito, Kameron L.; Schofield, Mandy M.; Faghri, Arya D.; Bloom, Ellen T.; Heino, Marissa; West, Valerie C.; Ebron, Karl Matthew M.; Elliot, Dawn M.; Parreno, Justin
    Actin is a central mediator between mechanical force and cellular phenotype. In tendons, it is speculated that mechanical stress deprivation regulates gene expression by reducing filamentous (F)-actin. However, the mechanisms regulating tenocyte F-actin remain unclear. Tropomyosins (Tpms) are master regulators of F-actin. There are more than 40 Tpm isoforms, each having the unique capability to stabilize F-actin subpopulations. We investigated F-actin polymerization in stress-deprived tendons and tested the hypothesis that stress fiber–associated Tpm(s) stabilize F-actin to regulate cellular phenotype. Stress deprivation of mouse tail tendon down-regulated tenogenic and up-regulated protease (matrix metalloproteinase-3) mRNA levels. Concomitant with mRNA modulation were increases in G/F-actin, confirming reduced F-actin by tendon stress deprivation. To investigate the molecular regulation of F-actin, we identified that tail, Achilles, and plantaris tendons express three isoforms in common: Tpm1.6, 3.1, and 4.2. Tpm3.1 associates with F-actin in native and primary tenocytes. Tpm3.1 inhibition reduces F-actin, leading to decreases in tenogenic expression, increases in chondrogenic expression, and enhancement of protease expression in mouse and human tenocytes. These expression changes by Tpm3.1 inhibition are consistent with tendinosis progression. A further understanding of F-actin regulation in musculoskeletal cells could lead to new therapeutic interventions to prevent alterations in cellular phenotype during disease progression.
  • Item
    Sex differences in microvascular function and arterial hemodynamics in nondialysis chronic kidney disease
    (American Journal of Physiology - Heart and Circulatory Physiology, 2022-12-01) Kirkman, Danielle L.; Ramick, Meghan G.; Muth, Bryce J.; Stock, Joseph M.; Townsend, Raymond R.; Edwards, David G.
    Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD). Abnormal arterial hemodynamics contribute to CVD, a relationship that can be mediated by microvascular dysfunction. The purpose of this study was to investigate potential sex differences in arterial hemodynamics and microvascular dysfunction in patients with stages 3 to 4 CKD. Vascular function was assessed in 22 male (mean ± SD; age, 56 ± 13 yr) and 10 female (age, 63 ± 9 yr) patients. Arterial hemodynamics were acquired with combined tonometry and oscillometry. Skin blood flow was used as a model of microvascular function. Participants were instrumented with three microdialysis fibers for the delivery of 1) Ringer’s solution; 2) superoxide dismutase mimetic, Tempol; and 3) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin. Blood flow was measured via laser-Doppler flowmetry during standardized local heating (42°C). Central pulse pressure (mean ± SE; 62 ± 9 vs. 46 ± 3 mmHg; P = 0.01) and augmentation index (36 ± 3 vs. 26 ± 3%; P = 0.03) were higher in females. There was a trend for higher central systolic pressures in females (146 ± 9 vs. 131 ± 3 mmHg; P = 0.06). Females reported higher forward (39 ± 4 vs. 29 ± 2 mmHg; P = 0.004) and reflected (27 ± 3 vs. 19 ± 1 mmHg; P < 0.001) wave amplitudes. Cutaneous vascular function was impaired in females compared with males (77 ± 3 vs. 89 ± 1%, P = 0.001). Microvascular function was improved following the delivery of Tempol and apocynin in females but not in males. Female patients with CKD had poorer central hemodynamics and reduced microvascular function compared with their male counterparts. Oxidative stress may contribute to lower microvascular function observed in females. NEW & NOTEWORTHY There are limited data regarding the physiological mechanisms of potential sex differences in central hemodynamics and vascular function in chronic kidney disease (CKD). We report that older female patients with nondialysis CKD have higher central pulse pressures compared with male patients with CKD. In addition, older females with CKD have lower microvascular function compared with their male counterparts, and oxidative stress contributes to the lower microvascular function in older female patients with CKD.
  • Item
    Associations between noninvasive upper- and lower-limb vascular function assessments: extending the evidence to young women
    (Journal of Applied Physiology, 2022-10-01) D'Agata, Michele N.; Hoopes, Elissa K.; Witman, Melissa A.
    Brachial artery (BA) flow-mediated dilation (FMD) is a well-established measure of peripheral vascular function prognostic of future cardiovascular events. The vasodilatory response to FMD (FMD%) reflects upper-limb conduit artery function, whereas reactive hyperemia (RH) following cuff-occlusion release reflects upper-limb resistance artery function. Comparatively, passive leg movement (PLM) is a newer, increasingly utilized assessment of lower-limb resistance artery function. To increase its clinical utility, PLM-induced leg blood flow (LBF) responses have been compared with hemodynamic responses to FMD, but only in men. Therefore, the purpose of this study was to retrospectively compare LBF responses to FMD% and RH responses in women. We hypothesized that LBF responses would be positively associated with both FMD% and RH, but to a greater extent with RH. FMD and PLM were performed on 72 women (23 ± 4 yr). Arterial diameter and blood velocity were assessed using Doppler ultrasound. Pearson correlation coefficients were used to evaluate associations. Measures of resistance artery function were weakly positively associated: change in BA blood flow ΔBABF and ΔLBF (r = 0.33, P < 0.01), BABF area under the curve (BABF AUC) and LBF AUC (r = 0.33, P < 0.01), and BABFpeak and LBFpeak (r = 0.37, P < 0.01). However, FMD% was not associated with any index of PLM (all P > 0.30). In women, indices of resistance artery function in the upper- and lower limbs were positively associated. However, contrary to the previous work in men, upper-limb conduit artery function was not associated with lower-limb resistance artery function suggesting these assessments capture different aspects of vascular function and should not be used interchangeably in women. NEW & NOTEWORTHY: Upper- and lower-limb indices of resistance artery function are positively associated in young women when assessed by reactive hyperemia following brachial artery flow-mediated dilation (FMD) cuff-occlusion release and leg blood flow responses to passive leg movement (PLM), respectively. However, despite previous data demonstrating a positive association between upper-limb conduit artery function assessed by FMD and lower-limb resistance artery function assessed by PLM in young men, these measures do not appear to be related in young women.
Copyright: Please look at individual material in order to see what the copyright and licensing terms are. Some material may be available for reuse under a Creative Commons license; other material may be the copyright of the individual author(s) or the publisher of the journal.