Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce

Author(s)Meng, Qingwu
Author(s)Runkle, Erik S.
Date Accessioned2024-03-13T17:46:58Z
Date Available2024-03-13T17:46:58Z
Publication Date2023-03-02
DescriptionThis article was originally published in Plants. The version of record is available at: https://doi.org/10.3390/plants12051127. © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
AbstractFor indoor crop production, blue + red light-emitting diodes (LEDs) have high photosynthetic efficacy but create pink or purple hues unsuitable for workers to inspect crops. Adding green light to blue + red light forms a broad spectrum (white light), which is created by: phosphor-converted blue LEDs that cast photons with longer wavelengths, or a combination of blue, green, and red LEDs. A broad spectrum typically has a lower energy efficiency than dichromatic blue + red light but increases color rendering and creates a visually pleasing work environment. Lettuce growth depends on the interactions of blue and green light, but it is not clear how phosphor-converted broad spectra, with or without supplemental blue and red light, influence crop growth and quality. We grew red-leaf lettuce ‘Rouxai’ in an indoor deep-flow hydroponic system at 22 °C air temperature and ambient CO2. Upon germination, plants received six LED treatments delivering different blue fractions (from 7% to 35%) but the same total photon flux density (400 to 799 nm) of 180 μmol·m−2·s−1 under a 20 h photoperiod. The six LED treatments were: (1) warm white (WW180); (2) mint white (MW180); (3) MW100 + blue10 + red70; (4) blue20 + green60 + red100; (5) MW100 + blue50 + red30; and (6) blue60 + green60 + red60. Subscripts denote photon flux densities in μmol·m−2·s−1. Treatments 3 and 4 had similar blue, green, and red photon flux densities, as did treatments 5 and 6. At the harvest of mature plants, lettuce biomass, morphology, and color were similar under WW180 and MW180, which had different green and red fractions but similar blue fractions. As the blue fraction in broad spectra increased, shoot fresh mass, shoot dry mass, leaf number, leaf size, and plant diameter generally decreased and red leaf coloration intensified. Compared to blue + green + red LEDs, white LEDs supplemented with blue + red LEDs had similar effects on lettuce when they delivered similar blue, green, and red photon flux densities. We conclude that the blue photon flux density in broad spectra predominantly controls lettuce biomass, morphology, and coloration.
SponsorThis research was funded by Michigan State University AgBioResearch, Project GREEEN GR17-072, and USDA National Institute of Food and Agriculture, Hatch project 192266.
CitationMeng, Qingwu, and Erik S. Runkle. 2023. "Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce" Plants 12, no. 5: 1127. https://doi.org/10.3390/plants12051127
ISSN2223-7747
URLhttps://udspace.udel.edu/handle/19716/34181
Languageen_US
PublisherPlants
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
Keywordsindoor vertical farming
Keywordsgreen light
Keywordsred light
Keywordssole-source lighting
Keywordswhite light
Keywordsaffordable and clean energy
TitleBlue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce
TypeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: