Open Access Publications

Permanent URI for this collection

Open access publications related to sustainability research.

Browse

Recent Submissions

Now showing 1 - 20 of 89
  • Item
    Combustion operating conditions for municipal Waste-to-Energy facilities in the U.S.
    (Waste Management, 2021-08-01) Giraud, Robert J.; Taylor, Philip H.; Huang, Chin-pao
    Highlights • Survey of U.S. municipal waste-to-energy (WTE) facilities identified 188 boilers. • These WTE boilers were stratified into nine categories by combustion technology. • WTE boilers typically operate at a gas residence time > 2.4 s above 1160°C. Abstract This paper reports the first known comprehensive survey of combustion operating conditions across the wide range of municipal waste-to-energy facilities in the U.S. The survey was conducted in a step-wise fashion. Once the population of 188 units operating at over 70 facilities was defined, this population was stratified by distinguishing characteristics of combustion technology. Stratum-level estimates for operating conditions were determined from data collected in the survey. These stratum-level values were weighted by corresponding design capacity share and combined to infer national-level operating parameter estimates representative of the overall population. Survey results show that typical municipal waste-to-energy combustion operating conditions in the U.S. are (1) furnace temperature above 1160 °C, (2) gas residence time above 2.4 s, (3) exit gas concentrations of nearly 10% for oxygen (dry basis), and (4) over 16% for moisture. These operating parameter values can serve as benchmarks for laboratory-scale studies representative of municipal waste-to-energy combustion as typically practiced in the U.S. Graphical abstract Available at: https://doi.org/10.1016/j.wasman.2021.07.015
  • Item
    Distribution of urban green spaces: Comparative analysis between cities in different countries
    (Ornamental Horticulture, 2020-11-04) Garcia, Cecília Souza Gontijo; Paiva, Patrícia Duarte de Oliveira; Bruck, Jules; Sousa, Rafael de Brito
    The presence of urban green spaces (UGS) increases the human’s contact with nature and provides numerous benefits to the society and the local environment. In this way, analyzing, planning and stimulating the implementation of UGS in cities is a fundamental action to improve the life quality of urban society. In this context, the aim was to analyze the situation and distribution of the green spaces of the universities cities of Lavras, Minas Gerais State (Brazil) and Newark, Delaware (USA). For data collection, researches performed field visits and used aerial photography to survey and analysis before calculating indicators including green area index (GAI) and green space ratio (GSR). The city of Lavras has a GAI of 0.54 m2 inh-1. The GSR value was 0.29%, not meeting the minimum of 5% required by local municipal law. Furthermore, there is a bad distribution of UGSs in the urban framework. However, in Newark, the distribution of UGSs is homogeneous and covers all regions of the city. The calculated GAI was 50.2 m² inh-1 and the GSR has met the 7% minimum required by its Newark Municipal Law. When comparing the two cities, in different countries and conditions it is concluded that Newark (DE) presents UGS indicators, GAI (m² inh-1) and GSR (%), higher than the values obtained in Lavras (MG), indicating the need for Government actions to increase these values. Resumo As áreas verdes públicas urbanas (AVPs) concebem um importante tema, pois sua presença nas cidades, ampliando o contato do homem com a natureza, além dos efeitos ambientais geram inúmeros benefícios. Dessa maneira, analisar, planejar e estimular a implantação das AVPs nas cidades é ação fundamental para a melhoria da qualidade de vida da sociedade urbana. Nesse contexto objetivou-se analisar a situação e distribuição das áreas verdes das cidades universitárias de Lavras, estado de Minas Gerais, Brasil e Newark, estado de Delaware, EUA. Para a coleta de dados foram realizadas visitas a campo e o levantamento de áreas das AVPs por meio da análise de imagens de satélite utilizando o software ArcGIS e calculados os indicadores, índice de áreas verdes (IAV) e percentual de áreas verdes (PAV). A cidade de Lavras possui um IAV de 0,54m² hab-1. O valor de PAV foi de 0,29%, não cumprindo o mínimo de 5% exigido pela lei municipal local. Além disto, existe uma má distribuição das AVPs na malha urbana. Já em Newark, a distribuição das AVPs é homogênea abrangendo todas as regiões da cidade. O IAV calculado foi de 50,2m² hab-1 e o PAV cumpriu o mínimo de 7% exigido pela sua Lei municipal de Newark. Ao comparar as duas cidades, conclui-se que Newark (DE) apresenta indicadores sobre as áreas verdes públicas, IAV (m² hab-1) e PAV (%) superiores em comparação aos valores obtidos em Lavras (MG), indicando a necessidade de ações governamentais para ampliar esses valores.
  • Item
    Perceived Neighborhood Characteristics and Cognitive Functioning among Diverse Older Adults: An Intersectional Approach
    (International Journal of Environmental Research and Public Health, 2021-03-06) Thierry, Amy D.; Sherman-Wilkins, Kyler; Armendariz, Marina; Sullivan, Allison; Farmer, Heather R.
    Unfavorable neighborhood conditions are linked to health disparities. Yet, a dearth of literature examines how neighborhood characteristics contribute to cognitive health in diverse samples of older adults. The present study uses an intersectional approach to examine how race/ethnicity, gender, and education moderate the association between neighborhood perceptions and cognitive functioning in later life. We used data from adults ≥65 years old (n = 8023) in the 2010–2016 waves of the nationally representative Health and Retirement Study (HRS). We conducted race/ethnicity-stratified linear regression models where cognitive functioning, measured using the 35-point Telephone Interview Cognitive Screen (TICS), was regressed on three neighborhood characteristics—cleanliness, safety, and social cohesion. We examine whether there is heterogeneity within race/ethnicity by testing if and how the relationship between neighborhood characteristics and cognitive functioning differs by gender and education. Among White adults, worse neighborhood characteristics were associated with lower cognitive functioning among those with less education. However, for Black adults, poor perceived quality of one’s neighborhood was associated with worse cognitive functioning among those with more years of education compared to those with fewer years of education. Among Mexicans, perceived neighborhood uncleanliness was associated with lower cognitive functioning among those with less education, but higher cognitive functioning for those with higher levels of education. Thus, this study contributes to the literature on racial/ethnic disparities in cognitive aging disparities by examining neighborhood contextual factors as determinants of cognitive functioning. In particular, we find that higher education in the context of less favorable neighborhood environments does not confer the same benefits to cognitive functioning among all older adults.
  • Item
    Microflow chemistry and its electrification for sustainable chemical manufacturing
    (Chemical Science, 2022-08-06) Chen, Tai-Ying; Wei Hsiao, Yung; Baker-Fales, Montgomery; Cameli, Fabio; Dimitrakellis, Panagiotis; Vlachos, Dionisios G.
    Sustainability is vital in solving global societal problems. Still, it requires a holistic view by considering renewable energy and carbon sources, recycling waste streams, environmentally friendly resource extraction and handling, and green manufacturing. Flow chemistry at the microscale can enable continuous sustainable manufacturing by opening up new operating windows, precise residence time control, enhanced mixing and transport, improved yield and productivity, and inherent safety. Furthermore, integrating microfluidic systems with alternative energy sources, such as microwaves and plasmas, offers tremendous promise for electrifying and intensifying modular and distributed chemical processing. This review provides an overview of microflow chemistry, electrification, their integration toward sustainable manufacturing, and their application to biomass upgrade (a select number of other processes are also touched upon). Finally, we identify critical areas for future research, such as matching technology to the scale of the application, techno-economic analysis, and life cycle assessment.
  • Item
    Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems
    (Nature Communications, 2021-02-26) Guo, Shaohui; Li, Xuanhua; Li, Ju; Wei, Bingqing
    Solar-driven hydrogen production from water using particulate photocatalysts is considered the most economical and effective approach to produce hydrogen fuel with little environmental concern. However, the efficiency of hydrogen production from water in particulate photocatalysis systems is still low. Here, we propose an efficient biphase photocatalytic system composed of integrated photothermal–photocatalytic materials that use charred wood substrates to convert liquid water to water steam, simultaneously splitting hydrogen under light illumination without additional energy. The photothermal–photocatalytic system exhibits biphase interfaces of photothermally-generated steam/photocatalyst/hydrogen, which significantly reduce the interface barrier and drastically lower the transport resistance of the hydrogen gas by nearly two orders of magnitude. In this work, an impressive hydrogen production rate up to 220.74 μmol h−1 cm−2 in the particulate photocatalytic systems has been achieved based on the wood/CoO system, demonstrating that the photothermal–photocatalytic biphase system is cost-effective and greatly advantageous for practical applications.
  • Item
    Nanostructured Block Polymer Electrolytes: Tailoring Self-Assembly to Unlock the Potential in Lithium-Ion Batteries
    (Accounts of Chemical Research, 2021-12-07) Ketkar, Priyanka M.; Epps, Thomas H. III
    Conspectus Ion-containing solid block polymer (BP) electrolytes can self-assemble into microphase-separated domains to facilitate the independent optimization of ion conduction and mechanical stability; this assembly behavior has the potential to improve the functionality and safety of lithium-ion batteries over liquid electrolytes to meet future demands (e.g., large capacities and long lifetimes) in various applications. However, significant enhancements in the ionic conductivity and processability of BPs must be realized for BP-based electrolytes to become robust alternatives in commercial devices. Toward this end, the controlled modification of BP electrolytes’ intra-domain (nanometer-scale) and multi-grain (micrometer-scale) structure is one viable approach; intra-domain ion transport and segmental compatibility (related to the effective Flory–Huggins parameter, χeff) can be increased by tuning the ion and monomer-segment distributions, and the morphology can be selected such that the multi-grain transport is less sensitive to grain size and orientation. To highlight the characteristics of intra-domain structure that promote efficient ion transport, this Account begins by describing the relationship between BP thermodynamics (namely, χeff and the statistical segment length, b, which is indicative of chain stiffness) and local ion concentration. These thermodynamic insights are vital because they inform the selection of synthesis and formulation variables, such as polymer and ion chemistry, polymer molecular weight and composition, and ion concentration, which boost electrolyte performance. In addition to its relationship with local ion transport, χeff is also an important factor with respect to electrolyte processability. For example, a reduced χeff can allow BP electrolytes to be processed at lower temperatures (i.e., lower energy input), with less solvent (i.e., reduced waste), and/or for shorter times (i.e., higher throughput) yet still form desired nanostructures. This Account also examines the impact of electrolyte preparation and processing on the ion transport across nanostructured grains because of grain size and orientation. As morphologies with a 3D-connected versus 2D-connected conducting phase show different sensitivities to conductivity losses that can occur because of the fabrication methods, it is necessary to account for electrolyte processing effects when probing ion transport. The intra-domain and micrometer-scale structure also can be tuned using either tapered BPs (macromolecules with modified monomer-segment composition profiles between two homogeneous blocks) or blends of BPs and homopolymers, independent of the BP molecular weight and composition, as detailed herein. The application of TBPs or BP/HP blends as ion-conducting materials leads to improved ion transport, reduced χeff, and greater availability of morphologies with 3D connectivity relative to traditional (non-tapered and unblended) BP electrolytes. This feature results from the fact that ion transport is related more closely to the monomer-segment distributions within a domain than the overall nanoscale morphology or average polymer/ion mobilities. Taken together, this Account describes how ion transport and processability are influenced by BP architecture and nanostructural features, and it provides avenues to tune nanoassemblies that can contribute to improved lithium-ion battery technologies to meet future demands.
  • Item
    Direct Integration of Strained-Pt Catalysts into Proton-Exchange-Membrane Fuel Cells with Atomic Layer Deposition
    (Advanced Materials, 2021-07-28) Xu, Shicheng; Wang, Zhaoxuan; Dull, Sam; Liu, Yunzhi; Lee, Dong Un; Pacheco, Juan S. Lezama; Orazov, Marat; Vullum, Per Erik; Dadlani, Anup Lal; Vinogradova, Olga; Schindler, Peter; Tam, Qizhan; Schladt, Thomas D.; Mueller, Jonathan E.; Kirsch, Sebastian; Huebner, Gerold; Higgins, Drew; Torgersen, Jan; Viswanathan, Venkatasubramanian; Jaramillo, Thomas Francisco; Prinz, Fritz B.
    The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt−1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.
  • Item
    Correcting a major error in assessing organic carbon pollution in natural waters
    (Science Advances, 2021-04-14) Jiao, Nianzhi; Liu, Jihua; Edwards, Bethanie; Lv, Zongqing; Cai, Ruanhong; Liu,Yongqin; Xiao, Xilin; Wang, Jianning; Jiao, Fanglue; Wang, Rui; Huang, Xingyu; Guo, Bixi; Sun, Jia; Zhang, Rui; Zhang, Yao; Tang, Kai; Zheng, Qiang; Azam, Farooq; Batt, John; Cai, Wei-Jun; He, Chen; Herndl, Gerhard J.; Hill, Paul; Hutchins, David; LaRoche, Julie; Lewis, Marlon; MacIntyre, Hugh; Polimene, Luca; Robinson, Carol; Shi, Quan; Suttle, Curtis A.; Thomas, Helmuth; Wallace, Douglas; Legendre, Louis
    Microbial degradation of dissolved organic carbon (DOC) in aquatic environments can cause oxygen depletion, water acidification, and CO2 emissions. These problems are caused by labile DOC (LDOC) and not refractory DOC (RDOC) that resists degradation and is thus a carbon sink. For nearly a century, chemical oxygen demand (COD) has been widely used for assessment of organic pollution in aquatic systems. Here, we show through a multicountry survey and experimental studies that COD is not an appropriate proxy of microbial degradability of organic matter because it oxidizes both LDOC and RDOC, and the latter contributes up to 90% of DOC in high-latitude forested areas. Hence, COD measurements do not provide appropriate scientific information on organic pollution in natural waters and can mislead environmental policies. We propose the replacement of the COD method with an optode-based biological oxygen demand method to accurately and efficiently assess organic pollution in natural aquatic environments.
  • Item
    Estimating habitat carrying capacity for migrating and wintering waterfowl: considerations, pitfalls and improvements
    (Wildfowl, 2014) Williams, Christopher K.; Dugger, Bruce D.; Brasher, Michael G.; Coluccy, John M.; Cramer, Dane M.; Eadie, John M.; Gray, Matthew J.; Hagy, Heath M.; Livolsi, Mark; McWilliams, Scott R.; Petrie, Mark; Soulliere, Gregory J.; Tirpak, John M.; Webb, Elizabeth B.
    Population-based habitat conservation planning for migrating and wintering waterfowl in North America is carried out by habitat Joint Venture (JV) initiatives and is based on the premise that food can limit demography (i.e. food limitation hypothesis). Consequently, planners use bioenergetic models to estimate food (energy) availability and population-level energy demands at appropriate spatial and temporal scales, and translate these values into regional habitat objectives. While simple in principle, there are both empirical and theoretical challenges associated with calculating energy supply and demand including: 1) estimating food availability, 2) estimating the energy content of specific foods, 3) extrapolating site-specific estimates of food availability to landscapes for focal species, 4) applicability of estimates from a single species to other species, 5) estimating resting metabolic rate, 6) estimating cost of daily behaviours, and 7) estimating costs of thermoregulation or tissue synthesis. Most models being used are daily ration models (DRMs) whose set of simplifying assumptions are well established and whose use is widely accepted and feasible given the empirical data available to populate such models. However, DRMs do not link habitat objectives to metrics of ultimate ecological importance such as individual body condition or survival, and largely only consider food-producing habitats. Agent-based models (ABMs) provide a possible alternative for creating more biologically realistic models under some conditions; however, ABMs require different types of empirical inputs, many of which have yet to be estimated for key North American waterfowl. Decisions about how JVs can best proceed with habitat conservation would benefit from the use of sensitivity analyses that could identify the empirical and theoretical uncertainties that have the greatest influence on efforts to estimate habitat carrying capacity. Development of ABMs at restricted, yet biologically relevant spatial scales, followed by comparisons of their outputs to those generated from more simplistic, deterministic models can provide a means of assessing degrees of dissimilarity in how alternative models describe desired landscape conditions for migrating and wintering waterfowl.
  • Item
    Spatially-explicit land use effects on nesting of Atlantic Flyway resident Canada geese in New Jersey
    (Wildlife Biology, 2014-04-01) Guerena, Katherine B.; Castelli, Paul M.; Nichols, Theodore C.; Williams, Christopher K.
    Atlantic Flyway resident population (AFRP) Canada geese Branta canadensis in New Jersey, USA, have grown dramatically during the last thirty years and are considered as overabundant in many areas. Development of corporate parks and urban areas with manicured lawns and artificial ponds offer ideal nesting habitat for AFRP geese, with limited pressure from hunting or natural predators. As a result, spatial heterogeneity in reproduction must be taken into account in managing the population. We identified the site and landscape spatial scale extents at which land use features influenced nest site selection and nest success. Nest searches were conducted throughout the State during 2009—2010, and 309 nests were monitored through hatch to determine their fates. We ran a spatial correlation analysis of land use composition to identify spatial scale extents at which geese most considerably respond to their environment for nest site selection and nest success. All significant spatial scale extents were at or below 2.25 km for the five classified land use types. We emphasize that habitat-goose associations in densely urban areas were strongest at extents < 1 km, while rural and natural areas were strongest at extents > 1 km. Geese responded to human-dominated land uses at a smaller spatial scale extent than land uses with low human density. The strength of all nest-land use univariate relationships was low; however, our primary objective was to identify the scales extent at which geese associate with land use, rather than the intensity. We encourage managers to consider these scale-dependent associations in identifying important habitat variables in multivariate models; and if population control of AFRP Canada geese is of primary interest, then focusing on local habitat management will most likely have the largest influence in managing this population.
  • Item
    Subsampling Reduces Sorting Effort for Waterfowl Foods in Salt-Marsh Core Samples
    (Journal of Fish and Wildlife Management, 2014-07-23) Livolsi, Mark C.; Ringelman, Kevin M.; Williams, Christopher K.
    Waterfowl researchers often use soil core samples to estimate food availability in foraging habitats, and these estimates are needed for bioenergetic models of carrying capacity. However, core sampling is frequently a time- and resource-intensive process, and some researchers have suggested that subsampling may be a valuable way to reduce processing time. We evaluated whether 10% and 25% by mass subsampling are appropriate techniques for reducing core-sorting effort while maintaining precision for samples taken in six separate habitat types along the Delaware bayshore. We found no significant difference between biomass found in 100% sorted cores and estimated biomass obtained by 10% and 25% subsampling. We found that 10% subsampling offered the greatest time savings, reducing mean sorting times by 77% (from 13.7 hours to 3.3 hours) from 100% sorted cores. We recommend that researchers consider subsampling to reduce core-sorting effort and cost, particularly when processing large numbers of cores.
  • Item
    Assessing Uncertainty in Coastal Marsh Core Sampling for Waterfowl Foods
    (Journal of Fish and Wildlife Management, 2015-06-01) Ringelman, Kevin M.; Williams, Christopher K.; Coluccy, John M.
    Quantifying foraging resources available to waterfowl in different habitat types is important for estimating energetic carrying capacity. To accomplish this, most studies collect soil-core samples from the marsh substrate, sieve and sort food items, and extrapolate energy values to wetland or landscape scales. This is a costly and time-intensive process; furthermore, extrapolation methods yield energy estimates with large variances relative to the mean. From both research and management perspectives, it is important to understand sources of this variation and estimate the number of soil cores needed to reduce the variance to desired levels. Using 2,341 cores collected from freshwater and salt marsh habitats at four sites along the Atlantic Coast, we examined sampling variation and biological variation among sites and habitats. When we removed extreme outliers in the data caused by large animal food items found in a small core sample, estimates of energy density decreased by an order of magnitude for most habitats. After removing outliers, we found inconsistent geographical variation among habitat types that was especially pronounced in freshwater and no evidence for within-season temporal depletion of food resources for any site or habitat. We used a Monte Carlo simulation approach to estimate the optimal number of cores (minimizing both cost and estimated variance) sampled in each habitat type. Across most contexts, a reduction in the coefficient of variation reached diminishing returns near 40 core samples. We recommend that researchers explicitly address outliers in the data and managers acknowledge the imprecision that can arise from including or excluding outliers when estimating energy density at landscape scales. Our results suggest that collecting 40–50 cores per habitat type was sufficient to reduce the variance to acceptable levels while minimizing overall sampling costs.
  • Item
    Implications of uncertainty in true metabolizable energy estimates for estimating wintering waterfowl carrying capacities
    (Wildlife Society Bulletin, 2015-09-15) Livolsi, Mark C.; Ringelman, Kevin M.; Coluccy, John M.; Dibona, Matthew T.; Williams, Christopher K.
    Carrying capacity models for wintering waterfowl require estimates of energy availability based on food densities and true metabolizable energy (TME) of various food types. However, because TME values vary widely between studies, estimates of carrying capacity may be less precise than previously acknowledged. We explored how variation in TME values affected estimates of landscape-level energy availability for American black ducks (Anas rubripes), using 4 distinct approaches for assigning TME values to waterfowl food items collected over the winter period in 2011–2012 and 2012–2013: a “best practices” approach, which typically used average TMEs across species, a minimum and maximum reported values approaches, and a coarse-scale “order-average” approach. We found that all 4 approaches yielded significantly different estimates of energy availability across all saltmarsh habitat types. Additionally, we evaluated the potential management implications of variation in TME values by comparing energy supply on 1,223 ha of marsh in Prime Hook National Wildlife Refuge (DE, USA) using all 4 approaches for assigning TME values. We estimated carrying capacity and modeled depletion of energy on this refuge over a hypothetical wintering period. We found that even relatively small variations in TME values produced highly variable estimates of carrying capacity for the refuge. Thus, we recommend that researchers consider the inherent uncertainty in TME values of waterfowl foods, and explicitly include this variation in carrying capacity models. © 2015 The Wildlife Society.
  • Item
    Survival and harvest of Atlantic Flyway resident population Canada Geese
    (Wildlife Society Bulletin, 2015-07-24) Beston, Julie A.; Williams, Christopher K.; Nichols, Theodore C.; Castelli, Paul M.
    Resident Population Canada geese (Branta canadensis) are a valuable natural resource, but at high densities they create problems by colliding with vehicles, damaging crops, and fouling parks with feces. Effective management of these geese could be improved with knowledge of demographic rates, especially survival. We used band recovery data from 2005 to 2012 to estimate temporally and spatially explicit survival and recovery rates of Atlantic Flyway Resident Population Canada geese. We analyzed the data in Program MARK and found evidence that survival and recovery varied by age, state of banding, and year. We present state–age–year survival, recovery, and harvest rates from all states. Model-averaged estimates of adult survival ranged from 0.62 to 0.87 and had high precision for most states. Estimates of survival of juvenile geese were generally higher than those for adult geese, but they were less precise and more variable among states. Based on estimates of survival and recovery rates, the average annual harvest rate of adult geese was 13.5% and ranged from 3.1% in North Carolina to 20.1% in Pennsylvania, USA. Harvest rates of juvenile geese were not significantly different from those of adult geese and averaged 15.3%. The estimated survival and harvest rates can be incorporated into population models to assess potential effectiveness of various management strategies for Resident Population Canada geese. © 2015 The Wildlife Society.
  • Item
    A population model for management of Atlantic flyway resident population Canada geese
    (Wildlife Society Bulletin, 2016-03-28) Beston, Julie A.; Williams, Christopher K.; Nichols, Theodore C.; Castelli, Paul M.
    Highly abundant resident Canada geese (Branta canadensis) cause property damage throughout their range. Effective reduction and management of these populations requires knowledge of their population dynamics and responses to management actions. We used data from New Jersey, USA, and other resident Canada goose populations to produce stage-structured matrix models for resident Canada geese from both urban and rural landscapes. We ran stochastic simulations to assess 3 management activities for Atlantic Flyway Resident Population Canada geese: harvest, nest treatment, and cull. Unrealistic harvest rates, in excess of 10% for urban geese, would be needed to reduce the urban population to target levels within 10 years in the absence of other management activities. Nest treatment to prevent hatching is less controversial than culling adults, but as many as 62% of eggs in urban areas would need to be treated annually to sufficiently reduce the mean stochastic population growth rate. Cull would be the most effective way to achieve the population goal, but current cull rates are insufficient to reduce the urban population. Although reduction of urban geese was a challenge, current management activities in rural populations appeared to be sufficient to reduce populations. We also provide a simple spreadsheet tool for managers who want to explore management options for other resident Canada goose populations by inserting relevant vital rate estimates for their populations and manipulating management activities. © 2016 The Wildlife Society.
  • Item
    Ross’s Goose (Chen rossi) Nesting Colony at East Bay, Southampton Island, Nunavut
    (The Canadian Field-Naturalist, 2016-01-01) Nissley, Clark; Williams, Christopher K.; Abraham, Kenneth F.
    Most Ross’s Geese (Chen rossi) nest in the central arctic of North America, but the range has expanded eastward in the last two decades. In summer 2014, we discovered a cluster of 48 nesting pairs of Ross’s Geese at East Bay Migratory Bird Sanctuary,Southampton Island, Nunavut. The Ross’s Goose colony was between an upland Lesser Snow Goose (Chen caerulescens caerulescens) nesting area and a low-lying Cackling Goose (Branta hutchinsii) and Atlantic Brant (Branta bernicla) nesting area, in a zone dominated by ponds and lakes and interspersed with areas of moss and graminoids. Our discovery documents a previously unknown level of nesting of Ross’s Geese at East Bay and corroborates unpublished evidence of growing numbers of the species on Southampton Island and expansion of its breeding range.
  • Item
    Social media analysis reveals environmental injustices in Philadelphia urban parks
    (Scientific Reports, 2023-08-03) Walter, Matthew; Bagozzi, Benjamin E.; Ajibade, Idowu; Mondal, Pinki
    The United Nations Sustainable Development Goal (SDG) target 11.7 calls for access to safe and inclusive green spaces for all communities. Yet, historical residential segregation in the USA has resulted in poor quality urban parks near neighborhoods with primarily disadvantaged socioeconomic status groups, and an extensive park system that addresses the needs of primarily White middle-class residents. Here we center the voices of historically marginalized urban residents by using Natural Language Processing and Geographic Information Science to analyze a large dataset (n = 143,913) of Google Map reviews from 2011 to 2022 across 285 parks in the City of Philadelphia, USA. We find that parks in neighborhoods with a high number of residents from historically disadvantaged demographic groups are likely to receive lower scores on Google Maps. Physical characteristics of these parks based on aerial and satellite images and ancillary data corroborate the public perception of park quality. Topic modeling of park reviews reveal that the diverse environmental justice needs of historically marginalized communities must be met to reduce the uneven park quality—a goal in line with achieving SDG 11 by 2030.
  • Item
    Competition for water induced by transnational land acquisitions for agriculture
    (Nature Communications, 2022-01-26) Chiarelli, Davide Danilo; D’Odorico, Paolo; Müller, Marc F.; Mueller, Nathaniel D.; Davis, Kyle Frankel; Dell’Angelo, Jampel; Penny, Gopal; Rulli, Maria Cristina
    The ongoing agrarian transition from smallholder farming to large-scale commercial agriculture promoted by transnational large-scale land acquisitions (LSLAs) often aims to increase crop yields through the expansion of irrigation. LSLAs are playing an increasingly prominent role in this transition. Yet it remains unknown whether foreign LSLAs by agribusinesses target areas based on specific hydrological conditions and whether these investments compete with the water needs of existing local users. Here we combine process-based crop and hydrological modelling, agricultural statistics, and georeferenced information on individual transnational LSLAs to evaluate emergence of water scarcity associated with LSLAs. While conditions of blue water scarcity already existed prior to land acquisitions, these deals substantially exacerbate blue water scarcity through both the adoption of water-intensive crops and the expansion of irrigated cultivation. These effects lead to new rival water uses in 105 of the 160 studied LSLAs (67% of the acquired land). Combined with our findings that investors target land with preferential access to surface and groundwater resources to support irrigation, this suggests that LSLAs often appropriate water resources to the detriment of local users.
  • Item
    A Reflection on the Relationship Between Place and Health: Understanding Undergraduate Student Experiences and Priorities During the COVID-19 Pandemic
    (Delaware Journal of Public Health, 2022-08) Rao, Abhigna; Hoffman, Lindsay; Bleakley, Amy; Karpyn, Allison
    Environment and setting have a large influence on matters of population health, and college is a critical place for students, shaping both health and education. College students across the nation were impacted by the COVID-19 pandemic, and changes at universities left many anxious, isolated, and coping with social, emotional, and educational impacts. Objective: To perform a data analysis of the qualitative responses garnered through the Student Return to Campus Survey administered at the University of Delaware (UD) in Spring 2020, and to identify common themes of student experiences and priorities during the pandemic years to inform future recommendations for health crisis management. Methods: The study utilized secondary data analysis from an online student experience survey of 2,941 Freshman, Sophomore, and Junior students from the 2020-2021 academic year. Results: Qualitative analysis revealed a set of common outstanding themes influencing the college pandemic experience, including: Quality and Accessibility of Education in a Virtual Learning Environment; Quality of Student Life; Mental Health During the Pandemic; Thoughts and Attitudes About Vaccination Policies, Masking, Testing, and COVID Guidelines; Priorities and Considerations About the Return to Campus; and Overall Feelings About the Pandemic at UD. Conclusions: Student experiences were influenced by academic, social, emotional, and financial factors, which were often described with great intensity, and were at times contradictory. Students emphasized struggles with transitioning to and with virtual learning, the quality of campus resources, financial responsibilities, family health, and personal health. The results also shed light on the importance of communication with the campus community and the desire for students to express opinions during a crisis. Health Policy Implications: The results of this study have implications for crisis management for college campuses and planning for future responses to unanticipated events and ongoing COVID-19 mitigation efforts.
  • Item
    Psychosocial Impact of Cancer Care Disruptions in Women With Breast Cancer During the COVID-19 Pandemic
    (Frontiers in Psychology, 2021-06-14) Soriano, Emily C.; Perndorfer, Christine; Otto, Amy K.; Fenech, Alyssa L.; Siegel, Scott D.; Dickson-Witmer, Diana; Clements, Lydia; Laurenceau, Jean-Philippe
    Background: The COVID-19 pandemic caused significant disruptions in cancer care, and preliminary research suggests that these disruptions are associated with increased levels of psychosocial distress among cancer survivors. The purpose of this study was to offer a descriptive report of the psychosocial functioning, perceived risk and fear of cancer progression, and COVID-19 pandemic impact and experiences in a unique, high-risk patient cohort: breast cancer survivors whose cancer treatment was delayed and/or changed due to the COVID-19 pandemic. Methods: This cross-sectional study included 50 women with dual carcinoma in situ, lobular carcinoma in situ, or invasive breast cancer whose cancer surgery was postponed due to the pandemic. As they awaited delayed surgery or shortly after they received delayed surgery, participants completed questionnaires on psychosocial functioning (depression, anxiety, sleep, and quality of life), their perceived risk and fear of cancer progression, patient-provider communication about disruptions in their care, personal impact of the pandemic, worry/threat about COVID-19, and COVID-19 symptoms/diagnoses. Descriptive statistics and bivariate correlations were computed among continuous study variables. Independent samples t-tests explored group differences in psychosocial functioning between survivors who were still awaiting delayed surgery and those who had recently received it. Results: Overall, the sample denied that the pandemic seriously negatively impacted their finances or resource access and reported low-to-moderate levels of psychosocial distress and fear about COVID-19. Twenty-six percent had clinically significant levels of fear of cancer progression, with levels comparable to other recent work. About a third were still awaiting delayed cancer surgery and this group reported lower satisfaction with communication from oncology providers but overall did not seem to report more psychosocial difficulties than those who already had surgery. Conclusion: Shortly before or after primary breast cancer surgery that was delayed due to the COVID-19 pandemic, this sample of survivors appears to be generally managing well psychosocially. However, many psychosocial difficulties (e.g., fear of cancer recurrence/progression) typically have an onset after the completion of treatment, therefore, research should continue to follow this cohort of cancer survivors as the pandemic’s direct impact on their care likely increases their risk for these difficulties later in survivorship.
Copyright: Please look at individual material in order to see what the copyright and licensing terms are. Some material may be available for reuse under a Creative Commons license; other material may be the copyright of the individual author(s) or the publisher of the journal. Copyright lines may not be present in Accepted Manuscript versions so please refer to individual journal policies and/or look up the journal policies in Sherpa Romeo.