Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors

This study presents a new wearable insole pressure sensor (IPS), composed of fabric coated in a carbon nanotube-based composite thin film, and validates its use for quantifying ground reaction forces (GRFs) during human walking. Healthy young adults (n = 7) walked on a treadmill at three different speeds while data were recorded simultaneously from the IPS and a force plate (FP). The IPS was compared against the FP by evaluating differences between the two instruments under two different assessments: (1) comparing the two peak forces at weight acceptance and push-off (2PK) and (2) comparing the absolute maximum (MAX) of each gait cycle. Agreement between the two systems was evaluated using the Bland–Altman method. For the 2PK assessment, the group mean of differences (MoD) was −1.3 ± 4.3% body weight (BW) and the distance between the MoD and the limits of agreement (2S) was 25.4 ± 11.1% BW. For the MAX assessment, the average MoD across subjects was 1.9 ± 3.0% BW, and 2S was 15.8 ± 9.3% BW. The results of this study show that this sensor technology can be used to obtain accurate measurements of peak walking forces with a basic calibration and consequently open new opportunities to monitor GRF outside of the laboratory.
This article was originally published in Wearable Technologies. The version of record is available at: © The Author(s), 2023. Published by Cambridge University Press.
sensors, monitors, embedded electronics, biomechanics, biomechatronics
Burch, Kaleb, Sagar Doshi, Amit Chaudhari, Erik Thostenson, and Jill Higginson. “Estimating Ground Reaction Force with Novel Carbon Nanotube-Based Textile Insole Pressure Sensors.” Wearable Technologies 4 (2023): e8. doi:10.1017/wtc.2023.2.