Open Access Publications

Permanent URI for this collection

Open access publications by faculty, postdocs, and graduate students in the Department of Civil and Environmental Engineering.


Recent Submissions

Now showing 1 - 5 of 79
  • Item
    Critical facility accessibility and road criticality assessment considering flood-induced partial failure
    (Sustainable and Resilient Infrastructure, 2022-11-25) Gangwal, Utkarsh; Siders, A. R.; Horney, Jennifer; Michael, Holly A.; Dong, Shangjia
    This paper examines communities’ accessibility to critical facilities such as hospitals, emergency medical services, and emergency shelters when facing flooding. We use travel speed reduction to account for flood-induced partial road failure. A modified betweenness centrality metric is also introduced to calculate the criticality of roads for connecting communities to critical facilities. The proposed model and metric are applied to the Delaware road network under 100-year floods. This model highlights the severe critical facility access loss risk due to flood isolation of facilities. The mapped post-flooding accessibility suggests a significant travel time increase to critical facilities and reveals disparities among communities, especially for vulnerable groups such as long-term care facility residents. We also identified critical roads that are vital for post-flooding access to critical facilities. The results of this research can help inform targeted infrastructure investment decisions and hazard mitigation strategies that contribute to equitable community resilience enhancement.
  • Item
    Performance Evaluation of Uncooled UAV Infrared Camera in Detecting Concrete Delamination
    (Infrastructures, 2022-11-30) Aljagoub, Dyala; Na, Ri; Cheng, Chongsheng; Shen, Zhigang
    Concrete delamination detection using unmanned aerial vehicle (UAV)-mounted infrared cameras has proved effective in recent research. However, most studies used expensive research-grade infrared cameras and proprietary software to acquire images, which is hard to implement in state departments of transportation (DOTs) due to the lack of specialty professionals. Some state DOTs started deploying lightweight UAV-based consumer-grade infrared cameras for delamination detection. Quantitative performance evaluation of such a camera in concrete delamination detection is lacking. To fill this gap, this study intends to conduct a comprehensive assessment of the consumer-grade camera benchmarked against the results of a research-grade camera to see the practicality of using the small and low-cost camera in concrete delamination detection. Data was collected for a slab with mimicked delamination and two in-service bridge decks. For the case of the slab, maximum detectability of 70–72% was achieved. A transient numerical simulation was conducted to provide a supplemental and noise-free dataset to explore detectability accuracy peaks throughout the day. The results of the in-service bridge decks indicated that the consumer-grade infrared camera provided adequate detection of the locations of suspected delamination. Results of both the slab and in-service bridge decks were comparable to those of a research-grade infrared camera.
  • Item
    Backed-Up, Saturated, and Stagnant: Effect of Milldams on Upstream Riparian Groundwater Hydrologic and Mixing Regimes
    (Water Resources Research, 2022-09-28) Sherman, Melissa; Hripto, Johanna; Peck, Erin K.; Gold, Arthur J.; Peipoch, Marc; Imhoff, Paul; Inamdar, Shreeram
    How milldams alter riparian hydrologic and groundwater mixing regimes is not well understood. Understanding the effects of milldams and their legacies on riparian hydrology is key to assessing riparian pollution buffering potential and for making appropriate watershed management decisions. We examined the spatiotemporal effects of milldams on groundwater gradients, flow directions, and mixing regime for two dammed sites on Chiques Creek, Pennsylvania (2.4 m tall milldam), and Christina River, Delaware (4 m tall dam), USA. Riparian groundwater levels were recorded every 30 min for multiple wells and transects. Groundwater mixing regime was characterized using 30-min specific conductance data and selected chemical tracers measured monthly for about 2 years. Three distinct regimes were identified for riparian groundwaters—wet, dry, and storm. Riparian groundwater gradients above the dam were low but were typically from the riparian zone to the stream. These flow directions were reversed (stream to riparian) during dry periods due to riparian evapotranspiration losses and during peak stream flows. Longitudinal (parallel to the stream) riparian flow gradients and directions also varied across the hydrologic regimes. Groundwater mixing varied spatially and temporally between storms and seasons. Near-stream groundwater was poorly flushed or mixed during storms whereas that in the adjacent swales revealed greater mixing. This differential groundwater behavior was attributed to milldam legacies that include: berm and swale topography that influenced the routing of surface waters, varying riparian legacy sediment depths and hydraulic conductivities, evapotranspiration losses from riparian vegetation, and runoff input from adjoining roads. Key Points: - Milldams raise riparian groundwater levels, decrease hydraulic gradients, and cause reversals in groundwater flow - Milldam legacies contribute to reduced groundwater mixing in near-stream sediments - Altered groundwater regimes due to milldams could affect riparian water quality processes Plain Language Summary: Riparian zones can buffer streams from upland nitrogen pollution and are thus considered as important water quality management practices. How the presence of milldams affects groundwater flow paths and their buffering capacity is not known. This study showed that milldams back up stream water above dams, reduce the groundwater gradients from the upland to the stream, and also result in their reversal during summer dry conditions and floods. Milldams reduced the mixing of groundwaters for near-stream sediments. This response was attributed to the topographic and sediment conditions associated with the milldams.
  • Item
    Generalization of Runoff Risk Prediction at Field Scales to a Continental-Scale Region Using Cluster Analysis and Hybrid Modeling
    (Geophysical Research Letters, 2022-08-26) Ford, Chanse M.; Hu, Yao; Ghosh, Chirantan; Fry, Lauren M.; Malakpour-Estalaki, Siamak; Mason, Lacey; Fitzpatrick, Lindsay; Mazrooei, Amir; Goering, Dustin C.
    As surface water resources in the U.S. continue to be pressured by excess nutrients carried by agricultural runoff, the need to assess runoff risk at the field scale continues to grow in importance. Most landscape hydrologic models developed at regional scales have limited applicability at finer spatial scales. Hybrid models can be used to address the scale mismatch between model simulation and applicability, but could be limited by their ability to generalize over a large domain with heterogeneous hydrologic characteristics. To assist the generalization, we develop a regionalization approach based on the principal component analysis and K-means clustering to identify the clusters with similar runoff potential over the Great Lakes region. For each cluster, hybrid models are developed by combining National Oceanic and Atmospheric Administration's National Water Model and a data-driven model, eXtreme gradient boosting with field-scale measurements, enabling prediction of daily runoff risk level at the field scale over the entire region. Key Points: Identify five clusters in the Great Lakes region with similar runoff potential Generalize hybrid models developed at field scales to a continental-scale region Predict daily runoff risk on 1 km-by-1 km grid over the entire Great Lakes region Plain Language Summary: Nutrient loading is an important factor determining water quality in the Great Lakes. Transport of nutrients to surface water is often correlated with runoff, causing detrimental effects to aquatic ecosystems, such as harmful algal blooms. Runoff risk forecasts constituting an early warning system can be used to improve timing of nutrient application, leading to dual benefits of reducing nutrient transport to surface water and leaving more nutrients in the field for crop growth. However, measurements of the edge-of-field runoff are conducted at the field scale and sparse over the Great Lakes region, posing a great challenge to developing such a warning system over the continental scale. To address the challenge, we developed a generalization approach that allows predictive models developed using the runoff measurements at the field scale to be generalized to large regions with similar hydrogeologic characteristics. We can then predict the daily runoff risk level over the entire Great Lakes domain at 1 km-by-1 km resolution, which shows promise to be the backbone of the early warning system on the forecast of daily risk level for the Contiguous U.S.
  • Item
    Effects of Geologic Setting on Contaminant Transport in Deltaic Aquifers
    (Water Resources Research, 2022-08-25) Xu, Zhongyuan; Hariharan, Jayaram; Passalacqua, Paola; Steel, Elisabeth; Chadwick, Austin; Paola, Chris; Paldor, Anner; Michael, Holly A.
    Coastal deltaic aquifers are vulnerable to degradation from seawater intrusion, geogenic and anthropogenic contamination, and groundwater abstraction. The distribution and transport of contaminants are highly dependent on the subsurface sedimentary architecture, such as the presence of channelized features that preferentially conduct flow. Surface deposition changes in response to sea-level rise (SLR) and sediment supply, but it remains unclear how these surface changes affect the distribution and transport of groundwater solutes in aquifers. Here, we explore the influence of SLR and sediment supply on aquifer heterogeneity and resulting effects on contaminant transport. We use realizations of subsurface heterogeneity generated by a process-based numerical model, DeltaRCM, which simulates the evolution of a deltaic aquifer with different input sand fractions and rates of SLR. We simulate groundwater flow and solute transport through these deposits in three contamination scenarios: (a) vertical transport from widespread contamination at the land surface, (b) vertical transport from river water infiltration, and (c) lateral seawater intrusion. The simulations show that the vulnerability of deltaic aquifers to seawater intrusion correlates to sand fraction, while vertical transport of contaminants, such as widespread shallow contamination and river water infiltration, is influenced by channel stacking patterns. This analysis provides new insights into the connection between the depositional system properties and vulnerability to different modes of groundwater contamination. It also illustrates how vulnerability may vary locally within a delta due to depositional differences. Results suggest that groundwater management strategies may be improved by considering surface features, location within the delta, and the external forcings during aquifer deposition. Plain Language Summary: The findings of this study provide insight into the vulnerability of deltaic aquifers to three contamination processes: (a) widespread contaminant transport from the land surface, (b) river water infiltration, and (c) seawater intrusion. We consider how contamination is affected by the location of contaminants and the processes associated with the accumulation of sediments in deltas. Our work shows that vulnerability to contamination depends on how the aquifer is deposited. The results also demonstrate that the distribution of sandy channels preserved in the subsurface, as well as rivers on the surface, controls vertical contaminant transport. We find that these effects vary from upstream to downstream in the delta because of spatial differences in depositional processes. These findings will help to improve predictions of groundwater contamination and manage groundwater development in deltas around the world.
Copyright: Please look at individual material in order to see what the copyright and licensing terms are. Some material may be available for reuse under a Creative Commons license; other material may be the copyright of the individual author(s) or the publisher of the journal.