Open Access Publications
Permanent URI for this collection
Open access publications by faculty, staff, postdocs, and graduate students from the Catalysis Center for Energy Innovation.
Browse
Browsing Open Access Publications by Issue Date
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Reactive Liftoff of Crystalline Cellulose Particles(Nature Publishing Group, 2015-06-09) Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.; Andrew R. Teixeira, Christoph Krumm, Katherine P. Vinter, Alex D. Paulsen, Cheng Zhu, Saurabh Maduskar, Kristeen E. Joseph, Katharine Greco, Michael Stelatto, Eric Davis, Brendon Vincent, Richard Hermann, Wieslaw Suszynski, Lanny D. Schmidt, Wei Fan, Jonathan P. Rothstein & Paul J. Dauenhauer; Dauenhauer, Paul J.The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.Item Poisoning of Ru/C by Homogeneous Brønsted Acids in Hydrodeoxygenation of 2,5-Dimethylfuran via Catalytic Transfer Hydrogenation(Elsevier, 2017) Gilkey, Matthew J.; Vlachos, Dionisios G.; Xu, Bingjun; Matthew J. Gilkey, Dionisios G. Vlachos, Bingjun Xu; Gilkey, Matthew J.; Vlachos, Dionisios G; Xu, BingjunIt has been proposed that the combination of metal and acid sites is critical for effective ring opening of biomass-derived furans to linear molecules, a reaction that holds promise for the production of renewable polymer precursors and alkanes. In this work, we use 2,5-dimethylfuran (DMF) as a model compound to investigate hydrogenolysis and hydrogenation pathways using a combination of H2SO4 and Ru-mediated catalytic transfer hydrogenation in 2-propanol. Acid-catalyzed hydrolytic ring opening of DMF to 2,5-hexanedione (HDN) occurs readily at 80 °C with a selectivity of 89% in 2-propanol. Over Ru/C, HDN is fully converted after only 2 h at 80 °C, forming a mixture of both ring-closed products (~68% total yield), i.e., 2,5-dimethyltetrahydrofuran (DMTHF) and 2,5-dimethyl-2,3-dihydrofuran (DMDHF), as well as ring opened products (~28% total yield), i.e., 2,5-hexanediol (2,5-HDL) and 2-hexanol (HOL). Rather than observing sequential hydrolysis/hydrogenation reactions, we observe severe suppression of metal chemistry when having both Ru/C and H2SO4 in the reaction system. While minor leaching of Ru occurs in the presence of mineral acids, X-ray photoelectron spectroscopy coupled with CO chemisorption studies suggest that the primary cause of the lack of Ru-mediated chemistry is poisoning by strongly adsorbed sulfate species. This hypothesis is supported by the observation of Ru-catalyzed chemistry when replacing H2SO4 with Nafion, a solid Brønsted acid, as sulfonic acid groups tethered to the polymer backbone cannot adsorb on the metal sites.Item Catalytic Hydrodeoxygenation of High Carbon Furylmethanes to Renewable Jet-fuel Ranged Alkanes over a Rhenium Modified Iridium Catalyst(Wiley-Blackwell, 2017-07-07) Saha, Basudeb; Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S.; Cheng, Ziwei; Xu, Bingjun; Vlachos, Dionisios G.; Sibao Liu, Saikat Dutta, Weiqing Zheng, Nicholas S. Gould, Ziwei Cheng, Bingjun Xu, Basudeb Saha, and Dionisios G. Vlachos; Saha, Basudeb; Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S.; Cheng, Ziwei; Xu, Bingjun; Vlachos, Dionisios G.Renewable jet-fuel ranged alkanes are synthesized by hydrodeoxygenation of lignocellulose derived high carbon furylmethanes over ReOx modified Ir/SiO2 catalysts under mild reaction conditions. Ir-ReOx/SiO2 with a Re/Ir molar ratio of 2 exhibits the best performance, achieving a combined alkanes yield of 82-99% from C12-C15 furylmethanes. Catalyst can be regenerated in three consecutive cycles with only ~12% loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high yield of Ir-ReOx/SiO2 arises from a synergy between Ir and ReOx. The acidic sites of partially reduced ReOx activate the C-O bonds of the saturated furans and alcoholic groups, while the Ir sites are responsible for hydrogenation with H2.Item A review of thermal and thermocatalytic valorization of food waste(Green Chemistry, 2021-04-08) Ebikade, Elvis Osamudiamhen; Sadula, Sunitha; Gupta, Yagya; Vlachos, Dionisios G.Food waste (FW) remains a global challenge due to the increasing demand for food production to support a growing global population and the lack of effective waste management technologies for recycling and upcycling. Unique compounds in FW – such as carbohydrates, proteins, lignin, fats, and extractives – can be repurposed to produce important biobased fuels, bulk chemicals, dietary supplements, adsorbents, and antibacterial products, among many others. We review the thermal and thermocatalytic FW valorization strategies and the fundamental pathways. We discuss the potential integration of various valorization processes, their economic viability, the technical and marketing challenges, and the need for further developments. By overcoming several technical hurdles, repurposing FW into modular plants can create exciting economic and environmental prospects.Item Improved slit-shaped microseparator and its integration with a microreactor for modular biomanufacturing(Green Chemistry, 2021-04-30) Bhattacharyya, Souryadeep; Desir, Pierre; Prodinger, Sebastian; Lobo, Raul F.; Vlachos, Dionisios G.Modular and distributed biomanufacturing requires continuous flow microreactors integrated with efficient separation units operating at comparable time scales: biphasic reactive extraction of 5-hydroxymethyl furfural (HMF) by fructose dehydration is an excellent example. The liquid–liquid extraction (LLE) and fast reaction kinetics in biphasic microchannels can immensely benefit from a downstream microseparator enabling separation of an HMF-rich organic extract and an aqueous raffinate. Here we demonstrate the successful implementation of an effective slit-shaped microseparator for eleven organic-water biphasic systems. The microseparator successfully separates six of these over reasonable flow rates. The ratio of capillary and hydraulic pressures qualitatively rationalizes the separation performance, while a transition to non-segmented flow patterns correlates with performance deterioration. Acids and salts, integral parts of the chemistry, significantly expand the flow rates for efficient separation enabling a broader slate of organic solvents. For the MIBK/water biphasic system, we demonstrate perfect separation performance over a 16-fold variation in the organic to aqueous flow ratio. Here we also integrate the microseparator and extractive microreactor into a modular system and achieve an HMF yield of up to 93% – the highest reported fractional HMF productivity of 27.9 min−1 – at an ultrashort residence time of 2 s. This unprecedented performance is maintained over a 50-fold fructose concentration range and is stable with time-on-stream. This microseparator exhibits a ten-fold reduction in separation time and substantial energy savings over conventional decanters. As such, it holds promise for continuous process intensification and modular biomanufacturing.Item Accelerating manufacturing for biomass conversion via integrated process and bench digitalization: a perspective(Reaction Chemistry and Engineering, 2022-01-25) Batchu, Sai Praneet; Hernandez, Borja; Malhotra, Abhinav; Fang, Hui; Ierapetritou, Marianthi; Vlachos, Dionisios G.We present a perspective for accelerating biomass manufacturing via digitalization. We summarize the challenges for manufacturing and identify areas where digitalization can help. A profound potential in using lignocellulosic biomass and renewable feedstocks, in general, is to produce new molecules and products with unmatched properties that have no analog in traditional refineries. Discovering such performance-advantaged molecules and the paths and processes to make them rapidly and systematically can transform manufacturing practices. We discuss retrosynthetic approaches, text mining, natural language processing, and modern machine learning methods to enable digitalization. Laboratory and multiscale computation automation via active learning are crucial to complement existing literature and expedite discovery and valuable data collection without a human in the loop. Such data can help process simulation and optimization select the most promising processes and molecules according to economic, environmental, and societal metrics. We propose the close integration between bench and process scale models and data to exploit the low dimensionality of the data and transform the manufacturing for renewable feedstocks.Item A Life Cycle Greenhouse Gas Model of a Yellow Poplar Forest Residue Reductive Catalytic Fractionation Biorefinery(Environmental Engineering Science, 2022-09-13) Luo, Yuqing; O’Dea, Robert M.; Gupta, Yagya; Chang, Jeffrey; Sadula, Sunitha; Soh, Li Pei; Robbins, Allison M.; Levia, Delphis F.; Vlachos, Dionisios G.; Epps, Thomas H. III; Ierapetritou, MarianthiThe incentive to reduce greenhouse gas (GHG) emissions has motivated the development of lignocellulosic biomass conversion technologies, especially those associated with the carbohydrate fraction. However, improving the overall biomass valorization necessitates using lignin and understanding the impact of different tree parts (leaves, bark, twigs/branchlets) on the deconstruction of lignin, cellulose, and hemicellulose toward value-added products. In this work, we explore the production of chemicals from a yellow poplar-based integrated biorefinery. Yellow poplar (Liriodendron tulipifera L.) is an ideal candidate as a second-generation biomass feedstock, given that it is relatively widespread in the eastern United States. Herein, we evaluate and compare how the different proportions of cellulose, hemicellulose (xylan), and lignin among leaves, bark, and twigs/branchlets of yellow poplar, both individually and as a composite mix, influence the life-cycle GHG model of a yellow poplar biorefinery. For example, the processing GHG emissions were reduced by 1,110 kg carbon dioxide (CO2)-eq, 654 kg CO2-eq, and 849 kg CO2-eq per metric ton of twigs/branchlets, leaves, and bark, respectively. Finally, a sensitivity analysis illustrates the robustness of this biorefinery to uncertainties of the feedstock xylan/glucan ratio and carbon content.Item Dynamic Electrification of Dry Reforming of Methane with In Situ Catalyst Regeneration(ACS Energy Letters, 2023-02-10) Yu, Kewei; Wang, Cong; Zheng, Weiqing; Vlachos, Dionisios G.We report the design and performance of a rapid pulse Joule heating (RPH) reactor with an in situ Raman spectrometer for highly endothermic, reversible reactions. We demonstrate it for methane dry reforming over a bimetallic PtNi/SiO2 catalyst that shows better performance than its monometallic counterparts. The catalyst temperature ramp rate can reach ∼14000 °C/s, mainly owing to the low thermal mass and resistivity of the heating element. Joule heating elements afford temperatures unachievable by conventional technology to enhance performance and more than double the energy efficiency. Dynamic electrification can increase syngas productivity and rate. Extensive characterizations suggest that pulse heating creates an in situ catalyst regeneration strategy that suppresses coke formation, sintering, and phase segregation, resulting in improved catalyst stability, under many conditions. Potentially driven by renewable electricity, the RPH can provide superb process advantages for high-temperature endothermic reactions and lead to negative carbon emissions.Item Deducing subnanometer cluster size and shape distributions of heterogeneous supported catalysts(Nature Communications, 2023-04-08) Liao, Vinson; Cohen, Maximilian; Wang, Yifan; Vlachos, Dionisios G.Infrared (IR) spectra of adsorbate vibrational modes are sensitive to adsorbate/metal interactions, accurate, and easily obtainable in-situ or operando. While they are the gold standards for characterizing single-crystals and large nanoparticles, analogous spectra for highly dispersed heterogeneous catalysts consisting of single-atoms and ultra-small clusters are lacking. Here, we combine data-based approaches with physics-driven surrogate models to generate synthetic IR spectra from first-principles. We bypass the vast combinatorial space of clusters by determining viable, low-energy structures using machine-learned Hamiltonians, genetic algorithm optimization, and grand canonical Monte Carlo calculations. We obtain first-principles vibrations on this tractable ensemble and generate single-cluster primary spectra analogous to pure component gas-phase IR spectra. With such spectra as standards, we predict cluster size distributions from computational and experimental data, demonstrated in the case of CO adsorption on Pd/CeO2(111) catalysts, and quantify uncertainty using Bayesian Inference. We discuss extensions for characterizing complex materials towards closing the materials gap.Item Direct Conversion of Ethane to Oxygenates, Ethylene, and Hydrogen in a Noncatalytic Biphasic Plasma Microreactor(ACS Sustainable Chemistry and Engineering, 2023-05-29) Cameli, Fabio; Dimitrakellis, Panagiotis; Vlachos, Dionisios G.We selectively upgrade ethane (C2H6) to ethanol (C2H5OH), methanol (CH3OH), and acetic acid (CH3COOH) in a catalyst-free, continuous, argon/water biphasic plasma microreactor. The water (H2O) evaporates and electron- dissociates into OH· radicals. OH· recombines with alkyl radicals, produced via electron dissociation of ethane, to generate the oxygenates that absorb into H2O. A plasma-assisted path, reminiscent of the low-temperature thermocatalytic ethane steam reforming, leads to significant H2 coproduction. The gaseous stream also comprises CO2 and C2H4. Up to 1.3 and 1 μmol min–1 of liquid C2H5OH and CH3OH are attained, respectively. Compared to CO2-assisted ethane plasma conversion, which produces many oxygenates with low selectivity, the carbon selectivity can range from >70% C2H5OH, CH3OH, and CH3COOH to 60% C2H4. The low carbon footprint, electrified, modular, intensified process using a reactive evaporation and separation plasma could pave the way for the valorization of underutilized shale gas resources in remote areas.Item CKineticsDB─An Extensible and FAIR Data Management Framework and Datahub for Multiscale Modeling in Heterogeneous Catalysis(Journal of Chemical Information and Modeling, 2023-07-24) Lambor, Siddhant M.; Kasiraju, Sashank; Vlachos, Dionisios G.A great advantage of computational research is its reproducibility and reusability. However, an enormous amount of computational research data in heterogeneous catalysis is barricaded due to logistical limitations. Sufficient provenance and characterization of data and computational environment, with uniform organization and easy accessibility, can allow the development of software tools for integration across the multiscale modeling workflow. Here, we develop the Chemical Kinetics Database, CKineticsDB, a state-of-the-art datahub for multiscale modeling, designed to be compliant with the FAIR guiding principles for scientific data management. CKineticsDB utilizes a MongoDB back-end for extensibility and adaptation to varying data formats, with a referencing-based data model to reduce redundancy in storage. We have developed a Python software program for data processing operations and with built-in features to extract data for common applications. CKineticsDB evaluates the incoming data for quality and uniformity, retains curated information from simulations, enables accurate regeneration of publication results, optimizes storage, and allows the selective retrieval of files based on domain-relevant catalyst and simulation parameters. CKineticsDB provides data from multiple scales of theory (ab initio calculations, thermochemistry, and microkinetic models) to accelerate the development of new reaction pathways, kinetic analysis of reaction mechanisms, and catalysis discovery, along with several data-driven applications. Abstract Graphic available at: https://doi.org/10.1021/acs.jcim.3c00123Item Unraveling Multiscale Kinetics over Subnanometer Cluster Catalysts: H2 Desorption from Pt3(-H)2/γ-Al2O3(110)(ACS Catalysis, 2023-08-18) Yan, George; Vlachos, Dionisios G.Despite the attractiveness of highly dispersed supported metal catalysts due to the efficient usage of the active metal component, the structural complexity of subnanometer metal cluster active sites and the interconnectedness of reaction networks over many active site configurations elude detailed understanding. Here, we perform density functional theory (DFT) calculations and state-based kinetic simulations of the desorption of H2 from Pt3(-H)2 clusters supported on dehydroxylated γ-Al2O3(110), serving as a prototype of such coupled reaction networks. Different from ideal low Miller index metal surfaces and highly symmetric gas-phase clusters, we find many unique H binding sites on the supported Pt3 clusters, resulting in an ensemble of metastable Pt3(-H)2 cluster configurations interwoven within a network of H diffusion, active site restructuring, and H2 desorption elementary steps. Simulations and spectral analysis show that the catalyst and chemistry expose three principal time scales, corresponding to the diffusion of H, restructuring of Pt3(-H)2, and desorption of H2. Free energy span-based interpretations of the reaction pathways and sensitivity analysis of the eigenvalues uncover favorable Pt3(-H)2 restructuring and H2 desorption processes as being kinetically relevant at intermediate and long times. Interestingly, H2 desorption implicates catalyst restructuring as a prerequisite for forming more favorable desorption channels. We introduce simplified ensemble-based models and effective rate constants for the modeling of such multiscale reaction processes.Item Cycloaddition–dehydration continuous flow chemistry for renewable para-xylene production from 2,5-dimethylfuran and ethylene over phosphorous-decorated zeolite beta(Green Chemistry, 2024-07-03) Wang, Zhaoxing; Goculdas, Tejas; Hsiao, Yung Wei; Fan, Wei; Vlachos, Dionisios G.Continuous manufacturing of platform chemicals from lignocellulose is highly desirable for a fossil fuel independent future. We demonstrate highly selective production of para-xylene (pX) from ethylene and 2,5-dimethylfuran (DMF) in a packed bed microreactor using phosphorous-decorated zeolite beta (P-BEA), with pX selectivity up to 97% at 80% DMF conversion. We map the effect of reactor temperature, space velocity, concentration, gas-to-liquid ratio, and process pressure. Time-on-stream (TOS) and in situ regeneration studies show minimal productivity degradation over ∼5 h TOS and full productivity restoration upon regeneration for multiple cycles. Most non-selective Brønsted acidity occurs at low TOS and is attributed to the remaining trace Al bridge site. External mass transfer limitations are implicated at low space velocities. We combine the TOS data with NMR, XRD, and Raman to develop structure–performance insights into the catalyst behavior. A comparison with mesoporous P-supported materials illustrates that P-BEA is an excellent catalyst for size selectivity and long-term stability.Item Sustainable Aviation Fuel Molecules from (Hemi)Cellulose: Computational Insights into Synthesis Routes, Fuel Properties, and Process Chemistry Metrics(ACS Sustainable Chemistry and Engineering, 2024-08-13) Chang, Chin-Fei; Paragian, Kristin; Sadula, Sunitha; Rangarajan, Srinivas; Vlachos, Dionisios G.Production of sustainable aviation fuels (SAFs) can significantly reduce the aviation industry’s carbon footprint. Current pathways that produce SAFs in significant volumes from ethanol and fatty acids can be costly, have a relatively high carbon intensity (CI), and impose sustainability challenges. There is a need for a diversified approach to reduce costs and utilize more sustainable feedstocks effectively. Here, we map out catalytic synthesis routes to convert furanics derived from the (hemi)cellulosic biomass to alkanes and cycloalkanes using automated network generation with RING and semiempirical thermochemistry calculations. We find >100 energy-dense C8–C16 alkane and cycloalkane SAF candidates over 300 synthesis routes; the top three are 2-methyl heptane, ethyl cyclohexane, and propyl cyclohexane, although these are relatively short. The shortest, least endothermic process chemistry involves C–C coupling, oxygen removal, and hydrogen addition, with dehydracyclization of the heterocyclic oxygens in the furan ring being the most endothermic step. The global warming potential due to hydrogen use and byproduct CO2 is typically 0.7–1 kg CO2/kg SAF product; the least CO2 emitting routes entail making larger molecules with fewer ketonization, hydrogenation, and hydrodeoxygenation steps. The large number of SAF candidates highlights the rich potential of furanics as a source of SAF molecules. However, the structural dissimilarity between reactants and target products precludes pathways with fewer than six synthetic steps, thus necessitating intensified processes, integrating multiple reaction steps in multifunctional catalytic reactors.