Quasi-Decadal Temperature Variability in the Intermediate Layer of Subtropical South Indian Ocean During the Argo Period

Abstract
It has been reported that the subtropical South Indian Ocean (SIO) has been rapidly warming over the past two decades and can therefore be characterized as one of the major heat accumulators among the oceanic basins. However, this strong warming is not uniformly distributed in the vertical direction. In comparison to the decade-long warming in the upper layer (0–300 m) in 2004–2013, the intermediate layer (300–1,000 m) displays a shorter warming during 2004–2009 and an intense cooling during 2010–2016. By decomposing temperature variations into heaving and spice components, and performing a heat budget analysis, we show that temperature variations in the intermediate layer during these two periods are primarily contributed by isopycnal migrations driven by local wind forcing. Local wind change in the subtropical SIO can be explained by the Indian Ocean Dipole and El Niño–Southern Oscillation during 2004–2016, while Southern Annular Mode (SAM) favors anomalous wind change in mid-latitudes and the formation of basin-wide wind change in the SIO. Additionally, wind forcing in the Subantarctic Mode Water (SAMW) formation region, which is closely linked to the SAM, modulates the anomalous spreading of SAMW into the interior of the subtropical SIO. This, therefore, leads to the SAMW intrusion being of secondary importance to the quasi-decadal temperature variability. Our findings demonstrate the independence of wind-driven temperature changes on the quasi-decadal scale in the intermediate layer of the subtropical SIO under the overall warming background of SIO waters. Key Points - Quasi-decadal temperature variations occur in the intermediate layer (300–1,000 m) of subtropical South Indian Ocean (SIO) - Local wind-driven heaving process is the major driver, spice component arising from the Subantarctic Mode Water intrusion is of secondary importance - The local wind change in the subtropical SIO can be well explained by the combined effects of El Niño–Southern Oscillation, Indian Ocean Dipole and Southern Annular Mode Plain Language Summary Compared to the decade-long warming in the upper layer of the South Indian Ocean (SIO), which has been studied extensively, our understanding of temperature change in the intermediate layer is relatively limited. This study reveals a quasi-decadal temperature cycle in the intermediate layer of the subtropical SIO during the Argo period, which is characterized by a shorter warming period during 2004–2009 and subsequent cooling during 2010–2016. Decomposition of temperature changes suggests that this quasi-decadal temperature variability is primarily driven by the heaving component, which is tightly associated with local wind variability driven by local and remote forcings, whereas the spice change largely contributed by the SAM-related water mass transmission from higher latitudes, is of secondary importance. Thus, this study expands our knowledge of temperature variability in the SIO and demonstrates that the quasi-decadal variability of intermediate layer temperatures in the subtropical SIO serves as a crucial archive for both global and local climate change.
Description
This article was originally published in Journal of Geophysical Research: Oceans. The version of record is available at: https://doi.org/10.1029/2023JC019775. © 2023. American Geophysical Union. All Rights Reserved. This article will be embargoed until 01/28/2024.
Keywords
intermediate layer temperature, quasi-decadal variability, South Indian Ocean, climate modes, water mass
Citation
Huang, L., Zhuang, W., Wu, Z., Zhang, Y., Meng, L., Edwing, D., & Yan, X.-H. (2023). Quasi-decadal temperature variability in the intermediate layer of subtropical South Indian Ocean during the Argo period. Journal of Geophysical Research: Oceans, 128, e2023JC019775. https://doi.org/10.1029/2023JC019775