Influence of growth stage and dicamba rate on eggplant, cucumber, and snap bean tolerance and yield response

Abstract
Following the introduction of dicamba-resistant (DR) soybean in 2017, concerns have increased with regard to dicamba off-target movement (OTM) onto sensitive crops, including vegetables. Field trials were conducted in New Jersey, New York, and Delaware to evaluate cucumber (‘Python’), eggplant (‘Santana’), and snap bean (‘Caprice’ and ‘Huntington’) injury and yield response to simulated dicamba drift rates. Crops were exposed to dicamba applied at 0, 0.056, 0.11, 0.56, 1.12, 2.24 g ae ha–1, representing 0, 1/10,000, 1/5,000, 1/1,000, 1/500, and 1/250 of the maximum soybean recommended label rate (560 g ae ha–1), respectively. Dicamba was applied either at the early vegetative (V2) or early reproductive (R1) stages. Minimal to no injury, vine growth reduction, or yield loss was noted for cucumber. Dicamba was more injurious to eggplant with up to 22% to 35% injury 2 wk after treatment (WAT) at rate ≥1.12 g ae ha–1; however, only the highest dicamba rate caused 27% reduction of the commercial yield compared to the nontreated control. Eggplant also showed greater sensitivity when dicamba exposure occurred at the R1 than at theV2 stage. Snap bean was the most sensitive crop investigated in this study. Injury 2 WAT was greater for ‘Caprice’ with dicamba ≥0.56 g ae ha–1 applied at V2 compared to R1 stage, whereas a similar difference occurred as low as 0.056 g ae ha–1 for ‘Huntington’. Compared to the nontreated control, reduction in plant height and biomass accumulation occurred for both cultivars at dicamba rate ≥0.56 g ae ha–1. Dicamba applied at 1.12 g ae ha–1 or greater resulted in 30% yield loss for ‘Caprice’, whereas ‘Huntington’ yield dropped 52% to 93% with dicamba ≥0.56 g ae ha–1. ‘Caprice’ bean yield was not influenced by dicamba timing of application. Conversely, ‘Huntington’ bean yield decreased by 8% following application at R1 compared to V2 stage.
Description
This article was originally published in Weed Technology. The version of record is available at: https://doi.org/10.1017/wet.2022.85
Keywords
Dicamba, cucumber, Cucumis sativus L., eggplant, Solanum melongena L., snap bean, Phaseolus vulgaris L., soybean, Glycine max (L.) Merr, Auxinic herbicides, herbicide injury, herbicide exposure, off-target-movement, vegetables
Citation
Wasacz, Maggie H., Lynn M. Sosnoskie, Mark J. VanGessel, and Thierry E. Besançon. “Influence of Growth Stage and Dicamba Rate on Eggplant, Cucumber, and Snap Bean Tolerance and Yield Response.” Weed Technology, 2022, 1–7. doi:10.1017/wet.2022.85.