Impact of the GTP Binding Protein ARF-6 on the Biogenesis of Multiple Extracellular Vesicle Subpopulations in C. Elegans

Author(s)Wagner, Katherine
Date Accessioned2022-10-11T14:00:33Z
Date Available2022-10-11T14:00:33Z
Publication Date2022-05
AbstractExtracellular vesicles (EVs) are nano-sized, membrane-bound vesicles that play crucial roles in intercellular communication, impacting both physiologic and pathophysiologic pathways. Use of the genetic model organism C. elegans allows us to study and track EVs and their cargoes in vivo, to observe EV biogenesis and shedding. C. elegans EVs contain various different cargoes, including the calcium homeostasis modulator CLHM-1 and the polycystin PKD-2 ion channels. These cargoes are found to be in two different EV subpopulations that bud from different locations on the cilia of male tail sensory neurons. The small GTPase ARF-6 has been suggested to participate in microvesicle shedding via the phospholipase D pathway of signal transduction based on in vitro studies. However, whether ARF-6 plays this role in the release of EVs from cilia in vivo is unknown. Here, we show, using fluorescent protein tagging and TIRF microscopy, that ARF-6 affects both CLHM-1 and PKD-2-containing EVs, indicating that this protein may act in male-tail sensory neurons to impact biogenesis of all EV subpopulations. Loss of ARF-6 results in an approximate 50% reduction in release of both EV populations, opening the door for several future hypotheses and lines experimentation using the arf-6 mutant.en_US
AdvisorJessica Tanis
PublisherUniversity of Delawareen_US
KeywordsExtracellular vesiclesen_US
KeywordsC. elegansen_US
TitleImpact of the GTP Binding Protein ARF-6 on the Biogenesis of Multiple Extracellular Vesicle Subpopulations in C. Elegansen_US
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Wagner Senior Thesis to Print.with signature.pdf
1.44 MB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
2.22 KB
Item-specific license agreed upon to submission