Nanostructured nitrogen and carbon codoped TiO2 thin films: synthesis, structural characterization and optoelectronic properties

Author(s)Ruzybayev, Inci
Date Accessioned2015-06-22T13:47:10Z
Date Available2015-06-22T13:47:10Z
Publication Date2014
AbstractTiO2 is widely used in applications like photocatalysis, sensors, solar cells, and memory devices because it is inexpensive, abundant, nontoxic and stable in aqueous solution. Another exciting application where TiO 2 has the potential to be a very useful catalyst is the clean hydrogen generation using solar radiation. Energy consumption is increasing every year and, as a result, renewable and sustainable alternative energy sources are becoming increasingly important. Therefore, clean hydrogen generation research is becoming more and more important. This study aims at the preparation and characterization of nitrogen and carbon (N-C) codoped TiO 2 photoanode material that could potentially be used in photoelectrochemical cells for hydrogen generation. The solar spectrum peaks around 500 nm (2.48 eV) which is in the visible part of the spectrum. The photoanode material to be used for solar hydrogen generation should absorb visible light photons to yield high efficiency. The challenge with TiO2 is that the wide band gap (3.00-3.20 eV) absorbs only ultra-violet (UV) photons and only a small percentage of the solar spectrum is in the UV range. There are various ways to overcome the challenge of sensitizing the material to visible light absorption and this study focuses on one of the most promising ways: band modification of TiO 2 by N-C codoping. The role of pure oxygen pressure on pulsed laser deposited N-C codoped TiO2 films were investigated. At low pressures rutile phase of TiO2 was dominant and a microstructure with densely packed grains was obtained. However, at high pressures anatase phase became dominant and columnar structure was favored. Therefore, the anatase-rutile phase ratio as well as the microstructure of the films can be controlled by adjusting oxygen pressure and introducing N and C into the TiO 2 matrix. Optimized oxygen pressure and higher doping concentrations yielded films with more effective absorption in the visible region. The preparation and characterization of pulsed laser deposited N-C codoped TiO2 thin films were investigated for dopant incorporation using N2 and CH4 gases. Polycrystalline anatase structured films were obtained. A 2 theta shift of the anatase (101) X-ray diffraction main peak towards lower values indicated carbon incorporation into the lattice. N incorporation was confirmed with observed Ti-N bonds using X-ray photoelectron spectroscopy. Optical data showed significant reduction, approximately 1.00 eV, of the band gap. The reduction of the band gap allowed the photons in the visible part of the solar spectrum to be absorbed. Through a collaborative work with scientists at Brookhaven National Laboratory and Yonsei University, precise modeling of the electronic structure of N-C codoped TiO2 films were carried out to reveal the underlying physics of band gap reduction. Experimental results were compared with first-principle density functional theory calculations. Hard X-ray photoelectron spectroscopy showed that O, N and C 2p states overlapped effectively and shifts in the valence band maximum towards the Fermi level were observed. Optical band gap results showed that N-C codoping is an effective route for band gap reduction in TiO 2 . Comparison of the measured valence band structure with theoretical photoemission density of states further revealed C substitution on the Ti site and N substitution on the O site. Finally, films grown using radio frequency (rf) magnetron sputtering were compared with the pulsed laser deposited films. Sputtered N-C codoped TiO2 films showed phase transformation from anatase to rutile at constant argon pressure with increasing doping concentration. Moreover, with slow-rate N-C codoping of TiO2 , a texturing effect was observed in X-ray diffraction scans such that anatase (004) Bragg reflection plane became more favored over anatase (101). Optical band gap was reduced but the reduction was not as significant as in the films prepared with the pulsed laser deposition method. Electrochemical methods were applied in the photoelectrochemical cell and the sample prepared by using TiO 2 target with 8% N and C atomic concentrations found to have slightly better photoactivity relative to the other N-C codoped samples. However, due to preferential anatase (004) plane, overall efficiency of N-C codoped films was low. In conclusion, pulsed laser deposition is preferred over rf magnetron deposition for the purpose of band gap reduction of TiO2 by N and C codoping. Pulsed laser deposited films showed continuum in C and N 2 p dopant states within the forbidden region and these states overlapped well with O 2p states. For this reason, optical band gap measurements showed significant reduction. Therefore, pulsed laser deposition of N-C codoped TiO2 films is a possible way of photoanode fabrication for solar hydrogen generation. (Abstract shortened by UMI.)en_US
AdvisorShah, Syed I.
DepartmentUniversity of Delaware, Department of Physics and Astronomy
Unique Identifier911268030
PublisherUniversity of Delawareen_US
dc.subject.lcshTitanium dioxide films.
dc.subject.lcshThin films.
dc.subject.lcshPhotoelectric cells.
dc.subject.lcshElectrochemical apparatus.
TitleNanostructured nitrogen and carbon codoped TiO2 thin films: synthesis, structural characterization and optoelectronic propertiesen_US
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
5.96 MB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
2.22 KB
Item-specific license agreed upon to submission