Department of Materials Science and Engineering
Permanent URI for this community
For more information, see the Department of Materials Science and Engineering website.
Browse
Browsing Department of Materials Science and Engineering by Subject "biomaterials"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Computational Design of Single-Peptide Nanocages with Nanoparticle Templating(Molecules, 2022-02-12) Villegas, José A.; Sinha, Nairiti J.; Teramoto, Naozumi; Von Bargen, Christopher D.; Pochan, Darrin J.; Saven, Jeffery G.Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.Item Macrophage variance: investigating how macrophage origin influences responses to soluble and physical cues with immortalized vs. primary cells in 2D and 3D culture(Frontiers in Biomaterials Science, 2024-05-22) Graf, Jodi; Bomb, Kartik; Trautmann-Rodriguez, Michael; Jarai, Bader M.; Gill, Nicole; Kloxin, April M.; Fromen, Catherine A.Macrophages are phagocytic innate immune cells capable of phenotypical switching in response to the local microenvironment. Studies often use either primary macrophages or immortalized cell lines for hypothesis testing, therapeutic assessment, and biomaterial evaluation without carefully considering the potential effects of cell source and tissue of origin, which strongly influence macrophage response. Surprisingly, limited information is available about how, under similar stimuli, immortalized cell lines and primary cells respond in both phenotypical and functional changes. To address this need, in this work, we cultured immortalized macrophage cell lines derived from different origins (i.e., blood, lung, peritoneal) to understand and compare macrophage phenotypical responses, including polarization and plasticity, morphological changes, and phagocytic functionalities, as well as compared primary macrophages extracted from peritoneal and bone marrow to their immortalized cell line counterparts. We found significant differences in baseline expression of different markers (e.g., CD86, MHCII, CD206, and EGR2) amongst different cell lines, which further influence both polarization and repolarization of the cells, in addition to their phagocytic functionality. Additionally, we observed that, while RAW 264.7 cells behave similarly to the primary bone marrow-derived macrophages, there are noticeable phenotypical and functional differences in cell line (IC-21) and primary peritoneal macrophages, highlighting tissue-specific differences in macrophage response amongst cell lines and primary cells. Moving to three-dimensional (3D) culture in well-defined biomaterials, blood-derived primary and cell line macrophages were encapsulated within hydrogel-based synthetic extracellular matrices and their polarization profiles and cell morphologies were compared. Macrophages exhibited less pronounced polarization during 3D culture in these compliant, soft materials compared to two-dimensional (2D) culture on rigid, tissue culture plastic plates. Overall, our findings highlight origin-specific differences in macrophage response, and therefore, careful considerations must be made to identify the appropriate cell source for the application of interest.