Open Access Publications
Permanent URI for this collection
Open access publications by faculty, postdocs, and graduate students in the Department of Plant and Soil Sciences.
Browse
Browsing Open Access Publications by Subject "Bacillus subtilis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Role of Bacillus subtilis exopolymeric genes in modulating rhizosphere microbiome assembly(Environmental Microbiome, 2024-05-14) Nishisaka, Caroline Sayuri; Ventura, João Paulo; Bais, Harsh P.; Mendes, RodrigoBackground Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps−TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. Results qPCR revealed that the B. subtilis UD1022eps−TasA− strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial β-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. Conclusion This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.Item Surfactin and Spo0A-Dependent Antagonism by Bacillus subtilis Strain UD1022 against Medicago sativa Phytopathogens(Plants, 2023-02-23) Rosier, Amanda; Pomerleau, Maude; Beauregard, Pascale B.; Samac, Deborah A.; Bais, Harsh P.Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp. may be ideal alternatives to chemical crop treatments. This work sought to extend the application of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this study indicate that the PGPR UD1022 would be a good candidate for further investigations into its antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.