Browsing by Author "Abasht, Behnam"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency(PLoS ONE, 2022-07-01) Wang, Ziqing; Özçam, Mustafa; Abasht, BehnamFeed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2).Item Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing(BioMed Central Ltd., 2015-05-21) Mutryn, Marie F.; Brannick, Erin M.; Fu, Weixuan; Lee, William R.; Abasht, Behnam; Marie F Mutryn, Erin M Brannick, Weixuan Fu, William R Lee and Behnam Abasht; Mutryn, Marie F.; Brannick, Erin M.; Fu, Weixuan; Abasht, BehnamBackground Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.Item Detection of genomic signatures of recent selection in commercial broiler chickens(Biomed Central Ltd, 2016-12) Fu,Weixuan; Lee,William R.; Abasht,Behnam; Weixuan Fu, William R Lee and Behnam Abasht; Abasht, BehnamBackground: Identification of the genomic signatures of recent selection may help uncover causal polymorphisms controlling traits relevant to recent decades of selective breeding in livestock. In this study, we aimed at detecting signatures of recent selection in commercial broiler chickens using genotype information from single nucleotide polymorphisms (SNPs). A total of 565 chickens from five commercial purebred lines, including three broiler sire (male) lines and two broiler dam (female) lines, were genotyped using the 60K SNP Illumina iSelect chicken array. To detect genomic signatures of recent selection, we applied two methods based on population comparison, cross-population extended haplotype homozygosity (XP-EHH) and cross-population composite likelihood ratio (XP-CLR), and further analyzed the results to find genomic regions under recent selection in multiple purebred lines. Results: A total of 321 candidate selection regions spanning approximately 1.45 % of the chicken genome in each line were detected by consensus of results of both XP-EHH and XP-CLR methods. To minimize false discovery due to genetic drift, only 42 of the candidate selection regions that were shared by 2 or more purebred lines were considered as high-confidence selection regions in the study. Of these 42 regions, 20 were 50 kb or less while 4 regions were larger than 0.5 Mb. In total, 91 genes could be found in the 42 regions, among which 19 regions contained only 1 or 2 genes, and 9 regions were located at gene deserts. Conclusions: Our results provide a genome-wide scan of recent selection signatures in five purebred lines of commercial broiler chickens. We found several candidate genes for recent selection in multiple lines, such as SOX6 (Sex Determining Region Y-Box 6) and cTR (Thyroid hormone receptor beta). These genes may have been under recent selection due to their essential roles in growth, Developmentelopment and reproduction in chickens. Furthermore, our results suggest that in some candidate regions, the same or opposite alleles have been under recent selection in multiple lines. Most of the candidate genes in the selection regions are novel, and as such they should be of great interest for future research into the genetic architecture of traits relevant to modern broiler breeding.Item Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations(BioMed Central, 2009) Abasht, Behnam; Sandford, E.; Arango, J.; Settar, P.; Fulton, J. E.; O’Sullivan, N. P.; Hassen, A.; Habier, D.; Fernando, R. L.; Dekkers, J. C. M.; Lamont, S. J.; Abasht, B., Sandford, E., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Hassen, A.,, Habier, D., Fernando, R. L., Dekkers, J. C. M., Lamont, S. J.; Abasht, BehnamThe genome sequence and a high-density SNP map are now available for the chicken and can be used to identify genetic markers for use in marker-assisted selection (MAS). Effective MAS requires high linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), and sustained marker- QTL LD over generations. This study used data from a 3,000 SNP panel to assess the level and consistency of LD between single nucleotide polymorphisms (SNPs) over consecutive years in two egg-layer chicken lines, and analyzed one line by two methods (SNP-wise association and genome-wise Bayesian analysis) to identify markers associated with egg-quality and egg-production phenotypes.Item Fatness QTL on chicken chromosome 5 and interaction with sex(EDP Sciences, 2006) Abasht, Behnam; Pitel, F.; Lagarrigue, S.; Le Bihan-Duval, Elisabeth; Le Roy, P.; Demeure, O.; Vignoles, F.; Simon, Jean; Cogburn, Larry A.; Aggrey, S. E. (Samuel E.); Vignal, A.; Douaire, M.; Abasht, B., Pitel, F., Lagarrigue, S., Le Bihan-Duval, E., Le Roy, P., Demeure, O., Vignoles, F., Simon, J., Cogburn, L., Aggrey, S., Vignal, A., Douaire, M.; Abasht, Behnam; Cogburn, Larry A.Quantitative trait loci (QTL) affecting fatness in male chickens were previously identified on chromosome 5 (GGA5) in a three-generation design derived from two experimental chicken lines divergently selected for abdominal fat weight. A new design, established from the same pure lines, produced 407 F2 progenies (males and females) from 4 F1-sire families. Body weight and abdominal fat were measured on the F2 at 9 wk of age. In each sire family, selective genotyping was carried out for 48 extreme individuals for abdominal fat using seven microsatellite markers from GGA5. QTL analyses confirmed the presence of QTL for fatness on GGA5 and identified a QTL by sex interaction. By crossing one F1 sire heterozygous at the QTL with lean line dams, three recombinant backcross 1 (BC1) males were produced and their QTL genotypes were assessed in backcross 2 (BC2) progenies. These results confirmed the QTL by sex interaction identified in the F2 generation and they allow mapping of the female QTL to less than 8 Mb at the distal part of the GGA5. They also indicate that fat QTL alleles were segregating in both fat and lean lines.Item A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes(BioMed Central, 2004) Pitel, F.; Abasht, Behnam; Morisson, M.; Crooijmans, R. P.; Vignoles, F.; Leroux, S.; Feve, K.; Bardes, S.; Milan, D.; Lagarrigue, S.; Groenen, M. A.; Douaire, M.; Vignal, A.; Pitel, F., Abasht, B., Morisson, M., Crooijmans, R. P., Vignoles, F., Leroux, S., Feve, K., Bardes, S., Milan, D., Lagarrigue, S., Groenen, M. A., Douaire, M., Vignal, A.; Abasht, BehnamThe resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags) were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5.Item Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness(EDP Sciences, 2006) Lagarrigue, S.; Pitel, F.; Carre, W.; Abasht, Behnam; Le Roy, P.; Neau, A.; Amigues, Y.; Sourdioux, M.; Simon, Jean; Cogburn, Larry A.; Aggrey, S. E. (Samuel E.); Leclercq, B.; Vignal, A.; Douaire, M.; Lagarrigue, S., , Pitel, F., Carre, W., Abasht, B., Le Roy, P., Neau, A., Amigues, Y., Sourdioux, M., Simon, J., Cogburn, L., Aggrey, S., Leclercq, B., Vignal, A., Douaire, M.; Carre, W.; Abasht, Behnam; Cogburn, Larry A.Quantitative trait loci (QTL) for abdominal fatness and breast muscle weight were investigated in a three-generation design performed by inter-crossing two experimental meattype chicken lines that were divergently selected on abdominal fatness. A total of 585 F2 male offspring from 5 F1 sires and 38 F1 dams were recorded at 8 weeks of age for live body, abdominal fat and breast muscle weights. One hundred-twenty nine microsatellite markers, evenly located throughout the genome and heterozygous for most of the F1 sires, were used for genotyping the F2 birds. In each sire family, those offspring exhibiting the most extreme values for each trait were genotyped. Multipoint QTL analyses using maximum likelihood methods were performed for abdominal fat and breast muscle weights, which were corrected for the effects of 8-week body weight, dam and hatching group. Isolated markers were assessed by analyses of variance. Two significant QTL were identified on chromosomes 1 and 5 with effects of about one within-family residual standard deviation. One breast muscle QTL was identified on GGA1 with an effect of 2.0 within-family residual standard deviation.Item Oxidative Stress and Metabolic Perturbations in Wooden Breast Disorder in Chickens(Public Library Science, 4/20/16) Abasht,Behnam; Mutryn,Marie F.; Michalek,Ryan D.; Lee,William R.; Behnam Abasht, Marie F. Mutryn, Ryan D. Michalek, William R. Lee; Abasht, BehnamThis study was conducted to characterize metabolic features of the breast muscle (pectoralis major) in chickens affected with the Wooden Breast myopathy. Live birds from two purebred chicken lines and one crossbred commercial broiler population were clinically examined by manual palpation of the breast muscle (pectoralis major) at 47-48 days of age. Metabolite abundance was determined by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using breast muscle tissue samples from 16 affected and 16 unaffected chickens. Muscle glycogen content was also quantified in breast muscle tissue samples from affected and unaffected chickens. In total, levels of 140 biochemicals were significantly different (FDR 1.3 or < 0.77) between affected and unaffected chickens. Glycogen content measurements were considerably lower (1.7-fold) in samples taken from Wooden Breast affected birds when compared with samples from unaffected birds. Affected tissues exhibited biomarkers related to increased oxidative stress, elevated protein levels, muscle degradation, and altered glucose utilization. Affected muscle also showed elevated levels of hypoxanthine, xanthine, and urate molecules, the generation of which can contribute to altered redox homeostasis. In conclusion, our findings show that Wooden Breast affected tissues possess a unique metabolic signature. This unique profile may identify candidate biomarkers for diagnostic utilization and provide mechanistic insight into altered biochemical processes contributing to tissue hardening associated with the Wooden Breast myopathy in commercial chickens.Item Proteomic insight into human directed selection of the domesticated chicken Gallus gallus(PLoS ONE, 2023-08-07) Schmidt, Carl J.; Kim, Dong Kyun; Pendarvis, G Ken; Abasht, Behnam; McCarthy, Fiona M.Chicken domestication began at least 3,500 years ago for purposes of divination, cockfighting, and food. Prior to industrial scale chicken production, domestication selected larger birds with increased egg production. In the mid-20th century companies began intensive selection with the broiler (meat) industry focusing on improved feed conversion, rapid growth, and breast muscle yield. Here we present proteomic analysis comparing the modern broiler line, Ross 708, with the UIUC legacy line which is not selected for growth traits. Breast muscle proteome analysis identifies cellular processes that have responded to human directed artificial selection. Mass spectrometry was used to identify protein level differences in the breast muscle of 6-day old chicks from Modern and Legacy lines. Our results indicate elevated levels of stress proteins, ribosomal proteins and proteins that participate in the innate immune pathway in the Modern chickens. Furthermore, the comparative analyses indicated expression differences for proteins involved in multiple biochemical pathways. In particular, the Modern line had elevated levels of proteins affecting the pentose phosphate pathway, TCA cycle and fatty acid oxidation while proteins involved in the first phase of glycolysis were reduced compared to the Legacy line. These analyses provide hypotheses linking the morphometric changes driven by human directed selection to biochemical pathways. These results also have implications for the poultry industry, specifically Wooden Breast disease which is linked to rapid breast muscle growth.Item RNA-sequencing revisited data shed new light on wooden breast myopathy(Poultry Science, 2024-06-21) Bordini, Martina; Wang, Ziqing; Soglia, Francesca; Petracci, Massimiliano; Schmidt, Carl J.; Abasht, BehnamWooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers’ breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.Item Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens(Scientific Reports, 2024-02-11) Wang, Ziqing; Khondowe, Paul; Brannick, Erin; Abasht, BehnamThis study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.Item Using transcriptome profiling to characterize QTL regions on chicken chromosome 5(BioMed Central, 2009) Le Mignon, G.; Pitel, F.; Desert, C.; Leroux, S.; Demeure, O.; Guernec, G.; Abasht, Behnam; Douaire, M.; Le Roy, P.; Lagarrigue, S.; Le Mignon, G., Pitel, F., Desert, C., Leroux, S., Demeure, O., Guernec, G., Abasht, Behnam, Douaire, M., Le Roy, P., Lagarrigue, S.; Abasht, BehnamAlthough many QTL for various traits have been mapped in livestock, location confidence intervals remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the contribution of microarray data to QTL detection in livestock species. Three different but complementary approaches are proposed to improve characterization of a chicken QTL region for abdominal fatness (AF) previously detected on chromosome 5 (GGA5).