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Abstract: While Luria and Delbrück’s seminal work has found its way to some college biology
textbooks, it is now largely absent from those in mathematics. This is a significant omission, and we
consider it a missed opportunity to present a celebrated conceptual model that provides an authentic
and, in many ways, intuitive example of the quantifiable nature of stochasticity. We argue that it is an
important topic that could enrich the educational literature in mathematics, from the introductory to
advanced levels, opening many doors to undergraduate research. The paper has two main parts. First,
we present in detail the mathematical theory behind the Luria–Delbrück model and make suggestions
for further readings from the literature. We also give ideas for inclusion in various mathematics
courses and for projects that can be used in regular courses, independent projects, or as starting
points for student research. Second, we briefly review available hands-on activities as pedagogical
ways to facilitate problem posing, problem-based learning, and investigative case-based learning
and to expose students to experiments leading to Poisson distributions. These help students with
even limited mathematics backgrounds understand the significance of Luria–Delbrück’s work for
determining mutation rates and its impact on many fields, including cancer chemotherapy, antibiotic
resistance, radiation, and environmental screening for mutagens and teratogens.

Keywords: Luria–Delbrück; fluctuation test; stochastic models; mutation rates; Poisson distribution;
mathematics education; simulations and manipulatives; laboratory exercises; problem-based learning;
Darwinism vs. Lamarckism
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1. Introduction

In 1969 Salvador Luria and Max Delbrück were awarded the Nobel Prize in Physiology
or Medicine. Their fluctuation test experiment was heralded as a paradigm shift in biology
because their 1943 paper [1] had made three major contributions: (1) Empirically: their
fluctuation test (Figure 1) was simple, reproducible, and applicable to many biological,
environmental, and medical contexts; (2) Theoretically: it was heralded as distinguishing
between the Darwinian selection of random mutations versus Lamarckian induction of
adaptive mutation; and, (3) Analytically: it provided the first quantitative estimates of
a mutation rate. The legacy of their work continues to have a significant impact on con-
temporary biology, environmental issues, medical practices, education, and mathematical
biology research.

Much has been written in the last two decades about the need for substantive cur-
riculum restructuring as a way for educating the “quantitative biologists” of the future
(see, e.g., [2–4]). It has also been emphasized that in order to acquire a toolbox of diverse
mathematical problem-solving approaches appropriate to answer important questions in
modern biology, mathematics education needs to change as well and incorporate more
applied quantitative problems [5]. Despite several high-profile reports advocating for such
changes ([2,3,6]), progress on integrating mathematics and biology education has remained
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slow. Most biology courses still feature only limited mathematical treatments, and examples
from biology are still rare in mathematics courses, which have been historically dominated
by physics and engineering.

Figure 1. The Fluctuation Test was designed to distinguish between the “Lamarckian model” of
the Induced Mutation Hypothesis (A) and the “Darwinian model” of the Spontaneous Mutation
Hypothesis (B). In A, the bacteria were grown up in a bulk culture in the presence of a selective agent
and then subdivided into aliquots after culturing. In (B), the bacteria were grown up in a total equal
volume of fluid but in subdivided aliquots, and, post-culturing, each aliquot was exposed to the
selective agent. After culturing, the mean and variance of resistant mutants in each aliquot were
determined. A Poisson statistical test of the mean divided by the variance was used to distinguish
which of the two hypotheses was consistent with the data. The experiment is described in more detail
in Section 2.2 below. Image from Wikipedia, used under the CC License.
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Notably, the mathematical model in the Luria and Delbrück paper [1] using a Poisson
process is one of the few pieces of mathematics that is explicitly dealt with in undergraduate
biology. It is thus both puzzling and inexcusable that references to this seminal work are
virtually absent from undergraduate mathematics textbooks and curricula. Just as the
origins of modern genetics can be traced back to Mendel’s pea experiments, Luria and
Delbrück’s work is considered by some to mark the birth of quantitative biology. Yet, very
few mathematics students have heard of the so-called fluctuation test, and if they have,
this almost surely happened in a biology course. While its importance in biology is widely
praised, its impact on mathematics is often overlooked. The Luria–Delbrück experiment
should not be viewed as a mere demonstration of the power of mathematics in biological
research because it has generated (and continues to generate) a lot of questions leading to
new mathematical theories. The literature on the so-called Luria–Delbrück distribution is
already massive, and the questions they raised 80 years ago continue to generate significant
mathematical interest. It provides a compelling example that biology can indeed lead to
new theorems [7].

The goals of this paper are two-fold: (1) To present the mathematical theory under-
pinning Luria–Delbrück’s work on the timing of evolutionary changes and determining
mutation rates. It can be used as a fast-track theoretical introduction for anyone who wants
to get sufficient background on the topic and transition to reading more recent mathematical
literature on the topic. This part is also appropriate for a number of mathematics courses. It
is presented in detail and is accompanied by suggestions for possible classroom use, as well
as student research projects that tackle more advanced mathematical questions; and (2) To
highlight some existing resources based on Luria–Delbrück’s work that uses educational
simulations, mathematical manipulatives, and wet laboratories. These can be used in
undergraduate biology and mathematics courses at any level as activities for self-discovery.
This part concludes with material that demonstrates how important estimating mutation
rates is in environmental contexts and in the medical practice.

2. Luria–Delbrück’s Work as a Catalyst for Engagement

In their celebrated work [1], Luria and Delbrück addressed a major historical dis-
tinction between Darwin and Lamarck. Their fluctuation test was crucial to the rejection
of Lamarckian assumptions and a confirmation that Darwinian selection operated upon
variations that already existed in the population and which were not due to the presence
of a selective agent. Their main argument was mathematical in nature, demonstrating the
powerful role mathematical models play in biology.

The mathematical background required to understand the main idea in its simplest
form, assuming discrete time, is minimal—it requires basic familiarity with distributions of
discrete random variables and their expected values and variances. This material is covered
in undergraduate courses in elementary probability and discrete mathematics. It can also
be introduced easily in elementary statistics and mathematical modeling courses. The
original paper [1] assumes continuous time, but using discrete time does not undermine
generality—the main question can easily be formulated in a discrete-time context with all
other important model assumptions remaining in place. Still, to the best of our knowledge,
the Luria–Delbrück work is largely absent from mathematics textbooks. To paraphrase the
widely-cited quote by Gian-Carlo Rota, this absence is “either a tragedy, a scandal, or a
challenge, it is hard to decide which.” [8].

So how can the fluctuation test be incorporated?

2.1. The Story

Student engagement begins with provoking interest, and the story behind the Luria–
Delbrück test is fascinating in its own right. It combines human emotion, grit and tenacity,
cross-disciplinary collaboration, professional ethics, and the courage to challenge author-
ities From a pedagogical perspective, it is a story worth telling and re-telling, especially
since mathematics courses are not awash with such examples. (We also highly recommend
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reading the chapter titled “The Science Path: Toward the Summit Heights” in Luria’s
autobiography [9]. It can be used to motivate students to pursue their own ideas and not
fear failure—a problem identified as a significant barrier to student retention and success
in STEM [10]). Here is how it goes:

In his work with phages, Luria needed bacteria resistant to one of the phages he
worked with. The well-known technique was to spread samples of phage on agar plates
covered with a layer of sensitive bacteria. In a day, all except a few bacteria would be
killed by the phage and dissolved. These few would remain alive and grow into colonies
that were specifically and permanently resistant to that phage. In his autobiography [9],
Luria writes:

But I soon started wondering, how do phage-resistant bacteria originate? Are they
produced by direct action of the phage on a few bacterial cells, about one in a billion? Or
do they originate spontaneously by mutations. . . ?

In those days, the traditional wisdom among bacteriologists was that bacteria had no
chromosomes and no genes. An eminent British physical chemist, Sir Cyril Hinshelwood,
for example, thought and “proved” through mathematical models that hereditary changes
in bacteria are due to altered chemical equilibrium. Luria writes (in [9]):

Despite the strength of public opinion and Sir Cyril’s authority denying genes to bacteria,
I favored gene mutation origin for my phage-resistant cultures—an arrogant David pitted
against the Goliath of physical chemistry. My reasons were several. My interests were in
genetics, and I could not conceive of an organism without them. And where are genes there
are mutations. Also, the extreme stability of the resistant bacteria spoke for a mutational
mechanism. And, finally, I could not really understand Sir Cyril’s mathematics.

Luria continues:

I struggled with the problem [are mutations directed or spontaneous] for several months,
mostly in my own thoughts, and also tried a variety of experiments, none of which worked.
The answer finally came to me in February 1943 in the improbable setting of a faculty
dance at Indiana University, a few weeks after I had moved there as an instructor. . . I am
not a passionate dancer, but the dances had other attractions for a young bachelor. I was
certainly glad to have gone to this one, but not for romantic reasons.

During the pause in the music I found myself standing near a slot machine, watching
a colleague putting dimes into it. Though losing most of the time, he occasionally got
a return. . . . I was teasing him about his inevitable losses, when he suddenly hit the
jackpot. . . , gave me a dirty look, and walked away. Right then, I began giving some
thought to the actual numerology of slot machines; in so doing it dawned on me that slot
machines and bacterial mutations have something to teach each other.

After designing and performing the now-famous “fluctuation test” experiments, Luria
enlisted the theoretical expertise of Max Delbrück, which resulted in their seminal paper [1].
Luria and Delbrück made a convincing case in favor of the spontaneous mutation hypothe-
sis by showing that the experimental pattern of variability was inconsistent with directed
mutation. They established that the number of mutant cells was not Poisson, but it is just as
important to the story that they were unable to mathematically describe that non-Poisson
distribution. It took six more years until Lea and Coulson found the probability-generating
function of the mutant distribution [11]. This was followed by the work of many others
who presented alternative proofs, studied the same question within different stochastic
frameworks, proposed statistical treatments and alternative approaches to calculating
mutation rates, and derived asymptotic results (see the excellent review by Zheng [12]).

While most biologists presumed that Luria–Delbrück dealt the death knell to Lamarck-
ism, the specter of Lamarck has unfortunately re-arisen several times since their publication.
Claims of directed mutation were made by Cairns, Overbaugh, and Miller [13], Sarkar [14],
Hall [15], and Heidenreich [16], among others. Holmes et al. [17] argued that the original
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Luria–Delbrück data cannot rule out a model that favors both Darwinian and Lamarckian
mechanisms.

A root reason for the controversy was the fact that investigators were initially flabber-
gasted by post-plating mutations. This phenomenon is quite easy to understand in light of
the mutation-mutant principle [18,19]. After the dust settled, biologists were quite noncha-
lant about this sort of mutation. For example, Lang [20] used a two-parameter model to fit
data, taking into account post-plating mutations. Additionally, Ford et al. [21] followed suit.
Unaware of these developments, Holmes et al. [17] went the extra mile to prove something
that biologists already regarded as mundane. A subtler reason for the persistent belief
in Lamarckism is the fact that post-plating mutations (or mutations induced by drugs)
tend to occur at higher rates, but Witkin [22] has emphasized that this phenomenon is
unlikely to be evidence of Lamarkism. An account more accessible to biology students is
the introductory section of [23] where Zheng has developed new computational methods
that take into account the idea that “nonlethal exposure of antibiotics [can] increase rates
of bacterial mutations . . . [and where] some wide-type cells may be killed by nonlethal
exposure to an antibiotic, [whereas resistant] mutants proliferate unimpeded. . . .”.

Renewed scrutiny has also led to questions about bacterial evolution in light of bac-
terial adaptations through the CRISPR-Cas viral defense system. This quasi-Lamarckian
behavior, however, likely evolved by random mutations and natural selection, has led some
to imagine an alternative scientific history that might have occurred if Luria and Delbrück
had used for their experiment, not E. coli, in which the CRISP-Cas mechanism is suppressed,
but another bacterial species, e.g., Streptococcus thermophilus in which it is not [24,25]. The
authors challenge us to ask: Would they have found evidence in favor of the directed
mutation hypothesis? How would that have affected the course of future discoveries? This
“What if. . . ” approach, they say, “underscores the fact that, like evolution, science perhaps
also progresses both adaptively and randomly” [24]. Engaging mathematics students with
these questions is an important step in the process. The story continues, and it matters.

2.2. The Experiment

To begin, Luria started a series of identical cultures of bacteria, each starting with very
few bacteria, which he allowed to grow for approximately 24 h until each culture contained
about a billion bacteria. Each culture was plated individually and mixed with the phage.
After another 24 h, he counted the number of resistant colonies per plate to find that he
had, on average, about ten per plate, but there were many plates without resistant colonies
and a few with “jackpots,” showing a large difference between the plated cultures.

His control was to start a single culture from a few cells, wait for it to grow, divide
it into small portions and plate each individual portion to mix with the phage. Then, as
before, he counted the resistant colonies after 24 h. He observed that the average number
of resistant colonies per plate was about 10 (just as in the previous experiment), but this
time the individual numbers were randomly spread about the average, and there were no
“jackpots” (Figure 2).

2.3. The Mathematics Curriculum

The Luria–Delbrück idea is brilliant in its simplicity: the pattern of variability in the
number of mutant cells ought to differ under the competing hypotheses of spontaneous
vs. directed mutations (Darwin vs. Lamark). When students understand this idea, they
understand something much more general: variability is natural, quantifiable, and pre-
dictable. It cannot be eliminated or (in some cases) controlled, but it can be described, and
studied mathematically.
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Figure 2. The Luria and Delbrück experiment. In 1943, Luria and Delbrück devised an experiment
to address whether mutations occur prior to selection or in response to it (‘spontaneous mutation’
versus ‘directed mutation’). Figure modified from [26] under the Creative Commons CC BY license.

It is way too often that standard courses in mathematics fail to underscore this. Courses
such as Finite Mathematics or Discrete Mathematics often focus exclusively on estimating
elementary probabilities through counting arguments in the context of games of chance
(cards, dice, guessing games), and Introductory Statistics courses are concerned primar-
ily with teaching students how to compute the average and standard deviation of data
sets, compare between-groups proportions and averages, and assess linear dependencies
between quantitative factors (linear regression). These are all worthy goals, but in many
courses, the ideas are obscured in favor of rote memorization of formulas that many stu-
dents do not understand. The approach by Tintle et al. [27] to teach elementary statistics
by way of simulations and using authentic projects drawn from recent peer-reviewed
publications (called by the authors “explorations”) is a notable exception and has been
gaining popularity in recent years.

Dedicated higher-level Probability courses offer a much broader view of the discipline—the
standard list of topics extends beyond combinatorial counting arguments and covers ran-
dom variables, discrete and continuous distributions, marginal and conditional distribu-
tions, moment and probability generating functions, limit theorems, and (time permitting)
the basics of stochastic processes. To the best of the authors’ knowledge, however, Luria–
Delbrück’s work is not found in any of the standard probability texts, thus missing an
opportunity to discuss the importance of sample variance as a distinguishing factor between
different types of distributions.

Of course, the argument that there is only a certain amount of “material” such courses
can cover is a valid one. What we argue here is that some of it, especially when presented
in ways that provide little context for its importance in authentic settings, can be re-
imagined and introduced through the lens of Luria–Delbrück experiments and analyses.
What is more, introducing their work in a probability course opens the door to have
students continue developing the relevant mathematics in other courses such as Calculus,
Differential Equations, Real Analysis, and Mathematical Modeling.

How to mathematically describe and quantify patterns of variability offers an op-
portunity to understand the value of using models, how models rely on assumptions,
and how to test models by using simulations and experimental data. Calculus is not
required for the discrete-time model. For students with a calculus background, familiar-
ity with rates of change, infinite series, and conditional probability provides a bridge to
more advanced mathematical treatments. It gives the necessary tools to determine the
probability-generating function of the number of mutants under the spontaneous mutation
hypothesis.

Below, we will outline the theory with plenty of mathematical detail, hoping that
instructors will find it helpful in case they choose to adapt parts of the material as course
modules. The LaTeX file can also be obtained from the authors upon request for classroom use
and adaptation.
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3. Mathematical Models

We first present the underlying mathematical model for discrete time, following closely
the work of Baake [28], where the variance of the number of mutants can be computed
exactly under each hypothesis. We follow up with a generalization to continuous time,
which allows for computing the probability-generating function for the distribution of
mutants obtained by Lea and Coulson [11].

3.1. The Luria–Delbrück Model with Discrete Time

With the assumption that time t is discrete (t = 0, 1, 2, . . . ), we think of synchronized
cell division where a unit of time equals the time between cell divisions. Thus t counts
the number of generations. Let n(t) = 2t denote the number of cells produced by a single
sensitive cell after time t (n(0) = 1), and let T be the time when the phage is introduced. It
is common to also set N = n(T) = 2T .

The main assumptions of the model are as follows:

1. When a cell divides, a mutation may occur in one of the daughter cells with a small
probability p (p ≈ 0);

2. At any time t, the number of mutated cells in the population is negligible in compari-
son with n(t). This is justified since the mutation probability p is small;

3. Mutations are independent, and both sensitive and mutant cells divide every generation;
4. Backward mutations (from a resistant cell to a sensitive one) are negligible.

Before we proceed, a few comments are in order. Assumption 1 rules out the possibility
of both daughter cells mutating when a cell divides. Since p is very small, the probability
p2 for this to occur is much smaller and can be ignored for the purposes of our discussion.
That said, the reader may choose to consider Zheng [12] for a discussion of this possibility
and the paper [29] by the same author for an alternative discrete-time model—the so-called
Haldane model, developed around 1946.

Now let Z = Z(T) be the number of resistant cells at time T. Our goal is to determine
what properties Z would have under the directed and under the spontaneous mutation
hypotheses.

3.1.1. Case 1: Directed Mutations

In this case, each of the N cells in generation T mutates with probability p. Since
mutation events are independent, the number of resistant cells has a binomial distribution
with parameters N and p. Therefore,

E(Z) = Np, V(Z) = Np(1− p). (1)

Since p is small, 1− p ≈ 1, and thus E(Z) ≈ V(Z), or, which is the same,

E(Z)
V(Z)

≈ 1. (2)

If we consider a Poisson approximation with parameter λ = Np of the Binomial
distribution of Z, then E(Z) = V(Z) = λ and the ratio in Equation (2) is exactly 1.

3.1.2. Case 2: Spontaneous Mutations

In this case, calculating E(Z) and V(Z) requires more careful examination.
Let

X(t) = the number of new mutants that appear at time t

and

YT(t) = the number of resistant cells at time T

that are offspring of a cell mutated at time t < T.
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Since YT(t) = 0 for t ≥ T, a mutation happening at time t will have 2T−t offspring at
time T, leading to

YT(t) = X(t)2T−t. (3)

The cumulative number of mutants at time T will then be

Z =
T

∑
t=1

YT(t) =
T

∑
t=1

Y(t). (4)

In the second equality, we have simplified the notation, using Y(t) for YT(t) but we
should keep in mind its dependence on T.

We now need to calculate the expected value and variance of Z, for which we need
the expectations and variances of X(t) and Y(t).

Since p is small (Assumption 1), mutations are independent (Assumption 3), and the
number of sensitive cells in the population is very close to n(t) = 2t (Assumption 2), the
number of new mutants at time t, X(t), is approximately Binomial, and

E(X(t)) ≈ n(t)p, V(X(t)) ≈ n(t)p(1− p) = (1− p)E(X(t)). (5)

From Equation (3), for 1 ≤ t ≤ T (and since n(t) = 2t),

E(Y(t)) = 2T−tE(X(t)) = 2T−tn(t)p

=
2T

2t n(t)p = Np
(6)

V(Y(t)) = 22(T−t)V(X(t))

= 22(T−t)n(t)p(1− p)

= 2(T−t)(1− p)E(Y(t))

(7)

Consequently, the expected number of resistant cells when the virus is introduced at
time T is

E(Z) =
T

∑
t=1

E(Y(t)) = TNp (8)

and

V(Z) =
T

∑
t=1

V(Y(t))

=
T

∑
t=1

2T−t(1− p)E(Y(t))

= 2T Np(1− p)
T

∑
t=1

2−t

= 2T Np(1− p)(1− 1
2T )

= (2T − 1)Np(1− p).

(9)

Using once again than 1− p ≈ 1, and that 2T is very large, we obtain that under the
spontaneous mutation hypothesis

V(Z)
E(Z)

≈ 2T

T
→ ∞, as T → ∞. (10)

Thus, in that case, the ratio variance/expectation for the mutants will be much greater
than 1.
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3.2. The Luria–Delbrück Model with Continuous Time

The continuous model requires the use of calculus (rates of change, infinite series,
differentiating infinite series) and is an excellent project for courses in calculus, calculus-
based mathematical modeling, and real analyses. It will also be beneficial to students in
Differential Equations courses, as the probability-generating function of Z is obtained as a
solution of a differential equation.

To begin, just as in the discrete-time case, let n = n(t) be the population size, grown
from a single cell, at time t (n(0) = 1), and let Z = Z(t) be the number of mutant cells at
time t. Let E(Z) and V(Z) denote the mean and the variance of Z.

When time is considered continuous, the model assumptions are as follows:

1’ The mutation rate is α, meaning that a mutation of a sensitive cell may occur at any
time dt with probability αdt (α ≈ 0);

2’ At any time t, the number of mutated cells in the population is negligible in compari-
son with n(t). This is justified since the mutation probability α is small;

3’ Sensitive cell numbers grow exponentially (and deterministically) at a rate β; that is

n = eβt.

4’ Each mutant cell can split at time dt into two mutant cells with probability βdt,
independent of other cells. This probability is the same for all mutants and does not
depend on the cell’s age. With this assumption, the number of mutant cells Z will
always have an integer value. The splitting rate β is the same as the growth rate of
sensitive cells.

5’ Backward mutations (from a resistant cell to a sensitive one) are negligible.

Note that assumptions 2’ and 5’ are the same as in the discrete-time case, while
assumptions 1,’ 3’, and 4’ are modifications of those in the discrete-time model.

With these assumptions, we follow the work of Lea and Coulson [11]. The difference
with the original 1943 Luria–Delbrück model is that Luria and Delbrück assumed determin-
istic exponential growth of rate β for both populations—the population of sensitive bacteria
and the population of mutants. In contrast, Lea and Coulson made the additional assump-
tion 4’ that would allow us, as we will see below, to determine the probability-generating
function of the number of mutants Z. The paper by Armitage [30] contains more details,
as well as an interesting history of prior work. (Those familiar with stochastic processes
will recognize that 4’ assumes that the growth of mutant cells follows a Yule stochastic
birth process with the birth rate β. For very large t, Z(t) is well approximated by eβt, which
is what Luria and Delbrück assumed. See the Discussion section for how this may be a
pathway to initiating student research projects on random processes).

We should also note that, in principle, both β and α may depend on t. In their
work [11], Lea and Coulson make the observation that even though α and β may change
with time, it would make sense to assume that α and β are affected similarly by factors
such as nutritional conditions and population density. Thus, they make an additional
assumption that the mutation rate per generation α/β (though not per unit time) may be
considered constant even though α and β are not.

Just as in the discrete-time model, we will now compute the ratio of E(Z) and V(Z)
under the directed and spontaneous mutation hypotheses. We then follow the work by Lea
and Coulson [11] to determine the probability-generating function of Z.

Consider again the population of size n = n(t). Assumption 3’ now implies,

dn = nβdt, or, equivalently, βdt =
dn
n

. (11)

Since α is the mutation rate, the average number of mutations in a population of size n
in time dt is nαdt. Here, we use Assumption 2’, which allows us to use the total number
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of organisms n(t) and not subtract the number of mutants. Thus, the average number of
mutations to occur by the time the population has grown to size n = n(t) is

m =
∫ t

0
nαdt =

α

β

∫ n

1
dn =

α

β
(n− 1) ≈ α

β
n. (12)

Let us now denote, for r = 0, 1, 2, . . . ,

pr = pr(t) = P (a culture of size n has r mutant bacteria at time t) = P(Z(t) = r. (13)

In what follows, we should suppress the dependence on time in the notation but
should remember that n, pr, and Z depend on t and α/β is constant.

3.2.1. Case 1: Directed Mutations

Let us assume the phage was introduced at time T when the population has size
N = n(T). Just as in the discrete-time case, each of the N cells can, at time [T, T + dt],
mutate with probability αdt. Since mutation events are independent, the number of resistant
cells has Binomial distribution with parameters N and αdt, which can be approximated
using a Poisson distribution with mean and variance α. Therefore,

E(Z) = α, V(Z) = α, and thus
V(Z)
E(Z)

= 1. (14)

3.2.2. Case 2: Spontaneous Mutations

Consider a culture of size n = n(t) with r mutants. The proportion of mutants at this
time is pr. How can it change in time dt? That is, what is the proportion of mutants at time
t + dt?

Consider
pr + dpr = pr +

dpr

dn
dn,

the probability that the number of mutants in a population of size n + dn is r. This can
happen in the following ways for r ≥ 1:

(a) At time t, the culture had r − 1 mutants, and one of them divides at time dt. The
probability of this event is

pr−1(r− 1)βdt = pr−1(r− 1)
dn
n

;

(b) At time t, the culture had r − 1 mutants and a mutation occurred at time dt. The
probability of this event is

pr−1αndt = pr−1
α

β
dn;

(c) At time t, there were r mutants, and neither a division nor a mutation occurred at
time dt. The probability of this event is

pr(1− αndt− rβdt) = pr(1− r
dn
n
− α

β
dn).

Combining (a)–(c) gives the following equations:

pr + dpr = pr−1[(r− 1)β + αn]dt + pr[1− rβ + αn]dt. (15)

Simplifying yields

dpr

dt
= pr−1[(r− 1)β + αn]− pr[rβ + αn]. (16)
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Rearranging, and recalling, from Equations (11) and (12) that

βdt =
dn
n

, and m =
α

β
n,

we obtain
dpr

dm
+ pr + pr

r
m

= pr−1(1 +
r− 1

m
). (17)

We will now use Equation (16) to obtain E(Z) and V(Z) and Equation (17) to obtain
the probability generating function of Z.

Expected value and variance of the number of mutants Z. Note that

d
dt
E(Z) =

∞

∑
r=1

r
dpr

dt
,

and so, multiplying Equation (16) by r and taking the sum over r, we obtain

d
dt
E(Z) =

∞

∑
r=1

r[β(r− 1)pr−1 − βrpr + αnpr−1 − αnpr]

= β
∞

∑
r=1

r(r− 1)pr−1︸ ︷︷ ︸
I

−β
∞

∑
r=1

r2 pr︸ ︷︷ ︸
II

+αn
∞

∑
r=1

rpr−1︸ ︷︷ ︸
III

−αn
∞

∑
r=1

rpr︸ ︷︷ ︸
IV

.
(18)

With the understanding that for any r < 0, pr = 0, for the sum denoted as I, we obtain:

∞

∑
r=0

r(r− 1)pr−1 =
∞

∑
r=0

(r + 1)rpr =
∞

∑
r=0

r2 pr +
∞

∑
r=0

rpr

= E(Z2) +E(Z).

(19)

For sum III,

∞

∑
r=0

rpr−1 =
∞

∑
r=0

(r− 1)pr−1 +
∞

∑
r=0

pr−1 = E(Z) + 1. (20)

Sum II gives E(Z2) and sum IV is E(Z). Combining back into Equation (18) we obtain
the following differential equation for E(Z):

d
dt
E(Z) = βE(Z) + αn = βE(Z) + αeβt. (21)

Solving leads to
E(Z) = αteβt. (22)

To find V(Z) = E(Z2)− (E(Z))2, we need to find E(Z2). Multiplying Equation (16)
now by r2 and applying the same approach, we obtain the following differential equation
for E(Z2):

d
dt
(E(Z2)) = 2βE(Z2) + βE(Z) + 2αnE(Z) + αn. (23)

Plugging in again n(t) = eβt and solving, yields

E(Z2) =
αeβt

β
(2eβt − βt− 2) + (E(Z))2,

leading to

V(Z) =
αeβt

β
(2eβt − βt− 2) =

2αe2βt

β
+ o(e2βt), (24)
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where o(e2βt) indicates terms that grow much slower with time than e2βt. Combining with
Equation (22) shows that

V(Z) ≈ 2eβt

βt
E(Z), (25)

and
V(Z)
E(Z)

=
2eβt

βt
→ ∞, as t→ ∞. (26)

Thus, under the spontaneous mutation hypothesis, the variance in the number of
mutants is much bigger than the expected value.

The Probability Generating Function (PGF) of Z. Using the expression for probabili-
ties pr from Equation (17), Lea and Coulson obtained the PGF F(x, m) defined by

F(x, m) = E(xZ) =
∞

∑
r=0

prxr, (27)

where m is the average number of mutations when the population size is n. Then

∂F
∂x

=
∞

∑
r=0

rprxr−1 and
∂F
∂m

=
∞

∑
r=0

xr dpr

dm
. (28)

Multiplying Equation (17) by xr and summing up, gives

∞

∑
r=0

xr dpr

dm
+

∞

∑
r=0

xr pr +
x
m

∞

∑
r=0

xr−1rpr = x
∞

∑
r=0

xr−1 pr−1 +
x2

m

∞

∑
r=0

(r− 1)xr−2 pr−1, (29)

which leads to

∂F
∂m

+ F +
x
m

∂F
∂x

= xF +
x2

m
∂F
∂x

. (30)

Thus, the PGF F(x, m) satisfies

m
∂F
∂m

= m(x− 1)F +
∂F
∂x

(x2 − x)m, with F(0, m) = p0 = e−m, (31)

where p0 is the probability of having no mutant cells in a population of size n = n(t).
Lea and Coulson went on to show that

F(x, m) = (1− x)
m(1−x)

x . (32)

was a solution to Equation (31), which can be checked by substitution.

3.3. Determining the Mutation Rate

It is interesting that eighty years after the publication of the Luria–Delbrück work, it is
better known not for demonstrating that experimental data conforms with the spontaneous
mutation hypothesis but rather for presenting an ingenious way for estimating the mutation
rate. The paper [1] presents two such methods—the so called p0-method and the method
of likely averages. Significant progress has been made on this front since the original Luria–
Delbrück work, and many more modern and more accurate methods have been developed
in the past 80 years. Better methods have been necessary for two reasons. On one hand,
some of the methods rely on mathematical assumptions that may be difficult to justify or
verify in practice. On the other, experimental difficulties that impact accuracy should be
considered. The need to develop reliable, easy-to-use approaches to estimating mutation
rates has generated considerable literature on the subject, and the excellent reviews by
Zheng [31], and Łazowski [32] outline the evolution of protocols for estimating mutation
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rates, providing the theoretical underpinnings of multiple methods together with some
practical challenges related to their use.

In what follows, we focus on three classical methods: the two originally proposed
in [1], and a method by Drake [33], based on the rate of growth of the average number of
mutants ρ = E(Z) from Equation (21). The method of likely averages and Drake’s method
are now outdated and should no longer be used in practice. We chose to present them here
due to their historical significance, even though, from the very beginning, their use has
been riddled with conceptual, experimental, and computational difficulties. In addition,
many other methods can be traced back to them, and, for students, the history here is
yet another powerful example of the idea that mathematical models inform experimental
biology in important ways but that translations into practice may not be straightforward.
The work by Zheng [31] could be used as a bridge to student research projects on the topic.

Nowadays, maximal (ML) methods are the predominant methods for estimating mu-
tation rates in research. Describing those methods is beyond the scope of this work, but we
should mention that several computational tools implementing various methods have been
developed in the last decade and are freely available. The web-based webSalvador [34]
(descending from rSalvador [35]) is perhaps the easiest to use. New statistically rigor-
ous methods using Bayesian and Markov Chain Monte Carlo approaches have also been
developed recently [36].

3.3.1. Method 1—Using a Poisson Approximation (The P0-Method)

This method is the one biology students would most commonly learn about in the
lab. It assumes that the number of mutations Z is closely approximated by a Poisson
distribution with parameter m—the average number of mutations over the time interval
[0, t]. Using the same notation as Equation (13), we use p0 to denote the probability that no
mutations have occurred over the interval [0, t] (no mutations in a population of size n).
Mathematically, since Z is Poisson with parameter m,

p0 = e−m = e−
α
β n

(using m = α
β n, Equation (12)). Experimentally, this same probability p0 may be approxi-

mated as the fraction of cultures showing no mutations in a large series of similar cultures:

p0 ≈
number of cultures with no mutations

total number of cultures
. (33)

With this approximation for p0, the average number of mutants is

m ≈ − ln (p0),

which, combined with Equation (12), gives the needed approximation for the mutation rate α

α ≈ − β ln (p0)

n
, (34)

where the growth rate β, the population size n, and the proportion of with no mutations p0
are known/determined from the experiment.

3.3.2. Method 2—Using a Likely Average

This method does not make any assumptions about the distribution of mutants Z and
uses only the assumption 3’ of exponential growth.

Equation (22) shows that the average number of mutants increases more rapidly
than the population size n. Experimentally, though, for small mutation rates, it would
be very unlikely to have an early mutation in a single or a limited number of experimen-
tal cultures. Thus, experimental results would very likely generate smaller values than
the theoretical value from Equation (22). In the unlikely occasion that a mutation did
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occur early, the experimental average would be much larger than this theoretical value.
Luria and Delbrück wrote:

This situation is similar to the operation of a (fair) slot machine, where the average
return from a limited number of plays is probably considerably less than the input, and
improbably, when the jackpot is hit, the return is much bigger than the input [1].

As we saw in Equation (24), this leads to what Luria and Delbrück called “an abnor-
mally large variance” and note that for “such distributions, the averages derived from
limited numbers of samples yield very poor estimates of the true averages.” To mitigate
this situation, they proposed that, for a limited number of samples, it would be more
appropriate to calculate the likely average r of the number of resistant bacteria

r = (t− t0)
α

β
n, (35)

obtained by integrating Equation (21) over an interval [t0, t] (instead of [0, t], which led to
Equation (22)).The time t0 should be such that prior to it mutations would be unlikely to
occur in any of the experimental samples.

Luria and Delbrück chose t0 to be such that up to that time, only one mutation has
occurred on average in a group of C similar cultures. Integrating over [t0, t], similarly to
Equation (12), we obtain

1 =
α

β
Cn(t0), or n(t0) =

β

αC
. (36)

We may also connect n(t0) with n = n(t), the number of bacteria at the time of
observation, using that the population grows exponentially:

n = n(t0)eβ(t−t0), or n(t0) = ne−β(t−t0). (37)

Equating the two different representations of n(t0) from Equations (36) and (37), and
solving for t− t0 gives

t− t0 =
1
β

ln (
α

β
nC). (38)

With this, Equation (35) becomes

r =
α

β2 n ln (
α

β
nC). (39)

Since the quantities r, n = n(t), β, and C can be measured experimentally, Equation (39)
can now be solved numerically to find the mutation rate α.

3.3.3. Method 3—The Drake Equation

This method, proposed by Drake [33], uses Equation (21) to derive the rate of change
of the proportion f of resistant mutants in the population.

Recall that (Equation (11)) nβdt = dn. With this, Equation (21) becomes

dρ

dn
=

α

β
+

ρ

n
, or, equivalently dρ =

α

β
dn +

ρ

n
dn. (40)

Consider now the fraction f of resistant mutants when the population size is n.

f =
ρ

n

Then ρ = f n and, by the product rule,

dρ = f dn + f dn.
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Replacing dρ in Equation (40) with this expression, simplifying, and dividing by
f = ρ/n, leads to

d f =
α

β

dn
n

.

Integrating this over a time interval [t0, t] gives

f − f0 =
α

β
(ln (n)− ln (n0)) =

α

β
ln (n/n0), (41)

and the mutation rate α can be estimated as

α = β
f − f0

ln (n/n0)
. (42)

Several comments are in order:

1. Note that if we choose t0 = 0 and assume, as we assumed before, n(0) = 1 and f0 = 0,
Equation (42) yields

α = β
f

ln (n)
.

2. Alternatively, to avoid the same type of problems as we discussed when describing
Method 2 above, t0 may be chosen so that n0 = n(t0) is the size of the culture when
the first mutant appears. At that time, n0 ≈ 1/(α/β), and f0 is very small and can be
ignored. Replacing this value for n0 in Equation (41) and using that f = ρ/n, gives
the following equation for the mutation rate:

ρ

n
=

α

β
ln(

α

β
n). (43)

The three methods presented here lay a foundation for many modifications. The
works by Foster et al. [37], Zheng [31], and Łazowski [32] can be used as a launchpad for
further investigations.

4. Suggestions for Classroom Use

In this section, we comment on ways to incorporate elements from this theory in
several standard undergraduate mathematics courses. With some careful scaffolding, the
discrete-time model could be used as a student project in some biology courses as well, e.g.,
genetics, ecology, evolution, developmental biology, and physiology.

4.1. Possible Uses of the Discrete-Time Model in Mathematics Courses

Except for Equation (10), the discrete-time model does not rely on calculus, and the
use of limits in it may be easily avoided by examining the ratio (2T − 1)/T for growing
values of T to observe that it increases without a bound away from 1. Thus, in our view,
this model could be incorporated into precalculus-level courses (e.g., Finite Mathematics,
Discrete Mathematics, Mathematical Modeling) with the following scaffolding: (1) Rely
on students’ intuitive understanding of Independence, (2) Outline the framework within
which the Binomial distribution forms (a fixed number of independent trials is performed;
each trial has only two possible outcomes—usually termed “success” and “failure”, and the
probability for success is the same for all trials), and (3) Accept (perhaps after examining
some examples) that when random quantities are independent, the variance of their sum
is the sum of the variances as in Equation (9). We consider this an efficient way to bypass
some technicalities that are of secondary importance to students with yet undeveloped
mathematical maturity and show how the Binomial distribution can be used to general-
ize many of the combinatorial examples students encounter in these courses. With this,
Equation (10) also provides an opportunity to use the closed form of a geometric sum,
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something they have likely already seen in problems focused on the growth of investment
with compound interest-type problems.

In dedicated Probability courses, the scaffolding would be unnecessary, and this Luria–
Delbrück model could be used with full mathematical justification. It may also be assigned
as an independent project where students read the Braake paper [28], discuss it with their
instructor, and write a paper or give a presentation on the topic.

Students who have taken calculus can be assigned a project to show that the binomial
distribution B(N, p) obtained for the number of mutants under the directed mutations
hypothesis is well approximated by a Poisson distribution P(λ), where λ = Np remains
constant when N → ∞. As this fact is a standard material included in a calculus-based
probability course, the Luria–Delbrück experiments can be used as an authentic example
and as a way to justify why counts of “rare” events over a unit of time or space generally
follow Poisson distribution laws. Those students may also be asked to compare the expres-
sions for the ratios of the variants and the expected value in the discrete and continuous
cases (Equations (10) and (26)) and comment on the comparison.

4.2. Possible Uses of the Continuous-Time Model in Mathematics Courses.

Clearly, the model with continuous time requires some sophisticated mathematical
treatment, but we hope that the outline presented here underscores its accessibility to
students in calculus and in more advanced calculus-based courses. The first author, who
used parts of this material in an advanced probability course, was able to observe genuine
student interest once they got engaged with the project, even though their initial knowledge
of biology was not strong. It improved while students worked on the project, but overall
remained limited, which emphasizes the idea that understanding the importance of the
questions raised and answered by Luria and Delbrück are easily understandable even for
mathematics audiences with only limited background in biology. Additional observations
include the following:

• Most students in the sciences are keenly aware of the ongoing political debates about
evolution and how school boards nowadays may mandate that teaching evolution in
the schools should necessarily be paired with “-parallel” theories, e.g., Lamarckism
and intelligent design. To see how, at least in the bacterial world, it can be established
that the directed mutations hypothesis is not supported by experimental data provides
a high-impact example of the value of hypothesis-driven research.

• The fluctuation test allows students to see a statistical approach not based on compar-
ing group proportions or means (which is almost exclusively what most introductory
statistics courses do) and focusing instead on their variances. A discussion asking
why averages do not allow for distinguishing between the hypotheses of spontaneous
mutations and directed mutations provides an excellent opportunity to build a better
understanding of how randomness is quantifiable.

• Most standard courses in mathematical modeling place emphasis on describing the
time evolution of systems comprising interacting components through difference or
differential equations; that is, using a deterministic approach. In rare cases when some
stochasticity is added to the models, it is primarily in assuming that the values of the
model parameters are drawn from an underlying distribution of interest (e.g., in the
context of looking into a solution’s stability without performing full mathematical
analyses). The fluctuation test uses a mathematical model very different from those
they may have seen in such courses and, thus, presents an opportunity to broaden the
scope of modeling approaches students are exposed to.

• There are many links relating the theory above to standard material taught in other
courses. As an example, students in a probability class are introduced to probability-
generating functions, but justifying the term-by-term differentiation of the infinite se-
ries from Equation (28) is something that they will encounter in Calculus or Real Anal-
ysis courses. Verifying that the limit, as x → 0, of the solution F(x, m) in Equation (32)
agrees with the condition F(0, m) = p0 = e−m is another good calculus problem.
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The use of “little o” notation in Equation (24) is an opportunity to talk about rates of
growth at infinity.

• Changing the summation index in Equations (19) and (20) is something that comes
up often in Differential Equations courses in the context of finding solutions in the
form of infinite series—something students generally struggle with. In a Differential
Equations course, it would also be of interest to ask students to obtain Equation (21) in
an alternative way, without using assumption 4’ and the probabilities pr. Instead, they
may assume that the population of mutant cells grows exponentially at a rate β, just as
the population of sensitive cells does (assumption 3’). To do that, they should notice
that the rate of growth of ρ = E(Z) has two components: (1) a contribution from new
mutations in time dt: αndt, and (2) a contribution from the growth of resistant mutants
in time dt: βρdt. Thus, the rate of increase of the average number of resistant mutant
bacteria is

dρ

dt
= αn + βρ, (44)

-providing an intuitive interpretation of Equation (21).
• Once students feel comfortable with the theory outlined above, there are many possible

directions for student research projects. They can follow, e.g., the work of Ma [38]
to analyze the distribution of mutant cells using discrete convolution powers or
read Pakes’s [39] and Kemp’s [40] remarks on the Luria–Delbrück’s distribution to
discover more of its mathematical properties, including asymptotic evaluations of
the probabilities pr. The short communication by Goldie [41] suggests an alternative
method for finding the PGF F(x, m) and the asymptotics of the probabilities pr by
representing the number of mutant cells Z as a Poisson compound. Examining
additional methods for estimating mutation rates, using [37] as a starting point is
another possibility.

• If one is interested in more recent mathematical developments, the paper by Zheng
in Chance [42], written for a general audience, can be used as a continuation of our
Section 2.1. This pleasant read addresses the time span between the publications of the
Luria–Delbrück paper [1] and that by Lea and Coulson [11], discussing unpublished
efforts and anecdotes. This is followed by descriptions of more recent work on the
topic. The review paper by the same author [12] provides a rigorous review of the
mathematical literature until 1999, which will be of interest to those who pursue
research in the field.

• A fine distinction of interest based on the assumptions under which the models are
developed can be studied by the work of Luria–Delbrück [1], Lea and Coulson [11] and
M.S. Bartlett. As mentioned earlier, Luria and Delbrc̈k assumed deterministic growth
of the sensitive and the mutant cells, while Lea and Coulson used a deterministic
growth for the sensitive cells but assumed the growth of mutants followed a Yule
branching process. Bartlett on the other hand, treats the growth of both sensitive
cells and mutant cells as Yule processes. See [12,43] for the interesting history behind
Bartlett’s work and references to it.

• Finally, it is important to help students realize that mathematical models for biology
and medicine rely on assumptions that should be considered and weighed with great
care. Due to those assumptions, mathematical models generally present useful but
incomplete descriptions of cellular and molecular mechanisms. Students should
be aware of the risks of drawing dubious conclusions based on simplifications that
are more about mathematical tractability than about biological reality. There are
certain mutations that are extremely hard to predict but can have significant biological
consequences (see e.g., [44,45]). The accurate modeling of such processes may require
different approaches or new mathematical treatments, thus advancing research in
both mathematics and biology.

Our lists here present just a small portion of the many possible ways the Luria–
Delbrück work links with topics in the standard mathematics curriculum and can be a
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springboard to student research where students could delve into the theory of stochastic
processes. It is an example that shows how theoretical mathematics can be used to answer
questions of clear practical importance to biology (something rare for advanced mathemat-
ics courses) while also propelling advancements in mathematical theory. In that sense, the
fluctuation test is an example that will “keep giving,” as long as it appears on our radar.
We hope this article makes a first step in assisting readers with this goal.

5. Educational Simulations, Mathematical Manipulatives, and Wet Laboratories

As mentioned already, notions of randomness are frequently counterintuitive and
difficult for many students and present a special challenge for undergraduate biology
education. The quantitative reasoning issue has been specifically addressed by Robson and
Burns [46], and Meneely [47] focused on developing a primer on the Poisson statistical test.
Here we highlight a few resources that can be used as hands-on activities geared at helping
students with limited mathematical backgrounds to understand randomness, variability,
rates of occurrence, and Poisson distributions in an applied context. These can prepare
students for appreciating and better understanding the Luria–Delbrück idea for estimating
mutation rates.

5.1. Simulations

Computer simulations are useful for a multitude of reasons. First, most mathematics
students are unfamiliar with analyzing actual data from experiments and then explor-
ing what would happen if the results were a little different. By varying entries in a
spreadsheet or other interface, students often experience surprise when something coun-
terintuitive to their expectation occurs [48]. Second, students can explore the differences
among hypothesis-free exploration and model-using, model-revising, and model-building
simulations. Thus, some simulations are black-box, and others are glass-box where the
underlying mathematics is both accessible and visualizable. Furthermore, students who
build simulations (“no-box”) benefit from translating a model to deal with actual data,
units (dimensions), and visualization comprehensible to a user other than themselves [48].
These skills are frequently transferable to other contexts as well. Third, simulations also
require students to think out the issues of dealing with continuous models in a discrete
environment or actually transforming their model to a discrete version in the first place [49].
Too many students have only been used to dealing with ordinary differential equation
and partial differential equation models and have no experience with finite difference
equations and extensive use of iteration and recursion. Fourth, the visual interface of
simulations is also crucially important to developing students understanding. For example,
in the case of the distribution of univariate data, violin plots may be very preferable to
box and whiskers displays because some non-Gaussian distributions are not bell shaped,
and it is easier to see where the mean, median, and mode are distinctly different from
one another [50]. See our earlier Section 3.3.2—Using a Likely Average, where we discuss
the importance of assumptions about relationships between experimental averages and
theoretical values. In the educational literature on visualization in computer simulations,
seven I’s are cited as skills that are important: (1) illustrating; (2) informing; (3) integrat-
ing; (4) implicating; (5) inferring; (6) interpreting; and (7) illusions (perceiving ambiguity,
complexity, alternatives, etc.) [51].

Weisstein, Jungck, and Green (https://bioquest.org/esteem/esteem_result.php ac-
cessed on 28 February 2023), and Carvajal-Rodríguez [52] have developed software sim-
ulations to engage students in understanding these quantitative ideas (Figure 3). In as
much as the ESTEEM module is a spreadsheet, students could enter data from actual lab
experiments, from the literature, or explore the impact of changing raw data to see what
happens.
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5.2. Mathematical Manipulatives

Manipulatives alone do not work well unless students are actively engaged in four
different processes: (1) Starting out with very different conditions and exploring multiple
iterations. (2) Graphing data in multiple ways. For example, by plotting a cobwebbing graph
of successive values of xt=n versus xt=n+1, there is a potential to discriminate between a highly
regular pattern, and a chaotic process [53]. (3) Explicitly relating the component manipulatives
to variables in the mathematical model. (4) Explicitly relating the component manipulatives to
biological entities and processes (e.g., photons hitting chloroplasts in cells of a leaf). A teacher
usually achieves success when students are using a manipulative model when they report
counterintuitive results, express surprise, and actively start changing the game or activity to
correspond with their ideas about what is happening in the natural physical system.

(a) (b)

(c)

Figure 3. (a) Screenshot from one of two workbooks that model the evolution of phage resistance
in a bacterial population under the directed mutations and the spontaneous mutations hypotheses.
“Luria-Delbruck. A module of the Biological ESTEEM Collection” (Weisstein, Jungck, and Green
(2015) https://bioquest.org/esteem/esteem_result.php accessed on 28 February 2023), (b) Mutate
Image: “Selective mutation frequency distribution and fitness gain after 250 generations for different
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population sizes.” LogN: Logarithm of population size; Continuous line: represents the fitness
gain after 250 generations for each population size. Bars: The frequency of individuals carrying a
number of selective mutations (classes from 0 to 3 selective mutations). From left to right, empty
bars represent the class of 0 selective mutations, bars with vertical lines: 1 selective mutant, hatched
lines: 2 selective mutants, filled: 3 selective mutants. [52], (c) Poisson simulation of photosynthesis:
“Saturation of the light-harvesting machinery” where one investigates photons hitting a leaf; available
from: https://web.pdx.edu/~rueterj/algae/models/poisson.htm accessed on 28 February 2023.

Furner and Worrell [54] state several important precautions about using manipulatives
to engage students in developing conceptual ties from the analog world to theoretical
models:

Teachers need to learn how to encourage student exploration, related discussion, and
reflection about the prospective math concept they teach. They need to be comfortable
with students’ exploration of the math concepts and possibly wandering off the ‘correct‘
track or even to represent quantities in real-world contexts, challenging the teachers’ own
mathematical viewpoint. Teachers cannot assume that when students use manipulatives
they will automatically draw the correct conclusions from them . . . Teachers need to keep
in mind that the student does not already possess this knowledge and still needs to make
the correct connections between the manipulative and the underlying math concept. While
math manipulatives are a valuable tool in the instruction of mathematics, teachers need
to bridge the manipulatives to the representational and then abstract understanding in
mathematics so that students internalize their understanding. Just using manipulatives
by themselves without this may not have great value.

Furthermore, Ross-Hogaaboam-Gray and Hannay [55] emphasize that success in the
use of manipulatives is strongly associated with both a teacher’s knowledge and confidence
as well as a commitment to constructivist teaching.

Jungck, Gaff, and Weisstein [56] demonstrate the utility mathematical of manipulatives
in helping students understand concepts like Poisson distributions. A specific application
of Poisson distributions to photons impinging on the surface of a leaf and its relationship
to photosynthesis was developed by Buonaccorsi and Skibiel [57] (Figure 4). They had
students calculate: “(1) the observed frequencies of peas per quadrat, (2) the mean number
of peas per quadrat, (3) the Poisson estimated probabilities for each outcome, (4) the Poisson
expected frequencies, (5) the mean and variance of the distribution, (6) the coefficient of
dispersion (CD) and (7) the fit of observed and expected frequencies using a chi-square
goodness of-fit test.” In a similar fashion, Haddix and Danderson [58] developed a dice-roll
exercise to simulate “the probability basis for mutation rate calculation.”

Figure 4. Buonaccorsi and Skibiel [57] drop split peas on a quadrat on a screen using an overhead
projector. “A 20 cm × 20 cm grid comprised of one hundred 2 cm × 2 cm quadrats was drawn with a
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permanent marker on a transparency and taped to a 36 cm by 36 cm cardboard box lid. The grid was
placed directly over a 20 cm × 20 cm square cutout in the center of the box lid to allow the grid to be
visualized. The grid covered approximately one-half of the lid area, allowing enough space between
the transparency and lid edges to prevent split peas, dropped from a height of one foot, from hitting
lid edges and rebounding onto the grid. The lid edges also prevented peas from falling onto the floor,
facilitating clean-up.”

5.3. Wet Laboratories

Cornette et al. [59] pioneered the use of wet laboratories in a freshman calculus class.
From analyzing whether the growth of mold on the surface of a cup of tea seasoned with
sugar or a slice of bread in the refrigerator fit a linear, exponential, or logistic model to
investigating sunlight depletion below the surface of a lake or ocean and its relationship
to underwater photography to a standard biology laboratory osmosis experiment, they
carefully developed relevant calculus models, used theorems in a way that students ap-
preciated the generalization that extended well beyond individual cases, and how models
grew in sophistication with each passing week. Note that their book is also available
online as an Open Educational Resource. Subsequently, others adopted the use of labs
in mathematics courses. Sanft and Walter [60,61] included four wet lab experiments on
enzyme kinetics, blood glucose–insulin feed-back and homeostasis, population growth,
and random walks/diffusion in their mathematical modeling course. They argue:

It is important to provide students in biology and mathematics with opportunities to
interact and collaborate with one another. However, it can be a challenge to develop
integrated courses that are accessible and useful to both sets of students. In this paper,
we describe the development, implementation, and assessment of a team-taught course
that was developed to provide undergraduate students with a truly integrated experience
by incorporating a wet laboratory into a mathematics course . . . The wet laboratory in
Math 236 enabled students to undertake experimentation, data collection, mathematical
modeling, and statistical computation, all essential to developing models of biological
processes. Each lab addresses core concepts in the categories outlined in BIO 2010 [2]:
calculus, linear algebra, dynamical systems, computation, data structures, rate of change,
modeling, equilibria and stability, structure, and interactions. Although each lab touches
on each of these areas, the tools become more sophisticated as the semester progresses.

Not only do such courses address a national call for improving interdisciplinary
mutual appreciation of mathematical and biological educators [62], but, more importantly,
they make a significant difference in student learning [63].

Haddix, Paulsen, and Werner [64], Green and Bozzone [65], Robson and Burns [46],
Hester, Sarvary, and Ptak [66], Smith, Golomb, Billstein, and Montgomery Smith [67],
Amir and Balaban [68], and Hutchinson [69] have all published laboratory protocols for
experimental investigations that lead to fluctuation tests on bacterial populations.

6. Why Measuring Mutation Rates Matters in Everyday Life
6.1. Radiation: Hiroshima/Nagasaki/Fukushima/Chernobyl/Three Mile Island

One way of inducing mutations is through ionizing radiation. As we write this article,
we are concerned that with Ukraine under attack, the potential of a second Chernobyl-like
event in that nation is a reality that endangers international world order and is threatening
the lives of people in many nations. When the Three Mile Island accident happened
in the United States, the only significant data on pre-accident radiation levels had been
collected by students of Professor Priscilla Laws at Dickinson College in Pennsylvania.
Thus, there is a precedent for students being engaged with such an important issue and
making a difference.

After the atomic bombs destroyed Hiroshima and Nagasaki at the end of World War II,
scientists studied the mutations that occurred in survivors over a long period. Prior to these
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bombings, Native Americans in the southwestern United States and New Zealand sailors
were exposed to radiation during tests of the bomb prototypes and suffered serious health
effects. Most recently, the tsunami that destroyed the Fukushima nuclear power plant again
affected the lives of many survivors in the immediate area. Numerous reports on these
incidents are available and could be used to develop a case with a lot of primary data.

As an additional motivator for students, Moller and Mousseau [70] make the case for
why much more research is needed:

The disaster at the Chernobyl nuclear power plant in 1986 released 80 petabecquerels
of radioactive cesium, strontium, plutonium, and other radioactive isotopes into the
atmosphere, polluting 200,000 km2 of land in Europe. As we discuss here, several studies
have since shown associations between high and low levels of radiation and the abundance,
distribution, life history, and mutation rates of plants and animals. However, this research
is the consequence of investment by a few individuals rather than a concerted research
effort by the international community, despite the fact that the effects of the disaster are
continent-wide. A coordinated international research effort is therefore needed to further
investigate the effects of the disaster, the knowledge that could be beneficial if there are
further nuclear accidents, including the threat of a ‘dirty bomb’.

Furthermore, Sacks, Meyerson, and Siegel [71] have argued that much of the prior
work has used “specious statistics” because of a dependence on an old “linear no-threshold
hypothesis (LNTH)” and their work has also been critiqued and extended. We believe
that such controversy affords an additional opportunity for students to appreciate why
mathematics can matter so much.

A case developed around nuclear warfare would have pleased Luria and Delbrück
very much as Luria fled fascism in Italy and Delbrück fled Nazism in Germany to emigrate
to the United States [9]. Once here, Luria was an activist concerned about racial segregation,
eugenic discrimination, workers’ rights, academic freedom, and especially biological and
nuclear weapons. Selya [72] obtained records from the FBI on Luria through the Freedom
of Information Act that showed that Luria was carefully monitored and was thoroughly
questioned about his colleagues and affiliations. At one time, Luria was denied a visa to
travel to a scientific meeting and see his ill mother. As Abbott noted [73], “As Luria’s success
grew, so did his political involvement.” Students frequently do not get the opportunity
to see the human side of scientists and mathematicians and how their work relates to
crucial issues in society. We believe that part of education is to prepare students for
socially responsible use of the knowledge developed in our classes so that they are active
participants in our democracy.

6.2. Cancer Chemotherapy—Evolution of Resistance

One of the unfortunate aspects of the education of physicians and the misinformation
received by patients is the conceptual misunderstanding of evolution. The use of military
metaphors such as the “war on cancer,” chemotherapeutics as attackers, strike forces,
missiles, etc., cancer cells as enemies, and euphemisms such as the cancer returns or the
battle has been lost divert attention from understanding that cancers involve a population
of cells that have mutations that differentiate them from normal cells and natural selection
will promote the survival of cells that outcompete other cells in acquiring nutrients and
oxygen that promote their growth. Many patients, after surgery, chemotherapy, and nuclear
therapy, experience a second round of cancerous growth due to the evolution of resistant
cells being able to re-populate tissues. “The result is that virtually all cancer deaths are
due to therapeutically resistant disease” [74]. Merlo et al. [75] state: “Cancer is a disease
of clonal evolution within the body. This has profound clinical implications for neoplastic
progression, cancer prevention, and cancer therapy.” Hence, many evolutionarily-informed
physician researchers have argued that we need a “paradigm shift” in cancer research and
treatment ([62,76–78]).

The fluctuation test has long been explicitly used in the cancer research literature
(see, e.g., [79–84]). Two books that give a good foundation for undergraduates are Goldie
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and Coldman [85], who spend three chapters on the Luria–Delbrück distribution and
differencing between directed and random mutation and Durrett [86] who develops results
on continuous time branching processes and applies them to study the rate of tumor
growth, extending the classic work on the Luria–Delbrück distribution. The probability that
mutations that confer resistance to treatment are present at detection and quantifying the
extent of tumor heterogeneity is also calculated. After Goldie and Coldman [85] discuss the
classical experiments, they present an interesting hypothetical experimental model using
Lederbergs’ replica plating technique where “the magnitude of experiments involved may
make them impractical” but would easily be modeled mathematically by undergraduates.
Cells are laid out on a rectangular grid so that the spatial coordinates of the microwells
of cells are explicit. They set up the transfer of cells in subsequent generations such that:
“Under the directed mutation model, there will be few surviving cells (resistant) at the
same coordinates on each plate. Under the random mutation model, the possibility that
resistance may have been pre-existing increases the probability that there will be resistant
cells at the same locations.”

Goldie and Coldman’s work is critiqued in another accessible book edited by Pinedo
and Giaccone [87]. Another alternative presented by Durrett [86] is to look at the reciprocal
problem of the loss of resistance. Unfortunately, a major overview of drug resistance with
31 chapters only deals with molecular and physiological approaches [88] with no treatment
of either mathematics or evolution, but the data therein could be used to develop models
whose parameter estimates would be informed by experiments.

Six types of cancer evolution models are described by Zhu, Xu, and Luo [89]. However,
here again students could explore a controversy started by Graham and Sottoriva [90],
Turajlic et al. [91], and Saito et al. [92] who argue that models should include punctuated
equilibria to understand evolution in cancer. Students could contrast their approach with
the Fluctuation Analysis approach and models that consider most mutations to be neutral
([93–95]) rather than detrimental or beneficial. In this journal, we recommend that readers
examine the work of Frank [96] and some of his previous work on the use of Luria and
Delbrück on cancer (e.g., his brief communication on developmental predisposition to
cancer [97] can be used to initiate interesting student research projects).

6.3. Antibiotic Resistance

In [98], Lesho and Laguio-Vila write:

Antimicrobial-resistant infections kill 700,000 patients every year . . . By 2050, they are
projected to cause 10 million deaths per year at a cumulative global cost of $100 trillion.
Professional societies and international health agencies, including the United Nations,
have declared escalating antimicrobial resistance as one of the gravest and most urgent
threats to global public health and issued calls for action.

Soon after Luria and Delbrück published their paper using bacteriophage as a selective
agent, biologists started applying the Fluctuation Test to sensitivity to radiation, as noted
above [22], and antibiotic resistance. Penicillin had saved many allied soldiers during WWII,
but the Nazis had not developed the ability to produce penicillin in sufficient amounts for
their troops. Shortly thereafter, resistance to penicillin appeared in British populations.

Despite four famous early works, policymakers did not respond rapidly to the risks
of the overuse of antibiotics. Luria himself published on mutations to sulfonamide
resistance [99]. Demerec [100] published a very similar table to Luria and Delbrück [1],
using penicillin as the selective agent and analyzing 10 different aliquots from one culture,
where the number of resistant colonies varied from 16 to 38. When the samples were
cultured before exposure to the antibiotic, the number of resistant colonies ranged from 9
to 839. Subsequently, Demerec [101] tested streptomycin resistance. Similarly, Cavalli [102]
published a table substituting chloramphenicol as the selective agent and analyzing 10
different aliquots where the number of resistant colonies varied from 3 to 245 after 24 h
on one replica and 6 to 155 on a second replica, with a mean/variance test rejecting the
directed mutations hypothesis. As Creager [103] noted in her historical analysis of these
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experiments: “Implicitly, Demerec’s use of the Luria and Delbrück’s experimental design
drew the analogy between resistance to antibacterial infectious agents (bacteriophage) and
resistance to antibacterial chemical substances (antibiotics).”

The rapid emergence of resistant bacteria is occurring worldwide, endangering the
efficacy of antibiotics, which have transformed medicine and saved millions of lives. Many
decades after the first patients were treated with antibiotics, bacterial infections have
again become a threat. The antibiotic resistance crisis has been attributed to the overuse
and misuse of these medications, as well as a lack of new drug development by the
pharmaceutical industry due to reduced economic incentives and challenging regulatory
requirements. The Centers for Disease Control and Prevention have classified a number of
bacteria as presenting urgent, serious, and concerning threats, many of which are already
responsible for placing a substantial clinical and financial burden on the U.S. healthcare
system, patients, and their families. “Coordinated efforts to implement new policies, renew
research efforts, and pursue steps to manage the crisis are greatly needed” [104]. We believe
that developing a problem space or case study that demonstrates how measuring the rate
of mutation affects the evolution of resistance in pathogenetic bacterial infections would
be invaluable for learning about evolution and human health. It could have practical
ramifications on individuals’ behaviors such as requesting antibiotic prescriptions from
their physicians for themselves, their children, or their parents; complying with directions
of use of prescriptions; and, proper disposal of unused medications [105]. Since some of our
students will become practicing clinicians, they should be better able to “readily implement
practical, no-cost changes to minimize antibiotic exposure” [98].

6.4. Environmental Screening for Mutagens and Teratogens: Ames Test

In the post-WWII period, due to the massive increase of pesticides and herbicides in
agriculture, there was a loss of an enormous amount of wildlife which led to the clarion
call of Rachel Carson’s seminal Silent Spring ([106] which re-invigorated international
environmental movements [107]). Other chemicals caused public health crises like the use
of thalidomide, which led to children being born with limb deformities [108,109] and the use
of Teflon on cooking utensils led to enormous court settlement for carcinogenicity [110,111].
Thus, the scientific drive to be able to test an enormous range of industrial, agricultural,
and pharmaceutical chemicals in our environment became a crucial challenge.

Bruce Ames at the University of California, Berkeley, was much influenced by this
need to develop an assay (see e.g., [112–116]) for determining the mutagenicity of numer-
ous chemicals. The Ames Test uses bacteria to test whether a given chemical can cause
mutations in the DNA of the test organism. It provides a way to assess the mutagenic
potential of chemical compounds and lies in the general category of bacterial genetic tox-
icity tests. The Ames Test detects backmutations (reversion of a point mutation) and is
the only one that is in widespread use, and that is generally acceptable for regulatory sub-
missions to federal agencies. The impact of this work became heralded as a “Stethoscope
for the 21st Century” [117] and as a major paradigm shift in environmental science and
especially in microbiological research. Claxton, Umbuzerio, and DeMarini [117] summarize
its significance thusly:

The initial uses of the Salmonella assay led to the startling (at the time) recognition
that our environment is replete with mutagens, including fungal toxins, combustion
emissions, industrial chemicals, and drugs. The Salmonella assay was essential to this
effort, providing the means by which researchers discovered for the first time that much of
our environment had mutagenic activity, including cigarette smoke. . .

The impact was substantial not only on subsequent environmental policies and regu-
lations but had major ramifications for food, cosmetics, pharmaceutical drugs and prescrip-
tions, agriculture, and chemical industries.

However, due to some statistical problems concerning nonlinearity in the original
Ames test, multiple researchers modified the Ames test by returning to the Luria–Delbrück
Fluctuation test for inspiration and developed the Ames Fluctuation test, which has been

Version of Record at: https://doi.org/10.3390/axioms12030280



Axioms 2023, 12, 280 25 of 31

used henceforth (see, e.g., [79,118,119]. Bridges [118] argued that this shift led to greater
sensitivity and easier numerical analysis. An interesting student project could be to compare
and contrast the two approaches by modeling multiple factors and determining which
parameters (such as using 48 well versus 384 well plates) are most likely to result in
false positives and false negatives and discriminate between specificity and sensitivity
(see, e.g., [120–122]). Kauffmann et al. [123] describe a number of changes to the Ames
Fluctuation test to improve its sensitivity. Furthermore, Wlodkowic and Jansen [124]
argue that forthcoming techniques will generate “big data” on mutagens that will require
extensive mathematical analyses:

The rapidly increasing number of new production chemicals coupled with the stringent
implementation of global chemical management programs necessitates a paradigm shift
towards broader uses of low-cost and high-throughput ecotoxicity testing strategies as well
as a deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can
be used in effective risk assessment. The latter will require the automated acquisition of
biological data, new capabilities for big data analysis as well as computational simulations
capable of translating new data into in vivo relevance.

It will be up to us as educators to prepare students to lead the way in furthering the
field in ways that meet these needs.

7. Conclusions

Luria and Delbrück’s work has spurred vigorous debates among biologists for almost
80 years and has shown how important questions in biology may lead to novel theoretical
mathematics. Its absence from mainstream mathematics textbooks is hard to understand.

Many reports and publications at the national level in the last decade have brought
about efforts to revitalize and modernize STEM education through vetted approaches that
have been shown to improve student learning, produce more inclusive classrooms, and
increase both retention and graduation rates (see, e.g., [125–128]). Abundant literature
from the education-research field has demonstrated improved engagement and attitude
for learning when students are engaged in guided discovery through projects, experiential
learning, hands-on discovery, and small group discussions (see, e.g., [127,129]). The impor-
tance of using authentic problems and primary sources to teach biology and mathematics
at all levels is well documented (see, e.g., [130–132]).

Seven approaches that use vetted research literature and that support gains in student
learning, promote inclusivity, increase retention, and that would work well with engaging
students in utilizing their previous background with the Luria–Delbrück literature are:

(1) C.R.E.A.T.E. [133,134], where students go through a five-step process of developing
the skills to better understand a primary research paper by reading, presenting, peer
reviewing, and suggesting future work for the authors;

(2) CUREs: Course-based Undergraduate Research Experiences [135], where the students
are engaged in a research problem that they can investigate with powerful tools;

(3) USE Cit Sci: Undergraduate Student Experiences with Citizen Science [136];
(4) ICBL: Investigative Case Based Learning [137]: the National Center for Case Study

Teaching in Science at the University of Buffalo has recently transferred its long-
held repository of vetted cases to the National Science Teaching Organization’s site:
https://www.nsta.org/case-studies accessed on 28 February 2023;

(5) Problem-based Learning [138]; we maintain a clearinghouse of vetted problems at
ITUE (the Institute for Transforming University Education—https://itue.udel.edu/
accessed on 28 February 2023;

(6) Problem Spaces (Donovan: https://bioquest.org/bedrock/problem_spaces/) ac-
cessed on 28 February 2023;

(7) Question Formulation Technique and Problem-Posing [139]; The Right Question
Institute: https://rightquestion.org accessed on 28 February 2023; BioQUEST: https:
//bioquest.org/ accessed on 28 February 2023 [140–143];
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In our prior work [144], we have advocated that 21st-century students would be better
served in a classroom environment where they are encouraged to experience discovery by
being guided through activities, laboratories, and projects relying on primary sources. We
should strive to engage students in the process of discovery and help them take charge of
their own education. Instead of teaching facts that can easily be looked up and techniques
that may soon become outdated, we would be more efficient as educators if we could teach
them how to learn and keep learning. This concept has fueled an evolution from pedagogy
to andragogy to heutagogy—a form of self-determined learning with “emphasis placed on
the development of learner capacity and capability with the goal of producing learners who
are well prepared for the complexities of today’s workplace” [145] (Figure 5). Yet, despite
the numerous calls for a shift toward experiential-learning methods and project-based
pedagogy, STEM classes are often still dominated by lectures [146].

Figure 5. Over the past century and a half, models for education have gone through major shifts:
from a broadcast transmission model (pedagogy) promoted in the 19th century [147,148], to a more
learner-centered model referred to as andragogy [149] developed by John Dewey in the 1930s and
elaborated in the 1960s by Joseph Schwab [150] and Jerome Bruner [151], to a model influenced by the
massive potential of the World Wide Web (heutagogy) that focuses more on students’ own motives
for learning (see, e.g., [145,152]). Figure reprinted with permission from [144].

This unfortunate discrepancy can be attributed to many factors, one of which is that
finding authentic problems and relevant educational materials at the appropriate levels
is not easy. Many educators may be lacking confidence and appropriate professional
training to develop materials on their own at the junction of mathematics and biology.
Biology faculty often feel unsure about their proficiency in mathematics, and mathematics
faculty generally do not have a background in biology. To bridge this gap, we have been
engaged in developing and promoting such materials, and the set of resources has expanded
considerably (see e.g., the QUBES Hub—A BioQUEST Project https://qubeshub.org/
accessed on 28 February 2023, as well as [153–155].

Interdisciplinary examples that can cross the boundaries between standard courses in
college mathematics are not easy to find. Authentic examples that are accessible to students
with limited mathematical backgrounds and can generate even more interesting mathemat-
ical questions in advanced settings (while still accessible to undergraduate students) are
important and valuable. The Luria–Delbrück fluctuation test not only does that but can
be used as a bridge in transitioning students to graduate-level work on topics involving
branching processes, infinitely divisible distributions, limit theorems, distributions’ asymp-
totic behavior, stable measures, and many others. We have offered here both a rationale and
multiple resources for the mathematics community to find ways to feature it prominently
in its textbooks and educational practices.
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