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ABSTRACT 

Although magnetic reconnection has been successfully used to explain many 

different astrophysical phenomena, it has yet to demonstrate some key properties 

observed in smaller bursty plasma flows within the magnetotail.  In this thesis, we 

present 3D Hall simulations demonstrating that under wide equilibrium current sheet 

conditions, magnetic reconnection will become transient and localized.  In doing so, 

we show that magnetic reconnection is capable of producing the bursty bulk flows 

observed in the magnetotail. 

Toward this goal, we first introduce a new framework for analyzing 3D 

magnetic reconnection.  Using this framework, we deconstruct the significant physical 

structures and processes comprising x-lines derived from a thin equilibrium current 

sheets.  After establishing this mapping of the 3D diffusion region, we move on to 

probe the more marginal cases of reconnection which result from very wide 

equilibrium current sheets. 

Finally, we incorporate all of this into a simple analytical model for 3D 

reconnection -- reproducing many of the observed properties of both transient 

magnetic reconnection and long-lasting magnetic reconnection. 

By doing so, not only do we expand upon the known behaviors of magnetic 

reconnection, but we also present novel insight into the mechanisms behind these 

behaviors. 
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Chapter 1 

INTRODUCTION 

 

From our perspective, comfortable within the bubble of our planet, space has a 

certain clean austerity to it.  Stars twinkle in a cold lonely luminescence while floating 

in a vast and empty nothingness.   Since the very first creatures climbed from the seas 

until the present day, any life which has looked skyward has seen a quintessential 

vision played out in the majesty of the evening tapestry.  With this view of space 

granted almost as a primordial birthright, we are naturally ill prepared to understand 

the gossamer breath of magnetism stretching across the intervening emptiness of the 

cosmos.  If only we could sit atop a mountain, noses aloft, and smell the tenuous 

vapors of space.  Then we might know something of the unseen space.  We might 

know magnetism, like we know of crisp Fall breezes or the smoky umbrage of an 

explosive New Year's Eve.  In that case, we may be in a good position to understand 

the nuanced importance of magnetic reconnection in the order of all things.  

Unfortunately, such is not the case.  We were not so endowed in our creation and for 

most of our natural history, have lacked a vital understanding of the processes among 

the stars.  So it is left to the mean faculties of our imagination to temper truth from 

mathematics.  We must sieve purpose, path, energy, and influence from the chirpings 

of robots and sensory artifice.  After decades of human investment in will and 

perseverance, we have done so. 
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Far from being empty, the space between stars is filled with a gaseous breath -- 

a fiery exhalation of magnetized star dust.  This breath, subject to nuclear and 

radiative pressure, is first blown from the surface of a star.  It then threads through the 

local planets, breaking across them like water across river stones.  Before it finally 

percolates from the solar system into the greater galactic milieu 

From end to end and head to toe, the universe is filled with this bubbling, 

swirling, tonic of ionized star embers.  It is only in realizing the full pervasiveness of 

this context, that is, the full pervasiveness of the vast space between stars, that we can 

begin to appreciate how fundamentally important what follows is to our understanding 

of everything. 

What is Magnetic Reconnection? 

Before we can talk about reconnection, we must talk about everything that it 

isn't.  Like a description of a key is meaningless without the context of a lock, 

reconnection has no meaning outside of the greater context of a plasma universe.  So 

we begin with a discussion where most things begin. 

"We are all made of star-stuff." 

It's an iconic quote by the inimitable Carl Sagan; the idea that our muddy, 

earthy selves can come from something as beautiful as a star has certainly captured the 

imagination of the general population.  It evokes a certain poetic imagery -- a literal 

dust falling to the earth like sparkling dew or a rain of precious gemstones.  In which 

each twinkling shard of light carries a living seed.  The thing about this quote that is 

especially enchanting and especially clever is that it is absolutely true.  And its truth 

reveals a ringing ubiquity far better than the poetic fantasy it inspires.  It's not just that 
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we are star-stuff, but rather that all stuff is star-stuff.  Everything on Earth from the 

mountain in its cloudy repose to the torpid ocean depths is star-stuff.  Every flake of 

satellite, streak of comet, or puff of gas that can be found in the space above is star-

stuff. 

Besides guiding people toward some sort of cosmic nirvana, this little fact also 

gives insight into the physical nature of things.  Most stuff out there came from a star.  

And stars, among other things, are known for being pretty hot places.  When matter is 

first flung from a star, it is always in the plasma state.  Unlike a backyard barbeque, 

where hot embers thrown from the fire mix with the cool air above and are themselves 

cooled, the embers thrown from a star have nothing to mix with.  They are flung into 

nothingness.  A nothingness so sparse of material, that even if the plasma is cooled 

enough to become ordinary matter once again, the tiny constituent particles within it 

cannot find each other in order to re-combine. 

Planets, comets, meteors, and moons are ordinary matter.  Everything else, 

everything in expanse between, is plasma.  So, not only is the universe made of star-

stuff.  Most of it is still piping hot.  We live in a plasma universe. 

Plasma Behavior 

The salient characteristic of a cloud of plasma drifting through space is that it's 

made up of independent charges.  Charges which are free to answer the call of any 

electric field they feel.  This means that if there is an electric field, the charges will 

move until they no longer feel an electric field.  Being really small particles with 

incredible sensitivity to electric fields, they respond to this calling very quickly.  With 

the ions and electrons zipping around in order to balance out any perceived electric 

field, we can see that from the perspective of the plasma, the electric field should be 
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zero (or quickly become zero).  Although reality is more nuanced, we'll take this as 

our starting axiom in the discussion -- 'from the perspective of the plasma, the electric 

field is zero.' 

It's important to note, that perspective is significant in this discussion.  We are 

used to discussing electric and magnetic fields in our everyday life.  Refrigerator 

magnets have magnetic fields.  Electric fields drive current to our lamps and 

computers.  We view these things as static external things.  What is less popularly 

known about magnetic and electric fields is that their appearance can change 

dramatically depending on who is observing them. 

This dependence of the system on the perspective of the observer is a 

relativistic affect of nature.  The appearance of electric and magnetic fields is unique 

to a reference frame.  Reference frames moving at different velocities will 'see' 

different field configurations.  If we know the fields as measured from a particular 

observer, we can use the non-relativistic Lorentz transformation to predict what the 

fields would appear like in our own (or any other) reference frame, 

=>?@ = =>? + �? × �>?0 , 
�>?@ =  �>? − �? × =>?0 .  

The primed variables in these equations represent the electric and magnetic 

fields from the perspective of the moving plasma.  The un-primed fields on the right 

hand side of the equation represent the fields as measured in a distant reference frame 

observing the plasma moving at a velocity, �?.  Although these equations are 

interesting and give great insight into the nature of the universe on their own, for our 

purposes they are merely stepping stones. 
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Combining this understanding of electric fields with what we know about 

plasmas leads us to a powerful interpretation of plasma behavior.  If a plasma always 

adjusts so that from its perspective the electric field appears to be zero, then from our 

perspective the plasma will appear to move such that the electric field is: 

=>? =  0 − �? × �>?0 , 
=>? =  − �? × �>?0 . 

The magnetic field, on the other hand, is not as fickle as the electric,   

�>? =  �>?′ + �?c × 0, 
�>? =  �>?@. 

It stays roughly the same for all observers. 

Taken together, we can see that the electric field is an expression unique to a 

particular observer.  Since an observer can be moving at any speed relative to the 

plasma, there are an infinite number of possible electric fields which can be measured 

-- observers riding trains will see the plasma travelling at a different velocity than 

those riding bicycles and hence will observe different electric fields.  No matter the 

mode of transportation of the observing reference frame, the plasma will appear to 

drift perpendicularly to the electric field and the magnetic field with a constant 

velocity. 

When it comes to its velocity, a plasma behaves like any other thing.  Its 

velocity is simply due to the relative motion between the observer and the plasma.  

Considering that the magnetic field stays the same for all reference frames, these facts 

beg the important question of whether or not the electric field is important to the 
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behavior of the plasma.  As the premise of our question implies, it's not.  In plasma 

physics, the electric field is generally considered a spectator variable.  In other words, 

the magnetic field and the velocity are the primary drivers of the plasma dynamics 

throughout most of the universe.  If we are to understand how plasma behaves in the 

universe, it is therefore logical to ask how magnetic fields behave in the universe. 

To this aim, consider a blob of ideal plasma.  By faraday's law, 

��>?�� =  −c∇>>? × =>?. 
We know that the magnetic field in the plasma cannot change without there being a 

spatial change in electric field.  However, as we already discussed, our ideal plasma 

axiom denies the existence of any electric field within the body of the plasma (in its 

own reference frame).  If there can be no electric field, then there certainly cannot be a 

changing electric field.  Therefore the magnetic field cannot change within the body of 

a plasma. 

This is not to say the magnetic field cannot change outside of the plasma.  Our 

axiom puts no restriction on the behavior of the fields around or near-to the plasma.  

The magnetic field is free to change anywhere outside of the plasma body.  Really, 

since there's more than just one plasma cloud in the universe, it's not simply 'the' 

plasma.  It's actually 'a' plasma.  There are many clouds of plasma in the universe and 

there is no reason to say that different blobs of plasma need have the same magnetic 

fields within them.  Two different blobs separated in space may very well have two 

completely different albeit fixed magnetic fields within them.  The curious question 

arises, "what happens should two blobs of plasma, each with differing magnetic fields, 

collides with one another?"  Or perhaps, "can they mix or diffuse through each other, 

like an ordinary gas?"  It would seem impossible to allow two different plasmas to mix 
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together without also mixing their magnetic fields at the same time.  Mixing the fields 

should change them, so it should be forbidden. 

Indeed, nature has shown that so long as the electric field remains zero in the 

frame of the plasma, different plasmas are forbidden from mixing.  Such a plasma 

would be frozen to its magnetic field for all time.  This understanding is a basic and 

fundamental concept in plasma physics.  It's known as the 'frozen-in' theorem and is a 

powerful tool for understanding and predicting how a plasma will behave in many 

different environments. 

Frozen-in Flux 

One of the first insights to develop from the restrictions introduced by the 

plasma is that the magnetic field becomes stuck or frozen-in to any plasma that it 

threads through.  Like hairs are caught in the tines of a brush, the plasma is stuck to 

the magnetic field.  It's important to realize that this does not mean that one drives the 

other.  Rather they serve to moderate each other.  When some force causes the plasma 

to stir, the magnetic field will also stir.  Likewise, if the magnetic field is pulled, the 

plasma will likewise be pulled.  They move, bend, and stretch together.  More 

rigorously stated, the frozen-in theorem says, "The magnetic flux through a loop 

travelling with the plasma does not change." 
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Figure 1 Two Amperian loops separated in space.  The arrows represent the flux 
of magnetic field through the loops.  Connecting the loops with a sheet 
allows us to quantify the flux shared by both loops. 

To see a formal derivation of this, we consider the two loops depicted on the 

left in Figure 1.  They clearly have different amounts of magnetic flux passing through 

them.  By wrapping the two loops with a connecting sheet (the right half of the figure), 

we can divide this flux into two different categories.  The flux they both share passes 

directly from one loop to the other staying within the boundary of the sheet.  Any flux 

that they do not share must pass through the wrapping sheet.  The flux passing through 

the sheet can be represented by the equation: 

 D8EFFG = H�>? ⋅ (I? × JK?)L , (1) 

where I? is a function of position along the loop and (I? × JK?) is a surface element of 

our wrapping sheet. 

This lets us then express the flux through the second loop in terms of the first 

loop and Equation (1), 

D = H �>? ⋅ MI? × JK?N +  H�>? ⋅ JO?9L . 
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If instead of considering the loops to be separated in space, we consider them 

to be the same loop shown at two different times.  In the intervening time, this loop 

has changed its shape in some way.  Much the same as we did for the loops separated 

in space, we can calculate the flux shared between the loops separated in time.  This 

allows us to represent the flux through the final loop as:  

D = H �>? ⋅ M�?J� × JK?N +  H�>? ⋅ JO?9L . 
Leading us to an expression for the change in flux in time, 

JDJ� = H �>? ⋅ M�? × JK?N +  H ��>?�� ⋅ JO?9L . 
Using some basic vector calculus identities, we merge the two integration terms, 

JDJ� = H ��>?�� ⋅ JO? + HJK? ⋅ M�>? × �?NL9 , 
JDJ� = H[��>?�� − ∇>>? × M�? × �>?N9 ] ⋅ JO?. 

And by faraday's law, 

��>?�� =  −c(∇>>? × =>?), 
��>?�� = ∇>>? × M�? × �>?N,  

we demonstrate that the change in the magnetic flux through a loop travelling with the 

plasma is indeed zero: 

JDJ� = H[∇>>? × M�? × �>?N − ∇>>? × M�? × �>?N9 ] ⋅ JO?. 
JDJ� = 0 
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As powerful of a tool as the frozen-in theorem is, it is clearly not the entire 

story.  A plasma is still a gas.  It follows that it should have gas-like properties, such as 

pressure and a temperature.  It should be able to swirl, expand, or contract.  It is in that 

vein that researchers have developed a special set of equations which merge the 

plasma concepts introduced thus far with some of the more classical ideas of gas 

behavior.  The resulting equations are known as the MHD equations. 

Magnetohydrodynamics 

In order to understand the work that follows, a basic understanding of the 

usage of the MHD equations is more important than understanding their derivation.  

With that thought, we eschew their derivations and instead present them.  The 

equations are expressed in terms of 2 and p, the plasma density and pressure, the 

velocity, �?, as well as the current, magnetic field, and electric field:  �?, �>?, and =>? 

respectively. 

First we have an equation for the continuity of the plasma,  

�2�� + ∇>>? ⋅ (2�?) =  0. 
This equation simply states that plasma cannot appear out of nothing, it must move 

from place to place.  Following that, we have an equation for the acceleration of an 

element of plasma fluid due to the influences of both electromagnetic fields and 

pressure, 

 2 J�?J� = �?c × �>? − ∇>>?R. (2) 

In more basic physics terms, this is ST? = ∑V?.  The next two equations,  

=>? = − �?c × �>? 
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and 

��>?�� =  −c∇>>? × =>? 

we discussed earlier.  The top equation is the electric field as measured from an 

observer not travelling with the plasma.  Below that is Faraday's law of induction.  As 

we already discussed, together they gave us the frozen-in condition.  Next up we have 

some basic identities from Maxwell's equations, 

 �? = c4π ∇>>? × �>?, (3) 

 ∇>>? ⋅ �>? = 0. (4) 

The first says that a current and a curling magnetic field are a coupled pair.  

When you have one, you will always have the other.  The second equation says that a 

magnetic field cannot terminate or originate at a single point; tracings along the 

magnetic field must either spiral forever or be joined into loops.  Finally we have the 

thermodynamic equation of state, 

JJ� X RYZ[ = 0. 
This equation dictates how the gas responds to changes in temperature, pressure, and 

number density.  Gamma can be tuned in order to allow the gas to behave according to 

well understood paradigms which best approximate environmental conditions.  Some 

examples of these, would include the ideal gas equation assumed to be in the 

isochoric, isothermal, or isobaric states. 

Together these equations describe the plasma universe, in the absence of 

magnetic reconnection.  It's not practical to solve them without the use of computers in 

all except the most trivial of circumstances.  So any discussion of them at this point 
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will be heuristic.  In that manner, we've already discussed some of the MHD equations 

during our development of the frozen-in effect.  In order to enrich our understanding 

of the universe, we now discuss the coupling between the electromagnetic and gas 

dynamics of the system; in other words, the force equation (2).  

On the left hand side of this equation, we have a kinematic term -- the net force 

on an element of fluid plasma.  On the right we have a complicated term involving the 

current, �?, and the magnetic field, �>?.  These are followed by a simple term involving 

the pressure, P.  The ion equation of motion is the only equation in this set which 

involves the dynamics of both the gas and electromagnetic terms.  By using the 

definition for the current from Maxwell's equation, we can begin to interpret the 

meaning of this equation.  Using �? = 0/4\∇>>? × �>?, we can derive  

2 J�?J� = 14π M∇>>? × �>?N × �>? − ∇>>?R, 
2 J�?J� = M�>? ⋅ ∇>>?N�>?4π − ∇>>? ]�:

2 _ − ∇>>?R, 

2 J�?J� = M�>? ⋅ ∇>>?N�>?4π  − ∇>>? ]�:
8π + R_. 

Recasting the equation of motion in this form makes it easier for us to 

interpret.  The most straight forward term is on the far right.  We see that the magnetic 

energy, (1/8\)�:, comes into the equation in the same way that the pressure does.  

This means that an element of fluid will respond to a region of intense magnetic field 

in the same way that it would respond to a region of intense gas pressure.  We call 

these two terms together the total pressure.  The contribution from the magnetic term 

alone is called the magnetic pressure.  Just like a high pressure gas could pop the top 
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off of a soda bottle, a high magnetic pressure could pop the top off of a bottle 

containing a plasma.  If we ignore the first term completely we find,  

2 J�?J� = −∇>>? ]�:
8π + R_, 

0 = −∇>>? ]�:
8π + R_. 

We can see that the system will move until the term on the right is equal to 

zero.  This occurs when the sum of the magnetic pressure and gas pressure are the 

same everywhere.  This is called pressure balance. 

 

Figure 2 A transition between a weak magnetic field (on the left) and a strong 
magnetic field (on the right).  In the middle, highlighted in yellow, is the 

transition region where M�>? ⋅ ∇>>?N�>? is large. 

Next we switch our attention to the first term in the force equation, M�>? ⋅ ∇>>?N�>?/
4\.  This term represents the change in the magnetic field as you travel along the 

magnetic field.  Because there can be no divergence in the magnetic field, Equation 

(4), the intensity of the magnetic field cannot simply change as you travel along it.  Its 

intensity must develop as a consequence of a bend in the travel path, like in Figure 2.  
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If the magnetic field makes a sharp change in direction at some point in space, this 

term will be large.  In other words, plasma in regions where the magnetic field 

changes directions rapidly will experience a force -- a force which will tend to un-

bend the field.  We call this force a magnetic tension. 

Taken together, the plasma will move such that the pressures become balanced 

while at the same time smoothing out bends in the magnetic field. 

In order to build on this, we look at the case of an elliptical magnetic bubble 

(Figure 3).  Initially the right and left ends of the bubble are very bent.  The force 

equation told us that this bubble will attempt to smooth out the bends in its magnetic 

field.  It will move the plasma in the bubble until it is circular.  If the bubble had some 

initial magnetic field, �>?	, there will be an initial magnetic flux, �	T, and an initial 

magnetic energy, 
a
b �	:(Tc).  Likewise after the change in geometry there will be a 

final magnetic field, flux, and energy of: �>?d, �de, and 
a
b �d:(e:). 

 

Figure 3 A magnetic bubble before (left) and after (right).   

In order to isolate the affect caused by the change in shape, we assume that the 

bubble is incompressible and so stays the same size, \Tc = \e:.  And since it's a 

plasma we know that the magnetic flux through the plasma must remain constant, 
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�	T = �de.  Using these we can find the ratio between the final and initial magnetic 

energy,  

ℰdℰ	 = f18 �d:(e:)g
f18 �	:(Tc)g, 

ℰdℰ	 = h�d:i
[�	:]. 

Combining our initial assumptions we find that, �d: = �	: j
k and substituting 

that in gives, 

ℰdℰ	 = Tc . 
The magnetic energy has been reduced by a factor of a/b.  Without delving into 

the semantic black hole of questioning whether or not magnetic fields can do work, we 

point out that initially we had some amount of magnetic energy.  At a later time we 

had less magnetic energy and from the plasma equation of motion, we can see that 

work will have been done on the plasma.  Surely, there is some complex microphysics, 

intermediary electric fields, or distant dynamos which are truly responsible for the 

work being done.  We, however, are going to simply say that it was the magnetic field 

that did the work, just like we prefer to say that cars take us from one place to another, 

in lieu of attributing the engine or fossil fuels.   

More important than a debate about language is an understanding of how the 

plasma is behaving.  The tension in the magnetic field was the mechanism by which 

energy could be transferred from the field into the plasma.  The tension itself holds no 

energy.  It is the intensity of the magnetic field which holds the energy.  So we can 

identify that highly stressed, bent, or twisted fields are fields which are capable of 
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releasing magnetic energy into the plasma through an unbending process.  This 

process will result in a reduction of the magnetic field intensity.  It's often said that a 

sphere is the most efficient way of packing things in a space given a radius.  

Something similar apparently holds true for magnetic fields.  Spherical magnetic 

bubbles are able to pack in the most magnetic flux while using the least amount of 

energy. 

Logical End of the Universe 

Recall that our purpose in presenting this introduction to plasma physics was to 

present context.  Let’s consider the universe without magnetic reconnection.  Hot stars 

spew magnetized plasma into the emptiness of space.  Stars, like our Sun, are quite 

inhomogeneous on the surface.  They have hot spots, cool spots, and spots of varying 

magnetic fields.  With so much variance, the plasma is inevitably frozen-in to the 

topology of its origin.  Married forever to those origins, ropes of plasma extend across 

the surrounding space.  Forbidden from mixing, they twist around each other and 

drape across magnetized planets.  They run abut to and push against the encapsulating 

plasma of the greater galaxy.  Dynamos within the cores of adjacent stars and planets 

continue to churn, generating more and more magnetic flux.  This relentless 

production of magnetic energy will begin to tighten everything like an over-wound 

rubber band.  Planets will squeeze stars.  Stars will squeeze each other.  And space 

will become a gridlock of twisted magnetic ropes, filling the emptiness with ever-

growing sheets of current and bubbles of escalating plasma pressure.  Eventually the 

honeycomb labyrinth of frozen magnetic domains will invade the cores of the stars 

themselves, seizing the very dynamos responsible for fathering them -- ending the 

Universe as we know it. 
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With great satisfaction, plasma physicists often say that 90% of the universe is 

perfectly described by this model.   Astute readers will perhaps find some flaw with it.  

Subtle things, such as being alive, betray the truth of the matter; there's something 

very important in the remaining 10%.   

Magnetic Reconnection 

Built within the framework of MHD is the strict idea that the electric field 

must remain zero within the reference frame of the plasma.  We argued that this was 

true because the sensitivity and sizes of the charges allowed them to 'very quickly,' 

adjust to any internal electric field.  However, the charges, being real particles with 

real masses, have real constraints on them. 

The most obvious constraint to anyone familiar with terrestrial electronics is 

the idea of resistivity.  More universally, the concept would be familiar anyone who 

has attempted to walk through a crowded plaza.  They will understand that high 

densities (crowded plazas) or high temperatures (running children) could affect their 

ability to traverse the plaza.  It is likewise with plasma dynamics.  Like ourselves, the 

particles in a plasma sometimes have trouble moving around because they keep 

bumping into things.  If the charges are bumping into each other or into ambient 

neutral species, they will not be able to respond quickly enough to neutralize the 

electric field.  Instead of happening 'near instantly,' the flow of charge in response to 

the electric field will become a part of the relevant dynamics, 

=>? =  −�? × �>?c + l�?. 
When the MHD equations are modified to include the effect resistivity on the 

plasma, they are called the resistive-MHD equations.  When the current becomes 
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strong, this added term will begin to play a larger and larger role in the dynamics of 

the plasma.   

Another important and commonly used modification to the electric field is the 

Hall effect.  This effect is more subtle than simple resistivity.  Plasma species are 

made of charges of different masses.  In the simplest case, this is usually taken to 

mean protons and electrons.  In practice it could be a more complex pairing such as 

triply ionized oxygen and electrons.  Whatever the plasma species, the mass becomes 

relevant when you consider the mechanism by which charges couple to the magnetic 

field.  Charges, even when they are drifting in a frozen-in state do not simply drift 

with the field.  They gyrate around it.  The more massive charges, like protons or 

triply ionized oxygen, gyrate more slowly and at greater distances from their gyration 

center than their smaller counterparts.  More massive species will thus sample the 

magnetic field from a larger area of space.  This large sampling area will make the 

heavier species respond to the magnetic field differently than the lighter species.  As 

the plasma species respond differently, they will move differently.  The disparate 

motions that develop will produce an internal electric field.  In order to express this 

mechanism in a hydrodynamic way, we add another term to the electric field equation, 

=>? = −�?� × �>?c + l�? + 1Ym0 �? × �>?. 
When modified to include the Hall term, the equations are redubbed, the Hall-

MHD equations.  In this extra term, n is the number density of the particles and their 

electric charge is represented by e. Since we have broken the parity of the two charges, 

we have also introduced the idea that the plasma is actually comprised of more than 

one fluid by changing �? → �?�, meaning the ion velocity.  Like the resistivity term, the 

Hall term begins to be a major player in the dynamics where there is a strong current. 
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Revisiting our doomed plasma universe, the strict adherence to the frozen-in 

condition painted a picture where stressed magnetic field lines twisted and bent about 

each other in an eternal state of contention.  Now, however, something interesting 

occurs.  And it occurs exactly at these magnetic stress points.  Where magnetic flux 

ropes press against each other, strong sheets of current will naturally develop from 

Equation (3).  The more tightly they are pressed against each other, the stronger the 

current sheet separating them will become.  There will eventually come a point where 

the dynamics of the plasma will no longer be dominated by the �?� × �>?/0 term, but 

instead will be dominated by the resistive or Hall terms.  This will liberate the plasma 

from the magnetic field and break the frozen-in condition.  With the plasma no longer 

married to the magnetic field, gas and magnetic flux will be free to mix around regions 

of intense current.  These mixing junctions become a locus around which the magnetic 

field can reconfigure itself, reducing its tension and dissipating some of the energy it 

carried.  Instead of ending in a gridlock, the Universe will find a balanced equilibrium.  

The dynamos within stars and planets will continue to spool magnetic energy out into 

space.  Contending flux ropes of frozen-in plasma will pile up until the stress 

transforms the region into a local mixing junction.  Then those junctions will serve as 

transfer terminals for the plasma and magnetic fields, connecting them to the greater 

universe through a never ending magnetic interchange network.  This interchange 

mechanism responsible for unlocking plasma gridlock is called magnetic 

reconnection.  And it's as integral to a plasma universe as a door is integral to a house. 

In fact, reconnection enjoys a similar ubiquity as doors do in houses.  

Wherever there is a magnetic domain, there often will be a mixing junction connecting 

it to an adjacent domain.  It's found at every length scale from the miniscule to the 
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massive.  Reconnection creates these mixing junctions, where it is theorized that rapid 

and dramatic field line reconfiguration contributes to the energization of solar flares 

[60].  It appears in the emptiness between planets -- long and extended mixing regions 

develop among the lonely weaves of the solar wind [46] [47].  Terrestrial and Solar 

plasma resolve their conflict in a cascade of reconnection events around the Earth's 

magnetic bubble, beautifying our lives with the polar auroras [17].  Reconnection is 

even found in the turbulent aftermath of those magnetic storms, enabling a cascade of 

eddies and whorls from large to small [35] [56]. 
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Introduction to Research 

The first successful model of magnetic reconnection grew out of an attempt to 

explain the magnetic structure and rapid energy release of Solar flares.  This model, 

developed by Sweet and Parker, demonstrated that magnetic energy could be 

converted into plasma kinetic energy through a magnetic mixing region or diffusion 

region.  This simple 2D model for magnetic reconnection is now called the Sweet-

Parker scaling model [44].  Unfortunately, the conversion of magnetic energy into 

plasma flow energy was not rapid enough to explain the explosive energy dissipation 

observed in solar flares [8].   

Not long after, a model developed by Petschek demonstrated that if the aspect 

ratio of the diffusion region could remain small, then reconnection would process 

magnetic flux at a rate sufficient for flare-like energy release [45].  The key word in 

the phrasing was, "if."  Petschek proposed no mechanism which would cause the 

diffusion region to remain small. 

Over thirty years later, work begun by Biskamp et al. and further developed by 

the plasma physics community lead to a magnetic reconnection model which naturally 

produced small diffusion regions and rapid magnetic energy conversion.  Relying on 

the Hall term to decouple the ion and electron behavior in the diffusion region, this 

model was therefore called a collisionless two-fluid model ( [6] and references 

therein).  With its development, the idea that the Sun's magnetic field could drive the 

explosive release of energy observed in flares had come to fruition [32].  Furthermore 

it allowed observed reconnection to more generally be used to explain plasma 
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energization near the Sun, the Earth, and within the IMF.  Our modern understanding 

of magnetic reconnection has grown from its successes. 

The collisionless model, like its predecessors is a 2D model designed to 

explain the energy conversion rates around magnetic mixing regions.  To that end, it 

has been wildly successful.  However, a cursory inspection of the mixing regions 

observed in nature show that their 3D geometries can vary wildly.  Near to the Sun, 

reconnection occurs across arcades of twisted magnetic loops [61].  At the bow-shock, 

where the Earth and Sun's magnetic field meet, the mixing region curves across the 

structure of the Earth's dipole, [15].  Even here on Earth, laboratory plasmas, such as 

Swarthmore’s Spherical Experiment (SSX), reveal a forest of interplay between the in 

and out-of-plane dimensions [11] [14].  A simple extension of the planar 2D 

collisionless model into 3D would be missing these and other complexities.  

One approach taken is a top-down attempt to describe 3D reconnection by 

deconstructing the magnetic topology into its basic constituents.  In these types of 

studies, magnetic reconnection develops as an outgrowth of the structural necessity of 

the system's magnetic spines, nulls, and fans [29] [15] [51].  One of the challenges to 

this approach is that it has proven difficult to find a 3D equilibrium state amenable to 

computational study. 

A more bottom-up approach is to work from the success of the 2D 

reconnection models.  Although reconnection in the Sun, solar wind, and day-side bow 

shock are all structurally complex, reconnection in the magnetotail occurs within the 

laminar wake of the planet [36].  There, opposing magnetic flux in the tail collides 

across long extended current sheets.  These sheets are reminiscent of the 1D current 

sheet equilibriums used in 2D models and 2D simulations.  As such, magnetotail 
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reconnection is naturally well described by the 2D approximation.  One of the 

aforementioned successes of reconnection is that it was able to explain the presence of 

global plasma flows during substorm events [30] [51]. 

Despite the success of these 2D models at describing global magnetic 

reconfiguration, there are aspects of magnetotail flows which are not well understood.  

In addition to global flows capable of reconfiguring the whole magnetotail, a spectrum 

of more localized plasma flows have been observed [5] [2] [1] [16] [38].  Transient 

events lasting 1-10 minutes achieving velocities of 400 km/s or more are termed 

bursty bulk flows (BBFs).   While being unable to drive global magnetotail 

reconfiguration, BBFs are still an essential and widespread phenomenon in the 

magnetotail and are thought to contribute significantly in the flux transfer between the 

tail and the Earth [1].  Observed to be 1 RE in extent in the north-south direction and 

spread as long as 3 RE along the current sheet [37], the presence of these BBFs 

strongly implies the existence of bursty magnetic reconnection in the near magnetotail.  

So, not only does reconnection come in a variety of forms in nature, the impact of 

reconnection on the local magnetosphere has been shown to have some sensitivity to 

the reconnection structure.  In a survey of BBF events, Ohtani et al., found that only a 

fraction of observed reconnection events are able to create outflows which penetrate 

deep into the near earth magnetosphere [40].  Following that, [13], [7], [16], showed 

that this penetration was directly correlated with the outflowing island entropy.  

Magnetic reconnection is one possible mechanism for driving these smaller 

flows.  From a basic reconnection standpoint, the question becomes:  will a 3D model 

of reconnection realize the different flavors of plasma flow observed in the 

magnetotail? 
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Since the magnetotail presents an equilibrium state which is easily extensible 

into three dimensions, a few studies of this nature have already been done.  Shedding 

some light on the asymmetric x-line growth in the near magneto-tail, Huba and 

Rudakov as well as Shay et al. found in simulation that the reconnection propagated in 

the direction of the electron flow [28] [59].  While Shay et al. introduced the concept 

of a solitary x-line while offering the refinement that reconnection will grow in the 

direction of the current carrying species [59].  The discovery of the solitary x-line 

suggests that reconnection is indeed able to produce plasma flow events localized in 

space.   In 2006, kinetic simulations done by Lapenta et al. [33] demonstrated that the 

out-of-plane growth rates of the reconnection region had a dependence on the initial 

current sheet width, mass ratios, and initial temperatures.  Further work by Huba and 

Rudakov [27] correlated the asymmetry of the growth direction with a �>? × ∇>>?Y wave, 

giving some insight into the possible micro-scale physics driving the gross 

phenomenon.  

These studies strongly suggest that the smaller plasma flow events observed in 

the magnetotail can be the result of magnetic reconnection.  However, there remain 

unresolved questions.  The transient nature of BBFs has still been undiscovered in 

reconnection simulations; 2D reconnection was both theorized and observed in 

simulation to always grow until it had consumed all of the available magnetic flux ( 

[6] and references therein).  The ability of reconnection to explain smaller plasma 

flows hinges upon the discovery of a termination mechanism.  Also unresolved was an 

explanation of the observed size of the BBFs.  In 2004 Nakamura et al. used Cluster 

data to establish that the extent of these smaller BBFs was between 2-3eo [37].  

Previous work has no explanation for this limitation. 
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In this thesis, we provide evidence for this behavior in a reconnection 

simulation.  As well as introduce a 3D scaling model for reconnection which explains 

the physical mechanisms behind the behaviors. 

Reconnection Structure 

Magnetic reconnection is a magnetic mixing process which occurs in the 

collision zone between magnetized clouds of plasma.  When the current between the 

two clouds grows strong enough, a plasma diffusion region develops between them.  

In a very dense plasma where collisions happen frequently, this development can be 

due to those same collisions interfering resistively with the current flow. 

In more airy plasma clouds, where collisions happen far too infrequently to 

affect the dynamics, a different mechanism is responsible for separating the behavior 

of the ions and electrons.  As mentioned before, the charges gyrate around the 

magnetic field.  This causes their behavior to be derived from a sampling area within 

their gyro-radius.  In the abutment of opposing magnetic fields, the charges will 

sample an area of space which has a net magnetic field of zero.  This essentially de-

magnetizes the plasma.   The ions incident on the collision zone, having a larger gyro-

radius, sample the opposing magnetic field first.  This results in them de-coupling 

from the magnetic field before their less massive siblings. 

The de-magnetization length scale of the ions defines the width of the diffusion 

region.  In a fluid sense it is called the ion-inertial length, it is: 

J� = pqΩL� = 0�1� = ] S�0:
4\nm:_a/:. 

Similarly, an electron diffusion region is created of the size of the electron 

inertial length, 
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JF = 0/�1F. 
Numerical simulations by Shay et al. have confirmed these length scales [57].  

 

Figure 4 Collision region between two topologically distinct plasmas shown in 
blue and orange.  The magnetic flux is represented by the solid field 
lines.  Dashed lines connect the flux to their distant foot prints.  Between 
the two plasmas a current sheet forms around the B = 0 magnetic null 
sheet.   

Before the onset of reconnection, the structure of the current sheet appears like 

Figure 4.  In the collision space between the plasmas, the opposing field lines must 

have a null-sheet between them.  The two sets of plasma are considered topologically 

distinct.  The magnetic field approaching the current sheet from the top threads a 
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completely different plasma than that of the bottom.  If this were reconnection 

between Sun-born plasma and Earth-born plasma, the magnetic field originating at the 

top of the figure would have footholds on the Sun, while the magnetic field originating 

on the bottom has Earth-bound foot prints.   

Soon after the formation of a diffusion region, the structure in Figure 5 will 

form.  We see that in addition to the two originating topological structures, there are 

now two child topologies.  These fields are of mixed origins - one foot on the Sun with 

the other foot on the Earth.  Squeezed between these four magnetic domains is what 

remains of the magnetic-null.  Originally a sheet, it has now become a null-point.  

Stretched into the 3rd dimension, this point is called the x-line.  It is around this line, 

through the diffusion region, that reconnection is said to occur.   
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Figure 5 Structure of the collision region between two different plasmas after the 
onset of magnetic reconnection.  Reconnection occurs around a center 
magnetic null, the x-line.  This line, seen head-on, extends some distance 
into and out of the page.  It separates the four different magnetic 
topologies. 
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The traditional viewpoint of a reconnecting x-line is represented by Figure 6.  

Once again, at the top and bottom of the figure there are magnetic field lines with 

opposite polarity colliding about a center sheet of current - directed into the page.  The 

strength of the current depends heavily on the separation between the magnetic field 

lines.  Places where the separation is wide (the left and right sides of the figure), the 

magnitude of the current is relatively weak.  In region where the magnetic field 

pinches in, the current can become quite strong.  Within the most pinched part of the 

current sheet, we find the diffusion region.  Plasma flux enters the diffusion region 

from the top and bottom of the figure.  Once inside the diffusion region, the plasma 

decouples from the magnetic field.  After decoupling, the plasma is free to mix and the 

magnetic field undergoes its topological transformation.  The change in topology leads 

to the creation of highly curved magnetic field lines within the current sheet.  

Behaving much like a stressed spring, the magnetic field attempts to unbend away 

from the pinched section of the current sheet.  On its way out of the diffusion region, 

the plasma is once again frozen into the magnetic field and they are both accelerated 

away together.   
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Figure 6 Close up view of the magnetic collision region during reconnection.  
Plasma flow is represented by green arrows.  The magnetic flux being 
carried with the plasma into and out of the x-line is represented by blue 
(incoming) and red (outgoing) lines.  In yellow, surrounding the region of 
the x-line is the diffusion region.  Finally, the maroon markers depict 
current flowing into the page. 

As a general rule of thumb, the fully-formed system obeys the concept of 'what 

goes in, must come out.'  As such, the rate that plasma leaves the system and the rate 

that plasma enters the system is intimately coupled via the aspect ratio of the diffusion 

region.  Anyone who has driven on an interstate as it narrowed from 4 lanes to 1 lane 

should have a very intuitive grasp of this relationship.  Traffic slows down when the 

number of lanes abruptly drops.  Likewise, if the inflow edge of the diffusion region is 

much bigger than the outflow edge, then the inflow will have to greatly slow itself to 

accommodate the limited outflow capacity. 
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Figure 7 Dimensions of the diffusion region.  The ion diffusion region is drawn in 
yellow while the electron diffusion region is drawn in green.  The plasma 
inflow and outflow are closely related to the dimensions.  

To see this, we actually balance of the inflow and outflow in a steady state 

assumption.  The two quantities usually considered are the plasma matter itself, 

because of the continuity condition as well as the energy flow.  The continuity 

equation says that the amount of plasma passing through the top of the diffusion 

rectangle should equal the amount of plasma leaving through a side. 

2��s�� = 2�tuG�� , 
��s�tuG = ����  . 

For the energy flux, the inflow is slower than the outflow by a ratio of ��/��, 

so the majority of the inflowing energy is being carried by the incoming magnetic 

flux.  While the outflowing energy leaves while being constrained to the current sheet, 

which has depleted magnetic field strength.  This means that the energy balance is 

10J� ≤ �� ≤ w�x�mS 

�� = J� 

0 ≤ ��s ≤ .1pq 

�tuG ~ pq JF 
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mostly a balance between the incoming magnetic energy and the outgoing kinetic 

energy.  Using, 

��:8π ��s = 12 S�Y�tuGz , 
and the continuity equation we find that the outflow speed is, 

�tuG: = ��:4\{S�Y = pq:. 
This outflow speed is the equilibrium Alfven speed.  Resulting in, 

��s = ���� pq = J��� pq 

Simulations have shown that for Hall reconnection ��/�� has a roughly fixed 

ratio 0.1 [58] .  And for resistive-MHD simulations, �� has been shown to scale with 

the system size.  This means that Hall reconnection in nature will have an inflow 

speed of . 1pq regardless of the overall system size.  Evidence of this ratio has also 

been observed in 3D experiments [10].  The basic structure of the diffusion region can 

be seen in Figure 7.   Since laminar resistive reconnection will allow �� to grow very 

large, it can have very slow inflow speeds in nature. 
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Figure 8 Two-fold structure of the diffusion region.  Once again, the ion diffusion 
region is in yellow and the electron diffusion region in green.  The 
dashed lines represent the magnetic field structure.  Protons and electrons 
are present as orange and green circles.  The electrons are carried by the 
magnetic field into the electron diffusion region, distinguishing their bulk 
motion from the protons.  As a result of this difference in motion, an 
electric field arises, seen as blue and purple arrows. 

The diffusion region itself has a two-fold structure [Figure 8].  The plasma is 

minimally made up of two different species of charges, a positive charge (large orange 

dots) and a negative charge (small green dots).  Typically these are electrons and 

protons.  Owing to their large differences in mass, they tend to decouple from the 

magnetic field under different conditions.  The electrons being much lighter are 

carried with or stick to the magnetic field quite a bit more faithfully than the ions.  

This means, that when the plasma enters the diffusion region, it is the ions which 

break away from the magnetic field first, while the electrons continue to be carried 

deeper into the diffusion region. 
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The two different charge species moving with different velocities can be 

represented by a current flow into or out of the diffusion region.  Since it is typically 

the negatively charged particles which lead the way into the diffusion region, the 

resulting current points away from the diffusion region on the inflow and toward the 

diffusion region on the outflow.  Subsequently, as the ions enter and leave the 

diffusion region, they are driven by this smaller current in the direction of the greater 

current.  This can be seen from the force equation on the ions,  

V?� = m ]=>? + �?�c × �>?_, 

=>? =  − �?�c × �>? + �?nec × �>?, 
V?| = �?Y0 × �>?. 

Typically, this behavior by the ions is considered negligible in 2D studies of 

reconnection.  However, for 3D reconnection this affect will become important. 

Meanwhile, the electrons are carried with the pre-existing current in the out of 

plane direction.  Since they are still tied to the magnetic field, as they are carried, they 

pull the magnetic field with them.  This dragging of the field lines is sometimes 

alternatively viewed as being derived by the aforementioned current deforming the 

field line between the electron and ion diffusion regions.  Regardless of the 

description, this results in what is often referred to the quadrupole nature of Hall 

reconnection in 2.5 dimensions, depicted in Figure 9.  The stretching of the field line 

out of the plane enhances the reconnection rate, as the speed at which the magnetic 

field can rotate back into the plane is controlled by whistler physics, which tends to be 

greater than the speed at which the magnetic field can unbend.  However, as is 
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depicted in the figure, this out of plane rotation does result in an over-shoot further 

downstream near the o-line. 

 

Figure 9 Quadrupole nature of magnetic reconnection in 2.5 dimensions.  The 
outflowing magnetic field (red) is pulled out of the reconnecting plane by 
the moving electrons (green dots).  The resulting magnetic structure is 
quadrupolar in nature and is considered a signature of collisionless 
reconnection. 

As comfortable as steady state analysis of reconnection is, real reconnection is 

not steady state.  Reconnection sites evolve both in time and in space.  Shown in 

Figure 10, the system can be observed to be in one of several states.   Initially, before 

the onset of anything that can be called reconnection, the magnetic flux must be 

brought together -- forming an ever narrowing current sheet.  Once the current sheet 

has narrowed enough so that some physics can begin to violate the ideal conductivity 

of the system, magnetic flux will begin to be processed and reconnected by a diffusion 
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region.  Initially, the diffusion region begins in a long and narrow configuration.  This 

configuration tends to scale with the system size and the conversion of magnetic flux 

between the different domains tends to be 'slower.'  In time, however, the contact point 

between the opposing magnetic fields will inevitably change from a system-sized line 

to one of approximately 10c/ωpi in width.  At this juncture, the x-line has generally not 

yet reached its full potential.  It's not until later, when the outflow jets have opened up, 

as seen in panel 4 of the figure, that the reconnection site is considered to be operating 

at full capacity. 
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Figure 10 Magnetic reconnection structure as it evolves in time.  Panel A: before 
the onset of reconnection, the current sheet narrows.  Panel B:  the 
diffusion region width �� shrinks as the reconnection transitions from a 
Sweet-Parker like structure to a more Petschek-like structure.  Panel C: 
the outflow nozzle opens, transitioning the reconnection to its final 
structure, seen in Panel D.  

A 

B 

C 

D 
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With a basic understanding of what traditional reconnection looks like 'in the 

plane,' we can now rotate out of the that plane into one which gives better insight into 

the mechanism of 3D reconnection.  For most of this thesis, we will be inspecting the 

physics within the plane of the current sheet instead of the reconnecting plane.  

Prominent in this sheet is the region of enhanced current found inside of the diffusion 

region.  From the rotated perspective, this region of enhanced current takes on the 

appearance of a current ribbon which shadows the x-line.  Figure 11, shows this 

current ribbon in perspective a relative to the traditional picture of reconnection. 
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Figure 11 A ribbon of current in the out-of-plane direction taken from simulation 
and placed into the context of the 2D reconnecting plane.  This current 
ribbon defines the plane in which most of the analysis for this thesis takes 
place. 
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Chapter 2 

SIMULATIONS 

Now that we are familiar with the basics of 2D reconnection, we lay the 

foundation for our study of 3D reconnection.  Firstly, the study is based on simulation.  

It follows that we discuss the computational framework before we introduce results 

based on simulated data.  Also, the work being based on a simulation has quite a few 

subtle consequences.  The most important consequence is that simulated reality is not 

the same as physical reality.  Simulations are crafted around a set of rules meant to 

reproduce certain aspects of reality.  Some of the rules are chosen for investigative 

purposes while others are chosen in compromise with escalating computational costs.  

Whatever the case, care must be taken to not inject paradigms into the interpretation of 

the simulation which are not innately there.  For example, in a fluid simulation 

particles do not exist.  It would therefore be inappropriate to describe any of the 

physical phenomenon observed in a fluid simulation via particle kinematics.  To do 

this would be akin to discussing what type of transmission is present in a toy Hot 

Wheels car.  Whenever we are discussing the behavior of the simulation, it must be in 

the context of the simulation rule set. 

The second subtlety to consider is derived from the numerical methods by 

which the simulation rules are solved.  At some level, computational work must 

always have its results rounded-off.  Exactly how and to what degree is determined by 

the necessity of balancing quality against efficiency.  We do this every day when we 

work with numbers.  Driving directions are given in miles and human heights are 

given in feet.  We actively choose appropriate resolutions for a given task. 
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Since both of these considerations are important to the interpretation of the 

work, we will discuss them both. 

Simulation Rule Set 

As already said, the choice of a simulation rule-set can be done for 

investigative purposes or to mitigate computational costs.  Simulating reality, 'as-is,' is 

simply not possible -- on any budget.  The real world is so information dense, that a 

'true simulation' of even the tiniest patches of existence would stress the world's fastest 

supercomputers.  Simulating larger and larger patches of existence means 

compromising the 'truth' with layers and layers of approximation.  By the time we've 

reached patches of existence large enough for even the most basic plasma physics, 

we've already abandoned the ideas of quantum fields and particles.  We've abandoned 

the idea that our particles have internal structures by assuming them to be classically 

charged point-like particles. 

What we would call an ideal or perfect plasma simulation would be one able to 

kinematically track every point of charge in a plasma and calculate the sum 

contribution of each to the electric and magnetic fields.  Even this system, as 

compromised as it is, is far beyond the computational capabilities of any computer on 

Earth. 

The simulation types which are as close to 'true' as we're able to make while 

also simulating a patch of plasma large enough to be of interest are called kinetic 

simulations.  One type of these simulations, termed particle-in-cell simulations, apply 

the physics directly in the fashion described as 'ideal,' however, the physics is applied 

over a randomly sampled subset of the particles.  This subset is many orders of 

magnitude smaller than the actual number found in a comparable physical plasma.  
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With current computational limitations, this class of simulation is typically used for 

2D areas of the magnetotail described in terms of tens of earth radii. 

Hybrid simulations are considered the next most physical subtype.  These 

simulations treat the ions kinetically while treating the electrons as a fluid.  In other 

words, they are hybrid kinetic-fluid simulations.  The assumption of fluid electrons, 

allows researchers to simulate areas several times larger than full kinetic codes for the 

same cost.  Much of the cost reduction comes from the removal of light waves, 

plasmas waves, and Debye length scales from the simulation physics, which allows 

much larger grid scales and time steps. Furthermore, substepping the electron fluid 

relative to the ion particles allows the particle time step to be much larger than in fully 

kinetic PIC.  

The cheapest class of simulations are fluid simulations.  These simulations 

treat both the ions and the electrons as fluids.  With the extreme reduction in cost 

afforded by this approach, researchers have been able to use them to simulate plasmas 

over much larger areas.  Some groups even use variants of fluid simulations in order to 

do global MHD models over the entire magnetosphere [68] or across large swaths of 

the solar system [65] [66].  Really large simulations such as these necessarily sacrifice 

the ability to resolve comparatively small phenomenon. 

Being hundreds or thousands of times more computationally expensive than 

their 2D counterparts, 3D simulations must be done with a careful eye to cost.  It was 

with that expense in mind that we chose to use fluid simulations in our research. 
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A Fluid Model 

The equations used to simulate the plasma are based on the MHD equations 

introduced in the background section of this thesis.  Written in the form already 

presented, they appear as: 

�2�� + ∇>>? ⋅ (2�?�) =  }∇~2, 
S�Y ]��?��� + M�?� ⋅ ∇>>?N�?�_ = 10 �? × �>? − ∇>>?R + }∇~�?� , 

��>?�� =  −0∇>>? × =>? + }∇~�>?, 
JJ� XRY[ = 0, 

�? = c4π ∇>>? × �>?, 
∇>>? ⋅ �>? = 0, 

=>? = − 10 �?� × �>? + 1Ym0 �? × �>? − SFm J�?FJ� . 
Although they look a little different, the meanings of the equations remain 

unchanged from before.  We have, however, added a few things of note.  The first 

thing to notice is that on all of the equations that evolve in time, we have added the 

term: 

�O�� = ⋯ + }∇~O. 
This term is known as hyperviscosity.  It's added for purely numerical purposes 

and not physical.  It serves as a smoothing term, preventing changes in the variables 

from becoming too sharp.  Because of the nature of our computational methods, very 

sharp gradients will destabilize the simulation, causing it to crash.  Also because of the 
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nature of our computational methods, sharp noise level gradients are unavoidable.  

The parameter } is tuned according to the needs of each simulation. 

We have also chosen an isothermal equation of state for our system, � = 1. 

JJ� XRY[ = 0, 
can be rewritten more plainly as, 

R� = ��� = 0�Yx�TY�. 
We chose to work in an isothermal state in order to remove pressure as a 

variable.  When the temperature is held constant, the pressure variable can be replaced 

by: 

R = Y��. 
Assuming an isothermal plasma is not strictly justified in the Earth’s 

magnetotail.  However, the goal in this thesis is to understand the fundamental 

behavior of these basic 3D x-lines.  Including more complex behavior is left for future 

studies.   

For similar reasons, the electron temperature was chosen to be zero.  This 

means that the only relevant gas dynamics in the simulations are those of the ions. 

Finally, the equation for the electric field has been drastically modified from 

the simple MHD presentation in the beginning of this work.  Inspired by the electron 

equation of motion,  

YSF J�?FJ� = −mY=>? − mY0 �?F × �>? − ∇>>?RF , 
�?Ym = �?� − �?F , 
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YSF J�?FJ� = −mY=>? − mY0 ]�?� − �?Ym_ × �>? − ∇>>?RF . 
Solving for the electric field, we get our electric field equation, 

=>? = − 10 �?� × �>? + 1Ym0 �? × �>? − 1Ym �>?RF − SFm J�?FJ� . 
Since there is no electron temperature, we can remove the electron pressure 

term from the equation, 

=>? = − 10 �?� × �>? + 1Ym0 �? × �>? − SFm J�?FJ� . 
This introduces two additions above and beyond the standard MHD electric 

field.  First, we have added the familiar Hall term, 

1Ym0 M�? × �>?N. 
As well as a new term called the electron inertia, 

SFm J�?FJ�  . 
It is really these additions to the electric field which elevate the simulation 

above the level of being an MHD simulation.  The technical nomenclature for the 

simulations would be:  "Hall-MHD simulation with electron inertia." 

Although this is the standard form used for our analytical work, it's not the 

form for the equations as they are used in the simulation code.  In the simulation, they 

are expressed in a more efficient set of variables.  Those being, �, �� , �, and Y and the 

intermediate variables, �@ and =′.  So we rewrite the formulas in terms of these 

variables using these identities and a good amount of algebra, 
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The Normalization 

The virtual space in which a simulation runs is completely arbitrary.  At the 

most basic level, a researcher has a few thousand cells of 'space' and a few thousand 

blocks of 'time' with which to work.  Instead of dividing up the space and time into 

fixed quantities like meters or feet, we choose to divide our virtual space into a more 

scalable set of units.  The generic statement would be: "How far can X move during 

action Y?"  Taking the example of a race planner and applying this scalable logic.  A 

race planner may ask, "How far can my runners run before they become exhausted," in 

order to choose a race distance.  Following this type of thinking, a long distance race 

length for athletes will be scaled larger than a race length for children. 

By setting our dynamical variables in a similar fashion, we are giving our 

plasma simulation the capability to represent an infinite number of real world plasmas.  

The length scales in our work have all been normalized to the equilibrium ion inertial 

length, �� = 0 �1�⁄ = {0:S� (4\Ym:)⁄ , which is a function of our equilibrium 

conditions.  This means that our diffusion region will have a length along the outflow 

direction of approximately 10 in code units.  Our time scales have all been normalized 

to the ion cyclotron frequency,  �G = Ω��a = (m� S�0⁄ )�a,  which is also a function of 

our equilibrium conditions.  Alternatively, this can be viewed as a normalization 

resulting in an equilibrium Alfven wave traveling a unit distance in a unit time.  Since 

these length and time scales depend on the properties of the equilibrium plasma, the 

simulation results can be applied to many different real-world length and time scales.  

The other independent variables, B and Y, are normalized to their equilibrium values.  

And the mass is normalized to the ion mass.   

Another necessary compromise due to the limited number of space cells 

available to us are some of the choices for constants.  For example, the mass of the 
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electron was chosen to be 1/25th of the mass of the ions.  This factor sets the relative 

difference in scale between electron and ion dynamics.  With a factor 25 in the mass, 

the length scale of the electron dynamics are set to be about 1/5th the size of the ion 

dynamics.  With them being so close to the same scale, it's reasonable to expect a 

fixed number of space cells to be able to capture both dynamics adequately.  However, 

in the natural world electron dynamics occur at about 1/50th of the scale of the proton 

dynamics.  Which means a gridding which nicely resolves the electron-scale physics, 

will be missing the vast majority of the proton physics.  It would be like trying capture 

a baseball game on film using a narrow-angle zoom lens.  

To see an example of this normalization process, consider, 

∇>>? × �>? = 4\0 �?. 
If we replace each physical quantity with its normalized counterpart,  

� → ����, 
� → ���,̅ 

∇ → X 1��[ ∇�, 
and 

0 → pq0̅. 
We get a new version of the relationship, 

X���� [ ∇�>>? × ��>? = X��pq[ 4\0̅ �?̅ 
Using � = Ym� and � ̅ = Y�m̅�̅, we can find, 

�� = �s�Fpq. 
Substituting this in and following the algebra down the rabbit hole, 

 

X���� [ ∇�>>? × ��>? = X�s�Fpqpq [ 4\0̅ �?̅, 
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X ��pq�G[ ∇�>>? × ��>? = X�s�Fpqpq [ 4\0̅ �?̅, 
X���G [ ∇�>>? × ��>? = ]4\�s�Fpq:pq _ 10̅ �?̅. 

Utilizing the fact that we are essentially normalizing to the Alfven speed,  

pq: = ��:4\�s��, 
Simplifies the expression even more, 

X���G [ ∇�>>? × ��>? = ] �F��:pq��_ 10̅ �?̅, 
X 1�G[ ∇�>>? × ��>? = X �F��0̅pq��[ �?̅. 

Until finally, with one last substitution,  

�G = 0̅pq���F�� = 0���F��, 
We find the form of the equation actually used in the simulation: 

∇�>>? × ��>? = �?̅. 
All of the formulas used in the fluid code undergo a similar normalization, resulting in 

a final representation.  From this point on in this thesis, all variables will be implicitly 

normalized: 

S� = 1 

�?� = Ym�?� , 
R = Y��, 

�Y�� + ∇>>? ⋅ M�?�N =  }∇~Y, 
��?��� = −∇>>? ⋅ M�?��?�/YN +  M�? × �>?N − 1Y ∇>>?R + }∇~�?�, 

��>?′�� =  −∇>>? × =>?@ + }∇~�>?@, 
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=>?@ = 12 M�? × �>?′ − �?� × �>?N, 
 �>?@ = ]1 − SF0:

Ym: ∇:_ �>?, (5) 

 

JJ� (�) = 0, 
�? = ∇>>? × �>?, 
∇>>? ⋅ �>? = 0. 

The final modification made to the equations before being used in simulation is 

done to Equation (6).  The coefficient SF0:
Ym:  

is taken to be the constant, JF:, with Y set to the equilibrium value. 

The Equilibrium 

As mentioned above, the simulation length scales depend on the equilibrium of 

the system.  This raises the important question, "what is the equilibrium of this 

system?" 

The system is initialized in a double Harris sheet configuration with periodic 

boundary conditions in every direction.  The orientation of the current sheets in our 

systems can be seen in Figure 12.  The double Harris sheet is a well known starting 

condition in 2D reconnection studies [23].  The basic idea is to begin reconnection 

around a flat current sheet, much like what would be expected in the magnetotail.  In 

computational work, boundary conditions are always problematic.  Simulating two 

antipodal current sheets instead of one introduces a symmetry to the system which 
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allows periodic boundary conditions to be applied.  Mathematically, our starting 

magnetic field simply follows as: 

 ��(�) = �	(tanh[M� + Δ� 4⁄ N �	]⁄ −  tanhhM� − Δ� 4⁄ N �	] − 1⁄ N.   

Where, �	 = 1, Δ� is the system length in the y-direction, and �	 roughly represents 

the starting width of the current sheet. 



 51

 

Figure 12 Schematic relating our simulation coordinates to the double Harris sheet 
orientation.    The current flows in the ± � directions.  The traditional 
outflow is in the x-direction.  The traditional 2D inflow is in the y-
direction.  The length of the system in the �, �, and � directions are Δ�, Δ�, and Δ� respectively.  Most figures in this thesis are taken from the 
negative current sheet, depicted as dark gray in the figure. 
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Having decided upon an initial current distribution and thus an initial magnetic 

field configuration, this also fixes the starting density.  The system is initialized in 

pressure balance, so the gas pressure is chosen so that the total pressure remains 

constant,  

RGtGj� = �:/2 + R�j8 . 
Finally, small random fluctuations are added to the ion velocities and magnetic fields. 

The Seed Perturbation 

In order to initiate reconnection in our system, we perturb the vector potential, 

O?, by a small amount given by, 

 O� = ℰ	 XΔ�4\[ ]1 + cos �4\Δ� M� + Δ�/4N�_ sin X4\�2Δ� [ V(�), 
where 

V(�) = X 1cosh(z/ω	�)[:. 
This perturbation, in turn, perturbs the magnetic field while maintaining, 

∇>>? ⋅ �>? = 0.  The easiest inroad into understanding this perturbation is to first look at 

V(�)  in Figure 13.  V(�) is an envelope function of height 1 and width approximately 

2�	�. 
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Figure 13 The envelope function, F(z), restricts the perturbation size in the z-
direction. 

This function serves only to localize the perturbation of the vector potential in 

the out-of-plane direction. 

This leaves us to only have to consider the perturbation in the x-y plane.  The 

affect of the perturbation on the magnetic field in that plane can be calculated from: 

��a = �O��� , 
��a = − �O��� .  

Resulting in,  

��a = −ℰ	 ]Δ�Δ�_ sin �4\Δ� M� + Δ�/4N� sin X4\�2Δ� [ V(�), 

��a = ℰ	 ]1 + cos �4\Δ� M� + Δ�/4N�_ cos X4\�2Δ� [ V(�). 
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We can see immediately, the amplitude of the perturbation is determined by, ℰ	.  The 

trigonometric portion of the equation determines the placement of the perturbation in 

the space.  In this case, Figure 14, Figure 15, and Figure 16 tell the story much more 

concisely. 

 

Figure 14 Plot of the in-plane perturbation in the magnetic field which will be 
added to the equilibrium field. 
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Figure 15 Plot of the magnetic field in the plane of reconnection after the 
perturbation has been added.  In this case, the perturbation magnitude, ℰ	, has a value of 1.0 in order to increase the visibility of its contribution.  
From this figure we can locate the x-lines in the system in the bottom-left 
and top-right corners. 

 

Figure 16 Plot of the magnetic field in the plane of reconnection after the 
perturbation has been added with ℰ	 =  0.1 
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The perturbations are positioned in such a way that it produces two x-lines and 

two o-lines compatible with the periodic boundary conditions.  It does this at each 

value of z, scaled by the envelope factor. 

Taken on its own, this perturbation in the magnetic field would represent a 

magnetic energy as can be seen in Figure 17.  

 

 

Figure 17 Contour plot for the magnetic energy of the perturbation, in the absence 
of an equilibrium field. 

The total magnetic energy when combined with the equilibrium can be seen in 

the contours of Figure 18.  A bubble of magnetic energy roughly ℰ	 in magnitude is 

transplanted from the upstream location of the o-line to the x-line. 
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Figure 18 Contour of the magnetic energy in the plane of reconnection after adding 
the seed perturbation to the equilibrium field. 

The major contribution to the energy perturbation can be calculated by: 

� = �>? ⋅ �>? = ��: + ��: + ��:, 
��: = (��	 + ��a): = ��	: + 2��	��a + ��a: , 

��: = ��a: , 
��: = 0. 

Since the perturbation is of magnitude, ℰ	, which is small compared to the initial 

magnetic field, we can neglect higher powers of the perturbed magnetic field's 

contribution to the energy.  Giving a perturbation energy of, 

 �a = 2��	ℰ	. (6) 
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So the perturbation moves a volume of energy from one part of the system to 

the other part of the system.  That amount of energy scales with: ��	ℰ	(�	��	Δ�). 

 

Numerical Methods 

 

Figure 19 Second-order leap frog technique used to integrate the differential 
equations in time.  Each dot represents a point in time.  Integral values of 
the time are outputted as data while fractional values are intermediary 
values kept for calculation purposes only.   

Some of the equations that we are solving are differential equations in time.  In 

order to integrate these equations numerically, we use the a technique which at its core 

is, after a time interval Δ�: 

�a = �	 + �	@Δ�, 
where the subscript 1 represents the future value of the variable and 0 is the present or 

given value.  One of the inaccuracies introduced by this technique is that �′ may 

change over the time interval Δ�, making �	@ an inaccurate representation of the change 

in � over the interval.  In order to reduce this error, instead of simply using �′ as 
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calculated at the present time, we use a valued averaged between �KJ � and Ym� �.  

Superficially, this appears to introduce a logical paradox.  In order to calculate new f, 

we need �	.�@ .  In order to calculate �	.�@ , we need new f.  We solve this basic dilemma 

with the trapezoidal leapfrog method presented in Figure 19.   

We can see from the figure, that by calculating intermediary values of f, we 

can proceed in a 'leap frog' fashion forward indefinitely.  The only catch is that in 

order to start this technique, we must begin the simulation with an f at two different 

times.  To skirt that problem, we generate a 2nd initial time step using the less accurate 

method first mentioned. 

To handle the spatial derivatives, we use a 4th order accurate numerical 

approximation, 

Δ�Δ� = X 1Δ�[ �23 �(� + Δ�) − 23 �(� − Δ�) − 112 �(� + 2Δ�) + 112 �(� − 2Δ�)� + �� 

In order to arrive at this relationship, begin with the tailor expansions of, 

 �(� + Δ�) = �(�) + �@(Δ�) + 1/2 �@@(Δ�): + ⋯, (7) 

 �(� − Δ�) = �(�) − �@(Δ�) + 1/2 �@@(Δ�): − ⋯, (8) 

 �(� + 2Δ�) = �(�) + 2�@(Δ�) + 2�@@(Δ�): + ⋯, (9) 

 �(� − 2Δ�) = �(�) − 2�@(Δ�) + 2�@@(Δ�): − ⋯. (10) 

 

Subtract (6) from (5) and (8) from (7) to get, 

�(� + Δ�) − �(� − Δ�) = 2�@(Δ�) + 1/3 �@@@(Δ�) + ��, 
�(� + 2Δ�) − �(� − 2Δ�) =  4�@(Δ�) + 8/3 �@@@(Δ�) + ��. 

Solving for �′ while eliminating �′′′ gives us the result. 
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Simulation Parameters 

Finally, we present the simulation parameters used in this work in Table 1.  We 

began with a series of runs intended to establish the standard behavior of the x-line as 

we varied the equilibrium current sheet width, �	.  It was our hope to discover that 

very wide current sheet widths would produce transient reconnection.  The "High 

Noise" section of the table represents notable examples taken from this series. 

With run 107.9, we discovered our first example of a simulation with transient 

reconnection.  It was, however, produced using a very strong initial perturbation and 

strong ambient noise.  After this example was found, we did further runs in a low 

noise environment, intended to probe the circumstances of marginal or failed 

reconnection.  The, "Low Noise" section represents this probing. 
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Run  Spatial Dimensions Time Perturbation Size 
 Δ� Δ� Δ� �� �� �� Δ� �	 ℰ	 �	� 
High Noise 
105.3 51.2 51.2 128 512 512 64 .02 0.5 .08 10 
107.8 102.4 51.2 128 1024 512 64 .02 1.4 .08 10 
107.6 102.4 51.2 128 1024 512 64 .02 3.376 .08 10 
107.9 102.4 51.2 128 1024 512 64 .02 5.0 .24 10 
107.25 102.4 51.2 128 1024 512 64 .02 5.0 .24 60 
Low Noise 
107.29 102.4 102.4 128 512 512 64 .1 5.0 .015 10 
107.31 102.4 102.4 128 512 512 64 .1 5.0 .03 10 
107.30 102.4 102.4 128 512 512 64 .1 5.0 .24 10 
1077.4 102.4 102.4 128 512 512 64 .1 5.0 .24 2.5 
107.36 102.4 102.4 128 512 512 64 .1 5.0 .12 10 
107.37 102.4 102.4 128 512 512 64 .1 5.0 .12 5 
1077.2 102.4 102.4 128 512 512 64 .1 5.0 .12 2.5 
107.34 102.4 102.4 128 512 512 64 .1 5.0 .06 10 
107.39 102.4 102.4 128 512 512 64 .1 5.0 .06 5 
107.41 102.4 102.4 128 512 512 64 .1 5.0 .05 10 
107.42 102.4 102.4 128 512 512 64 .1 5.0 .04 10 
107.45 102.4 102.4 128 512 512 64 .1 5.0 .038 10 
107.46 102.4 51.2 128 1024 512 64 .1 1.4 .08 10 
107.47 102.4 102.4 256 512 512 128 .1 5.0 .04 20 
107.50 102.4 102.4 256 512 512 128 .1 5.0 .04 30 
107.49 102.4 102.4 256 512 512 128 .1 5.0 .04 40 
107.51 102.4 102.4 256 512 512 128 .1 5.0 .04 60 

Table 1 Table of simulations used.  The runs can be broken into two main 
categories – an initial set of runs done with a large random perturbation 
and a quiescent set of runs done with very little noise with a more 
focused goal.  Δ�, Δ�, and Δ� are the spatial dimensions of the simulation 
box.  ��, ��, and �� are the numbers of grid cells in the x, y, and z 
directions.  The time steps used in the numerical integration are listed in 
the Δ� column.  Finally, the parameters adjusted in the course of the 
investigation, the perturbation size, are listed under the columns �	, �	�, 
and ℰ	.  Runs discussed at length in the following chapters are 
highlighted. 
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Although all simulations held two reconnection current sheets, all of the 

figures presented come from a single current sheet.  The coordinate system for that 

current sheet can be seen in Figure 20. 

 

Figure 20 Schematic of the 3D X-line.   



 63

Chapter 3 

TRACING 

The first stumbling block to any study of magnetic reconnection in 3D is, 

unfortunately, a semantic one.  Since magnetic reconnection is an active field of 

research, there is still much to be learned with many aspects of the physics still 

misunderstood or mischaracterized.  In two dimensions, where most of the research to 

date has been focused, the semantics of reconnection is robust.  In three dimensions, 

many of those concepts and much of the vocabulary must be inspected and modified.  

"Types" of 2D Reconnection 

As we've already discussed, when opposing magnetic fields are brought 

together in a plasma, a current sheet will form in the space between the two magnetic 

polarities.  If that current sheet is then subject to a uniform resistivity, then the system 

will eventually undergo Sweet-Parker reconnection.  Studies of Sweet-Parker 

reconnection show its diffusion region has an aspect ratio which scales with system 

size and thus it does a poor job of converting magnetic energy into plasma flow at 

larger scales [58].  Since reconnection in space typically occurs over very large length 

scales, this type of reconnection is also called "slow" reconnection.  It reconnects 

magnetic flux at a rate too slow to explain the explosive energy releases observed near 

the Sun and Earth.  

If instead of having a uniform resistivity, the current sheet has a region of 

anomalously high resistivity, magnetic reconnection which forms there will have a 

different structure.  Instead of having a very long system dependent inflow, like 

Sweet-Parker reconnection, it will have a very constrained system independent inflow.  
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This type of reconnection is sometimes called "fast" reconnection, because the rate of 

energy conversion from magnetic energy to plasma flow is fast enough to explain 

observed phenomena in space.  Reconnection with a fixed diffusion region, like this, is 

called Petscheck-like reconnection.  

The final 'type' of reconnection which is often discussed in 2D studies is called, 

Hall reconnection.  In fluid simulations hall reconnection has been found to occur 

when the stock MHD equations are modified to include the Hall term and the current 

sheet becomes narrow.  Hall reconnection is much like Petscheck reconnection.  It has 

a fixed aspect ratio which can lead to explosive energy conversion, this similarity 

often leads to it also being called, 'fast reconnection.’ 

All of these 'types' of reconnection have caveats attached to them.  Sweet-

Parker reconnection results from a fluid description of plasma physics, where the basic 

MHD equations are modified by a uniform resistivity term.  The conditions for 

uniform resistivity assume that the collisions frequency is large compared to all other 

dynamical frequencies.  In the magnetotail, where this study is focused the collision 

frequency is quite small and this assumption is suspect. However, in the 3D 

reconnection studied in this thesis, there are reconnecting regions where ��/�� ≪ 0.1. 

We use the term “Sweet-Parker-like” to describe these regions.  

It is much the same with Petschek reconnection.  However, unlike Sweet-

Parker reconnection, the idea that pieces of space could have anomalous resistivity is 

suspect.  Although there are theoretical arguments for the existence of anomalous 

resistivity based on theoretical analysis of various instabilities , no fully kinetic 

simulation of reconnection has demonstrated that such anomalous resistivity is playing 

a dominant role [26].  Reconnection driven by the Petschek mechanism has yet to be 
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found in nature, however the term "Petschek-like" is still used to describe fixed aspect 

ratio reconnection for historical reasons. 

Hall reconnection has a somewhat stronger theoretical footing than Petschek 

reconnection.  'Hall-like' reconnection has been observed to form naturally in fully 

kinetic 2D simulations.  Differences between Hall reconnection as discovered through 

fluid simulations and hall reconnection as observed in the real world or in kinetic 

codes are still being explored.  Once again, we should be careful to say, "Hall-like" 

reconnection when discussing nature or kinetic simulations, as the name refers to a 

specific behavior found in the fluid equations. 

At the same time that researchers were exploring these different ways of 

converting magnetic energy into plasma flow energy, others were attempting to codify 

a singular formal definition for magnetic reconnection.  Axford argued that a local 

break down of the frozen-in condition was the key component by which we can 

identify reconnection [4].  Vasyliunus observed that the break down in connectivity 

required an electric field parallel to a separator line [67].  Priest and Forbes defined 

reconnection as a slew of properties coincident in reconnecting systems, including 

plasma flow across separators [51].  Hesse et al. derived a generalized reconnection 

law, which linked the integral along a field line of the parallel electric field with the 

rate at which magnetic connectivity was broken [25].  Most researchers operated 

outside of this debate utilizing the umbrella of experience identify reconnection. 

Despite there being no consensus on a formal definition for magnetic 

reconnection, in the context of 2D research, magnetic reconnection was well defined.  

Fluid simulations underwent Sweet-Parker or Hall reconnection, there was no 

confusion.  Every formal definition seemed adequate.  Observed reconnection in 
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space, laboratories, or kinetic simulations had Sweet-Like or Hall-Like properties.  All 

of the definitions adequately described reconnection observed in 2D simulations. 

However, in the transition to 3D, none of the formal definitions of 

reconnection went un-scathed.  For example, in the formation of a plasmoid 

reconnection was shown to not require separator surfaces [54].  Any definitions which 

required this aspect of reconnection geometry suddenly lacked generality.   

Likewise, as we will see, the clean archetypes for 2D reconnection discussed 

thus far will fall short even in simple 3D systems. 

Three Dimensions 

Reconnection in 2D simulations can be easily ascribed.  If the simulation is 

utilizing fluid physics with the Hall term included, the resulting reconnection will 

invariably be Hall reconnection.  Any structure reminiscent of Sweet-Parker 

reconnection is just a transient state on the way to the 'real reconnection.'  In that 

context, if a researcher is tasked with the goal of studying some aspect of 

reconnection, there is no ambiguity.  You don't have to ask, "What do you mean 

reconnection?"  In 3D, that question has to be asked. 

To illustrate the need for this question, Figure 21 provides an out-of-plane cut 

of a reconnection current ribbon.  Or more colloquially: the central black smudge on 

the right hand side of the figure roughly represents the x-line of the reconnection site.   
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Figure 21 (107.8; t = 60) (Top, y = -12.8): A slice of Jz along the current sheet.  To 
the right, in black, is the x-line. In 3D, a single x-line can be found in 
several different configurations in the out of plane direction.  Along the 
top, edge, the hazy dispersed current is representative of newly forming 
or proto-reconnection.  At the very bottom (Bottom Left Figure, z = -2) 
an in-plane cut shows that the x-line is in a long and extended 
configuration, reminiscent of Sweet-Parker.  Just above that, where the x-
line is dramatically pinched inward (Bottom Right Figure, z = 7), we see 
the expected narrow reconnection configuration with open outflows.  
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It's a region of enhanced current due to the pinched nature of the current sheet.  

Key to understanding the language difficulty is seeing that the x-line has a beginning 

and an end -- as you traverse the x-line from top to bottom, the structure and behavior 

of the reconnection changes.  In the center of the most intense current, the 

reconnection structure has a fixed geometry, which as we discussed before is a 

requirement for fast conversions of magnetic energy into flow energy.  However, just 

below the pinched region, reconnection appears to still be present.  There are fast 

outflows and magnetic flux is consumed.  It's just not configured with a fixed sized 

diffusion region.  Instead, the diffusion region in that area appears to be more Sweet-

Parker-like as you leave the heart of the x-line.   This Sweet-Parker like structure on 

the bottom of the x-line is not simply a transient state which can be dubbed 'proto-hall-

reconnection,' and be dismissed.  It's a long lasting component in the overall 3D 

structure of the x-line.  In fact, it can't really be called 'Sweet-Parker,' since the current 

sheet width is in the Hall physics domain.  In the lingua of 2D reconnection, a single 

3D x-line simultaneously contains proto-reconnection, hall reconnection, and sweet-

parker-like hall reconnection.  It also simultaneously contains the spectrum of 

behavior and structures between these archetypes. 

So to re-iterate: “Which if any of these structures are actually reconnection?”  

What would the answer to that question say about the entire structure?  The standard 

practice thus far in the literature has been to overlook the fringe parts of the x-line, 

naming the central hall-region as the 'real reconnection.'  With the formal definitions 

of reconnection still in dispute, a rigorous support or denial of that stance has as of yet, 

been undeveloped.  
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In the course of our research, overlooking these fringe elements of the greater 

reconnection system did not seem to be an option.  So we developed our own 

interpretations of the phenomenon. 

Our Qualitative Interpretation 

When we took a step back and asked ourselves the big question: "Why do 

people study reconnection?  Why is this interesting to our society?"  We really 

concluded that people study reconnection, because it throws plasma around.  It takes 

magnetic energy and converts it into plasma flow energy.  We care about reconnection 

because it ejects plasma out of tokamaks.  We're interested in reconnection because it 

throws plasma against the Earth to create the aurora, or damages satellites, or heats the 

corona.  So we want to study this system because it energizes plasma.  If somewhere 

in the universe, there is a reconnecting system which only allows plasma to change 

connectivity, without any plasma acceleration, we frankly wouldn't be interested in it.  

So any part of the x-line which energizes plasma by converting magnetic energy into 

flow energy via a change in plasma connectivity is going to be called reconnection.  

This basically means, the entire structure. 

Even though we are calling the entire structure, "magnetic reconnection," it's 

still important to acknowledge that different parts of the x-line have fundamentally 

different structures and behaviors and so should be categorized differently.  We've 

adopted the following nomenclature.  Locations along the x-line which appear to be 

reconnecting with a large 'Sweet-Parker-Like' diffusion region will be called "slow" 

regions.  Regions which appear to have a fixed aspect-ratio diffusion region will be 

called, "fast."  Be warned: It could very well be that further studies will show these 
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designations to be misnomers.  It could be that the aspect ratio I am calling "slow," 

may not actually scale with system size.  So it may not actually be slow. 

In addition to this distinction, it's also pretty clear that the slow reconnection at 

the top and the slow reconnection at the bottom fringes of the reconnection site are not 

the same things.  The top of the reconnection site spreads the x-line into the fresh 

current sheet.  The bottom of the reconnection site often sits stagnant.  We have taken 

to calling the part of the x-line which traditionally spreads as the "north side."  

Conversely, the part of the x-line which traditionally does not spread we call the 

"south side."  Figure 22 depicts this naming convention.  Slow reconnection, typically 

a hazy and diffuse region of current, is colored blue while fast reconnection, typically 

the pinched region of intense current, is colored red. 
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Figure 22 A qualitative description of the out of plane x-line structure.  Grayscale 
of �� inside of a reconnecting current sheet.  The diffuse reconnection at 
the top of the graph is what will be called "north side."  The fishtail 
structure on the bottom of the x-line is what we call "south side."  The 
dividing barrier should be roughly indicated by the transition in the 
diffusion region geometry from a short, Petschek-like fixed structure to 
an elongated structure. 

Although it's possible to manually disassemble any given time on any given 

run visually using, the above classifications, it's not practical en masse.  So we present 

an algorithmic approach. 

Quantitative / Algorithmic Approach 

The primary technique researchers use to track and classify x-lines in 3D has 

been by either inspecting the magnitude of the out-of-plane current or in 2D by 

calculating a quantity called the reconnection rate.  Because of this history, we first 

address those options. 
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Out-of-Plane Current 

When opposing field lines meet in a plane, the instantaneous magnetic field 

can be approximated by a Tanh function of a characteristic width, ω, 

�>  = �TYℎM� �¢ N�£. 
Which leads easily leads to: 

��>>  = ∇>>  × h�TYℎM� �¢ N�£i ∙ �̂, 
��>>  = 1� sech:( � �¢ ), 

��>> (� = 0) = 1�. 
Thus, the magnitude of the current is determined by the width of the current 

sheet.  A quick look at Figure 23, where we plot the product ����, confirms the 

accuracy of this estimation in simulation.  In the region of the x-line, on the right, the 

amplitude of the product is roughly constant.  This means that measurements of �� are 

a proxy for the current sheet width.   
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Figure 23 (107.8; t = 60) A plot of ����.  The dotted box surrounds the region 
where reconnection is happening.  The absence of any structure indicates 
that the quantity ���� is constant through the x-line. 

 

Since the length scales at which Hall physics begins to dominate the 

reconnection dynamics is well established in 2D, it stands to reason that this could be 

a good indicator of the reconnection structure in 3D.   However, this expectation was 

not borne out in simulation.  Although there was a rough correlation between current 

magnitude and how developed an x-line was, this was very often not the case.  For 

example, in Figure 24, we have a snapshot of an x-line both before and after the onset 

of 'fast' reconnection.  Even though the two snapshots show completely different 

diffusion region aspect ratios, the current magnitude, is comparable between the two, 

having magnitudes of roughly -3.0.  In addition to this problem, the bulk of the current 

is established by the equilibrium current sheet.  As a consequence of that, any 

comparison across simulations with differing equilibrium current sheets would have to 

take that into account.  Although commonly used to identify x-lines via manual 
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inspection, attempting to use it in any automated schema would prove ineffective for 

these reasons. 

 

 

 

Figure 24 (107.25; t = 80,105) A large 2D-like reconnection simulation at two 
different time steps.  (Top) Grayscale plots of ��.  To the left is an 
undeveloped x-line to the right is a fully developed x-line.  The white 
vertical line is the path through which a cut was taken.  (Bottom) Cut 
through the current ribbon depicting ��.  Both the developed and 
undeveloped x-lines have similar maximum currents �� ≅ −3.0. 
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Reconnection Rate 

The real tooth behind quantitative studies of 2D reconnection has been the 

reconnection rate.  Colloquially it's defined as, "The rate at which magnetic flux flows 

into and out of the x-line region."  Mathematically it is, 

 em0�YYm0�¦�Y eT�m = JJ� § �>? ⋅ JO?, (11) 

where the area of integration is taken to be a plane perpendicular to the reconnecting 

plan with one edge coincident with the x-line and the other ending either at the center 

of the magnetic island or some other place where this is no convection of magnetic 

flux.  In a 2 dimensional system, this reduces to: 

2} IIT�m = JJ� § ��J�. 
In practice, the integration is taken from the x-line to the o-line in simulations.  In two 

dimensions, the reconnection rate can distinguish between fully developed x-lines and 

under developed x-lines.  With knowledge of the system's geometry, It can also 

distinguish between x-lines undergoing Hall reconnection from Sweet-Parker 

reconnection.  A formulation of the reconnection rate in 3D would be ideal for our 

purposes.  Unfortunately, the meaning and adaptation of Equation (11) to three 

dimensions is of dubious utility. 

The first problem with the equation is that it's an integral equation.  Integrating 

the flux of the magnetic field across a surface destroys any local information about the 

x-line.  So a 3D reconnection rate would only be able to give us information about the 

x-line as a whole.  Since x-lines spread in the 'northern' direction, larger x-lines would 

inherently have a larger 3D reconnection rate.  Considering that x-lines are known to 
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spread many times longer than their initial length, the integral would more strongly 

represent the extent of the x-line, rather than the intensity/maturity of the x-line.  

Additionally, simply choosing an area to integrate over is a non-trivial task.  

The x-line could flap, bend, or grow its way out of the integration area.  This 

necessitates a technique for detecting the x-line so that we can catch any strange 

motions.  The technique we would use to track x-line flapping or bending is the very 

technique we're in a process of discovering. 

Choosing to ignore the 3D nature of the reconnection system by calculating the 

reconnection rate 2D-plane by 2D-plane could be done.  However, with magnetic flux 

convecting into and out of the planes from above and below the results would be 

muddied  --  A reconnection rate for a particular 2D sheet, could falsely score a region 

of x-line as strong or weak, due to out-of-plane convection downstream.  With no 

answer to these difficulties, we preferred a technique with a simpler physical meaning. 

Ion Acceleration 

Going back to our big picture for inspiration, we explored utilizing the ion 

acceleration in the outflow direction as a metric for analyzing the reconnection site.  

The ion diffusion region for Hall reconnection is known to be approximately 10-15 

c/ωpi in the outflow direction.  For Sweet-Parker reconnection, the diffusion region 

scales to fill the available space.  So it should be roughly 1/4th of the system size.  If 

the outflow must accelerate to the Alfven speed over those distances, a first order 

estimate of the expected gradient would be: 

VTx� O00mKmIT�¦�Y = pq10 ~ .1, 
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wK�� O00KmIT�¦�Y = 4pq�8�8GF� ~ 4Δ�. 
This means that we should be able to distinguish between Sweet-Parker 

geometries and Hall geometries by measuring the gradient of the ion outflow velocity.  

For brevity, we're going to call this quantity an acceleration.  The question remains as 

to whether this is a good technique for locating and classifying the x-line. 

As can be seen in Figure 25, the outflow ‘acceleration’ is co-incident with the 

current and so is comparably good for locating the x-line in the plane.  In quite a few 

cases, it does a slightly better job.  The ion acceleration graphs tend to be more 

localized in the outflow (x̂) direction.  This often eliminates spurious current structures 

which are due to a compression of the current sheet without the presence of 

reconnection. 

 

Figure 25 (107.8; t=60) A plot of the �� on the left and �/��(���) on the right.  The 
two structures are coincident in space. 
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Unlike the current, ����/�� has fixed thresholds which can be used to 

determine the diffusion region structure.  For that same reason, it can also make these 

determinations cross-simulation.  Revisiting the extended x-line from Figure 24, 

Figure 26 cuts display the ion acceleration within the diffusion region and show a 

clear distinction between the structures in the two time slices.  Whereas both time 

slices in the current plots showed similar current magnitudes, the ion acceleration plot 

clearly distinguishes between proto-reconnection and full reconnection.  The early 

time slice shows an acceleration magnitude below .1 across the entire extent of the 

box.  While the fully formed x-line in the later time step shows values for the 

acceleration above .1 everywhere except in the diffuse 'slow' region on the south side.  

It's clear in this example as well as many more that the diffusion region structure can 

consistently be identified by the ion outflow gradient.  The breakdown is, 

    0 ≤ ������ < 4Δ�     → �� em0�YYm0�¦�Y, 
4Δ� ≤ ������ < 0.1    → wK�� em0�YYm0�¦�Y, 

 0.1 ≤ ������               → VTx� em0�YYm0�¦�Y. 
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Figure 26 (107.25; t = 105) �/��(���) at an early time on the left and �/��(���) 
after reconnection onset on the right.  On the top are the grayscale cuts 
along the current sheet.  The blue box surrounds the regions where �/��(���) ≥ 0.10. Below are cuts of the variables along the white cut 
markers in the grayscale figures.  

 

Tracing the X-Line 

Unfortunately, classifying the reconnection as being in either the "fast" or 

"slow" configuration is only half of the difficulty.  In general, x-lines grow or spread 

chaotically in the out-of-plane direction [Figure 27], much as one would expect a tree 

or root to grow.  As such, cuts or slices 'along' the x-line are not necessarily straight, 

but rather they can bend or fork with the current flow.  Consequently, it was also 

Above the “fast” threshold
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necessary for us to develop an algorithm by which we could trace the x-line through 

its bends and weaves. 

 

Figure 27 Plot of �/��(���) inside of a current sheet demonstrating a more 
complex x-line structure.  White represents high values and black 
represents low values. 

To attempt to trace at least one, but hopefully more, useable x-line paths from 

the forking reconnection structure, we developed an algorithm to trace the x-line by 

following the maximum ion outflow acceleration.  This algorithm is presented in 

Figure 28 through Figure 32 

 

  

-0.203936   0.260927

Ion Outflow Acceleration

-20 -10 0 10 20
x

-60

-40

-20

0

20

40

60

z



 81

Tracing Step One 

  

Figure 28 First step in the tracing process.  At a particular time step, we search for 
regions where ����/�� ≥ �ℎm xK�� Im0�YYm0�¦�Y �ℎImxℎ�KJ.  The 
search paths, depicted in red, begin at the top of the simulation (high z-
value) and work their way down to the bottom of the simulation.  In this 
diagram, two of the search paths have successfully found a region 
exceeding the slow reconnection threshold, which is represented by the 
green curve. 
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Tracing Step Two 

 

Figure 29 Second step in the tracing algorithm.  Once a search path has successfully 
located reconnection, it begins to follow the maximum local ����/�� as 
it progresses down the simulation space, here local was defined as an 
adjustable parameter frequently set to 0/�1�.  The local maximum is 
represented by the black curve.  The tracing of this local maximum is 
done in a solid red line.  So for this time step, we have identified two 
tracing paths which have successfully located an x-line. 
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Tracing Step Three 

 

Figure 30 The third step in the tracing algorithm.  As we can see in the previous 
step, although we had two tracing paths detect the x-line, one of the two 
seeds intersected it far from the beginning.  In preparation for the search 
of the next time step, we assess whether or not we should move the 
starting point of the search paths to a new location.  To do this, for every 
search path we create a two trial search paths to either side, depicted in 
blue.  We measure the length of the x-line traced by each search path. 
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Tracing Step Four 

  

Figure 31 On the fourth and final step of the tracing algorithm, we assess which 
paths resulted in the longest x-line tracings.  These longest paths, marked 
with a star here, determine the starting points for the search paths on the 
next following time step.  This selection by length results in the search 
paths gradually migrating toward a complete x-line trace, along a 
particular fork. 
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Result of X-Line Tracing 

 

Figure 32 (105.3, t = 16) Example of x-line tracing algorithm.  The grayscale plot 
presents the ion outflow acceleration while the red lines are the x-line 
traces. 
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After a run is processed like this, we evaluate the overall effectiveness of each 

seed at tracing a primary x-line from beginning to end.  All analysis of our x-lines in 

this thesis occurs down one of these chosen paths. 

Taking everything together, we've developed a system to trace 3D x-lines 

while roughly classifying the differing geometry of their diffusion regions as functions 

of z.  This allows automatic tracing and calculation of the x-line paths in the next 

chapter, which is critical for understanding the time variation of finite length x-lines as 

well as the factors controlling their dynamics. 
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Chapter 4 

3D STRUCTURE OF THE X-LINE 

Contour Plots 

 

Figure 33 A new way of visualizing the spreading of the x-line in time.  The canvas 
of the plot represents the x-line tracing at each time step.  In this canvas, 
we have plotted a contour of the ion outflow acceleration.  Those 
contours define the body x-line in time.  To the right, we can see a 
comparison with current sheet at different time steps. 

Using these techniques for tracing and classifying x-lines in time, we can 

create a novel plot of the x-line as a function of time, by taking a contour of the ion 

outflow acceleration.  A typical example of this contour is see in Figure 33.  The 

principle structure in this plot is a band of slow reconnection having an acceleration 

with a magnitude between .039 and .1.  This band represents the transition region 
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separating the fast reconnection from the passive current sheet.  The bottom of this 

band of the contour is what we have previously dubbed the 'south side' of the 

reconnection site.  While the upper portion of the strip is what we called the 'north 

side.'   Using plots like this, we can quickly identify the presence of reconnection, its 

growth rate, as well as whether it is predominantly slow or fast. 

More physically the boundaries represent geometric transformations of the x-

line.  Progressing through the contours from left to right (or small values to large 

values): the first contour occurs when the current sheet has narrowed into a thin 

Sweet-Parker like configuration.  So cuts of the current sheet before that contour 

would show a still narrowing current sheet with no magnetic flux conversion.  After 

crossing the first contour threshold, reconnection begins.  Traversing between the 

contours has the aspect ratio of the diffusion region shrinking until it reaches the fixed 

threshold value of 10c/ωpi.  Once it has reached that aspect ratio, we cross the final 

threshold into what we have termed 'fast reconnection.'  It is at some point within this 

region that the outflow jets open up.  Figure 34 is a schematic presenting this break 

down. 
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Figure 34 A breakdown correlating the in-plane reconnection geometry to the x-line 
contour.  Regions in white correspond to regions where the current sheet 
is not yet narrow enough to support reconnection.  The black band 
represents the transition region between 'slow' and 'fast' reconnection.  It 
is in that region.  In the yellow region the diffusion region has attained a 
fixed aspect ratio of approximately 10:1, which means that open outflows 
have developed. 

Density 

Reconnection can also be viewed as a plasma transfer system, where plasma 

from outside of the current sheet is injected into its interior.  So long as the injection is 

slow, the low density plasma from the exterior is able to enter the current sheet and 

diffuse along the x-line, eventually finding rest in near homogeneity.  In slow or 

resistive MHD simulations, this remains true through the lifetime of the reconnection 

site.  However, after the onset of fast reconnection, the plasma injection increases to 

the point where the plasma in the current sheet can no longer diffuse into a uniform z-

equilibrium.  The rapid influx of low density plasma leads to the development of a 

density minima inside of the current sheet.  Although this also happens in 2D 

reconnection, it does not play a significant role in dynamics of 2D reconnection.  In 

3D, this plasma injection produces a z-dependent plasma distribution which 
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subsequently develops pressure gradients along the x-line [Figure 35].  These 

gradients in turn drive significant plasma flows in the z-direction.  In other words, the 

high density plasma to the north and south of the x-line are always trying to fall into 

the heart of the reconnection site.  The minima location itself remains fairly stable 

through all of the simulation examples.  It rarely moves from its starting location and 

often represents the location where reconnection is most vigorous and elder. 
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Figure 35 (107.46)(Top) Grayscale plot of the density within the x-line.  The black 
contours represent the reconnection boundaries.  The vertical lines 
represent the times where we plotted traces of the density.  (Ladder Plot) 
The density along the x-line traces. 
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Z-Directed Force 

In addition to the plasma density contributing to strong z-directed flows, there 

are other 'out-of-plane' forces at play inside of the current sheet.  In Figure 36, we can 

see the two forces felt by the ions within the diffusion region.  Foremost is the already 

mentioned gradient in the plasma density.  In that figure, we see two prominent 

structures within the gradient.  The first is a sharp gradient on the top of the graph 

corresponds to the north-side onset point.  This fact that this gradient is co-located 

with the reconnection boundary suggests that pressure driven acceleration plays a 

significant role in the spreading of reconnection on the north-side.  Secondly and not 

unexpectedly, the most significant plasma pressures can be found near the density 

minima, right in the heart of the x-line.   The other force driving the ions, featured in 

the second figure, is the �? × �>? force.  The average ion gyroradius being roughly the 

size of the diffusion region, this average force can be felt by the plasma as it samples 

the current sheet wall - subsequently, the figure represents an average of the force over 

J�.  Considered one of the traditional players in 2D reconnection responsible for 

developing plasma flow in the z-direction, we see that this force is also well 

represented in 3D as well.  Unlike the density gradient, �? × �>? usually accelerates the 

ions toward the southern end of the x-line across the entire x-line length.  In this 

particular plot, the anomalous northward contribution at late times is due to the 

interference of a secondary island.   It's also important to note that this force is not 

present in the current sheet itself, since the magnetic field is so small near the neutral 

point.   
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Figure 36 (105.3)(Top) Grayscale plot of −∇�2 in the x-line. (Bottom) Grayscale 

plot of the �? × �>? forces felt by the ions. 
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Combining the two forces, we develop a rough picture of the dynamics of the 

plasma flow in the z-direction.  On the northern half of the x-line, the two forces work 

in collusion to drive the plasma flow southward.  However, as the plasma crosses the 

heart of the reconnection site, the pressure gradient begins to work strongly against the 

plasma flow.  This results in a rapid de-acceleration of the plasma flow on the south-

side of the reconnection site.   More than simply being a de-acceleration, as seen in 

Figure 37 it can lead to a complete arrest of the plasma flow. 

 

Figure 37 (105.3, t = 20) Ion flow in the z-direction taken along a trace of the x-line 
demonstrating the existence of a z-stagnation point. 

The stagnation of the plasma flow doesn't simply happen sometimes.  This 

stagnation point was present in every simulation we ran.  Not only that, but it was also 

coincident with the south-side boundary in every run - both in the current sheet and in 

time.  In Figure 38, we plot the x-line contours for 3 representative runs in black.  
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Overlaid in red is the ��� = 0 contour.  The stagnation point sticks closely to the 

southern boundary, even through interference from secondary islands.  In Figure 39, 

we show a single time-step inside of the current sheet, where once again the velocity 

contour in red bends to match the south-side of the x-line.  It even goes so far as to 

match the ��� fishtail structure in panel 1.  Clearly, the stagnation point on the 

southern end is an important player in the dynamics of 3D reconnection. 
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Figure 38 (105.3, 107.8, 107.6) In black for all figures are the ion outflow 
acceleration contours -- defining the reconnection boundaries.  
Coincident with the southern boundary in all 3 examples is the red 
contour representing the z-stagnation point in the flow. 
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Figure 39 (107.8, t = 60) Grayscale plots within the current sheet with a red overlay 
representing the stagnation in the z-flow.  Once again, the stagnation line 
conforms to significant reconnection structures. 
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Figure 40 The velocities: ��, ��, and �� as functions of z.  In black �� is measured 
just downstream of the x-line near the outflow edge of the diffusion 
region.  In red, �� is measured along the trace of the x-line.  Finally in 
green, �� is measured near the upstream edge of the diffusion region. 

To round out our discussion of the structure of the 3D x-line, we present the 

other outflows and inflows in Figure 40.  The highest intensity in the outflow 

coincides with the density minima.  This makes perfect sense, since the minima is 

caused by plasma injection from outside the current sheet, the oldest and strongest part 

of the reconnection site should have the most reduced plasma density.  Interestingly 

enough, the inflow from the y-direction crosses zero while there is still a substantial 

outflow present.  Taken together, this suggests that the top half of the x-line is 

dominated by y-inflows, whereas the bottom half of the x-line is dominated by z-

inflow.  As a consequence, the some of the most intense outflow regions of an x-line 

may not have the most magnetic flux in the outflow. 

This leads us to our completed picture of the 3D reconnection structure [Figure 

41].  An x-line can be broken into 2 distinct domains.  A northern and a southern half.  
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Bisecting the x-line into the distinct halves is the density minima.  Above the density 

minima the pressure gradient works together with the reconnection forces to bring 

plasma in from the current sheet above.  In this domain, the outflow will carry stronger 

magnetic fields, as the magnetic inflow is relatively high.  It is this region that looks 

very much like typical 2D reconnection.  For very long three dimensional x-lines this 

region forms the large majority of the x-line.  Below the bisector, converging z-flows 

shut down the reconnection process stagnating any growth.  The maximum outflow 

from the reconnection site occurs along the bisector, where both z-inflow and y-inflow 

can contribute strongly.  

 

Figure 41 Diagram of the x-line structure in time.  The black line represents the �/��(���) threshold defining the reconnection region.   
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Chapter 5 

TRANSIENT RECONNECTION 

 

Figure 42 2D simulation where the perturbation amplitude, ℰ	 is set to 0.03.  
Reconnection proceeds normally. 

In all of the examples of reconnection we have used thus far, the x-lines have 

preferentially spread northward.  This asymmetric spreading was observed to have a 

strong dependence on the equilibrium current sheet width, �	 in simulations by Shay 

et al. [59].  In this work, Shay et al. observed that narrower initial current sheets 

produced more rapid spreading than their more expansive counter parts.  In the widest 

cases studied, the rate of asymmetric spreading had been reduced to the point of 

stagnation, i.e,  the growth on the north side is offset by shortening on the south side, 
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leading to an x-line of fixed length. These stagnated x-lines, called solitary x-lines, 

drifted with the current sheet without growing or spreading.  The decline of the x-line 

growth rate with large ω0 suggested that there may be some threshold width beyond 

which reconnection is either unstable or cannot occur.  In pursuit of this threshold 

value, we present a several simulations with ω0 = 5.0.  First to establish a baseline or 

expected behavior we initialize this wide current sheet width in both a 2D as well as a 

sister 3D simulation.  In 2D, as can be seen in Figure 42, this system reconnects 

normally.  Furthermore in every 2D case ran, the reconnection process proceeds until 

all of the available magnetic flux is consumed.  This behavior agrees with our 

expectation of 2D reconnection.  However, in the sister configuration, which is fully 

3D, the system ran for 3000 Alfven time units without showing any indication of 

reconnection.  This is 10 times longer than the onset time demonstrated in the 2D case.  

However, when the initial perturbation size (ℰ	) was increased from 0.03 to .06, the 

system did reconnect [Figure 43]. 

 

Figure 43 (107.34) An example of transient reconnection.  Like before, the plasma 
stagnation point is plotted in red and the black contours represent the fast 
and slow reconnection boundaries. 
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Not only did the system reconnect, but the resulting reconnection was 

transient.  Further varying the perturbation magnitude and volume resulted in table 2.  

Where we see that when ordered by the product of ℰ	 and �	� that all of the runs with 

a value below 0.4 fail to reconnect and all of those with a value 0.4 and above 

successfully reconnect.  This includes a run where the product was set to 0.38. 
  



 103

 
Run Number Magnitude(ℰ	) ω0z Product Reconnected? 
107.29 0.015 10 0.15 no 
107.31 0.03 10 0.3 no 
1077.2 0.12 2.5 0.3 no 
107.39 0.06 5 0.3 no 
107.45 0.038 10 0.38 no 
107.42 0.04 10 0.4 yes 
107.41 0.05 10 0.5 yes 
1077.4 0.24 2.5 0.6 yes 
107.37 0.12 5 0.6 yes 
107.34 0.06 10 0.6 yes 
107.36 0.12 10 1.2 yes 
107.30 0.24 10 2.4 yes 

Table 2 Table of runs with marginal initial conditions.  The product of ℰ	and �	� 
is positively correlated with the system's instability to reconnection. 

These two conclusions taken together are very interesting.  The fact that there 

is a mechanism by which reconnection can become a transient instability, without 

consuming all the available flux, is very interesting.   This transient reconnection 

could be responsible for transient magnetotail flows such as bursty bulk flows (BBFs).  

Secondly, the instability of this current sheet to reconnection seems to depend on the 

product of the perturbation magnitude and the extent of the perturbation in the out of 

plane direction.  Since the perturbation energy scales with the product of those terms 

(6), this suggests the existence of an activation energy for 3D reconnection.  To gain 

more insight into the physics behind this behavior, we inspect the most marginal 

example of reconnection having a perturbation magnitude of .04 [Figure 44]. 
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Figure 44 (107.42) The most marginal example of reconnection.   

The first thing of note about even this 'most marginal' reconnection example is 

that it has the presence of both fast and slow modes.   So regardless of how difficult it 

is to begin hall reconnection, it appears that once begun, reconnection always 

configures into a fast reconnection diffusion region geometry.  Therefore the energy 

costs for the activation of reconnection must occur in the geometry transformations 

before the onset of slow reconnection.  Secondly, we can see that like the previous 

sections, the presence of a ��� stagnation point is coincident with the southern 

reconnection boundary.  The presence of a stagnation point along the southern 

boundary indicates that even in the weakly reconnecting regime, the out of plane 

pressure gradient is a significant player in the dynamics.   
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Figure 45 (107.42) (Top) Density grayscale.  Overlaid in blue, the location of the 
density minima.  (Bottom) Grayscale plot of −∇�2.  The boundary 
contours are over-plotted in red to ease visibility.  

Investigating the contribution of the density gradient to the marginal x-line 

dynamics, Figure 45 shows that a significant rarefaction of plasma density is aligned 

with the x-line in time.  From our previous discussion on the structure of 3D 
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reconnection, we claimed that the density minima typically was found toward the 

bottom end of the reconnection site.  However, in this more marginal example the 

density minima (indicated by the cyan line) is centrally located in the x-line.  In the 

second panel, we see the pressure gradients we would expect within the x-line -- they 

work to move the ion fluid elements inside the diffusion region toward the heart of the 

x-line.   Parlaying this into an inspection of the average electromagnetic force: �? × �>?, 

in Figure 46, shows a radical departure from the typical 3D x-line viewed before.  

Instead of contributing to a net ion flow southward throughout the bulk of the x-line, it 

acts neutrally in the early life of the x-line.  Later in the x-line's life, this affect grows 

very strong and is directed oppositely from our previous experience.   Since this affect 

coincides with the termination of the reconnection process (340 < t < 360), it's worth 

spending some time understanding what it is. 

 

Figure 46 (107.42) Grayscale plot of forces felt by the ions: M�? × �>?N�.  The vertical 

white lines demark the point where the spreading of the x-line is arrested 
and then collapses. 
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If we revisit the forces felt by a fluid element of ions due to the 

electromagnetic effects,  

V? = �?nc  × �>?. 
We can substitute,  

�? = © c4πª ∇>>? × �>?, 
to get: 

V� = X 14πn[ hM���� −  ����N�� −  (���� −  ����)��i. 
In 2D reconnection as well as the stronger 3D reconnection seen earlier, it is 

the first term, ������, which leads to the strong plasma flow from north to south.  

This physics comes into play when the two-scale structure of the diffusion region 

allows the frozen-in electrons to pull the magnetic field in the out-of-plane direction.  

This structure is mostly, but not completely, absent from these marginal reconnection 

examples.  The term which appears to be strongly present and correlated with the 

collapse of the x-line is instead:  

V�~ − ������ 

To understand the effect that this term has on the reconnection structure, 

consider that this is derived from a fluid equation.  It represents the force applied to a 

fluid element by the electromagnetic fields.  In this case, the force is located on the 

northern side of the reconnection region and is directed away from the x-line.  This 

can be seen in the diagram in Figure 47.  For our purposes, it's not necessary to 

calculate the exact force felt.  Rather a rough understanding of this process paints a 

sufficient picture.   



 108

  

Figure 47 Schematic of the forces felt by a Larmor radius sized ion fluid element 
(green squares) as they enter the narrow passage of a thinning current 
sheet in the Y-Z plane.  The solid black lines represent the magnetic 
walls bounding the current sheet.  In the second figure, roughly 
representing the ‘later’ time step, the dashed line represents where the 
location of the bounding wall before the interaction.  The region of 
strong magnetic field has a magnetic field pointed into and out of the 
page.  During the process, the ions feel a force directed upward (red 
arrows).  The walls of the current sheet feel a reactive force directed 
downward (blue arrows).  The reactive force widens the current sheet. 

The ion fluid element feels an upward force when it is pressed against the 

funnel-like opening of the northern x-line.  We know from basic physics that the 

magnetic field must experience an opposing reaction force.  This force, the force of 

the ion fluid element applied to the magnetic bottle, works to open up the aperture of 

the x-line.  In essence, this is symptomatic of the collapse of the x-line rather than the 

cause. 

To investigate the cause of the collapse, we return to Figure 46, where we have 

marked two times with white vertical lines.  In every case of dying reconnection, the 
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same basic structure appears.  Reconnection persists for a while, then at some point 

the northward spreading of the fast x-line is arrested.  We can see by the first time 

marking, this occurs around the t= 265 mark.   Once this occurs, there is a small time 

window before a dramatic collapse of the x-line, as seen around t=310.  After this 

small time window expires, the fast reconnection completely shuts off.  Keeping these 

timings in mind, we'll inspect the dynamics with respect to time. 

 

 

 

Figure 48 (107.42) Density minimum within the x-line as a function of time.  

We begin by looking at the density, since it appears to be the only player in the 

north-south dynamics [Figure 48].  The density decreases monotonically until 

approximately t=250.  At which point we can see two changes in its behavior.  Most 
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notably is that the density begins to oscillate fairly strongly.  Although this is 

interesting, this strong oscillation did not appear in every simulation so it's unlikely to 

be the cause of the collapse.  More subtly is that the density minima itself reaches a 

minimum value then reverses direction.   

In all of the cases of reconnection we have seen previously, the plasma outflow 

was always greater than or equal to the plasma inflow.  This reversal represents a 

significant change to the reconnection dynamics.  This change in behavior appears 

before any of the visual structural changes to the x-line.   So we inspect the plasma 

flux into the reconnection site, looking for a change in behavior occurring at or before 

t=250. 

To measure the flux entering the x-line, we chose a box measuring 10 c/ωpi in 

the z-direction, 10 c/ωpi in the outflow direction, and 1.4 c/ωpi in the inflow direction 

and placed it around the most intense part of the reconnection site.  The plasma flux 

into and out of the box was integrated along each of the six surfaces of the box.  Each 

pair of sides was summed to give the net plasma flux along the inflow direction, the 

outflow direction, and the out-of-plane direction.  The box was held fixed in space and 

did not attempt to track the x-line in the x-direction.   Although a fixed geometry 

would be inappropriate for most x-lines, this particular x-line moved very little. 
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Figure 49 (107.42) Plasma flux entering and leaving a bounding box surrounding 
the x-line.  Each color represents the flux along a coordinate direction.  In 
blue is the flux leaving the region through the �£-facing surfaces.  In green 
is the flux entering the region through the �̂-facing surfaces.  Finally, in 
black, is the flux entering the x-line through the �£-facing surfaces.  
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In the graph [Figure 49], the blue line depicts the integrated plasma outflow 

flux, the black line the traditional inflow flux, and the green line presents out-of-plane 

inflow flux.  Reconnection is an outflow driven process; highly bent magnetic flux 

ropes undergo a contraction from the x-line to the o-line, as this is done they pull fresh 

plasma into the x-line.  In two dimensions, the plasma pulled into the x-line comes 

from outside of the current sheet and as such is heavily laden with magnetic flux.  In 

this sense it is self-sustaining.  Because that magnetic flux is what is then unwound, 

driving the process onward. 

The plasma flux in Figure 49 is initially like this.  Since the initial z-inflow is 

very small, the plasma for the outflow is completely fed from outside of the current 

sheet.  However, in time, the pressure driven inflow begins contribute a significant 

amount of plasma to the reconnection process.  At first, the outflow can easily 

accommodate the additional influx.  This cannot remain true indefinitely, since there is 

a physical limit to how quickly plasma can leave the system.  Since the timescales 

over which the density within the x-line can change are much slower than the 

timescale of the reconnection process, the pressure driven inflow begins to supplant 

the inflow brought in from outside the current sheet.  This is apparent from the fact 

that of the 3 graphs of plasma influx, it is the black curve which reaches its peak first.  

Occurring when t=225, this is the earliest indication of the imminent x-line collapse.  

The reconnection is not sustainable in this state.  Since the process is still ongoing, all 

of the processes which were resulting in the rarefaction of the plasma are also 

ongoing.  The z-influx continues to rise, magnetic influx begins to fall, and the 

outflow begins to suffer. 
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Figure 50 (107.42) Ratio of incoming plasma flux over outgoing plasma flux.  In 
green is the ratio of z-influx over the outflow.  In black is the ratio of y-
influx over the outflow. 

To see this more clearly, Figure 50 depicts the ratio of different inflows to the 

outflow.  In green, is the ratio z-inflow/outflow.   In black is the complementary ratio 

where the inflow is laden with magnetic energy.  Knowing that the energetics of the 

outflow depend critically on the magnetic inflow, this graph makes it clear from even 

a very early time, that the reconnection must be transient.  At approximately t=350, 

over half of the plasma outflow will come from a non-magnetic contribution.  This is 

also when the x-line catastrophically collapses. 

It is possible that the magnetic influx, instead of being inhibited, is reaching 

some sort of natural limit.  To check for this, we looked at the inflow velocities for the 

different directions [Figure 51].  Here we have the outflow velocity colored black, the 

y-inflow velocity colored green, and z-inflow velocity colored blue.   Initially, all 
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three velocities grow together.  However around t=200, we can see that the y-velocity 

begins to be inhibited.  Instead of approaching an asymptotic limit, it peaks and 

declines (depicted is 10�� to make it visible on the same graph).  This occurs very 

early in the lifetime of the reconnection.  It occurs before the density minima.  It also 

occurs before the emergence strong �? × �>? forces. 

 

Figure 51 (107.42) Inflowing and outflowing velocities.  Black, blue, and green are 
in the �£, −�̂, and �£ directions, respectively.  The z-flow was measured in 
the x-line where the density was at a minimum.  The x-flow was 
measured 10 0/�1� downstream from the density minimum and the y-
flow was measured 2 0/�1� upstream of the density minimum. 

Taking everything together, a very clear picture of transient reconnection 

becomes apparent.  When fast reconnection occurs, the quick injection of low density 

plasma from outside of the current sheet results in the formation of a density minima.  

So long as reconnection proceeds, this minima becomes more significant - driving 
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stronger and stronger out-of-plane ion flows into the heart of reconnection from the 

north side. 

Because of the demands of continuity, this additional inflow needs an outflow.  

Until it has been dealt with, no additional magnetic flux can enter the system.  So long 

as the outflow is un-throttled it can process the y and z inflowing plasma and 

reconnection can continue unfettered.  However, as the outflow approaches its 

maximum speed, any increase in pressure driven flows can only come at the expense 

of the magnetic inflow. 

The various plasma inflows, Φ�, all scale with different pieces of the 

reconnection geometry, 

Φ� = 2������ , 
Φ� = 2������ , 
Φ� = 2������ . 

The in-plane reconnection geometries, �� and ��, are fixed in time.  So that as 

the x-line spreads in the z-direction, the contribution to the flux balance from the 

pressure driven flows will be diminished -- stabilizing the reconnection process.  

Furthermore, since the development of strong pressure driven inflows is inevitable, the 

system must spread beyond a minimum size in the z-direction in order to survive.   
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Chapter 6 

STEADY STATE MODEL 

With the stability of marginal reconnection depending so heavily on the flux 

dynamics, we similarly inspect the more stable reconnection systems.  We expect the 

pressure driven flows to have little effect on the gross behavior of the x-line, since as 

the system spreads into the out of plane direction, its behavior should approach the 

behavior of a 2D x-line. 

 

Figure 52 (105.3) Plasma flux entering and leaving the x-line.  The bounding box 
spreads with the x-line in the z-direction.  Outflow(�£) is in blue.  The in-
plane inflow(�£) is in black.  The pressure driven flux (�̂) into the system 
from the out-of-plane direction is in green. 
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We see on our most quickly spreading run, on aggregate this is true [Figure 

52].  The figure represents the total flux entering the x-line as a function of time.  In 

green, it can be seen that there is little flux entering the x-line from the north.  Most of 

the flux enters the x-line from the y-direction (black) and passes out through the x-

direction (blue).  Although true enough to get a rough estimate of the total flux into 

and out of the x-line, this figure should be taken with a grain of salt.  As we’ve already 

discussed, the reconnection system spreads, winds, and forks in time.  Because of this, 

the bounding box through which we are measuring the flux also bends and grows in 

time.  A proper accounting of flux would take into account flux which passes through 

the bounding walls due to the motion of those walls.  We neglected that nuance. 

We know from our previous discussion in Chapter 4 that the x-line has 

significant out-of-plane structure which is unrepresented in the aggregate posed in 

Figure 52.   In order to investigate this structure, we turn to figures involving flux as a 

function of the out-of-plane coordinate, �.  To do this we created enough 10x10x1 

boxes to span the system in the z-direction and measured the flux into and out of these 

boxes individually at each time step. 
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Figure 53 (105.3) Plasma flux as a function of position along x-line trace.  In blue, 
green, and black are the x, z, and y directed fluxes. 

Figure 53 is an illustrative example of what we found in the same run as our 

previous figure.  Taken early in the life cycle of Figure 52(t=14), it shows the z-

directed plasma flux as a function of z in green.  Although the net out of plane flux is 

zero, we can see that internally there is a transfer of plasma from the northern half 

(high z-values) to the southern half (low z-values).  The other two fluxes in blue and 

black are consistent with what we expect from our overview in Figure 52.  The net 

behavior of x-directed flux , in black, is that of an outflow and the y-directed flux, in 

blue, is an inflow.   However, there are some interesting things to note about the 

internal structure of both.  For example, in the case of the y-inflow, the peak occurs 

further north than the x-outflow peak.  In fact, the steepening of the slope and peak are 

coincident with the steeping and peak of the green curve as opposed to the expected 
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black curve.  This suggests that excess plasma leaving the north side because of the 

pressure imbalance along the x-line results in a significant enhancement of inflow 

plasma from the y-direction.   Even more surprising, if we look further north to 

� = 50, we see that the traditional outflow variable has the wrong sign.  This means 

that the x-direction is actually serving as a plasma inflow channel.  And it’s serving 

this role in the very region responsible for spreading the x-line.  Taking into account 

that this particular x-line was from our most rapidly spreading simulation (105.3), it 

suggests that the continuity requirements imposed by the z-directed flux is an aspect of 

healthy x-line spreading.  The fact that it was necessary for the system to bring plasma 

flux in from the x-direction means that the y-inflow channel was already saturated – a 

saturation which provides the freshly spreading x-line with the magnetic energy it 

needs to establish itself. 

However, as beneficial as this can be for the formation of reconnection on the 

north side, the south side must eventually pay back this 'loan' of plasma flux.  Instead 

of enhancing the reconnection process, the additional z-flux can inhibit the south side's 

ability to draw in plasma from outside of the current sheet. 

This leads us to a first model for steady state 3D reconnection [Figure 54].   
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Figure 54 Parameters for an idealized 3D x-line. 
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In the figure we present the three regions along the x-line which play a 

significant role in reconnection process.  In a sense, this figure is an idealized version 

of what was seen in Figure 53.  In steady state reconnection, there will be a northern 

region, depicted in light blue, where the plasma density will suddenly drop.  The drop 

in density is shown as the red line in the upper figure.  This drop in density will aid 

with the rapid acceleration of the ions toward the southern end of the x-line.  As we 

saw in Figure 53, this acceleration will enhance the traditional plasma inflow.  Across 

the intermediate area, reconnection will be assumed to be 2D-like.  The x-outflow will 

be derived from the inflowing magnetic flux.  Meanwhile, the pressure driven flow 

acts as a spectator through this section of the reconnection, passing through the plane 

of reconnection without influencing the reconnection dynamics.  On transitioning to 

the southern region, depicted in yellow, we once again see a large density gradient.  

This density gradient halts the z-directed ion flows, leading to our previously 

mentioned stagnation point.  In other words, the south side has a large ion inflow from 

the z-direction without a corresponding z-outflow.  By continuity, this influx needs to 

go somewhere.  It goes to the x-direction, saturating that channel and leaving little 

room for magnetic rich y-inflows.   By inhibiting the inflowing flux from the y-

direction, the reconnection in that region is denied necessary magnetic energy needed 

to sustain itself. 

In a steady state situation, the three principle movers of the dynamics are the 

conservation of energy, the continuity of the plasma, and the conservation of 

momentum.  In order to build upon this model, we'll be focusing our attention on the 

first two. 
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Continuity 

Conceptually, the continuity equation is simple.  It says that in general, things 

do not appear or disappear.  In order for an object to be somewhere, it must have 

traveled there from somewhere else.  Like most objects we are familiar with, plasma 

also behaves this way.   

Taking a car tunnel as an example, if an observer views a number of cars 

entering the tunnel, but fewer cars leaving the tunnel, the observer can conclude that 

the number of cars inside of the tunnel is increasing in time.  Since the number of cars 

inside of the tunnel is changing in time, it is not in a steady state.  However, if the 

number of cars inside of the tunnel must stay the same (or roughly the same), then the 

number of cars leaving the tunnel, must equal the number of cars entering the tunnel.  

In which case, steady state has been achieved.  Likewise, when our system is assumed 

or observed to be in steady state, any plasma entering a region must be balanced by the 

same amount of plasma leaving the region.  Mathematically, this can be expressed 

simply as: 

 2�s��sO�s = 2tuG�tuGOtuG. (12) 

Or this is expressed more formally as: 

¬2�? ⋅ Jw? =  0. 
For the most part, in our reconnection system, the x-direction is always an 

outflow and the y-direction is always an inflow.  And depending on whether or not we 

are discussing the north or south side of the x-line, the flow in the z-direction can be 

considered an inflow or an outflow. 
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Energy 

In an isothermal system, the steady state does not invoke the simple rule of 

‘what goes in must come out.’  Instead, energy flowing into the system does work or 

has work added to it before leaving through an outflow channel.  In the simple 

example of a standing density shock, an inflowing gas must be compressed as it passes 

through the shock front.  The energy consumed by the compression process results in 

an outflowing gas which is less energetic.  So in the isothermal steady state, 

=YmI®� ¯Y = =YmI®� °�� + ±�I� 

However, if the system is to remain in a steady state, the amount of energy lost 

or gained through work must remain constant. 

As for the energy itself, the transport of it is mainly carried by two effects.  

The first effect is the kinetic transport of energy by the plasma body itself.  As the 

plasma moves, it carries kinetic energy with it.  The other mechanism by which energy 

can enter or leave the system is through the convection of the magnetic field.  As the 

electron plasma enters or leaves the system, it drags magnetic energy with it. 

So the energy transport through a flux boundary can be expressed as, 

]12 2S���sz + �:
2 ²�s_ O�s = ]12 2S��tuGz + �:

2 ²tuG_ OtuG − ±Lt�1³F88�ts. 
The electron velocity is represented by ² and the ion velocity is presented with the 

standard �.  In most cases, the electron moves with the protons so the velocities are 

typically equal. 
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Figure 55 Schematic showing the ions turning the corner at the southern end of the 
reconnection site.  The region denoted by the light blue lines indicates 
current sheet walls.  In those walls, the magnetic field is leaving or 
entering the page.  Between them is the current sheet itself. 

Velocity 

Returning to the particle picture for inspiration [Figure 55], it is expected that 

ions drifting through the diffusion channel will eventually find themselves captured by 

the outflowing magnetic fields and will have their z-directed trajectories bent toward 

the x-direction.  In that scenario we would expect a relationship between �� and ��.  

Namely: 

��~ ��. 
More importantly, we can see in Figure 56 that our expectation is well represented in 

simulation.  The figures compare �� to �� for three drastically different equilibrium 

parameters.  In all three cases, there is a clear scaling relationship between the two 

plasma flows.  
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Figure 56 (107.43, 107.48, 107.8) Peak velocities.  In black is ��, the outflow 
velocity.  Plotted in blue, ��, is the plasma flow velocity along the x-line. 
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Southside Scaling 

If we return to our basic picture of reconnection depicted in Figure 54, we have 

3 reconnection regions.  We’re going to focus on two of these regions in the steady 

state – the 2D-like central region and the southern exhaust-like region. 

As mentioned in Chapter 4, the southern region is bounded by a flow-

stagnation point on the bottom and a density minimum at the top.  The steady state 

flow of plasma through the south can be represented by, 

��2(����) = 2��2(�9��). 
The variables are taken to be averages over their respective flux boundaries, ����, 

�9��, and �9��, respectively.  Since the plasma flux from the current sheet wall is 

typically much smaller than the flux from the z-direction, we neglect the term 

��2(�9��). 

We can use the observation that,  

��~ ��. 
To immediately derive that the length scale on the south should be a constant roughly 

of the order: 

�9 ~ 12 ��. 
To see whether or not this scaling relationship is borne out in the simulation, 

we plot �8 for eight different x-lines in Figure 57.  These x-lines represent the 

spectrum of results we observed in simulation -- everything from rigorously spreading 

to collapsing x-lines.  Plotted together in the upper pane are runs which reconnected 

for several hundred Alfven time units.  In black and green are solitary x-lines which 

showed a propensity to reconnect indefinitely.  In blue are the x-lines which were 

transient.  The important point is that all of the x-lines appeared to have an �8 which 

was independent of the extent or duration of the x-line.  This is reminiscent of the 
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other reconnection length scale, ��.  In the bottom pane, we visit the other side of the 

spectrum.  These two x-lines represent classically spreading x-lines which reconnect 

very strongly.  Even though they are very different systems than those in the upper 

pane, they also express an �8 which seems to remain roughly constant. 

  

 

Figure 57 (Top)(107.42, 107.47, 107.50 : blue, green, black) Plots of �8 for six 
different current sheets in 3 separate simulation configurations.  
(Bottom)(105.3, 107.8 : blue, black) Additional plots of �9 for 
simulations on much shorter time-scales. 
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Joint Scaling 

Looking at the scaling of the southern region alone allowed us to derive the 

length scale, �8.  In doing so we have established that the south-side is a permanent 

fixture in the reconnection structure.  With that done we look to question the impact of 

the south-side on the larger reconnection ecosystem.  In order to do this, we join it to 

the central region and analyze the flux of energy and plasma flowing into and out of 

them jointly.  Together, we have a plasma flux of 

2S��(���L) + 12 2S��M����N ~ 2S��M���;N. 
And we have an energy flux of 

��:��(���L) + 12 S2��z(����) ~ 2S��zM���;N +  ±Lt�1³F88�ts. 
In these equations, we've introduced the length scale �;.  �; is the combined z extent 

of the central and southern regions, �; = �9 + �L. 

If we use the scaling we found in our previous section, 

��~��, 
�� = ´��. 

And the assumption that the z-flowing energy remaining after compression is small 

compared to the magnetic energy flux into the entire system, 

12 SY��zM����N − W ≪ ��:��(���L). 
The existence and position of the flow stagnation point lets us know that this is a 

reasonable approximation.  If the flow carried much more or less energy than was 

demanded by the compression, then there would be substantial plasma flow south of 

the x-line. 

We can solve for �����L in the continuity equation 
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�����L ~ ���� ©�; − 2́ ��ª. 
And use that in addition to   

��:��(���L) ~ YS��zM���;N. 
To derive, 

 ��: ~ ��:YS�;  ©�; − 2́ ��ª. (13) 

 

Although ignoring the capacity of the southern end to have a magnetic inflow 

of its own, this equation does capture the essential dynamics of the x-line in 3D.  It 

expresses that the magnetic influx driving the extended length of reconnection must 

energetically carry the burden of the southern end.  In other words, energy inflow 

scales with �L, while energy outflow scales with �;.  For very large values of �;, they 

are approximately equal, so there is no issue.  However, for small values of �;, this 

becomes problematic.   

This situation occurs because of the large flux of plasma into the southern end 

from the regions above.  This influx must go somewhere by continuity, so the south 

has a large obligation to produce an outflow.  However, much of the energy that this 

influx contributes is spent compressing the gas.  This leaves the x-line with a large 

energy burden which must be met.  Because the z-flow approaches the maximum 

outflow velocity, it saturates the outflow channel in the south.  The saturation of the 

outflow channel, in turn, restricts the amount of additional plasma that can be brought 

into the southern region from other sources.  With limited room for additional plasma 

inflow, the energy demands cannot be fed by the magnetized plasma in the current 

sheet wall. 
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The only solution to this dilemma is to have the central region produce enough 

extra energy to support itself and the energy sink represented by the southern region.   

Quite clearly, this introduces the concept of a minimum size for the x-line.  

The x-line must be at least  (´/2)�� in size in order to have an outflow.  Exactly what 

this minimum is can't be divined from our scaling argument as there are constant 

factors neglected, but some reasonable estimations for those factors keep the minimum 

size near the range 5 to 15 c/ωpi. 
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Figure 58 Plot of ��: using Equation (13).   

 

Figure 59 (107.43, 107.47, 107.49, 107.50, 107.51) Plot of ��: when �; is at its 
maximum size for 10 different transient x-lines.  All runs have �	= 5.0 
and ℰ	 = 0.04.  
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In Figure 58, we plot the theoretical value of ��: against �;.  In the following 

figure, Figure 59, we have the sister diagram plotting the equivalent values found in 

the transient and solitary x-line simulations, where �	 = 5.0 and ℰ	 = 0.04.  The 

velocity is taken to be the peak velocity of the system.  Both simulation and theory 

predict a cutoff length near 10 c/ωpi and they predict that for large �; the velocity 

should asymptotically approach similar maximum velocities.  Here it was expected 

that the plotted points appear in pairs: one for each current sheet in a simulation.   

Indeed, even including all of the runs where the x-line maintained a constant, 

and therefore measurable �;, the theory maintains strong agreement with the 

simulations.  A modified figure which includes runs with various initial perturbation 

sizes can be seen in Figure 60. 

 

Figure 60 (107.42 107.41, 1077.4, 107.37, 107.34, 107.36, 107.30) Plots of ��: 
versus maximum �; for all x-lines with an equilibrium current sheet 
width, �	 = 5.0. 
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To see if there is any dependence of the outflow velocity on the initial 

perturbation parameters, we first plot the velocity against �	�.  Although this reveals a 

clean linear relationship for the restricted data set, �	 = 5.0 with ℰ	 = 0.04, as can be 

seen in Figure 61.  The correlation breaks down when different values of ℰ	 are 

included [Figure 62].  In particular for the cases where �	� = 10, we have a multi-

valued results in simulation. 

 

 

Figure 61 (107.43, 107.47, 107.49, 107.50, 107.51) Outflowing velocity versus the 
size of the seed perturbation in the z-direction for runs with �	= 5.0 and ℰ	 = 0.04. 
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Figure 62 (107.42 107.41, 1077.4, 107.37, 107.34, 107.36, 107.30) Plot of velocity 
versus seed perturbation size in the z-direction, �	� for all runs where �	 = 5.0. 

However, taking a cue from our earlier observation that the viability of a 

current sheet for reconnection depends on the product, �	�ℰ	, we plot the velocity 

against that in Figure 63.  This plotting breaks the multi-valued stacking and sorts the 

data well.  Recall from earlier that the perturbation energy scales with the perturbation 

magnitude and the perturbing volume, 

ℰa~�	�	�ℰ	. 
Since all of these runs have the same �	, the terms remaining to tune the 
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strong perturbation, the reconnection produced will not grow freely in the out of plane 

direction.  It may produce a transient x-line or drift as a solitary x-line.  Marked in 

yellow on the figure is the region in which none of the current sheets were unstable to 

reconnection.  Marked in blue are the initial configurations which produced transient 

x-lines.  The remaining configurations appeared to be solitary for very long time 

frames. 

 

Figure 63 (All x-lines with �	 = 5.0, including failed runs) Plot of ��: versus the 
energy of the seed perturbation. 
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linearly with the perturbation energy are the solitary x-lines.  In green, most of the 

transient x-lines have approximately the same length, �; = 15 0/�1�.  Everything 

below the perturbation energy 0.4 completely failed to reconnect and are represented 

by X's.  The stagnation in x-line growth as the energy supplied grows from .04 to .07, 

suggests that like a thermodynamic phase transition, the reconnection site must 

undergo some internal configuration change after onset in order to become stable.  

This reconfiguration of the internal structure comes with an energy cost.  Every case 

of reconnection studied, once begun, transitions from the wide Sweet-Parker like 

current sheet structure to the fixed Petschek-like structure.  This geometry change 

happening regardless of the initial energetics of the system means that it is unlikely to 

be the configuration change consuming the activation energy.  This leaves one major 

configuration change unaccounted for – the opening of the outflow nozzles as depicted 

at the end of Figure 10. 
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Figure 64 Plot of the maximum length of the x-line for all runs with �	 = 5.0.  In 
red are runs which appear to be solitary – lasting indefinitely.  In green 
are x-lines which collapse, showing a transient behavior.  Purple X’s 
demark runs which failed to reconnect at all.  The x-axis represents the 
energy in the initial seed perturbation. 
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Finally, to test the applicability of the scaling law,  

��: ~ ��:

YS�;
 ©�; − ´

2 ��ª, 

to a general x-line, we present a scatter plot of ��: versus �; for two rapidly spreading 

x-lines in Figure 65.  Unlike in the simulations for the previous plots using �;, the 

strongly reconnecting x-line grows continuously.  As such �;, is not a measurement of 

the maximum value, rather it is a measurement of the x-line length as a function of 

time. In any case, we see that this scaling law holds for more than just marginal 

reconnection sites. 

 

Figure 65 (107.8) Scatter plot of ��: versus �; for two strongly reconnecting x-
lines. 
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The results of Figure 65 solidify the importance of the north/south interplay as 

a fundamental aspect of reconnection. 
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Conclusion 

In this dissertation, we first presented a novel way of tracking and classifying 

reconnection along the spreading x-line by using the quantity ����/��.  With this 

metric we were then able to correlate significant 3D structures within the x-line to the 

better known 2D aspect ratios and behaviors.  Of principal importance was the 

discovery that the density plays a significant role in the asymmetric spreading of the x-

line and its minima also serves to bifurcate the x-line into a distinct northern and 

southern region. 

After presenting a basic outline for the structure of 3D reconnection, we then 

probed the domain of marginal reconnection with very large equilibrium current 

sheets.  In this section, we presented examples of reconnection systems which are not 

unstable to the tearing mode as well systems whose instability was only transient – 

both in contradistinction to their 2D counterparts.  By investigating these marginal 

reconnection cases in the context of our established 3D structure, we were able to 

identify the principle mechanism by which the transient reconnection sites collapsed. 

And from that mechanism, in the following section, we were able to construct 

a simple 3D model of reconnection.  This model proposes that the south-side of the 

reconnection site acts as an energy sink on the x-line as a whole.  Using this model, we 

derived a new constant length scale, �9 for the size of the south-side of the 

reconnection site.  We showed that the activation energy required for the onset of 

reconnection scales with the initial perturbation, �	�
	.  And finally we derived a new 

scaling law for the reconnection outflow speed: 
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��: ~ ��:

YS�;
 ©�; − ´

2 ��ª. 
This outflow speed was shown to be consistent with x-lines initiated through many 

different starting equilibriums.  And from the equation, we have inferred the existence 

of a minimum stable x-line length. 

 As a whole this work greatly strengthens the argument that bursty bulk flows 

in the magnetotail are the outflows of smaller magnetic reconnection events.  The 

minimum x-line lengths observed in simulation are comparable to the same properties 

in observed BBFs; when scaled to the conditions in the magnetotail, the simulation 

length scale of 15 is roughly equivalent to .7eo.  Likewise the outflow velocities, 

being roughly 50% - 75% of the Alfven speed also match the observed BBF speeds.  

The defining characteristic of BBFs, being short bursts of plasma flow lasting between 

1 and 10 minutes, was also seen in simulation.  The shortest duration transient x-line 

found in our work lasted approximately 1 minute, while the longest lasting transient x-

line lasted 6 minutes.  Finally, the equilibrium current sheet condition, �	 = 5.0, 

when converted into the magnetotail dimensions of 1,423 km was observed by 

Nakamura et el. to be the approximate width of the current sheet just before the 

observation of BBF outflows [38].  

 So not only does the novel x-line behavior presented in this thesis introduce the 

adaptability needed in order to explain the observed BBF phenomenon, but its 

apparent constraints also fall within the parameter regime required to explain them. 
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