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A well-established idea from mathematics education research is that “learning proceeds primarily 
from prior knowledge” (Roschelle, 1995, p. 37). In other words, learners’ prior ways of reasoning are 
the foundation on which new knowledge is constructed. Also well-established is the idea that prior 
ways of reasoning continue to evolve over time (e.g., Moschkovich, 1998; Smith et al., 1994). Together, 
these ideas suggest a dynamic relationship exists in which learners construct new knowledge on 
a foundation of prior ways of reasoning that are themselves evolving (Roschelle, 1995).

The dynamics of this relationship is what we developed scientific curiosity about. Specifically, we 
sought to understand the influences that new learning can have on learners’ still-developing prior ways 
of reasoning. These kinds of influences have, as yet, received relatively little attention from mathe-
matics education researchers, especially in real classrooms, despite having potentially far-ranging 
implications for research and practice.

We conceptualize the influences described above as a type of transfer of learning called backward 
transfer. This type of transfer has been reported by several education researchers (e.g., Bagley et al., 
2015; Gentner et al., 2004; Hohensee, 2014; Lima & Tall, 2008; Marton, 2006; Melhuish & Fagan, 2018; 
Moore, 2012). There also exists a body of research on backward transfer in the domain of second- 
language learning (e.g., Cook, 2003).



We chose linear and quadratic functions as the context in which to study backward transfer and 
looked at how students’ ways of reasoning about linear functions change when they learn about 
quadratic functions. Using Breidenbach et al.’s (1992) distinction between action and process views of 
functions as our lens, we addressed the following research questions: (a) In what ways are algebra 
students’ prior ways of reasoning about linear functions with an action and/or a process view 
influenced by backward transfer, if at all, by their participation in an instructional unit on quadratic 
functions?; and (b) In what ways do particular instructional approaches to teaching quadratic func-
tions offer plausible explanations for the changes in students’ prior ways of reasoning about linear 
functions?

Theoretical orientation

In this section, we present our two-part theoretical orientation. First, we present our orientation 
toward backward transfer. Next, we present our orientation to functions.

Theoretical orientation toward backward transfer

Transfer of learning is the overarching category to which both backward and forward transfer belong 
(Gentner et al., 2004). Forward transfer, the more studied direction, is often referred to simply as 
transfer (e.g., Barnett & Ceci, 2002). Various perspectives have conceptualized forward transfer (e.g., 
Bransford & Schwartz, 1999; Lobato, 2012; Singley & Anderson, 1989; Thorndike & Woodworth, 
1901). It was Lobato’s (2012) actor-oriented transfer (AOT) perspective, which defined transfer as “the 
influence of a learner’s prior activities on her activity in novel situations” (p. 223), that helped us 
conceptualize backward transfer.

According to AOT, forward transfer is when learners in novel situations are influenced by some-
thing they learned in the past, regardless of whether or not the influence led to correct application of 
knowledge. According to AOT, researchers should adopt the learner’s (i.e., the actor’s) point of view, 
rather than the observer’s point of view, when deciding if forward transfer has occurred, hence the 
label actor oriented.

AOT was created to address critiques of the traditional conceptualization of transfer. Lave’s (1988) 
critique was that the traditional conceptualization “underscores the static quality of transfer in 
experimental practice: it is treated as a process of taking a given item and applying it somewhere 
else” (p. 37), which is “a distorted representation of activity in everyday life” (p. 43). Additionally, 
although “transfer is necessarily a part of our moment-to-moment lives” (Beach, 1999, p. 101), 
Detterman’s (1993) critique was that, for studies using the traditional conceptualization, there exists 
“little empirical evidence showing meaningful transfer to occur” (p. 21).

AOT addresses both critiques. By counting all influences that learning has on individuals’ thinking 
in new contexts as evidence of forward transfer, not just correct knowledge application, AOT (a) is 
more consistent with what happens in moment-to-moment situations, and (b) allows for more 
instances of transfer to be realized (Lobato, 2012). Because we were interested in influences of all 
kinds, not just those that lead to correct performance or that involve static knowledge application from 
one context to the next, we used AOT as the foundation on which to build our orientation to backward 
transfer.

The definition guiding our study, which adapts the AOT definition of forward transfer, is that 
backward transfer is the influence that new learning has on prior ways of reasoning (Hohensee, 2014). 
Our definition of backward transfer is like Lobato’s (2008) AOT definition of forward transfer, except 
that ours refers to influences backward from new learning onto prior ways of reasoning, instead of 
forward from prior activities onto new learning.

An illustrate example of backward transfer comes from Bagley et al.’s (2015) study of linear algebra 
students and their previously-established ways of reasoning about functions. The researchers won-
dered if learning about linear algebra “had a negative effect on their understanding of function . . . [or] 
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reinforces and enriches their understanding of function” (p. 36). After studying linear algebra, 
students were asked, “predict the result of composition of f with f −1” (p. 44). Some students 
incorrectly concluded “it’s just 1” (p. 45), instead of correctly concluding the result would be the 
identity function x. The researchers attributed this misconception to “backward transfer from the 
symbolism of linear algebra” (p. 45) (i.e., confusing the identity function with the identity matrix 
which is populated with ones along the main diagonal). In this example, the backward transfer 
influence went from the new learning about linear algebra onto students’ prior ways of reasoning 
about functions.

Reasons we looked for backward transfer in real mathematics classrooms
One reason we looked for backward transfer in real mathematics classrooms was to identify backward 
transfer effects in real classrooms that undermine students’ mathematical understanding. Macgregor 
and Stacey (1997) reported that some students in their study began reasoning incorrectly about 
algebraic symbols involving multiplication after learning about algebraic symbols involving expo-
nents. Other studies have similarly found these undermining backward transfer influences (e.g., Bagley 
et al., 2015; Hohensee, 2014; Lima & Tall, 2008; Van Dooren et al., 2004). Identifying undermining 
backward transfer influences represents a first step toward developing instructional approaches that 
minimize those effects.

A second reason we looked for backward transfer in real mathematics classrooms was to identify 
backward transfer effects in real classrooms that enhance students’ mathematical understanding. Arzi 
et al. (1985) reported that students in their study performed better on a retake of a seventh-grade 
science final exam after those students had taken eighth-grade science, despite eighth-grade science 
not revisiting seventh-grade science concepts. Identifying enhancing effects represents a first step 
toward developing instructional approaches that maximize these effects.

Although backward transfer effects have been identified in a number of studies, no systematic 
research efforts have, as yet, intentionally looked for backward transfer effects in real mathematics 
classrooms. Thus, our exploratory study represents a promising new direction for improving 
instruction.

Theoretical orientation toward reasoning about functions

Breidenbach et al. (1992) proposed the following two ways of reasoning about functions: as actions, 
and as processes.1 Action view reasoning was defined as that which “emphasize[s] the act of substitut-
ing numbers for variables and calculating to get a number, but [does] not refer to any overall process of 
beginning with a value (numerical or otherwise) and doing something that resulted in a value” 
(p. 252). Weber (2002) illustrated action view reasoning in the context of f(x) = bx: “repeatedly 
multiplying by b x times . . . students will not be able to do much with exponents besides compute 
these values and manipulate their formulas” (pp. 3–4). In this example, the focus was on computing 
values.

Process view reasoning was defined as that in which “the input, transformation, and output [are] 
present, integrated and fairly general” (Breidenbach et al., 1992, p. 252). Asiala et al. (1996) added that 
process view reasoning is about being able to “reflect on, describe, or even reverse the steps of the 
transformation without actually performing those steps” (p. 7). Weber (2002) illustrated process view 
reasoning in the context of f(x) = 2x: “2x will be a positive function since you start with the integer one 
and repeatedly multiply this by a positive number; it will be an increasing function since every time 
x increases by one, 2x doubles” (p. 4). In this example, the focus was on how the function behaves, not 
on computing values.

It is critical for students to move from action- to process-view reasoning (Breidenbach et al., 1992; 
Sfard, 1991; Thompson, 1994), and the transition from action to process view has been labeled as 
interiorization (i.e., “an action . . . is relatively external to the thinking of the subject, whereas in 
a process it is more internal;” Breidenbach et al., p. 278). According to Breidenbach et al. and Sfard, 
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students begin with an action view and interiorization occurs gradually. Furthermore, interiorization 
was characterized as a “struggle” that involves “reconstructing previous knowledge” (Breidenbach 
et al., p. 277). We were interested in whether backward transfer played any role in this process.

Reasons for looking for backward transfer in students’ action/process view reasoning
We had three reasons for examining if and how backward transfer effects were connected to students’ 
action- and process-view reasoning about functions. First, action- and process-view reasoning is, for 
any two kinds of functions, an aspect of mathematical reasoning they share. This is important because 
prior research has shown that when a particular aspect of reasoning applies to two different concepts, 
backward transfer can manifest itself in that aspect of reasoning about the earlier-encountered concept 
after an individual learns about the later-encountered concept (e.g., Hohensee et al., 2021; Lima & Tall, 
2008). For example, Lima and Tall observed a student who learned about the quadratic formula (the 
later encountered concept), and then tried to apply it to reasoning about a linear equation (earlier 
encountered concept). Lima and Tall refer to this as a met-after, and we interpret met-afters as 
consistent with how we think of backward transfer. Similarly, because action- and process-view 
reasoning apply to reasoning about any two functions, we hypothesized that conceiving of new 
functions as actions or processes could transfer backward to reasoning about previously encountered 
functions.

Second, Breidenbach et al. (1992) claimed that interiorization is not unidirectional: “Many indivi-
duals will be in transition from action to process and, as with all cognitive transitions, the progress is 
never in a single direction” (p. 251). This suggests that students’ action- or process-view reasoning 
might be susceptible to backward transfer influences. Note that backward transfer refers to influences 
that learning about a new concept has on individuals’ prior ways of reasoning, not to the direction that 
action and process views are developing.

Third, Ed Dubinsky, a coauthor on Breidenbach et al. (1992), referenced backward transfer in the 
context of the curricular activities called Trip Line. A goal of Trip Line is to move students from action- 
to process-view reasoning. Dubinsky stated:

When Bob Moses and I were writing the Trip Line, we talked a great deal about difficulties students had when 
their new knowledge did not seem to them consistent with their previous knowledge . . . many of the epistemo-
logical obstacles that permeate the literature are failures to make a backward transfer.” (communication, 
March 11, 2017)

Together, the reasons outlined above motivated us to look at whether backward transfer is associated 
with action- and process-view reasoning.

Action- and process-view reasoning about linear and quadratic functions
The mathematics contexts in which we situated our study were linear and quadratic functions. Hines 
(2002) and Slavit (1997) were the lone articles we found that address action and process views of linear 
functions. Hines described interiorization for linear functions as going from reasoning that involves 
“repeatable actions, where although the procedures were consistent each time, the focus of . . . 
attention was not on the general consistency of the actions, but on individual input and output values” 
(p. 358), to reasoning that involves a “systematic co-variation [italics added] between two related 
variables in which functions are viewed as generalized processes” (p. 340). Covariational reasoning was 
a prominent part of our study, as will be explained later.

We also located just two articles addressing action and process views of quadratic functions, 
Childers and Vidakovic (2014), and Slavit (1997). Childers and Vidakovic described a student reason-
ing about quadratic functions with an action view as “she remembered the formula for finding the 
x-coordinate of the vertex, was able to find the y-coordinate by plugging into the formula and
calculating it, and she knew that concavity is determined by the sign of the coefficient of x2” (p. 13),
and characterized a process view of quadratic functions as the “ability to transfer the idea of the vertex
from the explicit problem to the real-world problem correctly . . . these actions have been interiorized
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and she has a process level of understanding of the vertex in the real-world problem” (p. 15). This is 
particularly relevant for our study, because the quadratic functions instruction we observed often 
focused on vertices.

Reasons for choosing linear and quadratic functions for a study on backward transfer
We chose linear and quadratic functions for our study for several reasons. First, linear functions are 
typically covered in curricula before quadratic functions (e.g., Discovering Algebra, Key Curriculum 
Press; CPM; CCSSM). With this order, ways of reasoning about linear functions would serve as the 
prior ways of reasoning that may experience a backward transfer influence and new learning about 
quadratic functions would serve as the source of the influence. If, in real classrooms, evidence of 
backward transfer for linear and quadratic functions was found, it would hold significance for the 
predominance of algebra curricula.

Second, backward transfer between concepts too similar is trivial, and between two concepts too 
dissimilar is implausible (c.f. Barnett & Ceci’s, 2002 discussion of near and far transfer). Linear and 
quadratic functions are sufficiently similar that backward transfer is plausibleand sufficiently dissim-
ilar that backward transfer would be non-trivial. Moreover, studies in lab settings have already found 
evidence of backward transfer in the context of linear and quadratic functions (e.g., Hohensee, 2014; 
Lima & Tall, 2008), which adds to the plausibility that backward transfer involving linear and 
quadratic functions may be happening in real classroom settings. Finally, the relationship between 
students’ ways of reasoning about linear and quadratic functions has been examined in the forward- 
transfer direction (e.g., Ellis & Grinstead, 2008; Zaslavsky, 1997). We extend the research described 
above by examining linear and quadratic functions in the backward transfer direction in real 
classrooms.

Prior research on teaching and learning about functions
Considerations pertaining more broadly to teaching and learning about functions were also relevant 
for our study. The first consideration was about strategies students use to find missing values of 
functions. Studies have shown that strategies are acquired in particular orders (Ayan et al., 2000; Hunt, 
2015; Kaput & West, 1994). For instance, students solve missing-value problems using buildup 
reasoning before abbreviated buildup reasoning (Kaput & West, 1994).

Buildup reasoning involves finding a desired new coordinate pair for a linear function from a given 
coordinate pair by repeatedly adding. In our study, students applied the buildup strategy by adding the 
numerator of the unit rate of change for the function to the given dependent variable value and, 
simultaneously, repeatedly adding the denominator of the unit rate of change (i.e., 1 unit of indepen-
dent variable) to the given independent variable value, until the desired new independent variable 
value was reached (Kaput & West, 1994).2 In contrast, abbreviated buildup reasoning involves multi-
plying a constant unit rate of change by the desired independent variable value to find a desired new 
dependent variable value. Note, however, that when the linear function has a non-zero y-intercept, 
abbreviated buildup reasoning requires the additional step of adding the non-zero y-intercept to the 
product of the multiplication.

The second consideration was about whether students can find inverses of functions. Greer (2012) 
explained that “inverse functions are of great importance within algebra” (p. 432). However, research 
has shown that coming to understand inverted linear functions can be a challenge for students. For 
example, Cedillo (2001) found “only a few students were able to find a systematic way of inverting 
linear functions” (p. 243). Reasoning about inverting linear functions played a role in our study.

The third consideration was about generalizing. The type of generalizing relevant for our study, 
called extending (Ellis, 2007), is when “a student not only notices a pattern or a relationship of 
similarity, but then expands that pattern or relationship into a more general structure” (p. 241). In 
one example, a student realized that a line on a graph need not be restricted “to the first quadrant, but 
could extend it beyond the few points . . . [She] extended her reasoning by expanding the range of 
applicability” (p. 243). Extending showed up in our study.
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Given that little research exists about backward transfer in the context of functions in real class-
rooms, our exploratory study sought to generate hypotheses about backward transfer that could 
subsequently become the focus of study in future research. This aligns with Sloane’s (2008) description 
of exploratory/basic research as “provid[ing] the intellectual fodder, in the form of hypotheses, for 
more rigorous inquiries” (p. 627).

Methods

The participants in our study came from two tenth-grade Integrated Mathematics 2 classes at different 
high schools located in the Mid-Atlantic region of the United States (N= 57). The majority of students 
came from a larger urban center and the schools were approximately 40% African American, 18% 
Hispanic, and 6% Asian. Additionally, according to the school demographics we were provided, 
approximately one-third of the student population at each school belonged to a family with sufficiently 
low socioeconomic status that they received breakfast and/or lunch during the school day at no cost or 
at a reduced cost. Although we were not provided with demographic information for individual 
students, both teachers reported that the demographic make-ups of the participating classes reflected 
the demographics of the school. The teachers in our study, Ms. H and Mr. A, had 8- and 17-years 
teaching experience, respectively. Ms. H taught 24 of our participants in 70 min. class periods. 
Mr. A taught 33 of our participants on a rotating schedule in which classes varied in length from 45 
to 80 min.

Phases of data collection

This exploratory study had three data-collection phases: pre-instruction, instruction, and post- 
instruction. During the pre-instruction phase, we administered a 45-min. paper-and-pencil pre- 
assessment on linear functions. Additionally, we interviewed four randomly selected students per 
class, one-on-one, about their responses on the pre-assessment. During the instruction phase, students 
participated in a 12 lesson (Mr. A) or 17 lesson (Ms. H) quadratic functions unit. All lessons were 
observed by the research team. During the post-instruction phase, we administered a post-assessment 
on linear functions that mirrored the pre-assessment. We also interviewed the same four students per 
class about the post-assessment, using the same interview protocol.

Linear functions pre- and post-assessments
We designed two versions of the linear-functions assessment. Half the students were randomly 
assigned to take Version A as the pre-assessment and Version B as the post-assessment. The remaining 
students were assigned the assessments in reverse order.

The pre- and post-assessment problems focused on in this article were specifically designed to 
examine students’ reasoning about linear functions in terms of action or process views.3 Versions 
A and B had the same number of problems, the same order of problems, and the same underlying 
mathematics. The problem context for Version A was about a plant growing at a constant rate, 
whereas for Version B, the problem context was about a container filling with rainwater at a constant 
rate. Each version included a picture of the context (see Table 1 for the reasoning each problem was 
designed to examine).

Quadratic functions instruction
Both teachers primarily used a teacher-centered approach during the quadratic functions 
instruction phase. However, during practice time and whole-class discussions, the teachers 
often used a more student-centered approach. As for the classroom environments, students 
appeared comfortable with asking their teachers or each other for help, and with going in front 
of the class to show and explain their work. Both teachers effectively communicated to 
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students that they were required to participate, regularly monitored students’ progress, and 
held students accountable for their levels of participation.4 In the results section, we present 
a deeper comparison of how quadratic functions were taught.

Data set

The data set consisted of written pre- and post-assessments, video-recorded one-on-one interviews, 
and observations of the quadratic functions instruction. In all, 114 assessments were completed (i.e., 2 
assessments/student for 57 students); 16 one-on-one interviews were conducted (i.e., 4 interviews/ 
assessment/class for 2 assessments and 2 classes); and 29 sets of observation field notes were created 
(i.e., 17 from Ms. H’s class and 12 from Mr. A’s class).

Table 1. Action vs process views problems on Version A and B of pre- and post-assessments.

Growing Plant Problems 
Version A

Rain Water Problems 
Version B

Intro The following diagram shows the height of a plant in inches 
each day that it is measured.

As part of a science project, you are measuring the amount 
of rain that falls during a storm. The following diagram 
shows the amount of rainwater you collected in the first 
four hours. Use the diagram to answer the questions 
below.

Picture

Prob. 
(a)

Explain in words how to find the height of the plant on day 
17.

Explain in words how to find the total amount of rainfall if 
the storm lasts for 11 hours.

Prob. 
(b)

Can you find the day the plant was measured if you were 
given the height? If yes, explain how. If no, explain why 
not.

Can you find the hour the rainwater was measured if given 
the height? If yes, explain how. If no, explain why not.

Prob. 
(c)

You have to leave the plant in your office over the 
weekend. You did not measure the plant for 2.5 days. 
The plant grows at the same rate the whole time. How 
much did the plant grow in the 2.5 days you were gone? 
Show any work that helped you decide.

You fall asleep while watching TV. You did not measure the 
rainwater for 3.5 hours. It rained the whole time at the 
same rate. How much rainwater was collected during the 
3.5 hours that you were sleeping? Show any work that 
helped you decide.

Description of Reasoning each Problem was Designed to Examine (not shared with students)

Problem (a) was designed to examine how students reason about finding dep. variable values from indep. variable values of 
a linear function. Calculations-heavy explanations align with action-view reasoning.

Problem (b) was designed to examine how students reason about reversing a linear function (i.e., finding indep. variable values 
from dep. variable values) when not given specific values of the dep variable to work with. Reasoning that reverses a function 
without relying on specific values aligns with process-view reasoning.

Problem (c) was designed to examine how students reason to find the size of the interval of the dep. variable that corresponds to 
a given size of the indep. variable, when the interval of the indep. variable of a linear function has a given size but is not specific 
to a location on the function. Reasoning about corresponding intervals of a given size in ways that do not rely on a specific 
location on a function aligns with functions-as-processes reasoning.
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Data analysis

Data analysis for this study was conducted in three stages. During the first stage, we compared just the pre- 
and post-assessment and interview responses for the eight interviewed students. From these comparisons, 
we developed an initial set of codes that captured how reasoning changed from pre to post in terms of 
action and process views of functions. Codes were informed by a priori concepts contained in the action 
versus process view literature, and “other codes emerge[d] progressively during data collection” (Miles 
et al., 2014, p. 74). To each student’s assessment response for each problem, and for each corresponding 
interview response, we assigned at most one change in reasoning code (i.e., each student’s response to 
a particular problem was the unit of analysis). The initial codes and their supporting evidence were 
discussed and clarified among our research team until a shared understanding was achieved.

During the second stage of analysis, each research-team member was randomly assigned to code 
two-thirds of the non-interviewed students’ assessment data, so that each student’s responses were 
independently coded by two members of the research team. We started using the codes developed in 
the first stage of analysis. Codes were assigned when there was sufficient evidence to determine that 
a change in reasoning with respect to action and process views of functions had occurred from pre- to 
post-assessment. No codes were assigned to a problem when the student provided insufficient 
evidence to convince us a change in reasoning had occurred or when the change wasn’t associated 
with action and process views of functions.

The research team also met in pairs during this stage of analysis to discuss assessments the 
pair both coded. When a pair could not reach consensus on a student’s response to a particular 
problem, the third team member was brought in to help achieve consensus. Throughout 
the second stage of analysis, we engaged in constant comparison (Strauss & Corbin, 1994), 
meaning that codes were continuously revised and refined and new codes created when changes 
in reasoning that were identified were not adequately captured by codes developed in the first 
stage of analysis (see, Table 2 for the final codes). After reaching agreement on the codes, we 
recoded all assessments, including those from the interviewed students, to ensure coding 
consistency.

To conclude the second stage, we tabulated frequencies for each code and looked for patterns in the 
changes in reasoning. Note that, even though we think backward transfer could manifest itself 
differently for different students, for this study we operationalized backward transfer as when patterns 
of changes in reasoning were identified (i.e., a number of students exhibited a particular change in 
reasoning), and the changes closely associated with action and process views of functions. Examples of 
changes in reasoning we observed but did not include in our findings were when students changed 
from not using to using an equation and from not explicitly to explicitly accounting for a non-zero 
y-intercept.

During the third stage of analysis, we analyzed observation fieldnotes to identify mathematical foci
for each quadratic functions lesson. Then, we compared the foci for each lesson with the observed 
patterns of changes in reasoning identified in the second stage. We did this to generate plausible 

Table 2. Description of codes for changes in student reasoning.

Code Problem and Description of Code

Buildup vs. Abbreviated Buildup Process Problem (a): To find the dep. variable from the indep. variable of a linear 
function, students changed from buildup process reasoning to abbreviated 
buildup process reasoning, or vice versa.

Not Reversing vs. Reversing the Function Problem (b): To find the indep. variable from the dep. variable of a linear 
function, student changed from reasoning in ways that do not reverse the 
function to reasoning in ways that do reverse the function, or vice versa.

Intervals Tied to Specific Locations vs. Intervals 
not Tied to Specific Locations

Problem (c): To find the size of the interval of dep. variable that corresponds to 
a given interval size of the indep. variable, students changed from reasoning 
about intervals tied to specific locations on the function to reasoning about 
intervals in ways not tied to specific locations, or vice versa.
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explanations for the changes in reasoning, which was a goal of our exploratory study. This goal aligns 
with the approach to scientific explanation that Maxwell (2004) called process theory, which is “an 
analysis of the causal processes by which some events influence others” (p. 5). This goal is also consistent 
with the National Research Council’s (2002) view that educational research “that explores students’ and 
teachers’ in-depth experiences, observes their actions, and documents the constraints that affect 
their day-to-day activities provides a key source of generating plausible causal hypotheses” (p. 109).

Results

To address our first research question, we present three kinds of changes in students’ reasoning about 
linear functions that, according to our interpretation, involved shifts from an action to a process view 
or vice versa. The three kinds of changes involve: (a) finding linear function dependent variable values, 
(b) reversing the steps of a linear function, and (c) reasoning about intervals of a linear function. We
will show that patterns of changes sometimes cut across classes and sometimes did not. To address RQ
2, we explain how similarities and dissimilarities between the instructional approaches to quadratic
functions in the two classes helped us generate plausible explanations for the changes in students’
reasoning about linear functions.

Changes in reasoning involving finding linear function dependent variable values

One pattern of changes in reasoning involved finding a value of the dependent variable of a linear 
function for a corresponding given value of the independent variable (see Prob(a) in Table 1). Several 
students, across both classes (i.e., 41%), changed from using buildup reasoning to using abbreviated 
buildup reasoning, or vice versa (Kaput & West, 1994). We illustrate this change in reasoning, present 
frequencies of students who exhibited this change, and provide an interpretation of the change in 
terms of action versus process views of linear functions.

Illustrating this change in reasoning
To illustrate how students’ reasoning changed, consider Prob(a) responses from Isaac (Ms. H’s 
student). On the pre-assessment, Prob(a) asked “explain in words how to find the total amount of 
rainfall if the storm lasts 11 hours.” Isaac correctly wrote down pairs of heights and hours, starting at 
6 cm for hour 2 until he reached hour 11. This reasoning was consistent with buildup reasoning.

On Prob(a) of the post-assessment, Isaac’s reasoning changed. Prob(a) asked “explain in words how 
to find the height of the plant on day 17.” Isaac correctly wrote that the plant grew 2 inches/day and 
then multiplied the 2 by 17 (and added 1, presumably to account for the non-zero y-intercept). Thus, 
this reasoning involved multiplying the unit rate, which is consistent with abbreviated buildup 
reasoning (plus doing the extra step to deal with the y-intercept). Thus, Isaac exhibited a change 
from the buildup reasoning he had exhibited on the pre-assessment.

Also consider Prob(a) responses from Abby (Mr. A’s student). On the pre-assessment, Abby 
responded to the plant problem by recording a set of heights and days, starting with 1 inch on day 
1, and each day adding 2 inches to the height until she arrived at 33 inches for day 17. Abby then wrote, 
“day 17 will be 17 inches [sic] because for every day it ages it grows two inches.” Although Abby 
incorrectly wrote “17,” instead of 33 inches as her answer, her multi-step reasoning aligned with 
buildup process reasoning.

On the Prob(a) of the post-assessment, Abby’s reasoning changed.5 Specifically, on the plant 
problem Abby wrote the following: “The plant has a linear system of 2x – 1; 2 is the m because it is 
the amount of inches grown per day. x is the # of day and the –1 is what the plants height was at day 0.” 
Abby also drew arrows to x in 2x – 1 and labeled it “the day” and to –1 and labeled it “if it’s a two when 
it is at day 1, the plant is an inch below the ground.” Finally, Abby provided the following two 
examples of her reasoning, “D1: 2(1) – 1 = 1” and “D3: 2(3) – 1 = 5.” Even though Abby did not 
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provide a final height for the plant, our interpretation was that Abby was no longer using buildup 
reasoning but multiplying the day number by 2 and subtracting 1, which is more consistent with 
abbreviated buildup reasoning.

Frequency of students exhibiting this change in reasoning
Twenty-three of Ms. H’s students and 20 of Mr. A’s students provided sufficient responses to Prob(a) 
of the pre- and post-assessments for us to determine if this change in reasoning had occurred. Of these 
43 students, 9 students from each class exhibited this change in reasoning. In Ms. H’s class, 6 of the 9 
students changed from buildup to abbreviated buildup reasoning. In Mr. A’s class, 7 of the 9 students 
exhibited the same change. The remaining 5 students, 3 from Ms. H’s class and 2 from Mr. A’s class, 
changed in the opposite direction.

Interpretation in terms of action and process views of functions
We interpreted the change from buildup to abbreviated buildup reasoning as a shift from action-view 
toward process-view reasoning. Action-view reasoning is when “the subject will tend to think about [a 
function] one step at a time” (Breidenbach et al., 1992, p. 251), and is “one of repeatable actions” 
(Hines, 2002, p. 358). Multi-step buildup reasoning aligns with these descriptions. In contrast, 
process-view reasoning is when “the input, transformation, and output were present, integrated and 
fairly general” (p. 252). To us, abbreviated buildup reasoning aligns with a process view because it 
requires the more general understanding that multi-step buildup reasoning can be collapsed into 
a single calculation. We note, however, that when using buildup reasoning, students in our study often 
found the correct answer, whereas when using abbreviated buildup reasoning, sometimes incorrectly 
accounted for the non-zero y-intercept. This indicates a complexity that needs to be navigated by 
students when forming a process view of functions.

Changes in reasoning about reversing the steps of a linear function

The second pattern of change involved how students reasoned about finding values of the independent 
variable of a linear function from given values of the dependent variable (see Prob(b) in Table 1). On 
one assessment, students did not reverse the steps of the function, either by deciding it was not possible 
or by reasoning with values of the independent variable to try to produce the given value of the 
dependent variable (i.e., by not reversing the steps). On the other assessment, these students did reverse 
the steps of the function to find a value of the independent variable for a given value of the dependent 
variable. Several students exhibited this change in reasoning about linear functions (i.e., 33%). We 
illustrate this change in reasoning, present frequencies of students who exhibited this change, and 
provide an interpretation of the change in terms of action versus process views of linear functions.

Illustrating this change in reasoning
To illustrate this change in reasoning, consider Prob(b) responses from Reece (Ms. H’s student). On 
the pre-assessment, Reece wrote:

No unless that start time is given other than that no because if just given the height we do not know how long it 
has been raining. If the equation is y = 2x, and we don’t know any x the answer will be inaccurate. (?)

Here, Reece said it was not possible to reverse the steps and was unable to think of a way to find an x– 
value (indep. variable) for the equation y = 2x, if she knew the y value (dep. variable).

On Prob(b) of the post-assessment, Reece’s reasoning changed. Reece wrote: “Yes you can find 
the day if just the height was given by simply solving the equation and finding x.” Reece also illustrated 
reversing the steps by solving for x in the equation 33 = 2x – 1. We interpreted her “yes” response and 
her illustration of reversing the steps as evidence of a change toward reasoning it was possible to 
reverse the steps.
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Also consider Prob(b) responses from Arjun (Ms. H’s student). On the pre-assessment, Arjun 
wrote:

Yes you can because if you add one to the height and divide it by 2 you would get the day for example, if we were 
given the height of 9 inches and we added one in which we would get 10 and divide it by 2 we would get 5.50 on 
the 5th day we would have the height of 9 inches.

Despite the calculation error (i.e., 10 � 2 � 5.50), Arjun’s pre-assessment response indicated he 
reversed the steps of the function for the plant, y = 2x – 1, by “added by 1 and divided by 2.”

On Prob(b) of the post-assessment, Arjun’s reasoning changed. He wrote: “No, because you can 
determine how much rain fell with within an hour but not the time unless there is a timer put with the 
collector.” We interpreted Arjun’s “no” as evidence he was no longer reversing the steps of the 
function. Thus, in contrast to Reece, Arjun’s reasoning changed in the other direction, from it is 
possible to it is not possible to reverse the steps of a linear function.

Frequency of students exhibiting this change in reasoning
Fifteen of Ms. H’s students and 18 of Mr. A’s students provided sufficient responses on Prob(b) of the 
pre- and post-assessments for us to determine if this change in reasoning had occurred. Of these 33 
students, 9 in Ms. H’s class and 2 in Mr. A’s class exhibited this change (i.e., 33%). Of the 11 who 
exhibited a change, 5 Ms. H’s students and the 2 Mr. A’s students changed from reasoning it is not to it 
is possible to reverse the steps. The other 4 Ms. H’s students changed in the opposite direction.

Interpretation in terms of action and process views of functions
We interpreted the change from not reversing to reversing the steps of a linear function as a shift from 
action- to process-view reasoning. We based this interpretation on Asiala et al.’s (1996) description 
that “an individual who has a process conception . . . [can] reverse the steps of the transformation” 
(p. 7), and their conclusion that individuals unable to reverse steps would not yet have attained 
process-view reasoning. Thus, a significant number of Ms. H’s students and a small number of Mr. A’s 
students changed in terms of this aspect of reasoning about linear functions.

Changes in reasoning about intervals on a linear function

The third pattern of change involved reasoning about intervals on the dependent variable of a linear 
function that correspond to given intervals of the independent variable (see Prob(c) in Table 1). There 
were two main ways of reasoning about interval sizes, and several students, across both classes, 
changed their reasoning from pre- to post-assessment (i.e., 64%). However, the trends differed for 
the two classes.

One way students reasoned about intervals was to incorrectly assume that a given interval size of 
the independent variable was tied to a specific location on a linear function (i.e., starting at a specific day 
or hour) and that the corresponding interval of the dependent variable was tied to a specific location 
on the function as well (i.e., at a specific height of the plant or rainwater). In contrast, the other way 
students reasoned was to correctly assume that a given interval size of the independent variable was 
not tied to a specific location on the function and that the corresponding interval of the dependent 
variable was not tied to a specific location either.

Illustrating this change in reasoning

To illustrate this change in reasoning, consider the Prob(c) response from Kira (Mr. A’s 
student). On the pre-assessment, Kira wrote the following: “day 4: plant is 7 in + 2 in” and 
wrote the total as “9 in.” Then, Kira added “+1 in” with an arrow indicating “most likely grow 1 
inch in half a day.” Finally, Kira wrote “ = 10 inches” and circled this phrase. According to our 
interpretation, Kira was attempting to find the specific height on a specific day (i.e., day 6.5), by 
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adding onto the specific height of 7 inches for the specific day, day 4, rather than finding the 
change in height over a 2.5-day interval (note she also should have added 4 inches rather than 
2 inches for 2 days).

On Prob(c) of the post-assessment, Kira wrote “14 cm of water was collected . . . 4 cm per hour, 
3.5 hours.” According to our interpretation, Kira reasoned that, at 4 cm per hour for 3.5 hours, 14 cm 
would collect. This response no longer referenced specific days or heights. We concluded Kira was 
now reasoning about a 14 cm interval over an unspecified 3.5-hour interval (i.e., she changed to 
reasoning as if the interval was not tied to a specific location).

Also consider the Prob(c) responses for Kelly (Ms. H’s student). On the pre-assessment, Kelly wrote 
the following: “It grew 5 inches” and “1 day = 2 in,” “1 day = 2 in,” “half day = 1 in,” and “ = 5.” 
According to our interpretation, Kelly was reasoning with height and time intervals that were not tied 
to specific days (i.e., 5 inches over a general 2.5-day interval).

On Prob(c) of the post-assessment, Kelly wrote the specific hours, 4, 5, 6, 7 and 7.5. Then, under 
each corresponding hour, she wrote the respective specific heights 14, 16, 18, 20 or 21. She also noted 
that, for each hour, the height increased by 2 cm, whereas from 7 to 7.5 hours, the height increased by 
1 cm. Finally, Kelly wrote down and circled 21 cm as the final answer. Thus, Kelly had changed from 
reasoning about a general interval to reasoning about specific heights (i.e., 14, 16, 18, 20, and 21 cm) at 
specific hours (i.e., hour 4, 5, 6, 7, and 7.5).

Frequency of students exhibiting this change in reasoning
Of the 34 students that provided a sufficient response to Prob(c) of the pre- and post- 
assessments for us to determine if this change had occurred, 9 of 13 Ms. H’s students and 13 
of 21 Mr. A’s students exhibited this change reasoning. Six of the 9 Ms. H’s students, and 5 of 
the 13 Mr. A’s students changed from reasoning about intervals of linear functions as if they 
were tied to specific locations to reasoning about general intervals. The remaining students 
changed in the other direction.

Interpretation in terms of action and process views of functions
According to our interpretation, reasoning with intervals of the independent variable of a linear 
function in ways that are tied to a specific location on the function is more consistent with an action 
view. As Slavit (1997) described, “An action conception is concerned with the computation of a single 
quantity for a single numeric value” (p. 261). Students who are thinking about functions as computa-
tions of single outputs for single inputs, would likely think about intervals for inputs and outputs as 
tied to the specific location on a function on which they were calculated.

In contrast, when students reasoned about independent variable intervals for a linear function as 
general intervals, we interpreted that as more consistent with a process view. Our interpretation is 
based on descriptions that process-view reasoning is when learners understand “it is not necessary to 
perform the operations [of the function], but to only think about them being performed” (Asiala et al., 
1996, p. 8). Being able to think about a function without operating on inputs to find outputs is 
necessary for reasoning about general intervals of linear functions (i.e., those not tied to specific 
locations). This aligns with Hines (2002) description that a process view involves reasoning about 
linear functions as generalized processes.

Features of the instructional approaches that may account for changes in reasoning

Our second research question asked, In what ways do particular instructional approaches to 
teaching quadratic functions offer plausible explanations for the changes in students’ prior ways 
of reason about linear functions? To address this question, we examined observation fieldnotes from 
the quadratic functions units to identify plausible explanations—as per Maxwell’s process theory 
(Maxwell, 2004) and Sloane’s (2008) view of the purpose of exploratory/basic research—for why 
students’ reasoning changed. We focused our analysis for the second question on how the 
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instructional approaches during the quadratic functions units addressed (a) finding values of the 
dependent variable of a quadratic function, (b) reversing steps of a quadratic function, and (c) 
reasoning about quadratic functions in ways tied or not tied to specific locations. Our analysis of the 
fieldnotes revealed plausible explanations for the changes we observed in students’ prior ways of 
reasoning about linear functions.

Finding values of the dependent variable of a quadratic function
Recall that to find values of the dependent variable of a linear function, several students in both classes 
on one assessment used buildup process reasoning and, on the other assessment, used abbreviated 
buildup process reasoning. When we examined our fieldnotes from the quadratic functions units, we 
found that both teachers generated dependent variable values exclusively by substituting values of the 
independent variable into equations. This approach was used by Mr. A in Lesson 1 (L1) and L2 and by 
Ms. H in L3, L4, and L5. In neither class was buildup process reasoning exhibited. The following 
excerpt from Mr. A illustrates how both teachers generated dependent variable values for quadratic 
functions:

How would I graph that? . . . Somebody said, put a zero in, well where am I putting a zero in? . . . For your x’s. Sort 
of like what [S] just told us, you plugged them in for the x’s to get your y value.

We interpreted this approach as more consistent with abbreviated buildup process reasoning because 
dependent variable values were generated without building up on previous values.

Instead of this approach, the teachers could have used buildup process reasoning that built each 
successive value of the dependent variable of a quadratic function on the previous value (see the 
Appendix for an illustration). We hypothesize that the lack of buildup process reasoning was 
a potential reason why more students changed from using buildup process reasoning on the pre- 
assessment to using the abbreviate buildup process reasoning on the post-assessment. In other words, 
we hypothesize that how teachers generate dependent variable values for quadratic functions may 
influence students as to how they generate dependent variable values when they subsequently reason 
about linear functions (i.e., a backward transfer influence).

Reversing the steps of quadratic functions
Recall that several students, especially Ms. H’s students, reversed the steps of a linear function to (i.e., 
they solved for the independent variable) on one but not both assessments. When we examined the 
instructional approaches during the quadratic function units, we found dissimilarities in the ways the 
teachers reversed steps of quadratic functions. These dissimilarities in the quadratic function instruc-
tion may help explain differences in changes in reasoning about linear functions across the two classes.

During the quadratic functions units, the teachers promoted four strategies for reversing the steps 
of quadratic equations: (a) using the square root operation when the side of the equation containing the 
independent variable is a perfect square (e.g., (x+ 4)2 = 10); (b) completing the square when the side 
containing the independent variable is not a perfect square (e.g., x2 + 6x + 8 = 7); (c) factoring and then 
using the zero-product property when the equation is equal to zero and factorable (e.g., x2 – 6x +8 = 0); 
and (d) using the quadratic formula for any and all quadratic equations.

There were significant dissimilarities between classes with respect to using these strategies. Ms. 
H used the zero-product property in part of L6 and L7, and the quadratic formula in part of L8, L15, 
and L16. In contrast, Mr. A used the square root operation in part of L3 and L5, and all of L4; factoring 
and the zero-product property in part of L5 and L9, and all of L8; completing the square in part of L9 
and all of L10; and the quadratic formula in all of L11 and part of L12. Thus, Mr. A offered more 
experiences reversing the steps of quadratic functions.

More focus on reversing the steps of quadratic equations in Mr. A’s class may help explain why 
Mr. A’s students only changed from not reversing the steps of a linear function on the pre-assessment 
to reversing the steps on the post-assessment. In contrast, the more limited focus on reversing the steps 
of quadratic equations in Ms. H’s class may help explain why similar numbers of her students changed 
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their reasoning about reversing the steps of linear functions from pre- to post-assessment in either 
direction. In other words, we hypothesize that different levels of focus on reversing the steps in 
quadratic contexts may lead to different backward transfer influences on how students subsequently 
reverse the steps in linear contexts.

Reasoning about quadratic functions in ways tied or not tied to specific locations
Recall that several students in both classes reasoned on one assessment about intervals of a linear 
function in ways tied to specific locations on the function, and on the other assessment in ways not tied 
to specific locations. When we examined the instructional approaches during the quadratic function 
units, we found dissimilarities that may help explain the differences in changes in reasoning across the 
two classes. Specifically, we found dissimilarities that have to do with identifying and reasoning about 
landmark features of quadratic functions. By landmark features, we mean features of a quadratic 
function that help define the entire function.

In Ms. H’s quadratic functions unit, during part of L1, nearly all of L2 and L3, and part of L4, she 
focused on finding and reasoning about the following four landmark features: the axis of symmetry, 
the vertex, the maximum or minimum, and the y-intercept. In contrast, in Mr. A’s unit, only brief 
parts of L2 and L3 focused on landmark features. Instead, his unit focused more on calculating non- 
landmark points of quadratic functions.

According to our interpretation, finding and reasoning about landmark features of quadratic 
functions is more consistent with finding and reasoning about intervals of linear functions in ways 
that are not tied to specific locations on the functions. Our reasoning is that landmark features of 
a function have relevance for the entire function, not just for a specific location on the function. For 
example, the axis of symmetry has relevance for an entire quadratic function. Ms. H’s greater emphasis 
on landmark features for quadratic functions may help explain why more of Ms. H’s students went from 
reasoning on the pre-assessment about a specific interval on a linear function to reasoning on the post- 
assessment about a general interval on a linear function. In other words, we hypothesize that emphasiz-
ing landmark features of quadratic functions during instruction may have backward transfer influences 
on how students reason about intervals on linear functions that are not tied to specific locations.

We also note an additional consideration we made regarding intervals at specific locations. 
Specifically, we considered the property of quadratic functions that for a particular given size of 
interval of the independent variable, the specific location of that interval will determine the size of 
interval of the corresponding dependent variable, and we initially wondered if this property would 
influence students to focus more on specific intervals for linear functions. However, we ended up not 
considering this a likely influence from either quadratic functions unit because neither teacher focused 
on intervals during their unit.

Discussion

This study demonstrated that, despite the myriad of reported findings about how prior ways of 
reasoning influence new learnings, discoveries remain to be made about how new learnings influence 
prior ways of reasoning (i.e., discoveries about backward transfer). Our study adds to the growing 
evidence of the relationship between prior ways of reasoning and new learning in the less-researched 
backward direction (e.g., Bagley et al., 2015; Gentner et al., 2004; Macgregor & Stacey, 1997; Melhuish 
& Fagan, 2018). Although evidence of backward transfer from quadratic functions instruction to linear 
functions reasoning already exists (e.g., Hohensee, 2014; Lima & Tall, 2008), previously there has not 
been a systematic examination of students’ linear function reasoning while they learn about quadratic 
functions in real classrooms. Our findings offer a window into what actually happens. Our explora-
tory/basic research has also generated hypotheses that need to be tested in future research. This aligns 
with Sloane’s (2008) description of exploratory/basic research:
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The researcher’s or practitioner’s intuition leads him or her to some conclusion based on limited data, with 
myriad alternative hypothesis and with great opportunities to be wrong. The point, however, is that the researcher 
also has the possibility to be right. (p. 627)

Tests of the hypotheses we generated have the potential to help shape the field’s thinking about how 
knowledge of linear and quadratic functions develops, and perhaps also about how knowledge of 
mathematics more broadly develops.

We make two additional comments. First, our teachers did not intentionally attend to influences 
their quadratic functions instruction had on their students’ reasoning about linear functions, and thus 
may have unintentionally produced inconsistent influences. Thus, we find it understandable that 
students in the same class may have been influenced in different ways. Second, in our experience, 
reasoning does not just change on a whim, but is usually due to some influence. Thus, we think it more 
likely that the changes in reasoning found in our study were due to some influence, rather than that 
they were arbitrary or capricious. Next, we discuss insights our exploratory study generated.

Insights into backward transfer in real algebra classrooms

Our study led us to new insights into ways backward transfer can manifest itself in real 
classrooms. First, our study suggests backward transfer can manifest itself as students changing 
strategies to solve problems (e.g., changing from using a buildup process to an abbreviated 
buildup process). Second, backward transfer can manifest itself as students reversing their 
conclusions (e.g., reversing from concluding it is not possible to find independent variable values 
from dependent variable values to concluding it is possible). Third, backward transfer can 
manifest itself as students changing their interpretation of a problem (e.g., changing how an 
interval for a function is interpreted). Our findings also have implications for teaching and 
learning about functions.

Insights into the teaching and learning of functions

Several insights emerged from our study that pertain to the teaching and learning of functions in 
general. First, our study suggests potential ways students’ action versus process views of functions may 
change and evolve. Breidenbach et al. (1992) pointed out that the process of moving from an action to 
a process view, also referred to as the process of interiorization, involves “reconstructing previous 
knowledge to deal with new situations” (p. 277). Our study suggests that interiorization may some-
times involve setbacks, at least temporarily, toward more of an action view.

Second, this study suggests that students’ conceptions of inverses of previously encountered 
functions may be influenced by the learning of new functions. This is important because inverses of 
functions are of central importance (Greer, 2012), but can be difficult to learn about (Cedillo, 2001). 
Backward transfer offers a potential mechanism for how students’ reasoning about inverses of 
previously encountered functions can be productively influenced.

Third, this study suggests that instruction about new functions may change how students 
think about extending patterns or relationships for functions previously encountered. Recall 
that Ellis (2007) called it extending when students increase the range to which a mathematical 
relationship applies. Students in our study demonstrated extending when they went from 
interpreting an interval as applying to a specific point on a function to interpreting the 
interval as general (i.e., applying to the entire function). As per Sloane (2008), these insights 
from our exploratory/basic research should become the subject of more rigorous inquiry in the 
future.
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Insights into the teaching of quadratic functions

Our study of backward transfer also provides potential insights into teaching quadratic functions 
specifically. First, as stated above, our study suggests it may sometimes be useful for quadratic 
functions instruction to engage students in reasoning about quadratic functions that resembles 
buildup process reasoning with linear functions, so as not to create a backward transfer influence 
that discourages buildup process reasoning in linear functions contexts (see the Appendix for an 
illustration). This insight emerged from our observation that students in our study were more often 
correct on linear function problems with non-zero y-intercepts when using buildup process reasoning. 
Teachers may be advised to use quadratic functions instruction to encourage some buildup process 
reasoning, thereby supporting students who have not yet learned how to correctly use abbreviated 
buildup reasoning in non-zero y-intercept linear function contexts.

Second, our study suggests that teachers should consider engaging students in significant 
reasoning about landmark features of quadratic functions. This is because of the potential that 
exists for backward transfer influences to be produced that focus students on general features of 
linear functions instead of just on specific values (i.e., that promote extending). Focusing on 
general features over specific values is also more consistent with a process view of functions 
(Breidenbach et al., 1992). These insights about quadratic functions instruction, if implemented 
together, could create synergistic productive backward transfer effects on students’ ways of 
reasoning about linear functions, and thus need to be subsequently investigated with more 
rigorous research, as per Sloane (2008).

Insights into the learning of linear functions

Finally, the results from this backward transfer study also provide new insights into how students learn 
about linear functions. Specifically, our study shows that aspects of reasoning about linear functions 
that have been reported in the mathematics education literature may be involved in backward transfer 
effects. For example, Hines’s (2002) finding that students either reason about linear functions as 
“individual input and output values” (p. 358) or as “generalized processes” (p. 340) may be associated 
with backward transfer because some students in our study moved from one to the other. This suggests 
that the transition from thinking about linear functions as inputs and outputs to thinking about them 
as generalized processes may be influenced by quadratic functions instruction.

Second, our study suggests that the transition from using buildup process reasoning to using 
abbreviated buildup process reasoning about linear functions may also be initiated when students 
learn about quadratic functions. However, as stated above, this transition may not be something 
teachers should overemphasize while students are not yet able to appropriately engage in abbreviated 
buildup process reasoning in non-zero y-intercept linear function contexts. Future research is needed 
to unpack how and when to implement these instructional principles.

Conclusion

This exploratory study set out to look for backward transfer effects from quadratic functions 
instruction on students’ prior ways of reasoning about linear functions in two real mathematics 
classrooms. We showed that three categories of changes in prior ways of reasoning about linear 
functions were produced, that those changes involved action versus process views of functions, and 
that the teachers’ approaches to quadratic functions helped to account for similarities and differ-
ences in changes in reasoning across the two classrooms. Significantly, our findings represent the 
first reported evidence from real classrooms of the relationship between prior ways of reasoning and 
new learning in the backwards direction (i.e., from new learning to prior ways of reasoning). Thus, 
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our study takes an important first look at backward transfer effects in real classrooms, and reveals 
various ways backward transfer effects on prior ways of reasoning about linear functions may 
manifest themselves.

Notes

1. Breidenbach et al. (1992) also proposed two other categories, namely reasoning about functions as objects and as 
schemas. However, in our study we did not see evidence of these ways of reasoning about functions. Also, our 
focus on just action and process views is consistent with the focus of Breidenbach et al.

2. An abbreviated buildup process could be used apart from a linear equation or as part of using a linear equation.
3. Other problems on the assessment were designed to look at correspondence vs covariational reasoning about 

functions (Confrey & Smith, 1995), and at levels of covariational reasoning (Carlson et al., 2002). Since this was 
an exploratory study, we used an array of types of problems to capture as many influences on students’ reasoning 
as we could. We reported findings from the other problems elsewhere (Hohensee et al., 2021).

4. The following link provides an overview of quadratic function topics covered in each lesson: (https://drive.google. 
com/file/d/1IVukvuOni8WfNvC-iEgT_GwHjxGA0faX/view?usp=sharing).

5. Note that Abby completed the same version of the assessment pre and post.
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Appendix

To explain what we mean by engaging students in reasoning about quadratic functions that resembles buildup 
process reasoning, consider the following description. A teacher could help students see that for y = x2 (i.e., the 
parent quadratic function), as x starts at 0 and builds up by 1, y starts at 0 and builds up by 1, by 3, by 5, by 7, 
etc. Then, for quadratic functions with a constant term, the teacher could help students see that a similar buildup 
of y occurs as for the parent function, except that as x starts at 0 and builds up by 1, y starts at the constant term 
and the buildup for y is adjusted by adding the constant term (e.g., for y = x2 + −2, as x starts at 0 and builds up 
by 1, y starts at −2, and rather than building up by 1, by 3, by 5, by 7, etc., builds up by 1 + -2, by 3 + -2, by 5 + 
-2, by 7 + -2, etc.). For quadratic functions with a linear term, the teacher could help students see that a similar
buildup of y occurs as for the parent function, except that as x starts at 0 and builds up by 1, the buildup for y is
adjusted by adding the value of the linear term (e.g., for y = x2 + x, as x starts at 0 and builds up by 1, y starts at
0, but rather than building by 1, by 3, by 5, by 7, etc., builds up by 1 + 1, by 3 + 2, by 5 + 3, by 7 + 4, etc.).
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