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Abstract
Research methodologists typically use descriptive statistics and plots to report the findings 
of Monte Carlo experiments. But previous literature suggests that Monte Carlo results 
deserve careful analysis rather than relying on simple descriptive statistics and plots of 
results, given the complex data conditions in simulation studies. As an alternative, data 
mining methods can also help readers digest Monte Carlo experiments. Therefore, our 
paper uses data mining methods to provide two novel contributions. First, we use detailed 
descriptions and code to illustrate how to use two data mining methods to analyze results 
from Monte Carlo experiments. Second, we demonstrate how data mining methods can 
be used in conjunction with interpreting plots, performing analysis of variance tests, and 
calculating effect sizes. Our study raises the awareness that there are alternative methods 
to interpretation and serves as a guide to readers for explaining the importance of 
manipulated conditions in Monte Carlo experiments.
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Introduction

Monte Carlo simulations allow researchers to investigate the relationship between the perform-
ance of model estimators and experimental attributes or conditions with generated data. Because 
social and behavioral science data do not always exhibit the attributes required for valid applica-
tions of a statistical method, Monte Carlo experiments have long been essential to research efforts 
within measurement and statistics (Robey and Barcikowski 1992; Xu, Fang, and Ying 2020). For 
example, Meyer’s (2010) and Lu et al. (2020) Monte Carlo experiments tested finite mixture mod-
els that detect guessing on standardized tests.

The substance of our paper is the application of data mining techniques as an alternative and 
potentially more useful means to visualize and explain the results of Monte Carlo experiments. 
Our article is a response to calls for better reporting of Monte Carlo experiments in measurement 
(and other disciplines) (Hoaglin and Andrews 1975; Halperin 1976; Hauck and Anderson 1984; 
Boomsma 2013; Sechopoulos et al. 2018).

Often, quantitative researchers find Monte Carlo simulation studies difficult to conceptualize. 
Additionally, readers of simulation research seek guidance for decision-making about estimation 
for their specific data. Complicated-to-digest reporting can impact the reach and validity of 
Monte Carlo experiments. The use of Monte Carlo simulation in social and behavioral research 
will likely continue to increase as computer processor speed advances and studies become 
more elaborate.

In the present work, we illustrate classification trees and random forests approaches for analyz-
ing the results of Monte Carlo experiments. These data mining techniques are well-known but
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are demonstrated in a step-by-step format, with guidelines and a detailed implementation for the
purpose of reporting findings of simulation studies. We hope that research methodologists who
commonly report works involving Monte Carlo experiments will consider data mining techniques
as an alternative and potentially better means to visualize and explain results. To show the bene-
fits and novelty of the proposed approach, we experiment on a popular topic in measurement
and statistics, model fit. Then, we present and contrast results among traditional and data min-
ing methods.

Related works

The downside to tradition

According to Boomsma’s (2013) guidelines for reporting Monte Carlo simulations, the most
widely used approaches to present and evaluate the relationship between outcomes and explana-
tory variables are basic descriptive and inferential methods. Many Monte Carlo experiments com-
pare estimates with the known or ideal outcomes to obtain the response or outcome variables. In
a recent survey of reporting simulation studies in statistical research (Harwell, Kohli, and Peralta-
Torres 2018), authors found 99.9% of the simulation studies published in target journals between
1985 and 2012 limited analyses of simulation results to descriptive approaches (i.e., tables and
plots). The experimental conditions with multiple levels, such as different levels of sample size or
estimation methods, are commonly referred to as explanatory variables. An obvious downside of
descriptively reporting the average performance is that it becomes constrained as the number of
manipulated experimental factors and conditions increase.

Harwell, Kohli, and Peralta-Torres (2018) surveyed 677 published Monte Carlo studies pub-
lished in educational/psychological methods and statistical journals (Biometrics, British Journal of
Mathematical and Statistical Psychology, Biometrika, Journal of the American Statistical
Association, Technometrics, and Psychological Methods), and found that less than 1% used ana-
lysis of variance (ANOVA), linear or logistic regression, or some other inferential procedure. In
fact, approximately 99% used simple descriptive statistics and/or plots (these percentages are
about the same for Communications in Statistics – Simulation and Computation).

Although these inferential methods are considered more straightforward and more readily
understood compared with descriptive approaches, hindrances still exist when it comes to com-
plex data conditions. Also, when computing and interpreting any effect size, it is important to
refer to appropriate sources (Sawilowsky 2009; Yigit and Mendes 2018).

Another shortcoming of many parametric regression-based methods is the user-specification
requirement for dealing with possible non-linear relationship between the performance variable
and experimental conditions. These simple inferential methods are not capable of capturing all of
the possible nonlinear or higher-order interactions automatically without explicit, manual specifi-
cation by researchers. However, accurately specifying all appropriate interaction terms might be
challenging, because this is subjective to researchers’ understanding of the domain knowledge
which results in possible misspecification of nonlinear patterns. So parametric regression-based
methods cannot capture all possible, non-theorized interactions.

Novel applications of well-known methods

Data mining methods are non-parametric, meaning that they do not need to pre-assume the rela-
tionship between outcome variables and experimental factors. Such techniques are necessary for
complex statistical conditions in Monte Carlo experiments. A central problem in data mining at-
large involves choosing the best method for a given application. Using data mining methods to
improve the interpretation of information from large amounts of data is well established.
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However, they are not commonly applied in the context of analyzing Monte Carlo experiments
in social and behavioral research. Even more so, knowing how to choose the method is limited to
experts in other disciplines such as computer science. Table 1 summarizes the advantages and
disadvantages of data mining techniques to derive interpretable decisions from Monte Carlo
experiments.

The following sections introduce two data mining methods, classification trees and random
forest algorithms, in the applied context of analyzing Monte Carlo studies.

Classification trees

Classification and regression trees (CART) are widely used in the data mining field to visualize
results with an intuitive tree diagram (Tang et al. 2021). Figure 1a shows a classification tree for
a yes/no outcome. For each condition, f , the classification tree uses recursive binary splitting,
which segments the categorical predictor into regions and puts each observation into the region
with the most occurring cases (James et al. 2013). CART approaches use a greedy technique that
automatically searches for nonlinear relations and underlying higher-order interactions among
explanatory variables. More importantly, CART can facilitate the intuitive interpretation of our
simulation results by visualizing all the situations in a recursive partitioning tree diagram. CART
approaches can also be visually displayed in other two- and three-dimensional figures (see Figure
1b and 1c). For more information on decision tree visualization for high-dimensional data, read-
ers are directed to Sz€ucs and Schmidt (2018).

A recent study (Gonzalez et al. 2018) reanalyzed a published Monte Carlo study with classifi-
cation trees. Gonzalez et al. suggested that CART was capable of providing similar conclusions
compared to descriptive and inferential approaches. When the relationship between the predictors
and the outcome in Monte Carlo simulations is not in linear functional form, CART may outper-
form conventional regression approaches in dealing with complex interactions which are not the-
orized (Gonzalez et al. 2018). CART automatically tests non-theorized interactions without

Table 1. A summary of data mining techniques.

Data mining technique Advantages Disadvantages Literatures
Monte Carlo

performance outcome

Adaboost Fast and easy
to program

Vulnerable to
uniform noise

Ying et al. (2013) Categorical
or Continuous

Artificial
neural network

Simplicity; nonlinear;
able to obtain high
performance
accuracy

Requires extensive
training; often
overfits; difficult
to interpret

Rashid (2016) Categorical
or Continuous

Bayesian
(belief) networks

Output is explicitly a
probability; easy
inspection and
interpretability

No universally
accepted method
for construction

Canonne et al. (2016) Categorical

Decision trees Handling in
nonnumeric data;
simplicity; easy
to visualize

Tends to overfit Horning (2013) Categorical
or Continuous

Random forest Maintains accuracy
when large
amounts of data
are missing

Poor accuracy with
continuous
outcomes

Horning (2013) Categorical
or Continuous

Support
vector machine

Classification without
representing the
feature
space explicitly

Expressing the more
complex prior
information;
analyzing
limited samples

Xuegong (2000) Categorical
or Continuous
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manual specification, which can be subjective to the researchers’ knowledge, and visualizes the
results more intuitively.

Random Forest

Data miners may avoid CART, because interpreting a large number of splits can be difficult.
Additionally, small changes in the data can lead to different initial splits and drastically different
trees (Burgette and Reiter 2010). Other approaches, such as random forest, have shown to have
better predictive performance compared with classification trees (Hastie, Tibshirani, and
Friedman 2009; Chipman, George, and McCulloch 2010). The random forest algorithm uses mul-
tiple, uncorrelated CART models. From many “trees” programmers get a “forest.” The results and
output of the random forest algorithm is a set of variables ranked according to its power to select
the conditions that best predict an outcome.

Random forests analyze Monte Carlo simulations by selecting iterations and specific manipu-
lated conditions at random to create multiple classification trees and then averaging the results.
When partitioning the data, however, random forests choose a subset of predictors at random. A
tuning parameter is the number of variables selected at random as potential variables for parti-
tioning the data. Tuning parameters such as the number of trees can increase the model’s accur-
acy. More trees result in more computationally costly models, implying that the algorithm will
take more steps to finish (Li et al. 2021). Later, we will discuss why we chose 501 trees and why
this number varies from one analysis to the next.

Once the algorithm produces a large number of trees, each tree decides the most likely out-
come on the performance measure. The outcome receiving the most selections across trees is the
predicted outcome or classification. We built our random forest models using a method known
as "bagging," in which all variables are potential variables for splitting the data (Breiman 1999).

For example, let us assume a sample S of Monte Carlo simulations.

S ¼
fA1 fB1 fC1
..
. ..

. ..
.

fAI fBI fCI

C1

..

.

CI

(1)

Sample S includes I iterations, and fA1, fB1, and fC1 are conditions of our experiment. So fA1 is
the first condition of the first iteration. Then, we continue up to the Ith iteration. In the final

Figure 1. Two-dimensional (2-D) and three-dimensional (3-D) CART visualizations. (a) Top-down decision tree on a 2-D space,
which is also shown in (b). Straight lines symbolize decision planes produced by the decision rules. (c) 3-D example with hyper-
rectangles that overlap. Overlap oftentimes indicates data points that are not linearly separable (Sz€ucs and Schmidt 2018).
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column of our sample, we have C1 and CI; which denotes having multiple conditions in our
simulation study (Breiman 1999).

We will randomly select subsets S1, S2, SM from our sample S of Monte Carlo simulations.

S1 ¼
fA12 fB12 fC12
fA15 fB15 fC15
..
. ..

. ..
.

fA35 fB35 fC35

C12

C15

..

.

C35

S2 ¼
fA2 fB2 fC2
fA5 fB5 fC5
..
. ..

. ..
.

fA26 fB26 fC26

C2

C5

..

.

C26

SM ¼
fA7 fB7 fC7
fA9 fB9 fC9
..
. ..

. ..
.

fA13 fB13 fC13

C7

C9

..

.

C13

(2)

Let’s assume that S1 randomly selected iterations 12, 15 and 35, which is one third of the data.
The remaining data from our simulation is often called, “out-of-bag data” (Breiman 1999). After
we create a classification tree for S1 the out-of-bag data will be used to test the tree and subse-
quently the entire forest of trees. The average misclassification across trees is known as the “out-
of-bag error estimate” (Cutler, Cutler, and Stevens 2012).

Then, we can determine the most important conditions in our simulation by taking the mean
decrease in accuracy (MDA). A score near zero indicates a poor relationship between given con-
ditions and accuracy. MDA scores indicate how manipulated conditions are important for accur-
ate cluster enumeration (Cutler, Cutler, and Stevens 2012).

Beyond using the typical ANOVA approach to analyze Monte Carlo simulation outcomes, we
propose to apply the CART and random forest approaches. Using a Monte Carlo simulation that
explores model fit in finite mixture modeling, the remainder of this paper compares the results of
CART and random forest approaches to traditional methodologies. The model fit or performance
metrics used for comparisons were the Bayesian information criterion (BIC; Schwarz 1978) and
relative entropy (Kim et al. 2016). We chose these performance measures because many readers
of this article apply them in isolation and will understand that each is sensitive to the conditions
manipulated in our study. These considerations make for an ideal demonstration of how data
mining techniques can aid in the interpretation of simulation complexities.

Methodology

Our demonstration evaluates cross-validation techniques and measures of model fit for detecting
the number of clusters in latent profile analysis (LPA), a finite mixture model increasing in popu-
larity within social and behavioral research (Bravo, Pearson, and Kelley 2018; De Clercq et al.
2019; Shim et al. 2020). A latent categorical variable has continuous indicators for LPA. Each
latent profile p reveals itself through responses to a set of locally independent indicators xvðv ¼
1, :::, nÞ: The LPA density function f xvhð Þ ¼ is given by

f xvjhð Þ ¼
XP
1

ppfpðxvjhpÞ: (3)

The probability of belonging to p is pp and fpðxvjhpÞ is a profile-specific normal density function
with profile-specific mean vector and covariance matrix hp ¼ ðlp, RpÞ (Collier, Zhang, and
Johnson 2021).

We simulated LPA data using R version 3.6.0 (R Core Team 2019). Models were fit using
Mplus 8.1 software. Overall, three factors were manipulated: sample size (N¼ 250, 500, 1,000,
and 2,000), class separation (Mahalanobis distance (MD) ¼ .5, .8, 1.2, and 2), and validation
method (hold-out, k-fold, j x k-fold, and bootstrap). Fixed factors (i.e., the true number of latent
classes, number of indicators, and the number of replications) were determined based on exten-
sive review of previous simulation studies evaluating model fit for finite mixture models (Lo,
Mendell, and Rubin 2001; Nylund, Asparouhov, and Muth�en 2007; Tofighi and Enders 2008; He
and Fan 2019). Fixed factors simulated in the population models were three latent profiles with
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five indicators. We simulated one thousand datasets for each combination of conditions manipu-
lated. We generated a total of 64,000 datasets in this project and fitted each dataset to two, three,
four, and five-class models.

Cross-validating latent profile analyses

Masyn (2013) explained a generic cross-validation approach, which we will refer to as “hold-out”:

Step 1. Randomly select two subsamples with equal numbers of observations, a “calibration” data-
set and a “validation” dataset.

Step 2. Using the calibration dataset from the previous step, compare model fit indices for Pþ 1
profile models until the final model is chosen.

Step 3. Store the last model parameters estimated in Step 2.
Step 4. Fit the model to the validation dataset with the parameters from Step 3.
Step 5. If the parameters estimated with the calibration dataset fit the validation dataset, then the
P profile model is supported (Collins et al. 1994; Collier, Zhang, and Johnson 2021).

Step 6. Fit the P profile model to the validation dataset
Step 7. Compare the model parameters from Step 6 with the model parameters from Step 3 using
a nested-model likelihood ratio test. If there is not a significant decrement in fit for the fixed-
parameter model, P latent profiles can be considered stable across the two subsamples. Hold-out
is the simplest method of cross-validation and is prone to sample bias, because it requires ran-
dom sampling of the data points for each sample. That may not be representative, because
changing the splitting pattern may change the result (Kim 2009). We compare variates of hold-
out cross-validation.

k-fold

Grimm, Mazza, and Davoudzadeh (2017) proposed using k-fold cross-validation as an additional
step to validate the number of clusters in a mixture model. The main difference in this approach
is that in Step 1, the researcher divides the original dataset into any number of k partitions. For
example, if a dataset has 200 data points and k¼ 10, there would be 20 observations in each split
of data. Steps 2–7 are completed k times such that each partition is part of the calibration dataset
k� 1 times and part of the validation dataset one time. Grimm et al.’s recommendations were
limited in that they derived from a single empirical study. Thus, the researchers had no way to
determine if cross-validation selected the correct number of classes for the growth mix-
ture model.

j x k-fold

Previous literature argues that variability of estimates is more important than bias and advocates
for fewer k partitions, as in k-fold cross-validation. In j x k-fold cross-validation, j independent k-
fold cross-validations are used to assess performance. So, in summary, j x k-fold is repeated k-
fold cross-validation. The technique averages the k-fold estimate from j different partition choices.
Although not tested in finite mixture models, empirical studies show that repeated cross-valid-
ation reduces variability of estimates (Chen et al. 2012; Vanwinckelen and Blockeel 2015; Jiang
and Wang 2017), especially for smaller datasets (Rodr�ıguez et al. 2010).
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Bootstrap

Tibshirani and Efron (1993) introduced and fully described the bootstrap method. Given a dataset
of size n, researchers in machine learning fields created a bootstrap sample by sampling n instan-
ces from the data with replacement (Kohavi 1995). Unlike “Step 1” for cross-validation techni-
ques, bootstrapping draws with replacement. A bootstrapped dataset may contain multiple of the
same cases, therefore, altogether omitting other cases. The remaining steps, two-seven, are the
same for bootstrap methods.

Analysis

We evaluated the performance of cross-validation and bootstrap methods for selecting the accur-
ate number of latent profiles in LPA. So, our main outcome variable was a binary indicator of
replications that correctly enumerated the three-profile model based on two measures of model
fit, the Bayesian information criterion (BIC; Schwarz 1978) and relative entropy (Kim et al.
2016). Schwarz (1978) proposed BIC based on Bayesian arguments:

BIC Pð Þ ¼ � 2LogLiklihood Pð Þ þ k ln Nð Þð Þ : (4)

where BIC has P latent profiles and includes the effect of the sensitivity of the likelihood function
as a function of the k parameters.

Entropy is a type of statistic that measures latent cluster separation:

Ec ¼ 1� RiRpð� dprobip ln dprobipÞ
nlnp

(5)

where n denotes the number of observations and dProbip is the conditional probability of an indi-
vidual i belonging in profile p (Kim et al. 2016). Entropy with values approaching 1 indicates
clear separation of profiles (Celeux and Soromenho 1996). A general rule of thumb for acceptable
values of entropy is �.80. Lower values of entropy have significant effects on interpretability and
fit of mixture models (Bakk et al. 2013, 2014; Lubke and Muth�en 2007; Park et al. 2010;
Vermunt 2010).

Analysis of variance

In order to explain the effects of the manipulated conditions, we used a mixed-design analysis of
variance (ANOVA). Then, we calculated generalized eta squared ðG g2; Olejnik and Algina
2003) measures of effect size, which sorted the manipulated conditions concerning the magnitude
of their effect on model fit indices. Two ANOVAs were fit for BIC and entropy. We used
ANOVAs to differentiate the contributions from the manipulated factors of each study and pos-
sible interactions among them. In these mixed-design ANOVAs, the between-dataset factors were
sample size, class separation, and the number of tested classes. The within-dataset factor was val-
idation methods, with four levels: hold-out, k-fold, j x k-fold, and bootstrap. Effects with G g2

above .001 were examined because they were large enough to qualify for interpretation (Olejnik
and Algina 2003).

Classification trees

We used the rpart package in R-3.6.1 to visually represent the most likely conditions for selecting
the correct number of latent profiles under all 64 conditions with classification trees. Below we
provide pseudocode for our implementation of the CART algorithm in the supplementary
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material. The pseudocode is readable to methodologists who may not know Fortran, R, or other
programming languages.

1. Randomly select 80% of the simulation for training and 20% for testing.
2. Select the most predictive manipulated conditions of the training dataset at the top or root

of the classification tree.
3. Split the training set into equal subsets for each condition.
4. Repeat steps one and two on each subset until you find leaf nodes in all the branches of the

classification tree.
5. Take the simulations for testing and use the trained classification tree model to predict the

correct number of latent profiles.

To evaluate the performance of this data mining implementation, we calculated error rates by
using a misspecification table and adding the incorrect number of classifications divided by the
total number of observations in the test dataset.

Random Forest

We used the random forest algorithm to extract from the Monte Carlo simulations the conditions
that were most relevant for selecting the correct number of latent profiles. We estimated the
importance of manipulated conditions by determining the percentage increase in prediction error,
arising from the exclusion of a manipulated condition. Thus, conditions with large values contrib-
ute most to the prediction accuracy in our simulation study (Hardman, Paucar-Caceres, and
Fielding 2013). As with the classification tree analyses, the random forest algorithm predicted bin-
ary indicators of whether or not the performance measures matched with the correct number of
latent profiles. We employed the randomForest package (Liaw and Wiener 2002) to implement
Breiman’s (2001) random forest algorithm for classification as follows (R code is available in the
supplementary material):

1. Randomly select 80% of the simulation for training and 20% for testing.
2. Randomly select c manipulated conditions from the total C conditions (i.e., each combin-

ation of the manipulated factors) and i iterations from the total of I iterations; where c<C
and i< I

3. Among the c conditions, calculate the node “d” using the best split (same as step three in the
classification tree algorithm).

4. Split the root node into subsequent (i.e., daughter) nodes using the best split.
5. Repeat steps one through three.
6. Build forest by repeating step 2 through 5 for 501 times to create 501 trees.

Step 5 demonstrates the bagging approach described earlier, where each tree in our model is
independent and constructed using a bootstrapped sample of the full dataset of Monte Carlo sim-
ulations. The randomForest package uses 500 trees by default, but we chose to make the number
of trees odd to ensure a “winning” decision or classification. Other numbers of trees (e.g., 100 or
250) may yield more accurate results depending on the conditions of the data inputted into the
algorithm (Latinne, Debeir, and Decaestecker 2001). To predict whether or not the performance
measures will select the correct number of classes using the algorithm above, we did the following
(R code is available in supplementary material):

1. Take 20% of the test simulations and apply the rules of each randomly created classification
tree to predict the correct number of classes.
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2. Calculate the decision for each prediction.
3. Determine the most reoccurring decision. Use this decision as the final prediction.
4. Calculate the MDA score.

Comparing the interpretability of results

Here, we present the results of our simulation study. As stated previously, cross-tables of manipu-
lated conditions and outcome variables are a commonly used form of presenting relationships
descriptively. Table 2 shows descriptive statistics of class enumeration for each measure of model
fit (BIC and entropy) and validation technique (hold-out, k-fold, j x k-fold, and bootstrap).

Descriptive statistics

K-fold cross-validation yielded the highest percentage of correct class enumeration using BIC
(69.40%) and entropy (65.60%). All other validation methods performed similarly in terms of
entropy, ranging between 28.40% and 29.20% accuracy. For BIC, the bootstrap method had the
lowest percentage (11.40%) of accurate class enumeration.

ANOVA results

In this section, we provide the effect of the manipulated conditions as detected with ANOVA and
the G g2 effect size measure.

Bayesian information criterion

We detected significant effects of sample size (G g2 ¼ :99Þ, MD ðG g2 ¼ :80Þ, the number of
tested classes ðG g2 ¼ :53Þ, and validation method (G g2 ¼ :99Þ on BIC. All possible combina-
tions of interactions between manipulated conditions had significant effects. The interaction with
the largest effect was between sample size and the validation method ðG g2 ¼ :99Þ: Figure 2 dis-
plays the main effects and interactions for sample size and methods of validation on BIC.

Entropy

There was a significant main effect of each of our manipulated conditions. The interaction with
the greatest effect was between sample size and validation method (G g2 ¼ :44Þ, Figure 3 shows
the main effects of sample size (G g2 ¼ :77Þ, validation method (G g2 ¼ :81Þ, and MD
(G g2 ¼ :64Þ on entropy. Starting from the left, Figure 3 shows the negative relationship
between sample size and entropy. The second plot shows similar entropy values across the boot-
strap, hold-out and j x k-fold methods. The k-fold method averaged higher values of entropy
compared with other validation techniques. The third plot from the left shows the positive rela-
tionship between MD and entropy.

Table 2. Descriptive statistics of class enumeration.

Performance measure Correct enumeration Bootstrap Hold-out j x k-fold k-fold

Entropy No 70.80% 71.10% 71.60% 34.40%
Yes 29.20% 28.90% 28.40% 65.60%

BIC No 88.60% 58.70% 58.00% 30.60%
Yes 11.40% 41.30% 42.00% 69.40%
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Classification tree results

Figure 4 presents classification trees for BIC and entropy. Each tree in Figure 4 begins with a pre-
dictor variable that has the greatest power to predict the outcome (i.e., a yes/no indicator of cor-
rect profile enumeration). After the first split, the process continues with each subgroup treated
as an independent group for further splitting.

Bayesian information criterion

Our classification error was 12.59% on our test dataset, which represents the fraction of the mis-
classification. Implementing the bootstrap method for model validation was the strongest

Figure 2. Main effects and two-way interaction effects of sample size and validation method on BIC.

Figure 3. Main effects of sample size, validation method, and MD on entropy.
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Figure 4. A decision tree classifier of the LPA Monte Carlo simulation results. Note: Each line leads to a node at which tests are
applied to split the data into successively smaller groups recursively. The labels (Yes, No) refer to most likely cases of selecting
the correct number of profiles. Nodes display the proportion of labels and the percentage of the correct classification from the
dataset at that node.
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predictor of whether or not the BIC selected the correct number of profiles. The bootstrap
method correctly identified the number of profiles for 25% of the simulated datasets. The prob-
ability of selecting the correct number of profiles with the bootstrap method was 0.11, which per-
tained to 25% of our Monte Carlo simulation. The k-fold method had the highest probability
(0.97) of selecting the correct number of profiles when the sample size was either 1,000 or 2,000,
and when MD was 0.5, 0.8. or 1.2. When sample size was 2,000 and MD was 2, the k-fold
method correctly identified the number of profiles for 2% of the simulation.

Entropy

The classification error was 25.02% in the test dataset. Entropy most likely (probability ¼ 0.84)
selected the correct number of latent profiles with the k-fold method and when sample size was
250 and 500. Entropy least likely (probability ¼ 0.15) identified the correct number of profiles
when we implemented the other methods and when MD was 1.2 or 2. Entropy was accurate for
27% of our simulation study.

Random Forest results

Bayesian information criterion

The out-of-bag error rate was 14.17%. Therefore, accuracy was 85.83% for the number of cor-
rectly predicted outcomes from our out-of-bag data. Each of our manipulated conditions
impacted the selection of the correct number of latent profiles, indicated by the mean difference
in accuracy (MDA) values higher than zero. The rankings were (1) Method with MDA ¼
2989.47, (2) Sample size with MDA ¼ 1580.69, and (3) MD with MDA ¼ 470.94.

Entropy

The error rate was 24%. Therefore, our random forest model correctly predicted out-of-bag data,
with 76% accuracy. Same as with BIC, the cross-validation method, sample size, and MD
impacted the selection of the correct number of latent profiles. The ranking of importance was
(1) Method with MDA ¼ 1035.98, (2) Sample size with MDA ¼ 977.39, and (3) MD with MDA
¼ 904.69. It was not feasible to include 501 classification trees from our random forest in this
paper. However, at the end of this article we provided code to create the model on GitHub
(Jgozal 2018). A random forest plot would show “Method” as the root node, indicating the most
important variable among manipulated conditions.

Discussion

We expected similarities across the results of conventional and data mining approaches because
previous literature has well-established the high sensitivity of model fit for finite mixture models
(Henson, Reise, and Kim 2007; Masyn 2013; Grimm et al. 2016; He and Fan 2019). As expected,
the Monte Carlo experiment favored the k-fold cross-validation method, and each condition
affected the model fit.

Similarities between approaches are most clearly visible when comparing results with BIC.
Starting at the root node of the CART analysis, the choice of the cross-validation method and
sample size are the strongest predictors. For the same conditions using random forest and
ANOVA, the MDA and G g2 had the highest values. Similarities in the results are worth noting
because these data mining approaches can be used as an alternative to traditional methods to
confirm theory and aid interpretation.
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In our simulation, ANOVA and effect size measures informed us of significant interactions.
However, we needed to refer to tables of descriptive statistics and box-and-whisker plots to better
under each interaction. The data mining approaches innately provided us with visualizations of
each interaction. Figure 4 is an example of how classification trees can explicitly and visually
guide applied researchers based on results from a Monte Carlo simulation. Under more complex
simulation conditions, our trees may have had a larger number of nodes and thus would have
been harder to comprehend all of the splits that denote interactions. In such a case, we recom-
mend users perform one of the following methods:

1. Terminate the growth of the tree at a point that is effectively interpretable by monitoring the
error rate.

2. After the tree is at its largest, cut (i.e., prune) it to a more interpretable size.

Our classification error rates provided us with a means to evaluate the performance of our
data mining algorithms. Although our error rates were relatively low and suggest adequate per-
formance, other measures of error and accuracy exist and provide more insight into model per-
formance. Readers interested in other evaluation methods are encouraged to refer to Tan,
Steinbach, and Kumar (2016) as a resource.

Conclusion

Because of the massive size of data in most Monte Carlo simulations and the need to procure
digestible results for applied researchers, data mining is an appropriate family of models. We
used classification trees and random forest techniques in our example study, but other data min-
ing approaches are available (e.g., neural networks and Bayesian additive regression trees). For
example, neural networks have more tuning parameters compared to CART. All the tuning
parameters (also known as “hyperparameters”) can adjust to regulate how neural networks learn
between the input and output (Collier and Leite 2020). Further investigation should consider
such methods because of their potential for improved predictive performance. However, method-
ologists should be aware that these approaches are typically more computationally intensive
(Collier, Zhang, and Liu 2022).

As an alternative to the two-step approach of performing an ANOVA and calculating effect
sizes, researchers could use classification trees because they are nonparametric, and results can be
presented in a more intuitively interpretable way. Or researchers could employ random forest to
increase the accuracy of classification trees and measure the importance of manipulated condi-
tions. Moreover, data mining can be applied to all Monte Carlo simulation studies because it can
improve interpretation and is more robust to assumption violations. Although researchers can
generate an orthogonal design with Monte Carlo simulations and avoid multicollinearity issues,
one limitation of using CART is that any deviations from the orthogonality that may cause struc-
tural zeroes involved would result in producing biased estimates.

Also, worth noting is the difference between significance and practically meaningful findings.
Monte Carlo studies typically require hundreds of replications per condition, which produces sig-
nificant p values in traditional regression-based methods (Gonzalez et al. 2018). This is precisely
why researchers use effect sizes like G g2 post hoc to summarize Monte Carlo results. As an
alternative, researchers could implement data mining approaches, which require large numbers of
replications to obtain accurate results.

In response to calls for rigorous analyses and better ways of presenting results from Monte
Carlo experiments (Harwell, Kohli, and Peralta-Torres 2018; Hoaglin and Andrews 1975), our
present study introduced data mining-based approaches to analyze the results from simulation
experiments in the LPA example. We showed that the results analyzed with the new methods are
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as informative as the traditional methods. More importantly, going beyond advocating the recom-
mendations of Hoaglin and Andrews (1975), we addressed the importance of presenting results
in a more intuitively interpretable and visualized way for simulation studies. We encourage meth-
odologists to try these new approaches in analyzing their simulation results for the following rea-
son. With the visualization of the results, simulation studies may become more friendly to
applied researchers who hope to seek answers for the best methodological solution to their empir-
ical research questions. For example, when applied researchers who conduct LPA with empirical
data run into the issue of disagreement of model fit indices, they can easily match the branch in
this study’s classification tree with their data condition. In this way, they can get support from
simulation studies in a more intuitive way. Applied researchers would struggle less to find the
most useful information in numerous descriptive tables and complex results from mixed-model
factorial ANOVA given the complex data conditions simulated in most Monte Carlo studies. In
the present and future studies, we hope to build a bridge between simulation studies and empir-
ical studies that use the same models. With our proposed approaches, the simulation work from
methodologists will attract a broader audience in the applied field. So that methodologists can
better deliver their expertise and recommendations in simulations into practical use. For applied
researchers, they can obtain information from simulation studies that benefit their research in an
easier accessible way.

We provided pseudocode to clarify the flow and for loops in our data mining algorithms. For
readers interested in adapting our techniques to their own Monte Carlo simulations, please adapt
our R code on GitHub (https://github.com/collierlaboratory/Data-Mining-for-Reporting-the-
Results-of-Monte-Carlo-Simulations).
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