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Randomized controlled trials (RCTs) or randomized experiments, have long 

been considered as the most rigorous method to determine whether causal effects exist 

between a treatment and an outcome, such as the effect of an educational intervention. 

However, RCTs are often infeasible due to practical or ethical reasons in educational 

settings. Under such circumstances, non-randomized observational studies are often 

used to estimate treatment effects. The propensity score is defined as the conditional 

probability of receiving treatment given a set of observed pretreatment variables. 

Under Rubinôs causal model, the aim of conditioning on the propensity score is to 

improve the quality of estimates by attempting to mimic the balance between groups 

that occurs through the randomization process. Propensity score methods have been 

developed primarily for single-level data structures. In educational studies, data 

typically have a clustered or hierarchical structure, where probability of receiving 

treatment is a function of both individual and cluster-level factors.  

Using the Monte Carlo simulations, this dissertation aims to compare two tree-

based data mining approaches (i.e., generalized boosting modeling [GBM], 

generalized linear mixed-effects model trees [GLMERTREE]) to two parametric 

models (i.e., multiple logistic regression [MLR] , multilevel logistic regression [RC]) 

for propensity score estimation under different simulated settings. There are several 
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primary findings in this study. First, hidden bias from unobserved covariates has a 

very large impact on the estimate of causal effectsðmissing covariates renders all 

PSA approaches invalid. Second, under conditions of non-additivity and non-linearity, 

the data mining approaches can provide better performance on predicting the 

propensity score. However, all of the four estimation methods with an appropriately 

specified outcome model can provide unbiased treatment effect estimates. Third, 

although the MLR and RC outcome models performed similarly on the relative bias of 

treatment effects, RC offers better precision by producing lower standard errors of 

treatment effects. Fourth, among the eight estimation and outcome model 

combinations, GBM-RC combination provided a more accurate and precise treatment 

effect estimates across the greatest number of simulated conditions.  

There are several limitations in this study. First, this study did not consider 

varied correlation between covariates. Future research can be done to incorporate 

varied correlations among covariates. Second, balanced cluster size scenarios were 

created in this study. It is worth exploring the effect of the imbalance on the estimation 

of treatment effect. Third, this study included only propensity score weighting as the 

conditioning method. Future research can assess the performance of data mining 

approaches to estimate the propensity score using matching and stratification 

conditioning methods. Fourth, when using GBM to generate the propensity score in 

this study, only one algorithm specification was specified. Further research should 

include different algorithm specifications for GBM with multilevel data.
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INTRODUCTION  

Does kindergarten retention improve long-term student outcomes in 

mathematics (Hong & Raudenbush, 2005)? Do students in charter schools perform 

better than those in the traditional schools (Xiang & Tarasawa, 2015)? Does 

participation in International Baccalaureate improve later student outcomes (May et 

al., 2014)? These questions share a common goal that aims to identify the causal 

relationship between a treatment (e.g., International Baccalaureate) and a subsequent 

outcome (e.g., student performance). Such treatment effects can be identified using a 

counterfactual model. Specifically, an effect is the difference between what actually 

happened and what would have happened in the absence of the treatment (Holland, 

1986; Rubin, 1974; Shadish, Cambell & Cook, 2002). In practice, a complete 

counterfactual model cannot be observed directly since units can only be assigned into 

one condition. Therefore, an effect can only be approximated (Shadish et al., 2002). 

Randomized controlled trials (RCTs) or randomized experiments, have long 

been considered as the most rigorous method to determine whether causal effects exist 

between a treatment and an outcome (Austin, 2011a; Cook, 2006). In a randomized 

experiment, units are randomly assigned to a treatment group or to a control group. 

Random assignment balances both the observed and unobserved covariates between 

Chapter 1 
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groups, making any differences between the groups arbitrary (Rubin, 1974). As a 

result, subsequent differences in outcomes can be attributed to treatment effect 

(Holland, 1986; Shadish, et al., 2002). 

However, RCTs are often infeasible due to practical or ethical reasons in 

educational settings (Cook, 2003). For example, it is not practical to investigate the 

causal effect of grade retention on student academic achievement using RCTs because 

it would be unethical to randomly assign students to retention or promotion groups. 

Under such circumstances, non-randomized observational studies are often used to 

estimate treatment effects (Austin, 2011). 

1.1 Observational Studies 

Observational studies refer to situations in which the causal effects are 

identified without structural features of experiments (Shadish et al., 2002). In 

observational studies, units are assigned to treatments without a randomization 

process. Therefore, units in treatment and control groups may differ systematically 

regarding relevant characteristics and may not be comparable directly (Rubin, 2008). 

For example, when investigating the causal effect of grade retention on student 

academic achievement, it is likely that retained students have lower socioeconomic 

status (SES) than promoted students. The causal effect of interest may confound with 

the effect of SES on student academic achievement. As a result, the estimated casual 

effect is biased.  
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Nevertheless, observational studies have the same intent as a randomized 

experiment: to estimate a causal effect (Austin, 2011; Cochran, 1965). Meanwhile, 

well-designed observational studies with appropriate statistical methods are an 

important category of study designs for causal inference (Rubin, 2007; Shadish et al., 

2002; What Works Clearinghouse [WWC], 2017). During the past few decades, a 

number of non-experimental techniques have been developed to estimate causal 

effects in observational studies. These designs include regression discontinuity 

(Thestlethwaite & Cambell, 1960), interrupted time series (Cambell & Stanley, 1966), 

and instrumental variables (Bound, David & Regina, 1995). In addition, Rosenbaum 

and Rubin (1983) introduced propensity score analysis (PSA) to reduce selection bias 

through balancing on covariates. 

1.2 Propensity Score Analysis 

The propensity score is defined as the conditional probability of receiving 

treatment given a set of observed pretreatment variables (Rosenbaum el al., 1983). 

Under Rubinôs causal model (1974), the aim of conditioning on the propensity score is 

to improve the quality of estimates by attempting to mimic the balance between 

groups that occurs through the randomization process (Rosenbaum & Rubin, 1984; 

Shadish & Steiner, 2010). In essence, the propensity score analysis relies on the 

assumption of strong ignorability in treatment assignment (Rosenbaum et al., 1983), 

which states the potential outcomes are conditionally independent of treatment 

assignment given a vector of covariates. If this assumption holds, individuals with the 
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same propensity score will have the same distribution on the covariates, which is 

referred as covariate balance. In practice, if an individual from the treatment has the 

same propensity score as an individual from the control group, the probability of being 

receiving the treatment is the same for both individuals. Hence, those individuals who 

have the same propensity score, but are from different groups, are comparable.  

Essentially, estimating treatment effects using propensity scores includes the 

following steps: (1) selecting the appropriate covariates, (2) estimating the propensity 

score, (3) conditioning on the propensity score, (4) assessing the quality of the 

propensity score estimation model, (5) adjusting the model if necessary, and (6) 

estimating treatment effects (Rosenbaum et al., 1983; Pan & Bai, 2015). 

Since Rosenbaum and Rubinôs seminal work in 1983, the application and study 

of propensity score analysis has grown in popularity. Propensity score methods have 

been applied to non-randomized studies across various disciplines such as medicine, 

economics, and social sciences (Sekhon, 2011). Meanwhile, much attention has been 

focused on the mechanism of propensity score analysis in relevant topics such as the 

estimation of propensity scores (Westreich, Lessler & Funk, 2010), covariate selection 

(Brookhart, et al., 2006), and measurement error in covariates (Lockwood & 

McCaffrey, 2015). 

1.3 Problem Statement 

Regarding the estimation of propensity score, parametric modeling (e.g., 

multiple logistic regression) has been widely used since it can produce useful and 
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interpretable inference (Rosenbaum, et al., 1983). However, parametric modeling 

requires assumptions on variable selection, distributions of variables, and inclusions of 

interactions and non-linearity terms (Agresti, 2007). If any of these assumptions are 

violated, covariate balance may not be achieved, which can result in a biased treatment 

effect estimate (Lee, Lessier & Stuart, 2010). To this end, data mining methods have 

been introduced to estimate propensity scores as alternatives to parametric modeling 

(McCaffrey, Ridgeway & Morral, 2004). Contrary to conventional statistics that 

assume a data model with parameters estimated from the data, data mining approaches 

aim to extract the relationship between an outcome and predictors through a learning 

algorithm without an a priori data model (Breiman, 2001).  

While there are numerous data mining approaches to choose from, the 

techniques frequently examined in the literature of propensity score estimation include 

classification trees (Westreich et al., 2010), boosted regression (McCaffrey et al., 

2004), random forests (Lee et al., 2010), and neural networks (Keller, Kim & Steiner, 

2015; Setoguchi, Schneeweiss, Brookhart, Glynn & Cook, 2008). These data mining 

approaches have been found to outperform logistic regression for estimating the 

propensity score in terms of reducing bias (Lee et al., 2010; McCaffrey et al., 2004; 

Setoguchi et al., 2008). 

PSA was developed primarily for single-level data structures (Rosenbaum et 

al., 1983). In educational studies however, data typically have a clustered or 

hierarchical structure (e.g., students are nested within classrooms; classrooms are 

nested within schools; schools are nested within school districts). In addition to 
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possible dependencies among potential outcomes within clusters, the treatment 

assignment can be affected by both individual-level and cluster-level characteristics 

that vary across clusters. Multilevel models including fixed effects and/or random 

effects have become popular as a means to address data clustering when estimating 

propensity scores (e.g., Arpino & Mealli, 2011; Arpino & Cannas, 2016; Hong & 

Raudenbush, 2006; Leite, et al., 2015). However, one issue when estimating the 

propensity score using multilevel models is the potential for the treatment assignment 

mechanism to vary across clusters. A great number of random slopes for covariates 

would be required when capturing such variations and will result in model estimation 

and convergence issues. This problem may be resolved using data mining approaches 

that can automatically identify and select covariate by cluster interactions (Gurel, 

2015).  

The performance of data mining approaches in estimating propensity scores 

has been extensively examined in single-level data (e.g., Lee et al., 2010; Linden & 

Yarnold, 2017; McCaffrey et al., 2013; McCaffrey et al., 2004; Setoguchi et al., 2008). 

However, there is limited research investigating the performance of those data mining 

approaches for estimating propensity scores with multilevel data.  

1.4 Purpose of this Dissertation 

In observational studies, since propensity scores are typically unknown and 

unobservable, they must be estimated. The success of PSA depends on a good 

specification of the propensity score model, such that the balancing property is 
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satisfied. Therefore, it is crucial to know what methods produce the most accurate 

estimation of propensity scores under different scenarios. Using the Monte Carlo 

simulations, this dissertation aims to compare two tree-based data mining approaches 

(i.e., generalized boosting modeling, generalized linear mixed-effects model trees) to 

two parametric models (i.e., multiple logistic regression, multilevel logistic regression) 

for propensity score estimation under different simulated multilevel settings. 

Specifically, three research questions will be investigated. 

1. How do the propensity scores obtained by parametric and data mining techniques 

compare based on (a) mean squared error and (b) the correlation between the 

actual probability of being in the treatment group and the estimated propensity 

score?   

2. To what extent do the relative bias of treatment effect estimates, proportion bias 

reduction of treatment effects, and the standard error of the treatment effects vary 

across the method of propensity score estimation, propensity score model, and 

outcome model? 

3. Do the relative bias of treatment effect estimates depend on the sample size, ratios 

of treatment exposure, treatment effects, and levels of intraclass correlations 

(ICC)? 

Although there are numerous educational studies using the propensity score 

methods, very few studies incorporate data mining approaches to estimate propensity 

scores. This study seeks to provide guidelines for educational researchers and 
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practitioners to draw better causal inferences using data mining approaches with 

multilevel data.  

The organization of this dissertation study is as follows. This chapter 

introduced the background and purpose of current study. Chapter 2 reviews relevant 

literature by introducing Rubinôs causal model (1974), followed by describing the 

implementation procedures of PSA, presenting the literature on PSA with multilevel 

data, and reviewing the research on propensity score estimation using data mining 

approaches. Chapter 3 provides details on this studyôs research design and Monte 

Carlo simulations. Chapter 4 presents results from this studyôs analyses. Finally, 

Chapter 5 presents a discussion of the results, their implications for educational 

research, limitations, and directions for future research.  
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LITERATURE REVIEW  

This study aims to evaluate the performance of data mining and parametric 

propensity score estimation procedures in multilevel settings. This chapter begins by 

introducing Rubinôs causal model, which serves as the theoretical framework for this 

study. Next, a detailed description of PSA and major implementation steps in a single-

level context is described. Then, the literature on PSA in multilevel settings and 

propensity score estimation using data mining approaches is reviewed. Finally, 

empirical gaps in the literature are identified and a rationale for the proposed study is 

offered. 

2.1 Rubinôs Causal Model 

Rubinôs causal model (a.k.a., the potential outcomes model; Rubin, 1974, 

1978) focuses on the formal mathematical and statistical perspective related to causal 

inference (West & Thoemmes, 2010). In Rubinôs causal model, treatment effects are 

estimated by comparing the potential outcomes that would have been observed for an 

individual under different conditions. To begin, I denote T as a treatment condition 

and Y as a potential outcome. For each unit i (i = 1, é, n), Ti = 1 indicates that the 

unit i is in the treatment group with a corresponding potential outcome Y1i, and Ti = 0 

Chapter 2 
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represents that the unit i is in the control group with a corresponding potential 

outcome Y0i. In the Rubinôs causal model, the quantity of interest is the treatment 

effect for each unit i, which is defined as:  

Űi = Y1i - Y0i                                                                                                        1 

Unfortunately, it is impossible to observe both potential outcomes for the same unit 

simultaneously. In an experiment, one of the two outcomes can be observed, while the 

other one will be missing. As a result, it is impossible to estimate the treatment effect 

for an individual. This issue has been regarded as the ñFundamental Problem of 

Causal Inference" (Holland, 1986, p. 947; Rubin, 1978). 

 Rubinôs causal model can resolve this issue by estimating the average 

treatment effect (ATE; Holland, 1986; Rubin, 1974), which is defined as: 

 ATE = E(Y1 ï Y0) = E(Y1) ï E(Y0)                                                                    2 

where E(Y1) is the expected value of Y for all the units under the treatment condition 

and E(Y0) is the expected value of Y for all the units under the control condition. In 

RCTs, ATE is an unbiased estimate of the treatment effect since units in the treatment 

group do not differ systematically from those in the control group on their observed 

and unobserved background characteristics due to the randomization process (Rubin, 

1974).  

 Rubinôs causal model allows causal inferences to be drawn using outcomes 

observed from different units (Holland, 1986). In some situations, ATE is not always 

the quantity of interest (Heckman, Ichimura & Todd, 1997; Rubin, 1977). For 

example, one may be interested in the treatment effect of a dropout prevention 
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program for at-risk students who volunteer to participate in the program but not all at-

risk students in the population. In this situation, one may be interested in the average 

treatment effect for the treated (ATT; Imbens, 2004), which is defined as: 

 ATT = E(Y1 ï Y0 | T = 1) = E(Y1 | T=1)  ï E(Y0 | T=1)                                     3 

This can be understood as the difference in potential outcomes (i.e., with and without 

treatment) for only those who were actually treated (Caliendo & Kopening, 2008; 

Holland, 1986). Since potential outcomes for all treatment conditions cannot be 

observed for all units, Rubinôs causal model requires several key assumptions 

(Rosenbaum et al., 1983; Rubin, 2010). 

2.1.1 Strong Ignorability in Treatment Assignment (SITA) 

SITA assumption refers to the process used to assign units to conditions. It 

requires the assignment condition to be independent and not associated with the 

outcome and other factors. Suppose n units are randomly assigned to conditions, it is 

assumed that the cause of assignment T is statistically independent from the outcomes 

Y1i and Y0i. In non-randomized or observational studies, SITA assumption is met if all 

the covariates that impact the treatment assignment have been properly accounted for 

(Rosenbaum et al., 1983).  

2.1.2 Stable Unit Treatment Value Assumption (SUTVA) 

SUTVA is defined as an "a priori assumption that the value of Y for unit u 

when exposed to treatment t will  be the same no matter what mechanism is used to 
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assign treatment t to unit u and no matter what treatments the other units receive" 

(Rubin, 1986, p. 961). In other words, SUTVA means the observation on one unit 

should not be affected by the assignment of treatments to the other units. In practice, 

this assumption is not always attainable. For example, a participant in a reading 

program may share his or her experience of the treatment with his or her friends who 

happen to be in the control group. Such contamination may affect the friendsô 

performance on the outcome. This between-group contamination can be reduced by 

improving designs (Stuart, 2010) to minimize between-group contamination. 

2.2 Propensity Score Analysis 

2.2.1 Logic of Propensity Score 

Rosenbaum et al. (1983) introduced the concept of a balancing score, which is 

defined as the "function of observed covariates, such that the conditional distribution 

of these observed 

covariates is the same for treated and control units" (p. 42). In addition to treatment 

condition Ti and an outcome Yi, suppose each unit i has, a covariate value vector Xi = 

(X i1, é, XiK) ,  where K is the number of covariates. Rosenbaum et al. (1983) defined 

a propensity score for unit i, e(Xi), as the probability of the unit being assigned to the 

treatment group, conditional on the covariate vector Xi.  

 e(Xi) = P(z =1 | Xi) 

Propensity scores rely heavily on the two following assumptions under SITA 

(Rosenbaum et al., 1983):  
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Assumption 1: (Y1i , Y0i) Ṷ 4i | X i 

Assumption 2: 0 < e(Xi) <1 

Assumption 1 indicates a condition that treatment assignment Ti and response (Y1i , 

Y0i) are conditionally independent given Xi. Assumption 2 implies there is ñcommon 

supportò between the treatment and control groups; namely, that all propensity scores 

lie between 0 and 1, exclusively, and that there is distributional overlap in propensity 

scores for the treatment and control groups. Under these two assumptions, PSA can 

produce unbiased estimates of the treatment effects as a result of the reduced selection 

bias through balancing the distributions of observed covariates between the treatment 

and control groups (Rosenbaum et al., 1983; Pan et al., 2015). 

2.2.2 Implementation of Propensity Score Analysis  

The process of implementing PSA to deal with selection bias involves multiple 

steps. The first step of PSA is to evaluate which covariates should be included to 

capture potential confounding impacts. This is followed by the estimation of the 

propensity scores based on the covariates, and then conditioning on these propensity 

score estimates. Upon checking assumptions, estimation and conditioning schemes can 

be revised until satisfactory balance and distributional overlap are achieved. These 

steps are described in detail below. 
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2.2.2.1 Covariate Selection 

The first step of PSA is to generate a list of covariates which can capture 

potential confounding impacts. Since PSA relies heavily upon the assumption of 

SITA, all covariates related to treatment assignment and outcome should be included 

(Rubin & Thomas; Stuart, 2010). There is no statistical test for this assumption and the 

decision of covariate selection relies on substantive knowledge of the possible 

confounders in the applied context (Shadish & Steiner, 2010; Steiner, Cook, Shadish 

& Clark, 2010). Furthermore, according to Shadish, Luellen and Clark (2006), it is not 

sufficient to only include demographic data such as gender, ethnicity, and age. 

Propensity score models that are conducted post-hoc on some previously collected 

data with only few covariates often fail to yield unbiased causal effect estimates 

(Shadish, Luellen, & Clark, 2006). The exclusion of potential confounders impacts the 

treatment effect estimates and consequently threatens the validity of the inferences 

(Rosenbaum et al., 1983; Shadish et al., 2010; Steiner, et al., 2011). 

In practice, it can be difficult to classify baseline covariates into the true 

confounders, those that only affect the treatment assignment, those that only affect 

outcome, and those that affect neither treatment nor the outcome. In many settings, 

most baseline covariates are likely to affect both treatment assignment and the 

outcome. To this end, it is suggested to include all measured baseline characteristics in 

the propensity score model (Austin, 2011). 
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2.2.2.2 Propensity Score Estimation 

 The multiple logistic regression model is most commonly used to estimate 

propensity scores (Pan et al., 2015; Thoemmes & Kim, 2011). A propensity score for a 

unit i, e(Xi), can be estimated from the treatment assignment Ti on the covariate vector 

X i (Agresti, 2007): 

 ,Î  ɓXi                                                                                                   4 

where ɓ is a vector of the regression coefficients. The logit link is considered 

favorable since the probabilities of being in the treatment group are modeled as a 

linear function of the covariates and the outcome, and the natural log of the odds is a 

continuous, approximately normally distributed variable (O'Connell & Rivet Amico, 

2010). 

2.2.2.3 Conditioning Methods 

 Common propensity scores conditioning methods include matching, 

stratification, and weighting in single-level studies. Matching and stratification are 

briefly discussed and the weighting approach, as the primary focus in this study, is 

extensively discussed as follows. 

2.2.2.3.1  Propensity score matching 

Propensity score matching can be used to form matched sets of treated and 

untreated units who share a similar value of the propensity score (Rosenbaum et al., 

1983). The most common implementation is one-to-one or pair-matching in which 
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pairs of treated and untreated units are formed. One example of one-to-one matching 

is the nearest neighbor (NN) matching (Rosenbaum et al., 1985). This method matches 

each unit i in the treatment group with a unit j in the control group that has the 

smallest absolute difference between their propensity scores. If multiple units in the 

control group have propensity scores that are equally close to one unit in the treatment 

group, one of these units in the control group is selected at random.  

Alternatively, caliper matching (Cochran & Rubin, 1973) is similar to NN 

matching. It restricts that the absolute difference in the propensity scores of matched 

subjects must be below some pre-specified threshold. Rosenbaum et al. (1985) 

suggested that the pre-specified caliper should be less than or equal to .25 of a 

standard deviation on the propensity score. Recently it was suggested that a caliper of 

width equal to .20 of a standard deviation on the propensity score is the optimal 

caliper distance (Austin, 2011b).   

There are several additional propensity score matching methods including 

Mahalanobis metric matching (Rosenbaum & Rubin, 1985), Mahalanobis caliper 

matching (Rubin & Thomas, 2000), and genetic matching (Diamond & Sekhon, 2013). 

When researchers implement propensity score matching methods mentioned 

above, there are two classes of matching algorithms that can be selected including (a) 

greedy matching and (b) optimal matching (Rosenbaum, 1989). In greedy matching, 

once a match is made, the unit in the control group is no longer eligible for 

consideration as a match for other units in the treatment group. In optimal matching, 

previously matched units can be re-matched until an overall minimum or optimal 
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average within-pair difference in propensity scores is achieved. When the size of the 

control group is large enough, both matching algorithms can produce similar matched 

units. However, optimal matching performs better in minimizing the distance within 

each pair. Furthermore, optimal matching can be helpful when there are not many 

appropriate matched units in the control group (Gu & Rosenbaum, 1993; Ho, Imai, 

King, & Stuart, 2011). Therefore, greedy matching is efficient if the goal is to find 

well-matched groups, and optimal matching is preferable is the goal is to find well-

matched pairs (Stuart, 2010, Bai el al., 2015). 

2.2.2.3.2 Propensity score stratification 

Propensity score stratification uses propensity scores to divide units into 

mutually exclusive subsets. Units are ranked according to their estimated propensity 

score. This method is also known as interval matching, blocking, and subclassification 

(Rosenbaum et al., 1983). Cochran (1968) found that five subclasses are often enough 

to remove 95% of the bias associated with one single covariate. Rosenbaum and Rubin 

(1984) extended Cochran's findings to PSA and discovered that stratifying 

observations into quintiles based on their propensity scores can reduce approximately 

90% of the bias due to the measured confounders.  

Within each stratum, treated and untreated units will have similar values of the 

propensity score. As such, the distribution of measured covariates will be generally 

similar between treated and untreated units within the same stratum. The effects of 

each stratum are pooled across the strata to estimate the ATE (Rosenbaum et al., 
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1984). This procedure can be considered as a meta-analysis of a set of quasi-RCTs 

since the effect of treatment on outcomes can be estimated by comparing outcomes 

directly between treated and untreated units (Austin, 2011a). 

2.2.2.3.3 Propensity score weighting 

Propensity score weighting is another approach to account for selection bias by 

using propensity scores. This method is similar to weighting in survey sampling that 

accounts for over- or under-represented subgroups (Lee, et al., 2010; Morgan & Todd, 

2008). The logic of using propensity scores as weights is to control the influence of 

units by weighting their responses based on their propensity scores (McCaffrey et al., 

2004). One example of propensity score weighting is the inverse probability of 

treatment weighting (IPTW; Rosenbaum, 1987), which is defined as: 

Wi = 
 
                                                                                              5 

In this equation, Zi is an indicator variable denoting whether or not the ith unit 

is treated, and e(Xi) is the propensity score for the ith unit. Each unit weight is equal to 

the inverse of the probability of receiving the treatment that the subject received. Then 

the average treatment effect (ATE) can be estimated by:  

ATE=   В
ᶻ

   В
ᶻ

                                                                6  

In this equation, n denotes the number of units. Joffe, Ten Have, Feldman, and 

Kimmel (2004) describe how regression models can be weighted by the inverse 

probability of treatment to estimate causal effects of treatments.  
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2.2.2.4 Quality Evaluation of Propensity Score Estimation 

The quality of an estimated propensity score primarily relies on the inclusion 

of important and relevant covariates and the correct specification of the functional 

form in the model (Guo & Fraser, 2010). Regardless of the variable selection and 

conditioning methods, both covariate balance and overlap must be achieved. 

Therefore, no systematic differences remain between the treatment and control groups 

and the common support assumption can be met (Guo et al., 2010; Ho et al., 2011). 

The assessment of covariate balance can be checked by comparing the 

distributions of the covariates and the estimated propensity scores before and after 

conditioning using standardized mean differences or graphical representations (Pan et 

al., 2015). The standardized difference is the most common method to compare the 

mean of continuous and binary variables between treatment and control groups. For a 

continuous covariate, the standardized difference is defined as:  

            Ä  
 

  
                                                                                                                          7 

where ὼӶ and ὼӶ indicate the sample mean of the covariate for the units in the 

treatment and control groups respectively. ί and ί denote the sample variance for 

the units in the treatment and control groups respectively. For dichotomous variables, 

the standardized difference is defined as:  

            Ä  
 

 
                                                                                                       8 
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where Ð and  Ð denote the prevalence or mean of the dichotomous variable for units 

in the treatment and control groups respectively. The standardized difference 

compares the difference in means in units of the pooled standard deviation. Although 

there is no agreement on a cutoff value to indicate covariate balance, a standard 

difference that is below .1 has been used to indicate a negligible difference in the 

mean or prevalence of a covariate between treatment and control groups (Normand et 

al., 2001; Austin, 2011a).  

 In addition to differences in means and proportions, graphical representations 

such as side-by-side boxplots, quantile-quantile plots, cumulative distribution 

functions, and empirical nonparametric density plots can be used to compare the 

distribution of continuous baseline covariates between treatment and control groups in 

the matched sample (Austin, 2009). Furthermore, statistical significance testing has 

been frequently used to compare the mean of continuous covariates or the distribution 

of categorical variables between units in treatment and control groups. This approach 

is discouraged since results of significance testing are sensitive to the sample size. The 

matched sample is often smaller than the original sample; thus, using significance 

testing to detect covariate balance may result in misleading results (Imai, King & 

Stuart, 2008; Austin, 2009). 
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2.3 Propensity Score Analysis in Multilevel Context 

2.3.1 Propensity Score Estimation in Multilevel Context 

In a multilevel context, the observations within a cluster tend to be 

more similar than those in other clusters, which demonstrate dependencies among 

individuals within clusters (Raudenbush & Byrk, 2002). Additionally, treatment 

assignment may be dependent on cluster characteristics. For example, a studentôs 

decision to participate in an after-school program may partly depend on the 

compositional characteristics or policies of the studentôs school (Kim, 

2006). Therefore, the treatment assignment can be viewed as a combination 

of individual and cluster-level factors. This implies the need for multilevel modeling 

in estimating propensity scores. 

In the existing literature, fixed effects models and random effects models have 

been used to estimate propensity scores under a multilevel modeling framework 

(Arpiro & Mealli, 2011; Leite et al., 2015; Thoemmes & West, 2011). In the current 

study, random effects models will be included and discussed in more detail since these 

models have flexibility to include random intercept-only and random-intercept-and-

slopes models with and without cluster-level covariates (Kim & Seltzer, 2007).  

Random intercepts model allows each Level-2 unit to have different intercepts 

but have common slopes (Raudenbush et al., 2002). A propensity score for a unit i, 

e(Xij), can be estimated from the treatment assignment Ti on the Level-1 covariate 

vector Xi and Level-2 covariate vector Wi: 
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 ,Î  Ű+ ɓXij ʌ7  А                                                                    9 

In this logistic regression equation, Ű  represents the mean log-odds of 

propensity scores across clusters. ɓXi is a vector of regression coefficients and Level-1 

covariates. ʌ7  is a vector of regression coefficients and Level-2 covariates. А  refers 

to the cluster-level residual and is assumed to be normally distributed with mean zero 

and variance t. By fixing the slopes, this model assumes that the effects of Xij on 

treatment assignment are constant across clusters (Hong et al., 2006).  

Alternatively, a random effects model can be specified to allow random slopes, 

in which the covariate coefficients are allowed to vary across clusters. A vector of 

random effects components ɗXij can be added to Equation 9 to influence each of the 

regression slopes of Level-1 covariates. 

Although observational studies with a nested data structure are commonly seen 

in educational research, only a limited number of studies have utilized multilevel 

modeling in nonrandomized PSA designs for causal inference (e.g., Hong et al., 2006; 

Arpino & Mealli, 2011, Leite et al. 2015). The next section will review the existing 

research on using PSA to draw causal inference in a multilevel context. 

2.3.2 Research on Propensity Score Analysis in a Multilevel Context 

Hong and Raudenbush (2005) firstly extended the propensity score analysis to 

the multilevel context. They applied a multilevel propensity score stratification 

method to evaluate the effects of the kindergarten retention policy using the Early 
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Childhood Longitudinal Study Kindergarten cohort (ECLS-K) data. Hong and 

Raudenbush (2006) explained the proposed approach in detail. A two-level logistic 

regression model was used to estimate studentsô propensity scores of being retained in 

kindergarten. Then students were stratified based on the estimated propensity scores. 

Then, a two-level outcome impact model with random intercepts and slopes was used. 

Results indicated kindergarten retention effect estimates decreased after the propensity 

score adjustment. This study implied that the multilevel propensity score stratification 

method may reduce selection bias effectively. Most importantly, this study provided a 

general framework for making causal inference in multilevel observational studies. 

Kim et al. (2007) investigated the application of PSA in multisite studies on 

the effects of educational programs where the treatment condition is enacted within 

each school. They proposed the use of multilevel logistic regression models for 

propensity score estimation. Using data from the Early Academic Outreach Program 

(EAOP), they compared the performance of this approach with additional methods 

(e.g., single-level logistic regression models). Results showed that the propensity score 

estimation model with random effects in slopes can improve balance within each 

school. 

Kelcy (2009) assessed the effectiveness of multilevel PSA for causal inference. 

Its primary goal was to investigate the role of variable selection in the multilevel PSA. 

Results suggested that the propensity score model one used to estimate treatment 

effects mattered to a lesser extent. In other words, it is more crucial to include the 

appropriate variables in a model than to use a specific model. Particularly, identifying 
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óappropriateô variables to include in a propensity score model required some criterion 

by which to judge the inclusion of a variable. 

Arpino and Mealli (2011) examined the performance of propensity score 

matching techniques in multilevel observational studies when one or more unobserved 

cluster-level covariates are present. They discussed the assumptions needed to identify 

causal effects in multilevel settings and focus on situations where a treatment is 

assigned at the individual level, but cluster-level characteristics are associated with the 

treatment and the potential outcomes. Four propensity score estimation models were 

evaluated in their simulation study, including a single-level model with covariates at 

both levels, a single-level model with level-1 covariates only, a fixed effect model 

with school indicators/dummies, and a multilevel random intercept model. These four 

models were evaluated through their performance on unbiased treatment effect 

estimation and covariate balance. The findings revealed that omitted cluster-level 

variables have the strongest impact when they are highly correlated with the potential 

outcome. Furthermore, the results confirmed that it is not necessary to control for 

cluster effects when the covariates only affect treatment assignment but have no 

influence on the outcomes. In addition, both random effect and fixed effect models 

captured the unobserved heterogeneity quite well. In particular, the propensity score 

matching using the fixed effect model with school indicators performs the best across 

all simulation conditions. Finally, a simple model with cluster indicators, despite 

statistical prejudice one could have against it, serves quite well the scope of balancing 

cluster-level unobserved variables and so of reducing the bias of the PSM  
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 Thoemmes et al. (2011) extensively evaluated different ways to estimate the 

propensity scores with clustered data through a simulation study and a case study. This 

simulation study varied the estimation methods, matching strategies, sample size, and 

the degree of intra-class correlation (ICC). The estimation models included a single-

level propensity score model with individual- and cluster-level covariates as well as 

across-level interactions between the covariates, a fixed effect model with an indicator 

variable for each cluster, a random effects model that accounts for between-cluster 

variations in treatment assignment and outcomes, and a random effects model where 

treatment assignment does not vary across clusters. The results confirmed the 

necessity to consider the clustered nature when estimating the propensity score with 

clustered data. Specifically, when the ICC was low, different propensity score 

estimation methods and matching strategies yielded similar results. When ICC was 

high, the random effects models outperformed other models in terms of bias, mean 

squared error, and coverage rate. In addition, the fixed effect model also performed 

well on bias reduction. 

Li, Zaslavsky, and Landrum (2013) focused on propensity 

score weighting strategies in the multilevel context. Through analytical derivations 

and simulations, they examined the performance of different weighting strategies (e.g., 

marginal, cluster-weighted, doubly-robust estimators) and outcome models (e.g., 

single-level model, fixed effect model, random effects model) under violations to 

unconfoundedness at the cluster level. The simulation study revealed three key 

findings. First, estimators ignoring clustered data structure in both propensity score 
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and outcome models have larger bias and Root Mean Squared Error (RMSE). Second, 

when unmeasured confounders are present, ignoring the clustered data structure in the 

outcome models results in worse estimates than ignoring it in the propensity score 

models. Third, among the doubly-robust estimators, the benchmark or random effects 

outcome model performed the best. Overall, this study showed that explicitly 

modelling the clustered data structure, either parametrically or nonparametrically, in at 

least one stage of the PSA can greatly reduce these biases. 

Arpino and Cannas (2015) compared different approaches for propensity score 

matching with clustered data structures. They included multiple models (e.g., fixed 

and random effects models) of propensity score estimation and matching strategies. 

This study also proposed a preferential within-cluster matching. This approach first 

searches for control units to be matched to treated units within the same cluster. If 

matching is not successful within-cluster, then the algorithm searches in other clusters. 

This study revealed that all approaches successfully reduced the bias due to the 

omission of a cluster-level confounder. The preferential within-cluster matching 

approach showed relatively good performance for both large and small clusters. 

Furthermore, the preferential within-cluster matching approach is an effective method 

to reduce the number of unmatched units as compared to pure within-cluster matching.  

Leite et al. (2015) proposed a method to implement four PSA methods with 

clustered data structures, including the creation of weights and three types of weight 

scaling methods (normalized, cluster-normalized, and effective). Using a Monte Carlo 

simulation study, this study revealed that the multilevel modeling can provide 
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unbiased estimates of the ATT. Furthermore, weighting may lead to biased results if 

some units have extremely large or small propensity scores, and weighting is more 

sensitive to misspecification of the propensity score estimation model than matching 

or stratification.  

So far, all the literature reviewed here is based on a frequentist framework. 

Kaplan and Chen (2012) introduced a two-step Bayesian propensity score approach. 

They evaluated its performance for propensity score stratification, weighting, and 

optimal full matching. A slight advantage is shown for the Bayesian approach in small 

samples. Later on, Chen and Kaplan (2014) extended the two-step Bayesian 

propensity score approach for multilevel observational studies and examined its 

properties through two comprehensive simulation studies. Results indicated that a 

Bayesian random intercept and slope propensity score model with optimal full 

matching via within-cluster matching is recommended when the within-cluster sample 

size is sufficient to facilitate close matches. 

2.4 Data Mining Approaches as Alternatives to Estimating Propensity Scores 

Recently, data mining approaches have been introduced to estimate propensity 

scores as alternatives to parametric modeling (McCaffrey et al., 2004). This section 

contains an overview of two data mining approaches including generalized boosted 

modeling (GBM) and generalized linear mixed-effects model trees (GLMM), which 

will be included in this study. This section also reviews relevant literature that 

evaluated the performance of data mining approaches in estimating propensity scores. 
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2.4.1 Classification and Regression Trees 

 Both GBM and GLMM were developed from classification and regression 

trees (CART) algorithms. Therefore, it is necessary to understand the CART approach 

before discussing further those two algorithms. Breiman, Friedman, Stone and Olshen 

(1984) introduced classification and regression trees algorithms (CART). CART are 

non-parametric classifiers that construct hierarchical decision trees by splitting data 

among classes of the criterion at a given step (node) accordingly to an ñif-thenò rule 

applied to a set of predictors, into two child nodes repeatedly, from a root node that 

contains the whole sample. Based on a CART algorithm, one single tree is built using 

all observations. As the tree grows, the data are recursively partitioned into smaller 

strata. The values of covariates for observations within the same stratum are similar. 

During this process, each covariate is evaluated to find the best candidate at each split. 

When the partition is completed, each terminal node of the tree will be labeled the 

majority vote if the response variable is categorical or the mean value if the response 

variable is continuous (James, Witten, Hastie & Tibshirani, 2013; Yan, 2013). 

 Compared with traditional approaches (e.g., linear regression, logistic 

regression), CART algorithms have several advantages to solve classification and 

prediction problems (e.g., propensity score estimation). First, results produced by the 

CART may be easier to explain. They can be displayed graphically and easily 

interpreted by a non-expert. Second, CART algorithms are more capable of handling 

categorical, ordinal, continuous, and missing data. Third, CART algorithms are 

insensitive to outliers and monotonic transformation of variables. Fourth, splits in a 
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tree can naturally model non-linearities and interactions (James et al., 2013). However, 

as the stopping rule for partitioning is loose, the tree based on CART algorithm is built 

as large as possible, which may lead to unstable classification and prediction results 

(Hastie, Tibshirani & Friedman, 2009). 

Several approaches have been proposed to remedy the limitations of the 

CART, including bagging, boosting, and random forests. These methods use trees as 

building blocks to construct more powerful classification and prediction models 

(Hastie et al., 2009). Bagging, or bootstrap aggregated CART, is a series of procedures 

for reducing the variance of a data mining method. Those procedures include fitting a 

CART to a bootstrap sample with replacement using the original sample size, and then 

repeating it many times. Finally, an average of all the predictions from different trees is 

used, which is more robust than a single tree (Breiman, 1996). Similarly, boosted 

CART goes through multiple iterations of tree fitting on random subsets of the data. 

However, with several iterations, a new tree can place greater emphasis on the data 

points that were incorrectly specified with the previous tree (McCaffrey et al., 2004, 

James et al., 2013). GBM is one of a class of boosting methods which will be 

discussed in the following section. Random forests are similar with bagging but use a 

random subsample of predictors to build each tree (Breiman, 2001).  

2.4.2 Generalized Boosted Modeling 

GBM is one of the boosting methods. It keeps the primary features of CART 

algorithms, but it can produce a smoother fit by combining many simple trees 
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(Burgette, McCaffrey, Griffin, 2015). When estimating the propensity score, GBM 

utilizes the ñforward stagewise additive algorithmò by modeling: 

Ὣ8 ÌÏÇ                                                                                                      10 

where X is the covariates and e(X) is the propensity score defined in Equation 4. The 

algorithm begins with building a single regression tree and taking:  

 Ὣ8 ÌÏÇ                                                                                                          11 

where Ú is the mean of the treatment indicator for the entire sample. Then GBM adds a 

simple regression tree, h(X), to the initial estimate Ὣ8 to obtain a better fit. Fit is 

measured by the Bernoulli log-likelihood of Equation 12 where larger values indicate 

better fit (McCaffrey et al., 2004).  

ὒὫ  В :Ὣ8 ÌÏÇρ ὩὼὴὫὢ                                                       12 

The added simple tree is obtained by fitting the residuals of Ὣ8 versus X. 

The Ὣ8 is updated by Ὣ8 ‗Ὤὢ, where ‗ represents a shrinkage factor. It is 

suggested that the shrinkage parameter can be .0005. McCaffery et al. (2004) 

mentioned that the propensity score estimates may be obtained when a pre-specified 

maximum number of iterations are reached. 

2.4.3 Generalized Linear Mixed-Effects Model Trees (GLMM) 

Like most traditional methods, CART algorithms assume independence 

between measurements. This assumption is violated when data is clustered. Based on 

tree-based methods, a new algorithm named the generalized linear mixed-effects 
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model (GLMM) tree was developed to take account for nested data structure 

(Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018). This method has been found 

to outperform other tree-based methods and generalized linear models in simulation 

studies. Also, unlike other tree-based approaches with random effects such as mixed 

effects regression trees (Hajjem, Bellavance & Larocque, 2011) and RE-EM trees 

(Sela & Simonoff, 2012), GLMM trees allow continuous as well as non-continuous 

response variables. 

According to Fokkema et al. (2018), the GLMM tree includes a mixed-effects 

model to account for the dependence between observations. When building the 

GLMM tree model, a random intercept and/or slopes are estimated per cluster. Since it 

is difficult to estimate the fixed- and random-effects parts simultaneously, an 

expectation maximization (EM)-type approach that iterates between estimating the 

random effects and the partition (tree structure) is used. Due to the unknown random 

effects in the beginning, GLMM tree starts with assuming the random effects to be 0. 

The algorithm then iterates between the following two steps. First, given the current 

random effects, the partition (tree) is estimated. Second, given the partition (tree), the 

node-specific generalized linear models (GLMs) and the random effects are estimated. 

The algorithm reaches convergence when the random effects no longer change 

between consecutive iterations. The predicted values for the observations in the 

terminal nodes are determined by the node specific parameter estimates of the GLM, 

while adjusting for the (globally estimated) random effects.  
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2.4.4 Research on Propensity Score Analysis Using Data Mining Approaches 

Several researchers have investigated the performance of various data mining 

procedures for estimating propensity scores of single-level observational studies. This 

section reviews existing research on PSA using data mining approaches. 

Luellen, Shadish and Clark (2005) used secondary data to compare the 

effectiveness of the propensity score estimation using logistic regression, classification 

trees, and bagging bootstrap replicates. These estimates were compared to estimates 

from the randomized experiment. To estimate the logistic regression models, a 

backward stepwise logistic regression approach was implemented. Those covariates 

that significantly predicted group membership at p< .50 were retained. 8 of the 25 

covariates were retained in the model. Two classification tree models and three 

bootstrap replicates used the complete set of 25 covariates to estimate the PSs instead. 

Results showed that it remains unclear which method of computing propensity scores 

resulted in more accurate estimates of treatment effects. No single model resulted in 

the greatest reduction in bias for both outcomes. 

Setoguchi et al. (2008) compared the performance of recursive partitioning, 

neural networks, and main-effects only logistic regression in a simulation study. A 

total of 10 binary or continuous covariates with seven scenarios differing by non-

linear and/or non-additive association between exposure and covariates were 

simulated. Results showed that neural networks outperformed logistic regression in 

terms of percent bias reduction in some scenarios, including those in which the 

selection model was most nonlinear and non-additive. 
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Westreich et al. (2010) reviewed four techniques as alternatives to logistic 

regression for estimating propensity scores, including neural networks, support vector 

machines, CART, and GBM. The authors noted that all four data mining approaches 

have advantages and disadvantages compared with logistic regression. It has been 

found that GBM and CART appear to be most promising for propensity score 

estimation, since they are well-suited to classification problems with high-dimensional 

data and do not require specification of a parametric model. However, the need for 

pruning the decision tree algorithms makes CART less practical. Similarly, neural 

networks and support vector machines show less potential due to the expertise needed 

in tuning the learning algorithms.  

Lee et al. (2010) evaluated the performance of several machine learning 

techniques such as classification and regression trees (CART) as promising 

alternatives to logistic regression for the estimation of propensity scores. Specific 

properties for each of the scenarios were described as: additive and linear (main 

effects only), mildly non-linear (one quadratic term), moderately nonlinear (three 

quadratic terms), mildly non-additive (three two-way interaction terms), mildly non- 

43 additive and non-linear(three two-way interaction terms and one quadratic term, 

moderately non additive (10 two-way interaction terms) and moderately non-additive 

and non-linear (10 two-way interaction terms and three quadratic terms) (Lee et al., 

2010, p. 339). Propensity score weights were estimated using logistic regression (all 

main effects), CART, pruned CART, and the ensemble methods of bagged CART, 

random forests, and boosted CART. In the results, all methods displayed generally 
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acceptable performance under conditions of either non-linearity or non-additivity 

alone. However, under conditions of both moderate non-additivity and moderate non-

linearity, logistic regression had subpar performance, while ensemble methods 

provided substantially better bias reduction and more consistent 95% CI coverage. The 

results suggest that ensemble methods, especially boosted CART, may be particularly 

well-suited for propensity score weighting. 

Austin (2012) designed Monte Carlo simulations based on previous studies 

(e.g., Setoguchi et al. (2008); Lee et al. (2010)) and compared the performance of 

logistic regression and ensemble methods, including bagged regression trees, random 

forests, and boosted regression trees. Although no method had uniformly superior 

performance for estimating linear treatment effects for continuous outcomes, using 

boosted regression trees was found to have very good performance compared with 

competing approaches across a range of scenarios.  In particular, the use of boosted 

regression trees with depths of three or four to directly impute potential binary or 

continuous outcomes tended to result in estimates of average treatment effects with 

lower bias. 

Zhao, Su, Ge and Fan (2016) introduced the application of the random forest 

on the estimation of propensity score matching. They proposed to estimate both the 

propensity score and distance (proximity) by using random forest with treatment as the 

output. Those proposed methods were applied to a study of body mass index to 

produce balanced smoker and non-smoker groups. Results showed that the matching 
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methods based on distance alone or on distance within calipers defined by the 

propensity score can produce well balanced treatment groups.  

Cannas and Arpino (2018) compared the performance of several machine 

learning algorithms (e.g., classification tree, bagged trees, random forest, boosted 

trees, Neural Network, naïve Bayes) and the standard logistic regression on the 

estimated propensity score. Additionally, several measures of covariate balance 

indicating the quality of the propensity score estimators were also assessed. The 

results revealed that random forests performed the best when propensity scores were 

used for matching. Furthermore, both random forests and boosted trees outperformed 

other techniques when used with propensity score weighting. In terms of the 

performance of the several diagnostics of covariate balance, the Absolute Standardized 

Average Mean difference of covariates (ASAM) predicted the bias of causal 

estimators well. 

Brown, Merrigan, and Royer (2018) evaluated the performance of propensity 

score estimation techniques with machine learning algorithms in a simulation study. 

They relied the simulations on a high-dimensional empirical dataset with a low share 

of treated and used the propensity score as covariate in a Cox Proportional Hazard 

Model. In particular, they found that Least Absolute Shrinkage and Selection Operator 

(LASSO), boosting and deep learning outperformed the random forests and the 

traditional estimation approach in terms of bias in their simulations.  

Tu (2019) conducted a simulation study to evaluate the performance of four 

algorithms: multinomial logistic regression, bagging, random forests, and gradient 
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boosting, for estimating generalized propensity score (GPS). The author used the GPS 

estimates computed from these four algorithms with the generalized doubly robust 

(GDR) estimator to estimate ATEs in observational studies. We evaluated these ATE 

estimates in terms of bias and mean squared error. Results show that overall, the GB 

algorithm produced the best ATE estimates based on these evaluation criteria.  

Setodji et al., (2017) compared two promising propensity score estimation 

methods, including GBM and covariate-balancing propensity scores, when assessing 

the average treatment effect on the treated. Several conditions were manipulated 

including the presence of extraneous variables, the complexity of the relationship 

between exposure or outcome and covariates, and the residual variance in outcome 

and exposure. Results showed that when noncomplex relationships exist between 

outcome or exposure and covariates, the covariate-balancing method performed better, 

but under complex relationships, GBM outperformed the covariate-balancing method. 

In summary, this chapter reviewed existing theoretical and empirical literature 

regarding causal inference and PSA in both single-level and multilevel settings. With 

the continuing focus on examining the effectiveness of educational programs, it is 

critical that methodologists continue to evaluate the applicability of PSA in varied data 

structures. Data mining approaches have received substantial attention in the recent 

decades and have been widely used in big data applications. Several studies have 

shown that data mining approaches are an improvement over traditional methods for 

estimating propensity scores, including a few studies that extended those algorithms to 
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a multilevel context. This study aims to investigate the performance of two data 

mining approaches in a 2-level hierarchical context. 
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METHOD  

Using the Monte Carlo simulations, this dissertation aims to compare two tree-

based data mining approaches (i.e., generalized boosting modeling, generalized linear 

mixed-effects model trees) to two parametric models (i.e., multiple logistic regression, 

multilevel logistic regression) for propensity score estimation under different 

simulated multilevel settings. This chapter describes the proposed methodology for 

this study, including simulation design and analytic procedures. 

3.1 Simulation Design 

 The simulation design for this study is informed by earlier simulation studies 

(e.g., Apino et al., 2011; Lingle, 2009; Leite, et al., 2015; Li, et al., 2013; Setoguchi et 

al., 2008; Thoemmes et al., 2011) and several nationwide studies (e.g. Early 

Childhood Longitudinal Study, Kindergarten Class of 2010ï11  [ECLS-K: 2011], 

Education Longitudinal Study of 2002 [ELS: 2002], High School Longitudinal Study 

of 2009 [HSLS: 2009]) conducted by the National Center for Education Statistics 

(NCES). The following seven sections detail the simulation design used for this study. 

The main objective for the simulation design was to reflect common scenarios for 

Chapter 3 
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sample size and structure, treatment assignment, and effects on outcomes from impact 

evaluations of education interventions. 

3.1.1 Covariates 

In this dissertation, population treatment assignment has a multilevel nature 

with ten Level-1 (X1, X2, é, X10) and four Level-2 covariates (W1, W2, é, W5). Three 

different distributions were selected to represent three different types of variables: 

binary indicators, proportions, and continuous normal variables. Among the Level-1 

covariates, X1, X4 and X7 were generated from a Bernoulli distribution (i.e., binary) 

with probability of success p=.50. X2, X5 and X8 were generated using discrete 

uniform distributions from 0 to 1 (i.e., proportions). X3, X6 , X9, and X10 were 

generated using standard normal distributions with mean of zero and standard 

deviation (SD) of one. Additionally, X1, X2 and X3 were correlated with the treatment 

assignment only. X7, X8 and X9 were correlated with the outcome only.  X4, X5 and X6 

were regarded as confounders at the individual level that were correlated with both the 

treatment assignment and outcome. X10 was regarded as an unmeasured confounder at 

the individual level (See Table 1). 

Among the Level-2 covariates, W1 was generated from a Bernoulli distribution 

with probability of success p=.5. W2 was simulated using discrete uniform 

distributions from 0 to 1. W3 and W4 were simulated by standard normal distributions 

with mean of zero and SD of one. Additionally, W1 was correlated with the treatment 

assignment only. W3 was correlated with the outcome only. W2 was regarded as a 
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confounder at the cluster level which was correlated with both the treatment 

assignment and outcome. W4 was regarded as an unmeasured confounder at the cluster 

level (See Table 1).  

Table 1: Properties of Level-1 and Level-2 Covariates 

 Correlated With 
Unmeasured 

 Treatment Outcome Both 

Level-1      

X1 V    

X2 V    

X3 V    

X4   V  

X5   V  

X6   V  

X7  V   

X8  V   

X9  V   

X10   V V 

Level-2     

W1 V    

W2    V  

W3   V   

W4   V V 

3.1.2 Population Treatment Assignment Models 

When evaluating the performance of propensity score estimation methods for 

multilevel data, existing studies have relied on multilevel logistic models (e.g., Arpino 

et al., 2011; Li et al., 2013). However, using such a model can make the estimation 

techniques that utilize logistic regression (e.g., multivariate logistic regression, random 

coefficient logit model) perform better than they would otherwise, since the data 
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generation and analytic models are congruent (i.e., data generated from a Bernoulli 

with a logit will favor analyses that employ a logit link and a Bernoulli distribution). 

In the current study, this problem is avoided by using a beta-binomial mixed effects 

model simulation to generate the data.  

A beta-binomial mixed effects model extends the beta-binomial generalized 

linear regression to the inclusion of random effects in the linear predictor of the model. 

The model is defined as follows. Conditional on some random effects u, the response 

variable y (i.e., representing treatment assignment) follows a beta-binomial 

distribution of parameters m, p and ‰ 

y|u Ḑ BB(m, p, ‰), u Ḑ Lognormal(0, D)                                                         13 

where m is maximum score number in each beta-binomial observation (which is fixed 

at 1); p indicates the probability parameter of occurrence; ‰ indicates the value of the 

dispersion parameter of the conditional beta-binomial distribution. D is the variance of 

the random effects. In this study, the lognormal distribution was applied to simulate 

the random effect of school intercept. 

Following the marginal beta-binomial regression approach, the probability 

parameter of the beta-binomial distribution is connected with some given covariates 

X1,é, Xn and the random effects by means of a cauchit (tangent) link function (i.e., as 

opposed to a logit). 

ÃÁÕÃÈÉÔÐ ÔÁÎʌÐ ɼz 8  :z Õ                                                   14 

where ɼ is the matrix of fixed effects and Z is the matrix of random effects.  
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In this study, three scenarios (A, B, and C) were considered in the population 

treatment assignment, which differ with the degree of linearity and/or additivity of 

modeled associations between treatment and the covariates. Scenario A assumes linear 

associations between treatment assignment and covariates. The population treatment 

assignment model for Scenario A is shown as follows.  

ÃÁÕÃÈÉÔὝ  ρ  ʐ В ɼ8ÂÉÊɼ 8ρπÉÊВ ʂ7ÎÉÊʂ7τÉÊ

                                                       А                                                                                  15                                                                                

Ὕ  ~ BB(m, p, ‰)                                                                                                           

The terms in Equation 15 were defined similarly as in Equation 9. Ű  represents the 

mean log-odds of propensity scores across clusters. The manipulations of coefficients 

ɓ and ʂ will be discussed in a later section. А  is a proxy for unmeasured cluster-

level covariates (i.e., a cluster-level residual).  А   was drawn from a lognormal 

distribution as defined earlier. 

Scenario B describes the moderate non-linearity and non-additivity by adding 

three quadratic terms and one interaction term for Level-1 covariates. The population 

treatment assignment model for Scenario B is shown as follows.  

ÃÁÕÃÈÉÔὝ  ρ  Ű+ В ɓXbij ɓ X10ij  ɓ 8   

ɓ 8  ɓ 8   ɓ X1ij ɕ X2iÊ  В ʂWnij

ʂW4ijА  16                                                                    

Ὕ  ~ BB(m, p, ‰)                                                                                                           
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In Equation 16, ɓ , ɓ ȟ and ɓ  represent the regression coefficients for the three 

quadratic terms. ɓ  represents the regression coefficient for the interaction term. The 

remaining terms were defined similarly as in Equation 15. 

Scenario C describes a more complex situation than Scenario B by adding a 

cross-level interaction term (X4 and W1). The population treatment assignment model 

for Scenario B is shown as follows.  

ÃÁÕÃÈÉÔὝ  ρ  Ű В ɓXbij ɓ X10ijɓ 8   

                                                      ɓ 8  ɓ 8   ɓ X1ij ɕ X2iÊ  В ʂWnij

                                                      ʂW4ijɓ X4ij ɕ W1iÊ  А                                                               17 

Ὕ  ~ BB(m, p, ‰)                                                                                                           

In Equation 17, ɓ  represents the regression coefficient for the cross-level interaction 

term. The remaining terms were defined similarly as in Equation 16.  

Population Outcome Models 

Secondary to the population treatment model above, the population outcome 

model was specified as follows: 

 9  ɻ+ В ʕXbij ʕ X10ijВ ʆWnijʆW4ijὝ  ʃ

                           ʀ                                                                                                                  18 

ʃ  Ḑ N (0, x), ʀḐ N (0, s2)  

In the above equation, Yij are the observed outcomes and ɻ is an intercept. ʕb are the 

fixed effects coefficients of seven Level-1 covariates X4 through X10 and ʆ are the 

fixed effects coefficients of Level-2 covariates W2 through W4.  g is the treatment 
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effect. Tij is the treatment indicator, ʃ  represents the influence of unobserved cluster-

level factors on the individual-level outcome. ʀ is the level-1 residual. The sum of x 

and s2 is constrained to equal 1, with the ratio of x/(x+s2) constrained to equal an 

assumed intraclass correlation (ICC, defined below). 

 In addition, four factors were manipulated to simulate the data, all of which 

were fully crossed. These factors include sample size, ratios of treatment exposure, 

treatment effects, and levels of ICCs. The rationale for choosing simulation conditions 

is described in more depth in the sections that follow.  

3.1.3 Sample Size 

 The simulated data in this study aims to mirror the educational data structure in 

real world examples. Therefore, the sample characteristics from previous nationwide 

observational studies and empirical research on multilevel PSA were reviewed. The 

sample sizes for nationwide observational studies are normally over 10,000 students 

and 500 schools. The within-school sample sizes normally range from 10 to 30. For 

example, data in the ECLS-K: 2011 were obtained from 18,000 students in 1,000 

schools (Tourangeau et al., 2015). ELS: 2002 comprises a sample including around 

15,000 students from 750 schools (Lauff & Ingels, 2014). HSLS: 2009 has over 

23,000 students from about 1,000 schools (Radford, Fritch, Leu & Duprey, 2018). 

In addition, sample characteristics from previous simulation studies under 

multilevel frameworks are varied. Arpino et al. (2011) applied sample sizes ranging 

from 500 to 4,000. Thoemmes et al. (2011) simulated 20 clusters with 50 units each to 
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represent a realistic large sample size and 200 clusters with 500 people each to 

represent an asymptotic sample size. Li et al. (2013) simulated data based on hospital 

settings, ranging from 4,000 to 12,000. To capture the multilevel data structure, this 

study consisted of three sizes. First, 500 schools with 10 students each (similar to a 

national survey); second, 200 schools with 30 students each (similar to a state-wide 

study involving 30 at-risk students in each of 200 low-performing schools); and 60 

schools with 150 students each (similar to a district-wide study involving a single K-5 

grade level). The overall sample size was 5,000, 6,000, and 9,000. These cluster 

conditions were selected since they represent a range of sample sizes (from small to 

large) based on educational data (Maas & Hox, 2005).  

3.1.4 Treatment Exposure Level 

Three levels of treatment exposure were manipulated in this study based on 

previous simulation and applied literature. The ratios of 1:3 and 1:1 (treated units vs. 

control units) were chosen to represent ranges of exposure levels in the simulation 

literature on the PSA (e.g., Rubin, 1979; Gu et al., 1993; Lingle, 2009). Besides, a 1:9 

ratio was included since it is similar to those in the applied studies of Hong et al. 

(2005) and Kim et al. (2007), which are pioneers to conduct PSA in the multilevel 

context.  
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3.1.5 Treatment Effects 

In existing propensity score simulation studies, the population treatment effects 

were normally set to 1.0 (e.g., Leite et al., 2015, Gurel, 2015, Abdia, Kulasekera, 

Data, Boake & Kong, 2017) or 1.5 (e.g., Chen, 2014). Education interventions 

frequently have small effects or no effect at all (Kraft, 2018).  Mark Lipsey and his 

colleagues (2012) found an average effect size of only 0.28 SD among a sample of 

124 randomized trials. As a result, the current study used 0.3 and 0.5 as the population 

treatment effects, which were set as the regression coefficient for treatment (ɾ ) 

shown in Equation 15.  

3.1.6 Intraclass Correlation Coefficient (ICC) 

The ICC represents the proportion of variance in the outcome variable that is 

explained by the grouping structure of the hierarchical model. It is calculated as a ratio 

of Level-2 error variance over the total error variance (Gelman & Hill, 2007; Snijders 

& Bosker, 1999): 

)##                                                                                                                    18 

In educational research, ICC levels typically range from .05 to .30 (Raudenbush et al., 

2002). As a result, the values of ICC included in this study were .10 and .30, both of 

which are plausible in educational clustered data (Niehaus, Campbell, & Inkelas, 

2014). 
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In sum, the summary of simulation design factors is presented in Table 2. A 

total of 108 conditions were simulated to generate the data, and each condition was 

replicated 500 times. All the data generation procedures were performed in R 3.6.1 (R 

Core Team, 2018).  

Table 2: Summary of Simulation Design Factors  

Factor Level 

Scenario A; B; C 

Sample size (clusters * units) 500 * 10; 200 * 30; 60 * 150 

Treatment exposure level 50%; 25%; 10% 

Treatment Effects .30; .50 

ICC .10; .30 

Note. All factor levels will be fully crossed in the simulations 

3.1.7 Analytic Procedures 

This section introduces the analytic procedures including propensity score 

estimation methods, ATE estimation method, and evaluation criteria.  

3.1.7.1 Propensity Score Estimation Methods 

3.1.7.1.1 Multiple logistic regression  

The first estimation method, represented in Equation 4, is a multiple logistic 

regression model (MLR), which will include all the Level-1 and Level-2 covariates. 
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This model provided information regarding the utility of PSA when ignoring the 

effects of clustering. The multiple logistic regression was fitted using the glm function 

in R.  

3.1.7.1.2 Multilevel logistic regression 

A random coefficient model (RC), one category of multilevel logistic 

regression model, was fit to estimate the propensity scores. This model allows the 

slopes of Level-1 covariates to vary across clusters along with the random intercepts. 

Therefore, the effect of clustering is accounted for by allowing each Level-2 unit to 

have its own unique intercept as well as its own unique slope. The glmer function in 

the lme4 R package (Version 1.1-21) was used to fit the random coefficient model 

(Bates, Maechler, Bolker, & Walker, 2019).   

3.1.7.1.3 Generalized boosted modeling 

When fitting the GBM, the cluster indicator was included in addition to six 

Level-1 and two Level-2 covariates. Besides, it was necessary to tune the parameters 

(e.g., interaction depth, numbers of iterations, stopping rule) to produce well-

calibrated probability estimates. According to McCaffrey et al. (2004), the interaction 

depth should be no more than four since higher order interactions do little to improve 

the predictive accuracy of the model. Austin (2012) also recommended specifying the 

interaction depth at three or four. Therefore, this study used the interaction depth of 

three to fit the model. Additionally, McCaffrey et al. (2004) suggested stopping the 

algorithm at the number of iterations when the balance metric (e.g., standardized 
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absolute mean difference [ASAM]) are optimized. The twang package (Version 1.5) 

was used to fit the GMB (Ridgeway, McCaffrey, Morral, Griffin, & Burgette ,2017) 

3.1.7.1.4 Generalized linear mixed-effects model trees 

When fitting the GLMM trees, each terminal node is associated with different 

fixed-effects regression coefficients while adjusting for global random effects (i.e., 

akin to random intercepts). This allows for detection of subgroups with different fixed-

effects parameter estimates, keeping the random effects constant throughout the tree 

(Fokkema et al., 2018). For the estimation of GLMM trees, the glmertree package 

(Version 0.1-2) was used (Fokkema & Zeileis, 2019). The minimum number of 

observations per node in trees was set to 20 and the interaction depth was set to three.  

3.1.7.2 Estimating Treatment Effects 

The IPTW method for estimating the treatment effects was used to weight each 

observation to make it representative of the entire population. For each estimation 

method, two separate treatment models were investigated. The first model (Model A1; 

B1; C1) included the same variables that were used to generate the data. In addition to 

the data generating model, a misspecified model (Model A2; B2; C2) was also 

implemented. Model A2; B2; C2 excluded the two unmeasured covariates (X10, W4). 

With the propensity score estimated from each of the models and estimation methods, 

two outcome models, including the single level model (MLR) and the random effects 

(RC) model, were investigated separately. The outcome variable was regressed on the 
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treatment indicator and covariates, and the weights were specified as sampling 

weights. In total, 16 combinations were compared. 

3.1.7.3 Evaluation Criteria  

The following evaluation criteria are specified to answer three research 

questions. In order to answer the first research question, the mean squared error (MSE) 

was calculated to evaluate the performance of different propensity score estimation 

methods. MSE for propensity score using three true propensity score estimation 

models (Scenario A, B and C) is reported in the results chapter. The following 

equation was used to calculate the MSE: 

ὓὛὉ В
  
                                                                                                  19 

where n is the number of observations. In addition, the linear (i.e., Pearson) correlation 

between propensity scores and the actual probability of being in the treatment group 

was calculated.  

In order to answer the second research question, both relative bias of treatment 

effects and proportion bias reduction were calculated. Relative bias measures the 

average tendency that the simulated treatment effect is below or above the treatment 

effect, which is represented by a percentage. The following equation was used to 

calculate the relative bias: 

"ʃ                                                                                                                     20 
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In this equation, ʃ is the average treatment effect estimate in the baseline with 

propensity scores, and ʃ is the population treatment effect estimate that is 1.0 and 1.5 

in this study. Hoogland and Boomsma (1998) suggested that relative bias within -.05 

and .05 is acceptable. Additionally, the proportion bias reduction of treatment effects 

was obtained via: 

02"ʃ                                                                                                       21 

where ʃ  is the relative bias in the null model where no propensity score weighting 

was performed to obtain treatment effects and ʃ  is the relative bias of treatment 

effects after propensity score weighting was added into the outcome model. It is 

suggested that a propensity score estimation procedure performs well if it removes at 

least 90% of the selection bias (Gurel, 2015; Cochran, 1968). Therefore, this condition 

was also included to evaluate estimation methods. In addition, the standard error of the 

treatment effects was calculated to assess the precision of the resulting treatment effect 

estimates. 

 To answer the third research question, a series of analyses of variance 

(ANOVA) were used to investigate the effects of manipulated conditions on relative 

bias of treatment effects. In these analyses, relative bias of treatment effects was used 

as the dependent variable. The independent variables include propensity score 

estimation methods, propensity score models, outcome models, sample size, treatment 

exposure level, treatment effects and ICC. The eta squared was used as the measure of 

effect size on the relative bias of treatment effects. Meanwhile, since ICC determines 
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the nested structure of data, its interaction effects with estimation methods and 

outcome models were investigated as well. 
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RESULTS 

This chapter outlines in detail the results of all the propensity score models 

described in Chapter 3. Three scenarios (Scenario A, B, and C) regarding the 

population treatment assignment are discussed separately. For each scenario, the 

presentation of results aligns directly to the t hree research questions.  

4.1 Scenario A 

Scenario A assumes linear associations between treatment assignment and 

covariates (i.e., the data generation model does not include quadratic terms or 

interactions). The population treatment assignment model for Scenario A can be found 

in Equation 15. In this study, the performance of various combinations of treatment 

model, estimation methods, and outcome models was assessed. For each estimation 

method, two separate treatment models were investigated. The first model (Model A1) 

included the same variables that were used to generate the data. In addition to Model 

A1, a misspecified model (Model A2) was also implemented. Model A2 excluded two 

unmeasured covariates (X10, W4). Propensity scores were estimated under each of 

these two models and the four estimation methods (i.e., MLR, RC, GBM, and 

GLMERTREE). Finally, two outcome models, including the single level model 

Chapter 4 
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(MLR) and the random effects (RC) model, were investigated separately. Given 32 

combinations of sample characteristics, 288 combinations of conditions were 

investigated on the MSE and correlation coefficients between the actual probability of 

being in the treatment group and estimated propensity score, and 576 combinations of 

conditions were on the relative biases of treatment effects, percent bias reduction of 

propensity score estimation, and standard errors.  

To answer the first research question, MSE was calculated to evaluate the 

performances of different propensity score estimation methods. MSE represents the 

squared deviation of the estimated propensity scores from the true propensity scores 

across 500 iterations. Figure 1 provided the mean MSE for each implemented 

propensity score estimation model. Overall, the MSE in Model A1 were lower than 

those in Model A2. The MSE for Model A1 across the MLR, RC, GBM, and 

GLMERTREE were .079, .050, .062 and .052 respectively. RC had the lowest MSE, 

while MLR had the largest MSE. For the Model A2, RC (.055) had the lowest MSE 

among the four estimation methods while MLR (.086) had the worst MSE. In addition, 

the detailed mean MSE for each simulated condition were reported in Appendix A. 
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Figure 1: Average MSE across Simulated Conditions for Scenario A 

Correlation coefficients between the actual probability of being in the 

treatment group and estimated propensity score that is obtained with four propensity 

score estimation methods in each iteration were also examined. Figure 2 showed the 

mean correlation coefficient for each implemented propensity score estimation model. 

Overall, the correlation coefficients in Model A1 were higher than those in Model A2. 

For Model A1, RC and GLMERTREE had the highest correlation coefficient (.770), 

followed by GBM (.769). MLR had the lowest correlation coefficient (.585). For 

Model A2, RC had the highest correlation coefficient (.745), followed by GBM (.726) 

and GLMERTREE (.683). MLR had the lowest correlation coefficient (.531). In 

addition, the detailed mean correlation coefficients for each simulated condition were 

reported in Appendix B. 
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Figure 2: Average Correlation between Actual Probability of Receiving the Treatment 

and Estimated Propensity Scores across Conditions for Scenario A  

In order to answer the second research question, relative biases of treatment 

effects were calculated. Confirming the presence of selection bias in the simulated 

data, treatment effects obtained with the multilevel model without control variables 

and propensity score weights were biased in all conditions.  

Relative bias was much smaller under all conditions that utilized propensity 
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relative biases of treatment effects. The detailed relative biases for each simulated 

condition are reported in Appendix C. 

 

Figure 3: Average Relative Bias across Simulated Conditions for Model A1 
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Figure 4: Average Relative Bias across Simulated Conditions for Model A2 

 
 In addition to the relative bias, the percent bias reduction of propensity score 
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performance of propensity score estimation methods. Figure 5 and 6 showed the 

percent bias reduction across simulated conditions for Model A1 and A2. For Model 

A1, the performance of four estimation methods and two outcome models were 

similar, all of which were able to remove more than 90% of initial bias. Among the 

eight combinations, GBM-RC combination can remove 96.0% of initial bias, followed 

by MLR-RC combination (95.2%). For Model A2, no matter whether cluster effects 

were included in the outcome model, all of the four estimation methods removed less 
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reported in Appendix D. 
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Figure 5: Percent Bias Reduction across Simulated Conditions for Model A 

 

 

Figure 6: Percent Bias Reduction across Simulated Conditions for Model A2 
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Furthermore, standard errors of were examined to compare the precision of the 

resulting treatment effect estimates. When incorporating the cluster effects in the 

outcome model, standard errors became smaller across conditions. GBM-RC 

combination had the smallest value of standard error (.003), followed by MLR-RC 

(.004) and GLMERTREE-RC (.004) combinations. For Model A2, when 

incorporating the cluster effects in both propensity score and outcome models, 

standard errors became smaller as well across conditions. GBM-RC combination had 

the smallest value of standard error (.005), followed by MLR-RC (.006) and 

GLMERTREE-RC (.006) combinations. The detailed standard errors for each 

simulated condition were reported in Appendix E. 

 

Figure 7: Standard Errors across Simulated Conditions for Model A1 
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Figure 8: Standard Errors across Simulated Conditions for Model A2 

 In order to answer the third research question, an analysis of variance 

(ANOVA) was used to investigate the effects of other manipulated conditions on the 
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between the outcome model and ICC was significant, but the effect size was below .01 

(G ɖ2 = .001).  

Table 3: Effect Size on the Relative Bias of Treatment Effects for Scenario A 

Variables Effect Size (G ɖ2) 

Sample Size .002 ** 

ICC .002 ** 

Ratio of Treatment Exposure .056 ** 

Treatment Effect Size <.001 ** 

Propensity Score Estimation Method .001 ** 

Outcome Model .000 

Inclusion of Unmeasured Covariates .482 **  

ICC * Propensity Score Estimation Method .000 

ICC * Outcome Model .001 ** 

Note. **p<.01, *<.05 
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Figure 9: Multiple Comparisons of ANOVA for Scenario A 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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4.2 Scenario B 

Scenario B included moderate non-linearity and non-additivity by including 

three interaction terms and one quadratic term for Level-1 covariates. The population 

treatment assignment model for Scenario B was shown in Equation 16. Similar to 

Scenario A, for each estimation method, two separate treatment models were 

investigated. The first model (Model B1) included the same variables that were used 

to generate the data. In addition to Model B1, a misspecified model (Model B2) was 

also implemented. Model B2 excluded two unmeasured covariates (X10, W4). 

Propensity scores were estimated under each of these two models and four estimation 

methods (i.e., MLR, RC, GBM, and GLMERTREE). Lastly, the two outcome impact 

models (i.e., single level multiple linear regression (MLR) and the multilevel random 

coefficients (RC) model), were investigated separately. In total, 16 combinations were 

compared. 

Figure 10 showed the mean MSE for each implemented propensity score 

estimation model. Not surprisingly, the MSE for Model B1 were lower than those in 

Model B2. The MSE for Model B1 across the MLR, RC, GBM, and GLMERTREE 

were .093, .067, .060 and .046 respectively. GLMERTREE had the lowest MSE, while 

MLR had the largest MSE. For Model B2, GLMERTREE (.064) had the lowest MSE 

among the four estimation methods while MLR (.098) had the worst MSE. The mean 

MSE for each simulated condition is reported in Appendix F. 
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Figure 10: Average MSE across Simulated Conditions for Scenario B 

Figure 11 shows the mean correlation coefficients for each implemented 

propensity score estimation model. Overall, the correlation coefficients in Model B1 

were higher than those in Model B2. For Model B1, GLMERTREE had the highest 
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Figure 11: Average Correlation between Actual Probability of Receiving the 

Treatment and Estimated Propensity Scores across Conditions for 

Scenario B  

In addition, relative biases of treatment effects were calculated. Figures 12 and 

13 displayed the average relative biases across simulated conditions for Model B1 and 

B2, respectively. For Model B1, no matter the cluster effects in the outcome model 

were considered, the relative biases were extremely small. MLR-MLR had the 
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relative biases of treatment effects. The detailed relative biases for each simulated 
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Figure 12: Average Relative Bias across Simulated Conditions for Model B1 

 

Figure 13: Average Relative Bias across Simulated Conditions for Model B2 
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Figures 14 and 15 showed the percent bias reduction across simulated 

conditions for Model B1 and B2. For Model B1, the performance of four estimation 

methods and two outcome models were similar, all of which were able to remove 

more than 90% of initial bias. Among the eight combinations, GBM-RC combination 

can remove 95.2% of initial bias, followed by MLR-RC combination (94.3%). For 

Model B2, no matter whether cluster effects were included in the outcome model, all 

of the four estimation methods removed around 70.0% of initial bias. The percent bias 

reduction for each simulated condition is reported in Appendix I. 

 

Figure 14: Percent Bias Reduction across Simulated Conditions for Model B1 
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Figure 15: Percent Bias Reduction across Simulated Conditions for Model B2 
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Figure 16: Standard Errors across Simulated Conditions for Model B1 

 

Figure 17: Standard Errors across Simulated Conditions for Model B2 
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Table 5 displayed the effect size (G ɖ2) of simulated conditions on the relative 

bias of treatment effects. Among these conditions, the inclusion of unmeasured 

covariates had the strongest effect on the relative bias of treatment effects (G ɖ2 = 

.523), which indicated that 52.3% of the variation in the relative bias was attributed to 

the inclusion/exclusion of unmeasured covariates. Additionally, the effect size for the 

ratio of treatment exposure (G ɖ2 = .044) was above .01. The influence of propensity 

score estimation method was small (G ɖ2 < .001) even though it was statistically 

significant. Lastly, the interaction term between the outcome model and ICC was 

significant, but the effect size was below .01 (G ɖ2 = .001).  

Table 4: Effect Size on the Relative Bias of Treatment Effects for Scenario B 

Variables Effect Size (G ɖ2) 

Sample Size .001 **  

ICC <.001 **  

Ratio of Treatment Exposure .044 **  

Treatment Effects <.001 ** 

Propensity Score Estimation Method <.001 **  

Inclusion of Unmeasured Covariates .523 **  

Outcome Model .000 

ICC* Propensity Score Estimation Method .000 

ICC*Outcome Model .001 **  

Note. **p<.01, *<.05 
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Figure 18: Multiple Comparisons of ANOVA for Scenario B 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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4.3 Scenario C 

Scenario C involved an even more complex situation than Scenario B by 

adding a cross-level interaction term (X4 and W1). The population treatment 

assignment model for Scenario B was shown in Equation 17. Similar to Scenario A 

and B, two separate treatment models were investigated for each estimation method. 

The first model (Model C1) included the same variables that were used to generate the 

data. In addition to model C1, a misspecified model (Model C2) excluded three 

covariates (X7, X8, X9) that were correlated with the outcome only and two 

unmeasured covariates (X10, W4). Propensity scores were estimated under each of 

these two models and the four estimation methods (i.e., MLR, RC, GBM, and 

GLMERTREE). Lastly, two outcome models (i.e., the single level multiple linear 

regression (MLR) and the random coefficients (RC) model) were investigated 

separately. In total, 16 combinations were compared. 

Figure 19 showed the mean MSE for each implemented propensity score 

estimation model. Overall, the MSE for Model C1 were lower than those for Model 

C2. The MSE for Model C1 across the MLR, RC, GBM, and GLMERTREE were 

.110, .087, .072 and .051, respectively. GLMERTREE had the lowest MSE while 

MLR had the worst MSE. For the Model C2, GLMERTREE (.069) had the lowest 

MSE among the four estimation methods while MLR (.116) had the worst MSE. In 

addition, the detailed mean MSE for each simulated condition were reported in 

Appendix K. 
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Figure 19. Average MSE across Simulated Conditions for Scenario C 

Figure 20 provided the mean correlation coefficients for each implemented 

propensity score estimation model. Overall, the correlation coefficients for Model C1 

were higher than those for Model C2. For Model C1, GLMERTREE had the highest 
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correlation coefficient (.417). The mean correlation coefficients for each simulated 

condition are reported in Appendix L. 
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Figure 20. Average Correlation between Actual Probability of Receiving the 

Treatment and Estimated Propensity Scores across Conditions for 

Scenario C  

Figures 21 and 22 displayed the average relative biases across simulated 

conditions for Model C1 and C2 respectively. For Model C1, no matter the cluster 

effects in the outcome model were considered, the relative biases were extremely 

small. MLR-MLR and GBM-MLR combinations had the smallest relative bias. When 

excluding two unmeasured covariates in Model C2, both outcome models produced 

extremely large relative biases of treatment effects. The detailed relative biases for 

each simulated condition were reported in Appendix M. 
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Figure 21: Average Relative Bias across Simulated Conditions for Model C1 

 

Figure 22: Average Relative Bias across Simulated Conditions for Model C2 
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Figures 23 and 24 showed the percent bias reduction across simulated 

conditions for Model C1 and C2. For Model C1, the performance of four estimation 

methods and two outcome models were similar, all of which were able to remove 

more than 90% of initial bias. Among the eight combinations, GBM-RC combination 

can remove 94.9% of initial bias, followed by MLR-RC combination (94.1%). For 

Model C2, no matter whether cluster effects were included in the outcome model, all 

of the four estimation methods removed less than 70.0% of initial bias. The percent 

bias reduction for each simulated condition were reported in Appendix N. 

 

Figure 23: Percent Bias Reduction across Simulated Conditions for Model C1 
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Figure 24: Percent Bias Reduction across Simulated Conditions for Model C2 
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Figure 25: Standard Errors across Simulated Conditions for Model C1 

 

Figure 26: Standard Errors across Simulated Conditions for Model C2 
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Table 6 showed the effect size (G ɖ2) of simulated conditions on the relative 

bias of treatment effects. Among the condition, inclusion of unmeasured covariates 

had the strongest effect on the relative bias of treatment effects (G ɖ2 = .596), which 

indicated that 59.6% of the variation in the relative bias could be attributed to the 

inclusion/exclusion of unmeasured covariates. Additionally, the effect size for the 

ratio of treatment exposure (G ɖ2 = .040) was above .01. The influence of propensity 

score estimation method was small (G ɖ2 = .001) even though it was statistically 

significant. Lastly, two interaction terms were significant, but both effect sizes were 

extremely small. 

Table 5. Effect Size on the Relative Bias of Treatment Effects for Scenario C 

Variables Effect Size (G ɖ2) 

Sample Size <.001 **  

ICC .001 **  

Ratio of Treatment Exposure .040 ** 

Treatment Effects .003 **  

Propensity Score Estimation Method .001 **  

Inclusion of Unmeasured Covariates .596 **  

Outcome Model .000  

ICC* Propensity Score Estimation Method <.001 **  

ICC*Outcome Model .001 **  

Note. **p<.01, *<.05 
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Figure 27: Multiple Comparisons of ANOVA for Scenario C 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)  
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DISCUSSION 

In observational studies, the absence of randomization is the fundamental 

problem in estimating treatment effects. The goal of PSA methods is to summarize 

multiple confounding variables in a single variable for balancing covariates across 

treatment and control units. Numerous studies have confirmed the effectiveness of 

PSA methods in reducing selection bias in treatment effect estimation caused by the 

absence of nonrandom treatment assignment in observational studies.   

Propensity score methodology was developed in the context of data with no 

hierarchical structure. In educational studies however, the data is often hierarchical in 

nature, which is of substantive importance. The treatment assignment and outcome 

may not only depend on individual characteristics but on the cluster characteristics as 

well. Recently, data mining approaches have been used to estimate the propensity 

scores in single-level scenarios. Previous studies have shown that data mining 

approaches outperform the traditional parametric method (e.g., multiple logistic 

regression) in estimating the propensity score (e.g., McCaffrey et al., 2004; Setoguchi, 

et al., 2008) in single-level settings. As an extension of that work, this dissertation 

used Monte Carlo simulation to compare two tree-based data mining approaches (i.e., 

generalized boosting modeling, generalized linear mixed-effects model trees) to two 

Chapter 5 
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parametric models (i.e., multiple logistic regression, multilevel logistic regression) for 

propensity score estimation in multilevel settings. 

This chapter begins with summarizing and interpreting the most important 

findings of the present simulation study. Similarities and differences of current results 

with previous studies are presented, and implications for applied researchers are 

discussed. Finally, limitations of this dissertation study and future research directions 

are provided.  

5.1 Summary of Findings 

1. How do the propensity scores obtained by parametric and data mining techniques 

compare based on (a) mean squared error and (b) the correlation between the 

actual probability of being in the treatment group and the estimated propensity 

score?   

To answer this research question, MSE was calculated to evaluate the 

performances of different propensity score estimation methods. MSE represents a 

combination of bias and variance and is a measure of the overall variability of the 

estimation of propensity scores. In Scenario A, RC provided lower MSE and higher 

correlation coefficient between the true and estimated propensity scores. These results 

matched some of previous studies. Thoemmes et al. (2011) found that RC 

outperformed other models (e.g., MLR, fixed effects models) in terms the MSE. In 

addition, Gurel (2015) showed that multilevel models outperformed MLR and GBM 

in terms of the correlation between the true and the estimated propensity scores. Su 



 84 

and Cortina (2009) found that using multilevel models both to estimate propensity 

scores and the treatment effect resulted in the smallest MSE. No matter whether the 

unmeasured covariates were included in the treatment model, MLR had the highest 

MSE and lowest correlation coefficient.   

In Scenario B and C where non-additivity and non-linearity exist, GBM and 

GLMERTREE provided better performance on predicting the propensity score. The 

poor performance of prediction by MLR and RC resulted from the violation 

of linearity or additivity assumption. This will produce erroneous predictions of the 

propensity scores. Similarly, Lin, Zhu and Chen (2019) found that data mining 

approaches including GBM provided lower MSE than MLR when the relationship 

between the treatment assignment and the covariates was non-linear and non-additive. 

2. To what extent do the relative bias of treatment effect estimates, proportion bias 

reduction of treatment effects and the standard error of the treatment effects vary 

across the method of propensity score estimation, propensity score model, and 

outcome model? 

The purpose of this research question was to understand the performance of 

four propensity score estimation methods in removal of selection bias and precision of 

estimating treatment effects. Results showed that all of the four estimation methods 

produce small relative bias when no confounds are unmeasured. Under such 

conditions, the difference of performance among the four estimation methods was 

minimal. These results indicated that the MLR is still effective to remove selection 
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bias when estimating propensity scores in multilevel studies. This is in line with 

findings from Gurel (2015) and Leite et al. (2015). Those two studies discovered MLR 

ignoring cluster effects can provide adequate performance in reducing selection bias.  

Meanwhile, although GBM and GLMERTREE had better performance in 

predicting the true propensity scores, they did not outperformed MLR and RC in the 

relative bias of treatment effects. Furthermore, the overall performance on the relative 

bias among the four estimation methods did not degrade as the increased complexities 

of treatment assignment model in Scenario B and C. These results indicated that the 

goal of the propensity score model is to efficiently control for confounders instead of 

predicting treatment assignment. The correctly specified outcome models can provide 

another chance to control for confounders and variables only correlated with the 

outcome.  

These results support the findings presented by Setoguchi et al. (2008) in a 

comparison of MLR, neural network, CART, and pruned CART in the propensity 

score model. Approximately unbiased estimates of the treatment effect estimates can 

be obtained from both traditional parametric modeling and data mining propensity 

score methods in a variety of scenarios differing by additivity and linearity. By 

comparison, Arpino et al. (2015) assessed the performance of MLR, RC, mixed-effect 

regression tree, and boosted regression tree for the estimation of propensity scores 

with clustered data. Their results confirmed that when non-linearity and non-additivity 

are present, the performance of all methods degrades in terms of higher bias of the 
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causal estimates. One explanation for this difference is that the current study did not 

incorporate the non-linearity and non-additivity in the outcome generation model.  

Regarding the precision of estimating treatment effects, GBM produced lowest 

standard errors of treatment effects across the three scenarios. One explanation of the 

decreased sampling variability of the GBM is that it can produce fewer extreme values 

of the weights (McCaffrey et al., 2004). The use of the piecewise constants in GBM 

has the effect of flattening the estimated propensity scores at the extreme values of the 

predictors. This minimizes the chance of obtaining predicted probabilities near 0 or 1, 

thus preventing the high variability in weights that can be problematic for propensity 

score weighting. 

The current study also showed that the MLR and RC outcome models 

performed similarly on the relative bias of treatment effects. However, RC is more 

effective to improve precision by producing lower standard errors of treatment effects. 

One explanation is that MLR treats the units of analysis as independent observations. 

One consequence of failing to recognize nested structures is that standard errors of 

individual-level regression coefficients will be larger. This can result in an 

understatement of statistical significance. As Li et al. (2013) suggested, considering 

cluster effects in at least one stage greatly improves the estimates in bias and standard 

errors of treatment effects. 

ANOVA results suggested that the inclusions of unmeasured covariates played 

a larger role than the propensity score estimation and outcome models. 48.2%, 52.3% 

and 59.6% of the variation in the relative bias could be attributed to the 
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inclusion/exclusion of unmeasured covariates in the three scenarios. If the unmeasured 

covariates are confounders, which are not included in the propensity score and 

outcome models, the SITA assumption is not met. Not all the covariates that impact 

the treatment assignment have been properly accounted for. To this end, the bias in 

treatment effect estimates are exacerbated. This finding was in agreement with studies 

conducted by Kelcey (2009) and Arpino et al. (2011). Kelcey (2009) claimed that the 

inclusions of appropriate variables in a model were more crucial than the use of a 

specific propensity score model. Similarly, Arpino et al. (2011) revealed that omitted 

cluster-level variables have the strongest impact when they are highly correlated with 

the potential outcome.  

 

3. Does the relative bias of treatment effect estimates depend on the cluster size, 

ratios of treatment exposure, treatment effects, and levels of intraclass 

correlations (ICC)?  

A series of ANOVA tests were used to examine if the relative bias of treatment 

effect estimates depends on the cluster size, ratios of treatment exposure, treatment 

effects, and ICC. Furthermore, since the ICC quantifies the potential influence of 

nesting in multilevel data, its interaction effects with estimation methods and outcome 

models were investigated as well. Results showed that variation in ratios of treatment 

exposures was a significant contributor to bias across all three scenarios. Treatment 

exposure ratio at 10% level was likely to have lower relative bias which was closer to 
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zero. Besides, the two interaction terms between ICC and estimation methods/outcome 

models were not significant or significant with the negligible effect sizes.   

In summary, there are several primary findings in this study. First, hidden bias 

from unmeasured covariates has a very large impact on the estimate of causal 

effectsðmissing covariates renders all PSA approaches invalid. Second, under 

conditions of non-additivity and non-linearity, the data mining approaches can provide 

better performance on predicting the propensity score. However, all of the four 

estimation methods with an appropriately specified outcome model can provide 

unbiased treatment effect estimates. Third, although the MLR and RC outcome models 

performed similarly on the relative bias of treatment effects, RC offers improved 

precision by producing smaller standard errors of treatment effects. Fourth, among the 

eight estimation and outcome model combinations, GBM-RC combination 

consistently provided a more precise treatment effect estimates across the simulated 

conditions.  

5.2 Implications for Educational Researchers 

In educational research, there is a consistent interest in evaluating the effects of 

educational programs and policies. A large and influential sector of research literature 

provides identification and estimation strategies for treatment effects under the 

potential outcomes framework for causal inference. Under this framework, PSA has 

been developed as a means to produce valid causal inference in observational studies. 

Naturally, the use of PSA has been extended to the multilevel settings, especially in 
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education research. This dissertation examined the performance of four propensity 

score estimation methods in various simulated settings, which extended the work of 

Lee et al. (2010) to clustered data. Additionally, this study extends to a multilevel 

setting previous research by Setoguchi et al. (2008) and Stuart et al. (2010), which 

supported the use of data mining methods in propensity score estimation with single-

level data. Findings from this dissertation confirm some earlier results, while also 

illustrating some new findings, all of which have substantial implications for 

educational researchers who conduct PSA in multilevel settings. Five key 

recommendations based on this dissertationôs results are as follows. 

1. Researchers should develop a thorough understanding of the treatment 

assignment mechanism in order to identify whether there are critical unmeasured 

covariates that are related to both treatment assignment and the outcome. If the 

potential for important confounders exists, then no modeling strategy is likely to 

produce valid results. 

2. Under the most realistic conditions (e.g., those with missing covariates, 

nonlinearity, and/or interactions), data mining techniques (i.e., GBM, 

GLMERTREE) tend to outperform parametric models in terms of precision, but 

only slightly so.  

3. When researchers find the variation at the cluster-level in the form of random 

intercepts but no variation in the form of a random slope, employing multilevel 

modeling in the outcome model is adequate to provides valid and reliable 

treatment effects.  
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4. Once the multilevel structure in the data has been captured by the multilevel 

outcome model, it matters little if some cluster level information is omitted from 

the propensity score estimation model.  

5. Researchers should allow for nonlinear patterns and interactions when estimating 

propensity scores.  

 

 GBM has been confirmed to perform well in the single-level setting 

(McCaffrey et al., 2004). The current study showed that it does provide relatively 

reliable and stable performance in the multilevel settings. As discussed by McCaffrey 

et al., the GBM algorithm has some features that improve propensity score estimation 

performance. For example, it uses a piecewise linear combination of multiple trees. To 

reduce prediction error, each successive tree is estimated from a random subsample of 

the data. Furthermore, the application of a shrinkage coefficient can prevent 

overfitting efficiently. Finally, as mentioned earlier, GMB can avoid the high 

variability in weights that can be problematic for propensity score weighting. In R, the 

twang package is well established to fit the GMB to estimate propensity scores 

(Ridgeway, et al., 2017). This package can also provide diagnostics statistics (e.g., 

covariate balance) for PSA. Alternatively, WeightIt package was newly developed to 

conduct propensity score weighting (Greifer, 2019). 

 GLMERTREE, as one of the tree-based methods, was newly developed to take 

account of nested data structures (Fokkema et al., 2018). Despite this, the performance 

of GLMERTREE was not superior to GBM in this study. Meanwhile, the computation 
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time for GLMERTREE is much longer than GBM. In addition, other results suggest 

that the propensity score estimation model can ignore clustering with little to no 

detriment, as long as the outcome impact model recognizes clustering. To this end, if 

applied researchers would like to use a data mining approach to perform the PSA, 

GBM is still preferable.  

 Although some studies recommended using covariate balance checks 

(Haviland, Nagin & Rosenbaum, 2007; McCaffrey et al., 2004), the covariate balance 

is only one type of potential indicator of the level of overt bias in the treatment effect 

estimate. An ideal evaluation should consider the actual bias of the estimates. In 

studies using real data, the true treatment effect is unknown, and the bias reduced by 

PSA is unknown as well. Simulation studies can be useful to compare the bias of 

treatment effect estimates, but simulations require an assumed model of interest. 

Meanwhile, it is unknown whether those assumed models and simulated conditions 

can approximate reality. Applied researchers should be aware that simulation studies 

are becoming more widely used in educational research, especially as a component to 

support the use and development of PSA techniques. 

 In practice, applied researchers may consider multiple PSA techniques to 

evaluate treatment effect estimates. In observational studies, it would be ideal to 

minimize both bias and variance. While bias is the primary concern in observational 

studies, low variance is an appealing feature as well. If different PSA techniques 

produce similar point estimates of the treatment effect, the one that yields a smaller 
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variance of that treatment effect (i.e., a more precise estimate) may be preferred 

(McCaffrey et al., 2004; Stuart & Green, 2008). 

5.3 Limitations  and Future Research 

Due to the design of this study, there are generalizability limitations to 

consider. This study incorporated Monte Carlo simulation methods to examine the 

performance of four propensity score estimation methods in multilevel settings. 

Simulation methods can control and manipulate the specific design and data factors to 

investigate the behavior of statistical methods (Guo et al, 2010). While this is a merit 

to simulation research, it also limits the generalizability of the findings. 

First, this study did not consider varied correlation between covariates. It has 

been suggested that correlation between covariates would have an impact on the 

accuracy and precision of casual inference estimation. Future research can be done to 

incorporate varied correlations among covariates and examine how the PS methods 

discussed in the current study perform on estimation of the effect on the outcome 

variable. 

Second, balanced cluster size scenarios were created in this study. It is of 

interest to investigate the performance of different propensity score estimation 

methods when cluster sizes are unbalanced across clusters. It is worth exploring the 

effect of the imbalance on the estimation of treatment effect since the cluster sizes 

obtained from observational studies are commonly imbalanced. 
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Third, this study included only propensity score weighting as the conditioning 

method. Propensity score matching and stratification, two other important PSA 

conditioning methods, were not evaluated. Future research can assess the performance 

of data mining approaches to estimate the propensity score using matching (e.g., 

nearest neighbor matching, caliper matching, Mahalanobis metric matching) and 

stratification conditioning methods.  

Fourth, when using GBM to generate the propensity score in this study, only 

one algorithm specification was specified. Further research should include different 

algorithm specifications for GBM with multilevel data. In addition to the data mining 

procedure that was investigated in this study, other promising data mining methods 

(e.g., random forest, neural networks, support vector machine) should be extended to 

deal with selection bias in multilevel observational studies. 

In conclusion, PSA has become an important statistical tool to draw causal 

inference in non-randomized studies. The PSA methods discussed in this study give 

researchers several options to select a PSA technique for their dataset and research 

question. The choice of an optimal PSA technique can be expected to vary depending 

on the dataset, the research question, and the desired generalizability of results. It is 

suggested for researchers to compare the measured covariate balance achieved by 

several combinations of estimation techniques, conditioning methods, and outcome 

models. It is likely that additional propensity score estimation and application methods 

will be developed in the future. 
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AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO A  

Size ICC Prob Effect 
Treatment Model A1 Treatment Model A2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .085 .073 .053 .047 .088 .075 .055 .054 

S1 .30 10% .30 .119 .106 .076 .064 .127 .111 .084 .082 

S2 .10 10% .30 .105 .097 .070 .061 .117 .105 .085 .087 

S2 .30 10% .30 .112 .072 .076 .067 .115 .073 .080 .080 

S3 .10 10% .30 .132 .098 .091 .080 .139 .102 .098 .098 

S3 .30 10% .30 .109 .090 .076 .069 .120 .098 .090 .093 

S1 .10 30% .30 .085 .074 .052 .040 .088 .075 .056 .049 

S1 .30 30% .30 .119 .106 .076 .054 .127 .111 .084 .075 

S2 .10 30% .30 .105 .096 .071 .052 .118 .105 .087 .081 

S2 .30 30% .30 .059 .008 .033 .024 .061 .009 .037 .042 

S3 .10 30% .30 .071 .014 .068 .055 .078 .019 .072 .071 

S3 .30 30% .30 .065 .017 .078 .065 .075 .024 .082 .078 

S1 .10 50% .30 .020 .006 .013 .012 .021 .007 .014 .015 

S1 .30 50% .30 .034 .012 .044 .033 .042 .016 .047 .042 

S2 .10 50% .30 .038 .015 .065 .046 .052 .023 .068 .057 

S2 .30 50% .30 .060 .007 .030 .017 .062 .008 .031 .032 

S3 .10 50% .30 .069 .011 .063 .040 .076 .016 .067 .058 

S3 .30 50% .30 .062 .014 .076 .052 .074 .021 .081 .068 

S1 .10 10% .50 .018 .009 .015 .019 .019 .009 .016 .021 

S1 .30 10% .50 .036 .018 .046 .048 .044 .023 .049 .053 

S2 .10 10% .50 .040 .023 .064 .061 .053 .030 .067 .068 

S2 .30 10% .50 .055 .011 .038 .041 .057 .012 .040 .052 

S3 .10 10% .50 .075 .021 .073 .075 .082 .024 .077 .085 

S3 .30 10% .50 .066 .025 .079 .079 .076 .030 .083 .088 

S1 .10 30% .50 .019 .007 .014 .015 .021 .007 .015 .018 

S1 .30 30% .50 .037 .014 .047 .042 .045 .019 .050 .049 

S2 .10 30% .50 .038 .018 .064 .053 .052 .025 .067 .062 

S2 .30 30% .50 .058 .008 .033 .025 .059 .009 .035 .041 

S3 .10 30% .50 .076 .014 .071 .056 .083 .018 .075 .075 

S3 .30 30% .50 .065 .017 .079 .066 .077 .024 .083 .079 

S1 .10 50% .50 .017 .006 .012 .012 .019 .007 .013 .014 
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Table continued 

S1 .30 50% .50 .035 .011 .045 .034 .044 .016 .048 .043 

S2 .10 50% .50 .037 .015 .064 .046 .051 .023 .067 .056 

S2 .30 50% .50 .061 .006 .030 .016 .064 .008 .032 .032 

S3 .10 50% .50 .070 .012 .063 .040 .077 .016 .067 .059 

S3 .30 50% .50 .063 .014 .076 .052 .074 .021 .081 .068 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED 

CONDITIONS OF SCENARIO A  

Size ICC Prob Effect 
Treatment Model A1 Treatment Model A2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .478 .581 .771 .764 .452 .573 .748 .721 

S1 .30 10% .30 .494 .573 .781 .785 .439 .548 .730 .701 

S2 .10 10% .30 .514 .570 .777 .775 .422 .514 .687 .632 

S2 .30 10% .30 .409 .687 .716 .722 .382 .679 .681 .649 

S3 .10 10% .30 .449 .641 .736 .733 .398 .621 .687 .645 

S3 .30 10% .30 .481 .607 .744 .729 .391 .560 .656 .590 

S1 .10 30% .30 .479 .576 .778 .808 .452 .565 .749 .759 

S1 .30 30% .30 .495 .575 .789 .824 .441 .547 .735 .735 

S2 .10 30% .30 .515 .576 .779 .812 .420 .517 .684 .665 

S2 .30 30% .30 .404 .940 .801 .815 .363 .932 .769 .655 

S3 .10 30% .30 .654 .940 .748 .766 .608 .921 .710 .660 

S3 .30 30% .30 .754 .940 .765 .769 .705 .918 .734 .702 

S1 .10 50% .30 .610 .887 .776 .732 .559 .864 .758 .678 

S1 .30 50% .30 .796 .934 .797 .810 .736 .905 .767 .751 

S2 .10 50% .30 .853 .946 .815 .834 .792 .916 .783 .784 

S2 .30 50% .30 .437 .949 .827 .867 .402 .940 .814 .775 

S3 .10 50% .30 .661 .951 .782 .835 .613 .930 .748 .741 

S3 .30 50% .30 .763 .952 .786 .825 .708 .926 .750 .750 

S1 .10 10% .50 .571 .812 .686 .528 .527 .797 .653 .466 

S1 .30 10% .50 .788 .898 .763 .710 .734 .871 .735 .665 

S2 .10 10% .50 .847 .914 .796 .765 .790 .886 .769 .724 

S2 .30 10% .50 .402 .908 .718 .627 .371 .902 .679 .460 

S3 .10 10% .50 .635 .913 .705 .648 .590 .898 .671 .572 

S3 .30 10% .50 .747 .914 .742 .700 .700 .894 .712 .651 

S1 .10 30% .50 .589 .862 .737 .653 .538 .842 .708 .582 

S1 .30 30% .50 .788 .924 .780 .766 .730 .897 .745 .707 

S2 .10 30% .50 .853 .935 .804 .803 .795 .906 .774 .757 

S2 .30 30% .50 .410 .937 .795 .808 .373 .929 .773 .658 

S3 .10 30% .50 .634 .943 .745 .769 .590 .924 .709 .654 

S3 .30 30% .50 .750 .941 .761 .763 .699 .917 .726 .696 
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Table continued 

S1 .10 50% .50 .629 .878 .751 .708 .581 .856 .729 .662 

S1 .30 50% .50 .791 .936 .798 .812 .733 .907 .764 .751 

S2 .10 50% .50 .858 .945 .814 .834 .798 .915 .785 .786 

S2 .30 50% .50 .417 .950 .826 .874 .374 .941 .818 .777 

S3 .10 50% .50 .658 .951 .786 .839 .615 .931 .758 .744 

S3 .30 50% .50 .760 .953 .784 .825 .709 .927 .747 .750 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE RELATIVE BIAS FOR SIMULATED CONDITIONS OF 

SCENARIO A 

Size ICC Prob Effect 
Treatment Model A1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .016 .020 .018 .020 .023 .018 .002 .007 

S1 .30 10% .30 .012 .012 .014 .014 .001 .003 -.003 .003 

S2 .10 10% .30 .006 .004 .004 .002 .016 .010 .014 .014 

S2 .30 10% .30 -.002 -.001 .010 .001 -.021 -.002 -.003 -.006 

S3 .10 10% .30 -.004 -.010 -.012 -.011 .003 -.003 .005 -.006 

S3 .30 10% .30 .039 .017 .027 .014 .024 .018 .024 .015 

S1 .10 30% .30 -.014 -.005 -.007 -.004 -.008 -.006 .029 .011 

S1 .30 30% .30 .009 .010 .010 .011 .009 .008 .008 .009 

S2 .10 30% .30 -.015 -.017 -.018 -.019 -.006 -.015 .002 -.002 

S2 .30 30% .30 -.040 -.013 -.049 -.001 -.012 -.008 -.055 -.014 

S3 .10 30% .30 .047 .006 .051 .008 .004 -.029 .028 -.002 

S3 .30 30% .30 .072 -.004 -.051 -.055 .036 -.017 .032 -.013 

S1 .10 50% .30 .007 -.011 -.012 -.003 -.028 -.031 .000 -.023 

S1 .30 50% .30 -.054 -.043 -.048 -.029 -.015 -.018 -.024 -.020 

S2 .10 50% .30 .016 .016 .017 .016 -.006 -.010 -.002 -.001 

S2 .30 50% .30 -.117 -.040 -.036 -.035 -.025 -.005 .101 .023 

S3 .10 50% .30 -.043 .009 .024 .003 -.010 .011 -.010 .012 

S3 .30 50% .30 -.025 .008 .025 .019 -.027 .007 -.023 -.012 

S1 .10 10% .50 .042 .068 .021 .062 .059 .021 .080 .051 

S1 .30 10% .50 -.100 -.081 -.126 -.089 -.047 -.017 -.051 -.051 

S2 .10 10% .50 .007 .012 .013 .026 .011 .005 .017 .016 

S2 .30 10% .50 -.012 -.050 -.056 -.071 .015 -.047 .036 -.060 

S3 .10 10% .50 -.131 -.081 -.196 -.076 -.066 -.038 -.083 -.054 

S3 .30 10% .50 .047 .022 .039 .047 .008 .012 .004 .008 

S1 .10 30% .50 -.033 -.071 -.021 -.073 -.043 -.038 -.034 -.083 

S1 .30 30% .50 -.007 .009 .053 .031 .004 .009 .010 .016 

S2 .10 30% .50 .006 -.001 -.037 -.001 .031 .027 .019 .019 

S2 .30 30% .50 .041 .048 .029 .049 .008 .056 .028 .040 

S3 .10 30% .50 .032 .002 -.016 -.014 .038 .023 -.005 .002 
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Table continued 

S3 .30 30% .50 .001 -.017 -.044 -.023 .028 .003 .032 .017 

S1 .10 50% .50 .005 .020 .030 .009 .031 .019 .007 -.019 

S1 .30 50% .50 -.010 -.029 -.007 -.016 -.022 -.030 -.041 -.030 

S2 .10 50% .50 -.003 -.008 .044 .005 -.001 .003 .006 .009 

S2 .30 50% .50 .008 .002 .019 .024 .019 .006 -.014 .028 

S3 .10 50% .50 -.053 -.059 .012 -.039 -.062 -.027 -.051 -.073 

S3 .30 50% .50 .048 .078 .059 .080 .036 .010 .059 .042 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 

Treatment Model A2 (Part 1) 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 
 

S1 .10 10% .30 -.667 -.742 -.587 -.622  

S1 .30 10% .30 -1.099 -1.101 -1.019 -.981  

S2 .10 10% .30 -1.551 -1.510 -1.471 -1.390  

S2 .30 10% .30 -.550 -.788 -.470 -.668  

S3 .10 10% .30 -.949 -1.108 -.869 -.988  

S3 .30 10% .30 -1.454 -1.497 -1.374 -1.377  

S1 .10 30% .30 -.690 -.702 -.610 -.582  

S1 .30 30% .30 -1.060 -1.018 -.980 -.898  

S2 .10 30% .30 -1.578 -1.495 -1.498 -1.375  

S2 .30 30% .30 -.303 -.632 -.223 -.512  

S3 .10 30% .30 -.827 -1.092 -.747 -.972  

S3 .30 30% .30 -1.233 -1.200 -1.153 -1.080  

S1 .10 50% .30 -.396 -.503 -.316 -.383  

S1 .30 50% .30 -1.232 -1.002 -1.152 -.882  

S2 .10 50% .30 -1.702 -1.263 -1.622 -1.143  

S2 .30 50% .30 -.169 -.598 -.089 -.478  

S3 .10 50% .30 -1.031 -1.024 -.951 -.904  

S3 .30 50% .30 -1.526 -1.264 -1.446 -1.144  

S1 .10 10% .50 -.261 -.641 -.181 -.521  

S1 .30 10% .50 -1.323 -1.332 -1.243 -1.212  

S2 .10 10% .50 -1.790 -1.479 -1.710 -1.359  

S2 .30 10% .50 -.257 -.756 -.177 -.636  

S3 .10 10% .50 -1.060 -1.319 -.980 -1.199  

S3 .30 10% .50 -1.319 -1.330 -1.239 -1.210  

S1 .10 30% .50 -.498 -.651 -.418 -.531  

S1 .30 30% .50 -1.183 -1.069 -1.103 -.949  

S2 .10 30% .50 -1.747 -1.354 -1.667 -1.234  

S2 .30 30% .50 -.102 -.602 -.022 -.482  

S3 .10 30% .50 -.820 -1.106 -.740 -.986  

S3 .30 30% .50 -1.453 -1.305 -1.373 -1.185  

S1 .10 50% .50 -.247 -.389 -.167 -.269  

S1 .30 50% .50 -1.121 -1.018 -1.041 -.898  

S2 .10 50% .50 -1.706 -1.263 -1.626 -1.143  

S2 .30 50% .50 -.171 -.573 -.091 -.453  

S3 .10 50% .50 -.880 -1.059 -.800 -.939  

S3 .30 50% .50 -1.302 -1.196 -1.222 -1.076  
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Table continued 

Size ICC Prob Effect 

Treatment Model A2 (Part 2) 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 -.707 -.710 -.671 -.770 

S1 .30 10% .30 -1.178 -1.124 -1.335 -1.265 

S2 .10 10% .30 -1.574 -1.510 -1.770 -1.685 

S2 .30 10% .30 -.546 -.753 -.587 -.828 

S3 .10 10% .30 -.960 -1.098 -1.095 -1.230 

S3 .30 10% .30 -1.437 -1.469 -1.616 -1.624 

S1 .10 30% .30 -.723 -.659 -.640 -.701 

S1 .30 30% .30 -1.130 -1.035 -1.256 -1.185 

S2 .10 30% .30 -1.568 -1.486 -1.742 -1.683 

S2 .30 30% .30 -.353 -.567 -.259 -.576 

S3 .10 30% .30 -.879 -1.051 -.865 -1.057 

S3 .30 30% .30 -1.121 -1.087 -1.199 -1.174 

S1 .10 50% .30 -.415 -.516 -.331 -.493 

S1 .30 50% .30 -1.224 -1.014 -1.103 -1.014 

S2 .10 50% .30 -1.567 -1.161 -1.544 -1.235 

S2 .30 50% .30 -.269 -.493 -.078 -.473 

S3 .10 50% .30 -1.000 -.972 -.981 -.983 

S3 .30 50% .30 -1.336 -1.124 -1.371 -1.217 

S1 .10 10% .50 -.351 -.586 -.231 -.592 

S1 .30 10% .50 -1.299 -1.223 -1.292 -1.269 

S2 .10 10% .50 -1.576 -1.311 -1.668 -1.397 

S2 .30 10% .50 -.245 -.664 -.278 -.707 

S3 .10 10% .50 -1.022 -1.171 -1.036 -1.230 

S3 .30 10% .50 -1.229 -1.191 -1.275 -1.266 

S1 .10 30% .50 -.465 -.563 -.370 -.591 

S1 .30 30% .50 -1.254 -1.029 -1.173 -1.041 

S2 .10 30% .50 -1.555 -1.198 -1.596 -1.270 

S2 .30 30% .50 -.291 -.567 -.143 -.508 

S3 .10 30% .50 -.816 -1.029 -.816 -1.052 

S3 .30 30% .50 -1.298 -1.162 -1.371 -1.244 

S1 .10 50% .50 -.329 -.399 -.151 -.396 

S1 .30 50% .50 -1.187 -1.018 -1.064 -1.008 

S2 .10 50% .50 -1.525 -1.153 -1.541 -1.230 

S2 .30 50% .50 -.297 -.527 -.242 -.474 

S3 .10 50% .50 -.930 -1.002 -.898 -1.019 

S3 .30 50% .50 -1.177 -1.093 -1.206 -1.161 
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PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF 

SCENARIO A 

Size ICC Prob Effect 
Treatment Model A1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .917 .924 .911 .921 .922 .934 .872 .908 

S1 .30 10% .30 .938 .938 .937 .938 .941 .943 .925 .932 

S2 .10 10% .30 .940 .941 .939 .940 .941 .946 .930 .936 

S2 .30 10% .30 .887 .909 .888 .903 .888 .919 .880 .907 

S3 .10 10% .30 .921 .931 .925 .927 .923 .935 .914 .925 

S3 .30 10% .30 .923 .925 .917 .923 .924 .930 .904 .914 

S1 .10 30% .30 .938 .941 .931 .937 .945 .955 .888 .921 

S1 .30 30% .30 .956 .957 .955 .955 .956 .960 .941 .945 

S2 .10 30% .30 .946 .947 .944 .944 .946 .951 .929 .933 

S2 .30 30% .30 .939 .955 .930 .945 .952 .965 .931 .950 

S3 .10 30% .30 .959 .976 .951 .970 .970 .980 .968 .975 

S3 .30 30% .30 .964 .975 .951 .968 .974 .984 .972 .980 

S1 .10 50% .30 .962 .962 .951 .958 .968 .976 .945 .956 

S1 .30 50% .30 .965 .971 .961 .969 .983 .985 .968 .973 

S2 .10 50% .30 .978 .980 .966 .978 .989 .988 .986 .987 

S2 .30 50% .30 .953 .970 .953 .963 .970 .979 .945 .966 

S3 .10 50% .30 .965 .979 .951 .970 .974 .987 .974 .979 

S3 .30 50% .30 .970 .982 .943 .971 .979 .988 .979 .983 

S1 .10 10% .50 .918 .935 .910 .932 .930 .947 .905 .933 

S1 .30 10% .50 .960 .971 .954 .968 .973 .975 .962 .970 

S2 .10 10% .50 .963 .971 .959 .967 .979 .980 .977 .977 

S2 .30 10% .50 .930 .945 .922 .938 .942 .951 .928 .943 

S3 .10 10% .50 .954 .965 .933 .958 .965 .972 .961 .966 

S3 .30 10% .50 .961 .969 .948 .962 .970 .975 .968 .971 

S1 .10 30% .50 .948 .953 .942 .954 .958 .965 .923 .948 

S1 .30 30% .50 .965 .973 .958 .970 .979 .983 .972 .975 

S2 .10 30% .50 .971 .975 .962 .973 .983 .985 .979 .980 

S2 .30 30% .50 .936 .947 .917 .940 .946 .964 .923 .943 

S3 .10 30% .50 .957 .971 .943 .964 .970 .978 .963 .971 
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Table continued 

S3 .30 30% .50 .969 .979 .958 .972 .975 .983 .975 .981 

S1 .10 50% .50 .959 .959 .949 .957 .963 .973 .932 .948 

S1 .30 50% .50 .972 .972 .960 .969 .984 .987 .971 .975 

S2 .10 50% .50 .970 .975 .963 .973 .985 .986 .980 .981 

S2 .30 50% .50 .952 .960 .936 .951 .960 .972 .938 .951 

S3 .10 50% .50 .964 .977 .949 .970 .974 .984 .973 .978 

S3 .30 50% .50 .965 .979 .949 .975 .975 .986 .977 .983 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model A2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .758 .742 .778 .778 .743 .752 .717 .730 

S1 .30 10% .30 .635 .639 .660 .677 .612 .633 .564 .589 

S2 .10 10% .30 .531 .545 .556 .582 .518 .543 .458 .493 

S2 .30 10% .30 .743 .686 .761 .726 .749 .700 .722 .673 

S3 .10 10% .30 .671 .630 .695 .669 .666 .633 .626 .590 

S3 .30 10% .30 .470 .451 .498 .493 .483 .462 .420 .408 

S1 .10 30% .30 .784 .787 .805 .821 .774 .799 .783 .786 

S1 .30 30% .30 .670 .684 .695 .721 .648 .679 .610 .633 

S2 .10 30% .30 .452 .481 .480 .522 .456 .483 .397 .416 

S2 .30 30% .30 .876 .906 .879 .918 .905 .914 .914 .912 

S3 .10 30% .30 .890 .877 .897 .891 .896 .882 .897 .881 

S3 .30 30% .30 .863 .870 .870 .883 .877 .882 .869 .873 

S1 .10 50% .30 .908 .922 .910 .931 .923 .926 .916 .921 

S1 .30 50% .30 .863 .889 .871 .902 .864 .888 .876 .888 

S2 .10 50% .30 .817 .864 .825 .877 .831 .875 .834 .867 

S2 .30 50% .30 .886 .915 .888 .926 .924 .931 .917 .921 

S3 .10 50% .30 .878 .888 .885 .901 .887 .894 .889 .892 

S3 .30 50% .30 .832 .862 .840 .875 .854 .877 .851 .867 

S1 .10 10% .50 .861 .885 .863 .894 .892 .893 .870 .891 

S1 .30 10% .50 .842 .851 .850 .864 .851 .862 .849 .858 

S2 .10 10% .50 .804 .837 .812 .850 .827 .855 .817 .846 

S2 .30 10% .50 .867 .866 .871 .880 .893 .877 .888 .871 

S3 .10 10% .50 .868 .844 .875 .858 .876 .861 .872 .853 

S3 .30 10% .50 .850 .850 .858 .863 .861 .866 .856 .857 

S1 .10 30% .50 .886 .896 .892 .908 .915 .911 .879 .903 

S1 .30 30% .50 .861 .882 .868 .894 .860 .886 .867 .885 

S2 .10 30% .50 .813 .855 .821 .867 .833 .871 .829 .863 

S2 .30 30% .50 .883 .895 .884 .907 .899 .901 .897 .902 

S3 .10 30% .50 .887 .875 .893 .888 .899 .883 .897 .881 

S3 .30 30% .50 .843 .859 .851 .872 .859 .874 .851 .865 

S1 .10 50% .50 .922 .934 .926 .945 .935 .942 .918 .937 

S1 .30 50% .50 .869 .888 .876 .901 .869 .889 .878 .890 

S2 .10 50% .50 .814 .862 .822 .876 .834 .874 .832 .866 

S2 .30 50% .50 .894 .915 .894 .928 .922 .922 .921 .922 

S3 .10 50% .50 .889 .883 .895 .896 .892 .890 .898 .888 

S3 .30 50% .50 .854 .871 .862 .884 .870 .882 .868 .875 
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STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO A  

Size ICC Prob Effect 
Treatment Model A1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .004 .004 .005 .004 .004 .003 .007 .006 

S1 .30 10% .30 .003 .003 .003 .003 .003 .003 .004 .005 

S2 .10 10% .30 .003 .003 .003 .003 .003 .003 .004 .005 

S2 .30 10% .30 .005 .004 .005 .004 .005 .004 .006 .006 

S3 .10 10% .30 .004 .004 .004 .004 .004 .003 .005 .005 

S3 .30 10% .30 .004 .004 .004 .004 .004 .003 .004 .006 

S1 .10 30% .30 .004 .003 .004 .004 .003 .003 .007 .005 

S1 .30 30% .30 .002 .002 .002 .002 .002 .002 .003 .004 

S2 .10 30% .30 .003 .003 .003 .003 .003 .002 .004 .005 

S2 .30 30% .30 .007 .006 .008 .007 .006 .004 .009 .007 

S3 .10 30% .30 .006 .004 .007 .004 .005 .003 .005 .005 

S3 .30 30% .30 .006 .004 .008 .005 .004 .003 .005 .004 

S1 .10 50% .30 .004 .005 .006 .005 .004 .003 .007 .006 

S1 .30 50% .30 .005 .004 .006 .005 .003 .002 .005 .005 

S2 .10 50% .30 .003 .003 .005 .003 .002 .002 .002 .003 

S2 .30 50% .30 .006 .004 .007 .005 .004 .003 .008 .007 

S3 .10 50% .30 .006 .003 .008 .005 .004 .002 .004 .004 

S3 .30 50% .30 .005 .003 .009 .004 .003 .002 .003 .003 

S1 .10 10% .30 .010 .008 .011 .008 .008 .007 .012 .009 

S1 .30 10% .30 .006 .004 .007 .005 .004 .004 .006 .007 

S2 .10 10% .30 .006 .004 .006 .005 .003 .003 .003 .005 

S2 .30 10% .50 .008 .006 .009 .007 .006 .005 .008 .009 

S3 .10 10% .50 .006 .005 .009 .006 .005 .004 .005 .007 

S3 .30 10% .50 .006 .005 .008 .006 .005 .004 .005 .006 

S1 .10 30% .50 .007 .006 .007 .006 .005 .004 .010 .008 

S1 .30 30% .50 .005 .004 .007 .005 .003 .003 .005 .005 

S2 .10 30% .50 .005 .004 .006 .005 .003 .002 .003 .004 

S2 .30 30% .50 .008 .006 .010 .007 .006 .004 .009 .008 

S3 .10 30% .50 .006 .004 .009 .005 .004 .003 .005 .006 

S3 .30 30% .50 .005 .003 .007 .004 .004 .003 .004 .004 
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Table continued 

S1 .10 50% .50 .006 .006 .007 .006 .005 .004 .008 .006 

S1 .30 50% .50 .004 .004 .006 .005 .002 .002 .005 .005 

S2 .10 50% .50 .005 .004 .006 .004 .002 .002 .003 .003 

S2 .30 50% .50 .006 .005 .008 .006 .005 .003 .008 .007 

S3 .10 50% .50 .006 .004 .008 .005 .004 .002 .005 .004 

S3 .30 50% .50 .005 .003 .008 .004 .004 .002 .004 .003 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model A2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .008 .006 .007 .006 .008 .005 .005 .010 

S1 .30 10% .30 .006 .004 .005 .004 .006 .004 .004 .007 

S2 .10 10% .30 .006 .005 .006 .005 .006 .005 .004 .007 

S2 .30 10% .30 .009 .005 .008 .006 .008 .005 .004 .009 

S3 .10 10% .30 .007 .005 .006 .005 .007 .005 .004 .008 

S3 .30 10% .30 .007 .006 .006 .006 .007 .006 .004 .008 

S1 .10 30% .30 .007 .004 .005 .004 .007 .004 .004 .008 

S1 .30 30% .30 .005 .003 .004 .004 .005 .003 .003 .006 

S2 .10 30% .30 .005 .004 .004 .004 .005 .004 .003 .006 

S2 .30 30% .30 .015 .007 .012 .009 .011 .007 .006 .010 

S3 .10 30% .30 .011 .005 .013 .007 .009 .005 .004 .009 

S3 .30 30% .30 .011 .005 .012 .007 .009 .004 .003 .009 

S1 .10 50% .30 .011 .006 .008 .006 .007 .005 .005 .010 

S1 .30 50% .30 .010 .006 .009 .006 .007 .004 .004 .008 

S2 .10 50% .30 .008 .004 .009 .005 .007 .003 .002 .007 

S2 .30 50% .30 .014 .006 .010 .007 .009 .005 .005 .011 

S3 .10 50% .30 .011 .004 .012 .006 .009 .003 .003 .008 

S3 .30 50% .30 .011 .004 .014 .006 .009 .003 .003 .008 

S1 .10 10% .30 .015 .010 .015 .010 .012 .009 .008 .015 

S1 .30 10% .30 .013 .007 .013 .008 .009 .007 .004 .011 

S2 .10 10% .30 .009 .006 .011 .007 .006 .005 .003 .006 

S2 .30 10% .50 .014 .009 .016 .010 .011 .009 .006 .012 

S3 .10 10% .50 .010 .007 .013 .008 .008 .006 .005 .009 

S3 .30 10% .50 .011 .007 .012 .008 .008 .006 .005 .009 

S1 .10 30% .50 .011 .008 .011 .008 .008 .007 .006 .013 

S1 .30 30% .50 .012 .006 .012 .007 .008 .005 .004 .009 

S2 .10 30% .50 .009 .005 .010 .006 .006 .004 .003 .006 

S2 .30 30% .50 .015 .008 .015 .009 .011 .007 .006 .012 

S3 .10 30% .50 .012 .006 .014 .008 .009 .005 .004 .009 

S3 .30 30% .50 .010 .005 .012 .006 .007 .004 .003 .008 

S1 .10 50% .50 .011 .006 .012 .006 .007 .004 .006 .011 

S1 .30 50% .50 .011 .005 .010 .006 .008 .003 .004 .008 

S2 .10 50% .50 .009 .005 .009 .005 .006 .003 .003 .007 

S2 .30 50% .50 .014 .006 .010 .007 .010 .006 .006 .011 

S3 .10 50% .50 .011 .005 .013 .007 .008 .003 .003 .008 

S3 .30 50% .50 .010 .004 .013 .006 .009 .003 .003 .008 
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AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO B 

Size ICC Prob Effect 
Treatment Model B1 Treatment Model B2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .050 .041 .029 .031 .052 .041 .032 .036 

S1 .30 10% .30 .075 .062 .045 .044 .078 .064 .049 .052 

S2 .10 10% .30 .110 .096 .073 .064 .120 .101 .084 .087 

S2 .30 10% .30 .085 .042 .056 .053 .087 .043 .060 .065 

S3 .10 10% .30 .107 .062 .073 .067 .110 .063 .078 .082 

S3 .30 10% .30 .123 .089 .086 .079 .132 .095 .097 .102 

S1 .10 30% .30 .051 .040 .030 .026 .053 .041 .033 .032 

S1 .30 30% .30 .078 .063 .047 .038 .081 .064 .050 .049 

S2 .10 30% .30 .109 .094 .072 .054 .120 .101 .084 .080 

S2 .30 30% .30 .081 .042 .050 .033 .083 .043 .054 .049 

S3 .10 30% .30 .105 .061 .068 .047 .108 .063 .074 .067 

S3 .30 30% .30 .122 .088 .084 .063 .132 .094 .096 .091 

S1 .10 50% .30 .051 .040 .029 .021 .053 .041 .031 .027 

S1 .30 50% .30 .070 .059 .041 .029 .073 .061 .044 .039 

S2 .10 50% .30 .109 .094 .071 .045 .119 .100 .084 .074 

S2 .30 50% .30 .088 .046 .052 .027 .090 .047 .054 .043 

S3 .10 50% .30 .106 .060 .065 .034 .109 .062 .071 .055 

S3 .30 50% .30 .120 .088 .082 .048 .130 .094 .094 .081 

S1 .10 10% .50 .056 .045 .034 .035 .058 .046 .037 .040 

S1 .30 10% .50 .076 .063 .047 .045 .079 .065 .049 .053 

S2 .10 10% .50 .110 .095 .071 .064 .120 .102 .084 .087 

S2 .30 10% .50 .088 .046 .059 .054 .090 .047 .063 .066 

S3 .10 10% .50 .107 .062 .073 .067 .111 .064 .078 .082 

S3 .30 10% .50 .122 .089 .086 .079 .132 .094 .097 .102 

S1 .10 30% .50 .056 .045 .033 .028 .058 .046 .035 .035 

S1 .30 30% .50 .077 .062 .045 .037 .080 .064 .049 .048 

S2 .10 30% .50 .110 .096 .072 .053 .120 .102 .084 .080 

S2 .30 30% .50 .087 .046 .056 .037 .089 .047 .060 .054 

S3 .10 30% .50 .107 .061 .069 .048 .111 .063 .075 .069 

S3 .30 30% .50 .122 .088 .084 .064 .132 .094 .096 .091 

S1 .10 50% .50 .055 .045 .031 .023 .057 .046 .034 .030 
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Table continued 

S1 .30 50% .50 .072 .060 .041 .029 .075 .061 .045 .040 

S2 .10 50% .50 .109 .095 .070 .045 .120 .102 .084 .073 

S2 .30 50% .50 .087 .046 .050 .027 .091 .047 .056 .044 

S3 .10 50% .50 .101 .060 .063 .033 .105 .062 .068 .053 

S3 .30 50% .50 .122 .087 .083 .050 .131 .093 .093 .080 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED 

CONDITIONS OF SCENARIO B 

Size ICC Prob Effect 
Treatment Model B1 Treatment Model B2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .493 .622 .773 .730 .472 .616 .744 .683 

S1 .30 10% .30 .517 .627 .778 .762 .487 .615 .745 .704 

S2 .10 10% .30 .531 .612 .777 .776 .465 .581 .709 .663 

S2 .30 10% .30 .391 .760 .707 .705 .369 .755 .669 .606 

S3 .10 10% .30 .426 .726 .709 .712 .394 .717 .667 .617 

S3 .30 10% .30 .477 .665 .734 .721 .413 .638 .665 .606 

S1 .10 30% .30 .501 .638 .781 .794 .481 .632 .748 .737 

S1 .30 30% .30 .509 .635 .784 .810 .479 .623 .751 .739 

S2 .10 30% .30 .530 .616 .788 .818 .461 .582 .712 .694 

S2 .30 30% .30 .410 .751 .750 .824 .382 .745 .714 .721 

S3 .10 30% .30 .435 .723 .744 .812 .403 .713 .701 .708 

S3 .30 30% .30 .487 .671 .752 .794 .416 .641 .679 .662 

S1 .10 50% .30 .504 .637 .794 .831 .483 .627 .763 .780 

S1 .30 50% .30 .519 .617 .796 .841 .491 .604 .767 .779 

S2 .10 50% .30 .532 .617 .795 .851 .465 .582 .717 .726 

S2 .30 50% .30 .426 .744 .777 .865 .396 .737 .752 .790 

S3 .10 50% .30 .442 .730 .775 .867 .410 .720 .735 .777 

S3 .30 50% .30 .493 .666 .766 .848 .421 .636 .693 .713 

S1 .10 10% .50 .499 .631 .768 .739 .477 .623 .742 .690 

S1 .30 10% .50 .514 .626 .774 .759 .486 .616 .748 .704 

S2 .10 10% .50 .532 .615 .786 .779 .464 .581 .709 .662 

S2 .30 10% .50 .409 .750 .707 .714 .387 .744 .672 .621 

S3 .10 10% .50 .424 .725 .709 .711 .393 .716 .670 .619 

S3 .30 10% .50 .481 .666 .735 .723 .417 .640 .665 .607 

S1 .10 30% .50 .506 .636 .785 .796 .482 .627 .758 .739 

S1 .30 30% .50 .513 .633 .790 .814 .482 .622 .755 .745 

S2 .10 30% .50 .526 .609 .791 .820 .459 .574 .714 .699 

S2 .30 30% .50 .422 .746 .739 .819 .396 .738 .704 .716 

S3 .10 30% .50 .432 .727 .742 .815 .400 .717 .700 .706 

S3 .30 30% .50 .480 .669 .750 .790 .415 .640 .679 .662 
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Table continued 

S1 .10 50% .50 .509 .623 .796 .830 .482 .614 .765 .777 

S1 .30 50% .50 .520 .623 .798 .842 .489 .610 .763 .776 

S2 .10 50% .50 .531 .610 .799 .853 .462 .574 .718 .728 

S2 .30 50% .50 .431 .744 .781 .865 .392 .736 .742 .787 

S3 .10 50% .50 .447 .719 .771 .865 .413 .709 .730 .780 

S3 .30 50% .50 .485 .673 .764 .845 .420 .643 .699 .716 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE RELATIVE BIAS FOR SIMULATED  CONDITIONS OF 

SCENARIO B 

Size ICC Prob Effect 
Treatment Model B1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 -.067 -.020 -.033 -.014 -.022 -.017 .034 .010 

S1 .30 10% .30 .072 .044 .063 .035 .036 .037 -.017 .013 

S2 .10 10% .30 -.003 .009 .011 .016 .002 .001 -.014 -.007 

S2 .30 10% .30 -.052 -.027 -.009 -.009 -.072 -.033 -.052 -.021 

S3 .10 10% .30 .082 .070 .093 .083 .042 .040 .082 .048 

S3 .30 10% .30 .040 .029 .029 .029 .048 .025 .047 .023 

S1 .10 30% .30 .050 .048 .057 .047 .023 -.001 .052 .047 

S1 .30 30% .30 -.044 -.037 -.050 -.036 -.012 -.012 -.014 -.025 

S2 .10 30% .30 .013 .008 .003 .000 -.003 .007 -.008 -.006 

S2 .30 30% .30 -.041 -.021 -.010 -.031 -.055 -.024 -.130 -.069 

S3 .10 30% .30 -.035 -.005 -.011 .008 -.045 -.020 -.059 -.035 

S3 .30 30% .30 .000 -.012 -.006 -.010 .015 -.010 .021 .002 

S1 .10 50% .30 .015 .008 .002 .006 -.001 .001 -.006 .014 

S1 .30 50% .30 .014 .004 .003 -.002 -.030 -.007 -.061 -.042 

S2 .10 50% .30 -.011 -.009 -.008 -.006 .001 -.001 -.005 -.003 

S2 .30 50% .30 .039 .003 .019 .001 -.018 -.006 -.038 -.041 

S3 .10 50% .30 .043 .020 .036 .030 .062 .016 .023 .027 

S3 .30 50% .30 .021 .007 .004 .002 .025 .013 .028 .023 

S1 .10 10% .50 -.105 -.076 -.073 -.076 -.110 -.079 -.124 -.121 

S1 .30 10% .50 -.048 -.026 -.049 -.029 .003 -.012 .040 .026 

S2 .10 10% .50 -.001 -.005 .000 -.005 .001 -.006 .013 .006 

S2 .30 10% .50 -.030 .006 .009 .013 -.041 .014 -.080 -.037 

S3 .10 10% .50 -.027 -.034 -.041 -.021 -.033 -.040 .020 -.005 

S3 .30 10% .50 .027 .008 .005 .000 .018 .007 .022 .007 

S1 .10 30% .50 -.031 -.036 -.032 -.045 .003 -.001 -.002 -.022 

S1 .30 30% .50 .025 .033 .053 .040 .023 .016 .002 .021 

S2 .10 30% .50 -.005 -.005 -.002 -.001 -.015 -.012 -.024 -.027 

S2 .30 30% .50 .021 .018 .055 .033 .000 .002 .044 -.001 

S3 .10 30% .50 .057 -.016 .016 -.016 .055 -.021 .027 .005 
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Table continued 

S3 .30 30% .50 .079 .062 .068 .063 .089 .060 .094 .088 

S1 .10 50% .50 -.002 .010 .022 .023 .010 .024 .034 .018 

S1 .30 50% .50 .042 .050 .058 .058 .031 .025 .017 .039 

S2 .10 50% .50 -.013 -.012 -.007 -.007 -.010 -.014 .001 -.002 

S2 .30 50% .50 -.078 -.017 -.024 -.035 -.109 -.029 -.090 -.090 

S3 .10 50% .50 -.035 -.047 -.072 -.058 -.036 -.027 -.041 -.067 

S3 .30 50% .50 -.012 -.010 .006 .004 -.016 -.001 -.026 .001 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model B2 (Part 1) 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

S1 .10 10% .30 -.911 -.809 -1.034 -.788 

S1 .30 10% .30 -.890 -.891 -.990 -.865 

S2 .10 10% .30 -1.519 -1.359 -1.524 -1.312 

S2 .30 10% .30 -.618 -.855 -.908 -.824 

S3 .10 10% .30 -.706 -.848 -.831 -.808 

S3 .30 10% .30 -1.299 -1.330 -1.311 -1.283 

S1 .10 30% .30 -.742 -.657 -.793 -.654 

S1 .30 30% .30 -.916 -.875 -.890 -.864 

S2 .10 30% .30 -1.530 -1.295 -1.333 -1.287 

S2 .30 30% .30 -.602 -.757 -.645 -.782 

S3 .10 30% .30 -.797 -.900 -.788 -.896 

S3 .30 30% .30 -1.447 -1.371 -1.287 -1.373 

S1 .10 50% .30 -.712 -.662 -.701 -.662 

S1 .30 50% .30 -.858 -.813 -.757 -.806 

S2 .10 50% .30 -1.493 -1.280 -1.195 -1.291 

S2 .30 50% .30 -.531 -.760 -.633 -.795 

S3 .10 50% .30 -.668 -.859 -.734 -.897 

S3 .30 50% .30 -1.417 -1.305 -1.189 -1.358 

S1 .10 10% .50 -.899 -.915 -1.045 -.899 

S1 .30 10% .50 -.919 -.920 -1.053 -.896 

S2 .10 10% .50 -1.548 -1.442 -1.586 -1.397 

S2 .30 10% .50 -.644 -.864 -.797 -.841 

S3 .10 10% .50 -.895 -1.045 -1.075 -1.016 

S3 .30 10% .50 -1.337 -1.365 -1.371 -1.333 

S1 .10 30% .50 -.850 -.758 -.807 -.754 

S1 .30 30% .50 -.915 -.800 -.817 -.787 

S2 .10 30% .50 -1.510 -1.302 -1.333 -1.286 

S2 .30 30% .50 -.543 -.775 -.639 -.755 

S3 .10 30% .50 -.701 -.918 -.806 -.915 

S3 .30 30% .50 -1.284 -1.257 -1.180 -1.286 

S1 .10 50% .50 -.792 -.694 -.629 -.666 

S1 .30 50% .50 -.834 -.764 -.680 -.768 

S2 .10 50% .50 -1.526 -1.290 -1.216 -1.297 

S2 .30 50% .50 -.802 -.808 -.700 -.828 

S3 .10 50% .50 -.749 -.896 -.756 -.934 

S3 .30 50% .50 -1.346 -1.324 -1.183 -1.354 
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Table continued 

Size ICC Prob Effect 
Treatment Model B2 (Part 2) 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 -.608 -.668 -.531 -.653 

S1 .30 10% .30 -.928 -.836 -.974 -.853 

S2 .10 10% .30 -1.530 -1.339 -1.666 -1.409 

S2 .30 10% .30 -.538 -.753 -.511 -.729 

S3 .10 10% .30 -.707 -.811 -.750 -.820 

S3 .30 10% .30 -1.280 -1.306 -1.414 -1.373 

S1 .10 30% .30 -.647 -.570 -.447 -.523 

S1 .30 30% .30 -.934 -.821 -.857 -.810 

S2 .10 30% .30 -1.536 -1.297 -1.665 -1.394 

S2 .30 30% .30 -.533 -.685 -.503 -.667 

S3 .10 30% .30 -.759 -.874 -.821 -.897 

S3 .30 30% .30 -1.379 -1.342 -1.536 -1.449 

S1 .10 50% .30 -.602 -.585 -.368 -.516 

S1 .30 50% .30 -.868 -.776 -.772 -.758 

S2 .10 50% .30 -1.471 -1.268 -1.575 -1.388 

S2 .30 50% .30 -.528 -.695 -.480 -.658 

S3 .10 50% .30 -.642 -.792 -.616 -.770 

S3 .30 50% .30 -1.354 -1.280 -1.487 -1.408 

S1 .10 10% .50 -.861 -.856 -.832 -.875 

S1 .30 10% .50 -.857 -.848 -.888 -.840 

S2 .10 10% .50 -1.567 -1.420 -1.669 -1.479 

S2 .30 10% .50 -.579 -.796 -.670 -.821 

S3 .10 10% .50 -.801 -.983 -.809 -.976 

S3 .30 10% .50 -1.308 -1.326 -1.429 -1.393 

S1 .10 30% .50 -.749 -.637 -.657 -.605 

S1 .30 30% .50 -.897 -.750 -.847 -.746 

S2 .10 30% .50 -1.515 -1.306 -1.632 -1.398 

S2 .30 30% .50 -.548 -.709 -.458 -.699 

S3 .10 30% .50 -.656 -.857 -.687 -.839 

S3 .30 30% .50 -1.206 -1.215 -1.366 -1.311 

S1 .10 50% .50 -.684 -.602 -.550 -.604 

S1 .30 50% .50 -.864 -.731 -.728 -.701 

S2 .10 50% .50 -1.492 -1.273 -1.602 -1.389 

S2 .30 50% .50 -.708 -.723 -.629 -.741 

S3 .10 50% .50 -.730 -.843 -.689 -.833 

S3 .30 50% .50 -1.301 -1.306 -1.423 -1.429 
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PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF 

SCENARIO B 

Size ICC Prob Effect 
Treatment Model B1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .900 .912 .892 .910 .901 .927 .842 .895 

S1 .30 10% .30 .911 .924 .905 .918 .939 .947 .903 .924 

S2 .10 10% .30 .937 .938 .935 .936 .943 .946 .931 .934 

S2 .30 10% .30 .898 .920 .882 .912 .896 .932 .879 .911 

S3 .10 10% .30 .898 .922 .906 .917 .896 .925 .890 .913 

S3 .30 10% .30 .934 .942 .940 .941 .931 .943 .927 .937 

S1 .10 30% .30 .927 .937 .921 .933 .939 .952 .881 .925 

S1 .30 30% .30 .947 .950 .941 .947 .960 .964 .918 .935 

S2 .10 30% .30 .949 .950 .947 .948 .957 .958 .943 .946 

S2 .30 30% .30 .892 .933 .908 .928 .916 .940 .883 .913 

S3 .10 30% .30 .920 .947 .930 .940 .928 .955 .908 .927 

S3 .30 30% .30 .937 .954 .954 .955 .934 .959 .937 .954 

S1 .10 50% .30 .941 .941 .933 .938 .946 .960 .870 .913 

S1 .30 50% .30 .951 .954 .949 .952 .961 .971 .932 .944 

S2 .10 50% .30 .973 .972 .970 .970 .974 .974 .960 .961 

S2 .30 50% .30 .919 .945 .926 .938 .936 .962 .897 .936 

S3 .10 50% .30 .935 .963 .949 .957 .944 .971 .930 .943 

S3 .30 50% .30 .948 .966 .958 .958 .948 .969 .949 .957 

S1 .10 10% .50 .893 .907 .885 .904 .913 .927 .841 .892 

S1 .30 10% .50 .922 .930 .915 .929 .936 .944 .899 .927 

S2 .10 10% .50 .926 .928 .927 .928 .933 .935 .923 .928 

S2 .30 10% .50 .884 .914 .870 .908 .893 .921 .863 .914 

S3 .10 10% .50 .909 .926 .904 .923 .910 .929 .890 .916 

S3 .30 10% .50 .924 .941 .933 .940 .929 .942 .925 .938 

S1 .10 30% .50 .923 .933 .919 .932 .940 .952 .893 .920 

S1 .30 30% .50 .948 .954 .945 .950 .952 .960 .921 .939 

S2 .10 30% .50 .958 .958 .955 .955 .960 .961 .946 .948 

S2 .30 30% .50 .919 .945 .917 .936 .927 .955 .895 .928 

S3 .10 30% .50 .927 .953 .935 .945 .931 .957 .918 .940 
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Table continued 

S3 .30 30% .50 .932 .953 .945 .949 .935 .955 .932 .946 

S1 .10 50% .50 .938 .939 .929 .935 .950 .964 .889 .927 

S1 .30 50% .50 .954 .955 .947 .952 .963 .969 .918 .942 

S2 .10 50% .50 .966 .966 .964 .965 .969 .970 .953 .958 

S2 .30 50% .50 .914 .946 .923 .935 .929 .953 .898 .929 

S3 .10 50% .50 .934 .959 .941 .948 .945 .969 .926 .942 

S3 .30 50% .50 .947 .965 .956 .955 .950 .968 .946 .959 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model B2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .717 .770 .700 .776 .783 .798 .756 .794 

S1 .30 10% .30 .740 .744 .716 .750 .735 .759 .719 .753 

S2 .10 10% .30 .544 .591 .544 .606 .536 .595 .496 .574 

S2 .30 10% .30 .746 .730 .687 .731 .771 .759 .761 .767 

S3 .10 10% .30 .713 .692 .684 .703 .718 .715 .714 .718 

S3 .30 10% .30 .601 .591 .600 .605 .607 .598 .563 .576 

S1 .10 30% .30 .773 .819 .779 .820 .793 .835 .799 .838 

S1 .30 30% .30 .751 .768 .760 .771 .750 .782 .765 .786 

S2 .10 30% .30 .571 .637 .626 .640 .570 .637 .535 .610 

S2 .30 30% .30 .752 .785 .801 .779 .778 .796 .798 .797 

S3 .10 30% .30 .761 .735 .767 .740 .764 .739 .744 .731 

S3 .30 30% .30 .583 .599 .625 .599 .604 .608 .557 .576 

S1 .10 50% .30 .782 .810 .800 .809 .810 .834 .851 .847 

S1 .30 50% .30 .776 .794 .806 .795 .779 .804 .797 .805 

S2 .10 50% .30 .594 .653 .676 .650 .600 .656 .572 .625 

S2 .30 50% .30 .780 .796 .820 .786 .801 .813 .821 .820 

S3 .10 50% .30 .807 .776 .806 .765 .816 .794 .818 .796 

S3 .30 50% .30 .589 .624 .656 .609 .605 .630 .571 .595 

S1 .10 10% .50 .729 .744 .701 .749 .730 .750 .710 .742 

S1 .30 10% .50 .742 .748 .712 .754 .759 .764 .746 .766 

S2 .10 10% .50 .505 .539 .496 .553 .496 .546 .466 .529 

S2 .30 10% .50 .734 .736 .720 .747 .750 .756 .747 .742 

S3 .10 10% .50 .698 .674 .664 .681 .710 .688 .709 .689 

S3 .30 10% .50 .584 .586 .577 .596 .592 .598 .556 .579 

S1 .10 30% .50 .754 .803 .778 .804 .797 .835 .806 .839 

S1 .30 30% .50 .767 .798 .794 .801 .777 .810 .788 .809 

S2 .10 30% .50 .561 .618 .609 .622 .560 .617 .525 .589 

S2 .30 30% .50 .793 .788 .804 .790 .802 .808 .822 .809 

S3 .10 30% .50 .779 .741 .770 .741 .791 .757 .786 .763 

S3 .30 30% .50 .633 .637 .658 .628 .655 .649 .611 .623 

S1 .10 50% .50 .789 .818 .821 .824 .819 .845 .843 .839 

S1 .30 50% .50 .788 .808 .825 .806 .781 .818 .810 .823 

S2 .10 50% .50 .577 .641 .661 .639 .587 .646 .557 .613 

S2 .30 50% .50 .747 .773 .793 .765 .789 .797 .805 .790 

S3 .10 50% .50 .782 .767 .801 .757 .791 .782 .809 .784 

S3 .30 50% .50 .626 .632 .671 .624 .638 .637 .605 .602 

 



 129 

STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO B 

Size ICC Prob Effect 
Treatment Model B1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .006 .005 .007 .005 .006 .004 .010 .006 

S1 .30 10% .30 .006 .005 .006 .005 .004 .003 .006 .005 

S2 .10 10% .30 .004 .004 .004 .004 .003 .003 .004 .004 

S2 .30 10% .30 .006 .005 .007 .005 .005 .004 .007 .005 

S3 .10 10% .30 .005 .004 .005 .005 .005 .004 .006 .005 

S3 .30 10% .30 .004 .003 .003 .003 .004 .003 .004 .004 

S1 .10 30% .30 .005 .004 .005 .005 .004 .003 .008 .005 

S1 .30 30% .30 .004 .003 .004 .003 .003 .002 .006 .004 

S2 .10 30% .30 .003 .003 .003 .003 .003 .003 .004 .003 

S2 .30 30% .30 .006 .004 .006 .004 .005 .003 .007 .005 

S3 .10 30% .30 .005 .003 .004 .003 .004 .003 .006 .004 

S3 .30 30% .30 .004 .003 .003 .003 .004 .002 .004 .003 

S1 .10 50% .30 .004 .003 .004 .004 .003 .003 .008 .005 

S1 .30 50% .30 .003 .003 .003 .003 .003 .002 .005 .004 

S2 .10 50% .30 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .30 50% .30 .005 .003 .004 .004 .004 .002 .007 .004 

S3 .10 50% .30 .004 .002 .003 .003 .004 .002 .005 .004 

S3 .30 50% .30 .003 .002 .002 .002 .003 .002 .003 .003 

S1 .10 10% .50 .006 .005 .006 .005 .005 .004 .009 .006 

S1 .30 10% .50 .005 .004 .005 .004 .004 .003 .006 .004 

S2 .10 10% .50 .004 .004 .004 .004 .003 .003 .004 .004 

S2 .30 10% .50 .006 .005 .007 .005 .006 .005 .008 .006 

S3 .10 10% .50 .005 .004 .005 .004 .005 .004 .006 .005 

S3 .30 10% .50 .004 .003 .004 .004 .004 .003 .004 .004 

S1 .10 30% .50 .005 .004 .005 .004 .004 .003 .008 .006 

S1 .30 30% .50 .004 .003 .004 .003 .003 .003 .006 .004 

S2 .10 30% .50 .002 .002 .003 .003 .002 .002 .003 .003 

S2 .30 30% .50 .005 .004 .005 .004 .005 .003 .007 .005 

S3 .10 30% .50 .004 .003 .004 .003 .004 .003 .006 .004 

S3 .30 30% .50 .004 .003 .003 .003 .003 .003 .004 .003 
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Table continued 

S1 .10 50% .50 .004 .004 .005 .004 .003 .003 .008 .005 

S1 .30 50% .50 .003 .003 .004 .003 .002 .002 .006 .004 

S2 .10 50% .50 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .30 50% .50 .005 .003 .005 .004 .004 .003 .007 .005 

S3 .10 50% .50 .004 .003 .004 .003 .003 .002 .006 .004 

S3 .30 50% .50 .003 .002 .003 .003 .003 .002 .003 .003 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model B2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .011 .007 .010 .007 .010 .007 .013 .008 

S1 .30 10% .30 .008 .006 .008 .006 .008 .006 .009 .006 

S2 .10 10% .30 .006 .005 .005 .005 .006 .005 .006 .005 

S2 .30 10% .30 .012 .006 .011 .007 .010 .006 .011 .006 

S3 .10 10% .30 .009 .006 .008 .006 .009 .006 .009 .006 

S3 .30 10% .30 .007 .005 .006 .005 .007 .005 .007 .006 

S1 .10 30% .30 .009 .006 .009 .006 .008 .006 .010 .007 

S1 .30 30% .30 .007 .004 .006 .004 .006 .004 .007 .005 

S2 .10 30% .30 .006 .004 .004 .004 .006 .004 .006 .004 

S2 .30 30% .30 .012 .005 .009 .006 .011 .005 .011 .006 

S3 .10 30% .30 .009 .004 .007 .005 .009 .005 .009 .005 

S3 .30 30% .30 .007 .004 .004 .004 .007 .004 .007 .004 

S1 .10 50% .30 .008 .004 .007 .005 .006 .004 .008 .005 

S1 .30 50% .30 .007 .004 .005 .004 .007 .003 .007 .005 

S2 .10 50% .30 .005 .003 .003 .003 .005 .003 .005 .004 

S2 .30 50% .30 .011 .004 .007 .005 .009 .004 .009 .004 

S3 .10 50% .30 .009 .003 .005 .005 .008 .003 .008 .005 

S3 .30 50% .30 .007 .003 .004 .004 .007 .003 .007 .003 

S1 .10 10% .50 .010 .007 .009 .007 .009 .007 .011 .008 

S1 .30 10% .50 .008 .005 .008 .005 .007 .005 .009 .006 

S2 .10 10% .50 .007 .005 .006 .005 .007 .005 .007 .005 

S2 .30 10% .50 .012 .007 .012 .007 .011 .007 .012 .007 

S3 .10 10% .50 .009 .006 .009 .006 .009 .006 .010 .007 

S3 .30 10% .50 .008 .005 .006 .005 .008 .005 .008 .005 

S1 .10 30% .50 .010 .006 .009 .006 .009 .006 .010 .007 

S1 .30 30% .50 .008 .004 .006 .004 .007 .004 .008 .005 

S2 .10 30% .50 .005 .004 .004 .004 .005 .004 .005 .004 

S2 .30 30% .50 .011 .005 .009 .006 .010 .005 .009 .006 

S3 .10 30% .50 .009 .004 .006 .005 .009 .004 .009 .005 

S3 .30 30% .50 .007 .004 .005 .004 .007 .004 .007 .004 

S1 .10 50% .50 .007 .005 .007 .005 .006 .004 .007 .005 

S1 .30 50% .50 .007 .004 .005 .004 .007 .003 .007 .005 

S2 .10 50% .50 .006 .003 .003 .003 .006 .003 .005 .003 

S2 .30 50% .50 .010 .004 .007 .005 .008 .004 .008 .005 

S3 .10 50% .50 .009 .003 .005 .004 .009 .003 .008 .004 

S3 .30 50% .50 .006 .003 .004 .004 .006 .003 .006 .003 
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AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO C 

Size ICC Prob Effect 
Treatment Model C1 Treatment Model C2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .080 .069 .051 .045 .082 .070 .053 .051 

S1 .30 10% .30 .100 .087 .061 .054 .104 .089 .066 .064 

S2 .10 10% .30 .119 .107 .077 .065 .128 .112 .085 .084 

S2 .30 10% .30 .107 .067 .072 .064 .109 .068 .077 .076 

S3 .10 10% .30 .125 .083 .085 .074 .129 .085 .091 .088 

S3 .30 10% .30 .131 .100 .089 .079 .139 .105 .099 .099 

S1 .10 30% .30 .079 .068 .049 .037 .081 .069 .052 .044 

S1 .30 30% .30 .099 .087 .061 .045 .103 .089 .065 .056 

S2 .10 30% .30 .119 .107 .075 .054 .128 .113 .085 .075 

S2 .30 30% .30 .111 .072 .073 .049 .114 .074 .078 .066 

S3 .10 30% .30 .131 .098 .090 .063 .139 .102 .098 .087 

S3 .30 30% .30 .108 .088 .076 .058 .119 .096 .090 .085 

S1 .10 50% .30 .085 .074 .052 .033 .087 .075 .056 .043 

S1 .30 50% .30 .119 .106 .076 .046 .127 .111 .084 .068 

S2 .10 50% .30 .105 .096 .071 .044 .117 .105 .087 .075 

S2 .30 50% .30 .103 .067 .067 .035 .105 .068 .070 .050 

S3 .10 50% .30 .123 .083 .081 .041 .127 .085 .087 .061 

S3 .30 50% .30 .128 .099 .089 .049 .137 .104 .096 .076 

S1 .10 10% .50 .078 .068 .048 .044 .080 .069 .051 .050 

S1 .30 10% .50 .100 .088 .062 .054 .104 .090 .065 .063 

S2 .10 10% .50 .120 .108 .075 .065 .129 .113 .085 .084 

S2 .30 10% .50 .106 .067 .071 .064 .109 .069 .074 .075 

S3 .10 10% .50 .123 .083 .083 .072 .127 .085 .087 .087 

S3 .30 10% .50 .130 .098 .089 .079 .139 .104 .097 .098 

S1 .10 30% .50 .078 .068 .048 .036 .080 .069 .051 .044 

S1 .30 30% .50 .100 .087 .063 .045 .104 .089 .065 .058 

S2 .10 30% .50 .120 .107 .076 .055 .129 .112 .086 .077 

S2 .30 30% .50 .107 .067 .071 .046 .110 .069 .076 .063 

S3 .10 30% .50 .125 .083 .085 .056 .129 .085 .088 .075 

S3 .30 30% .50 .131 .099 .089 .064 .139 .104 .097 .088 

S1 .10 50% .50 .080 .068 .050 .032 .082 .069 .052 .041 
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Table continued 

S1 .30 50% .50 .098 .085 .062 .038 .102 .087 .065 .050 

S2 .10 50% .50 .119 .107 .077 .046 .128 .113 .085 .070 

S2 .30 50% .50 .107 .067 .069 .036 .110 .069 .075 .052 

S3 .10 50% .50 .122 .083 .080 .041 .127 .085 .085 .062 

S3 .30 50% .50 .129 .099 .088 .050 .138 .104 .096 .077 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED 

CONDITIONS OF SCENARIO C 

Size ICC Prob Effect 
Treatment Model C1 Treatment Model C2 

E1 E2 E3 E4 E1 E2 E3 E4 

S1 .10 10% .30 .470 .576 .759 .758 .446 .568 .736 .717 

S1 .30 10% .30 .479 .576 .779 .775 .448 .564 .746 .723 

S2 .10 10% .30 .500 .572 .782 .784 .440 .544 .729 .693 

S2 .30 10% .30 .409 .693 .710 .721 .382 .685 .676 .647 

S3 .10 10% .30 .416 .671 .719 .727 .381 .661 .679 .654 

S3 .30 10% .30 .452 .629 .742 .735 .394 .605 .678 .637 

S1 .10 30% .30 .481 .578 .771 .807 .455 .568 .746 .761 

S1 .30 30% .30 .482 .574 .781 .817 .449 .560 .748 .760 

S2 .10 30% .30 .498 .569 .793 .825 .440 .538 .735 .734 

S2 .30 30% .30 .417 .680 .740 .813 .390 .671 .703 .728 

S3 .10 30% .30 .451 .639 .749 .802 .397 .616 .694 .698 

S3 .30 30% .30 .480 .615 .747 .780 .390 .565 .657 .636 

S1 .10 50% .30 .483 .572 .781 .841 .456 .560 .750 .791 

S1 .30 50% .30 .494 .569 .792 .853 .439 .540 .737 .761 

S2 .10 50% .30 .517 .574 .785 .844 .423 .514 .689 .697 

S2 .30 50% .30 .426 .673 .754 .856 .402 .665 .726 .792 

S3 .10 50% .30 .430 .667 .757 .861 .396 .655 .717 .785 

S3 .30 50% .30 .464 .629 .756 .850 .403 .602 .707 .744 

S1 .10 10% .50 .475 .571 .772 .761 .454 .564 .746 .721 

S1 .30 10% .50 .480 .571 .772 .775 .448 .559 .744 .724 

S2 .10 10% .50 .492 .568 .789 .786 .435 .539 .732 .697 

S2 .30 10% .50 .404 .688 .714 .719 .380 .681 .687 .651 

S3 .10 10% .50 .422 .669 .722 .732 .388 .659 .689 .658 

S3 .30 10% .50 .457 .637 .743 .737 .399 .612 .687 .642 

S1 .10 30% .50 .476 .570 .774 .808 .453 .559 .749 .763 

S1 .30 30% .50 .479 .576 .776 .817 .445 .561 .750 .756 

S2 .10 30% .50 .496 .574 .789 .822 .435 .542 .729 .727 

S2 .30 30% .50 .411 .685 .734 .813 .382 .677 .695 .730 

S3 .10 30% .50 .421 .675 .736 .812 .390 .664 .706 .725 

S3 .30 30% .50 .453 .631 .749 .798 .395 .607 .694 .693 
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Table continued 

S1 .10 50% .50 .480 .578 .778 .848 .447 .564 .747 .480 

S1 .30 50% .50 .500 .569 .791 .855 .439 .535 .734 .500 

S2 .10 50% .50 .416 .686 .752 .857 .384 .677 .711 .416 

S2 .30 50% .50 .434 .667 .759 .862 .399 .655 .721 .434 

S3 .10 50% .50 .465 .632 .759 .849 .403 .606 .705 .465 

S3 .30 50% .50 .480 .578 .778 .848 .447 .564 .747 .480 

Notes. E1 = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1 = 500 * 10, S2 = 

200 * 30, S3 = 60 * 150 
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AVERAGE RELATIVE BIAS FOR SIMULATED CONDITIONS OF 

SCENARIO C 

Size ICC Prob Effect 
Treatment Model C1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .009 .014 .019 .018 -.013 .021 -.048 -.014 

S1 .30 10% .30 .007 .012 .014 .015 .001 .003 .090 .030 

S2 .10 10% .30 .032 .032 .036 .035 .022 .021 .018 .029 

S2 .30 10% .30 -.038 .005 .007 .015 -.033 .007 -.063 -.018 

S3 .10 10% .30 .021 .007 .001 .009 .027 .000 .023 .003 

S3 .30 10% .30 .001 .007 .012 .014 .006 .009 -.006 -.007 

S1 .10 30% .30 -.025 -.029 -.033 -.030 -.010 -.016 -.036 .000 

S1 .30 30% .30 -.016 -.023 -.034 -.031 -.007 -.003 .021 -.012 

S2 .10 30% .30 .040 .035 .035 .031 .040 .036 .056 .044 

S2 .30 30% .30 -.022 .000 .000 .010 -.037 -.012 .011 .012 

S3 .10 30% .30 .016 -.003 .000 -.003 .013 -.005 -.005 -.008 

S3 .30 30% .30 .018 .014 .013 .013 .022 .018 .026 .019 

S1 .10 50% .30 .009 .004 .003 .000 -.010 -.010 .019 -.005 

S1 .30 50% .30 -.016 -.018 -.021 -.020 -.007 -.006 -.010 -.010 

S2 .10 50% .30 -.006 -.007 -.008 -.008 -.003 -.005 -.012 -.013 

S2 .30 50% .30 .001 -.005 -.018 -.011 .016 .017 .043 .030 

S3 .10 50% .30 -.044 .012 .013 .018 -.045 .015 .017 .054 

S3 .30 50% .30 .001 .002 .009 .011 .004 -.001 .042 .032 

S1 .10 10% .50 -.007 -.023 -.012 -.022 -.023 -.029 .014 -.031 

S1 .30 10% .50 .011 .012 .017 .018 -.001 -.017 .003 -.004 

S2 .10 10% .50 .017 .011 .009 .004 .020 .021 .014 .011 

S2 .30 10% .50 .014 .030 .038 .038 .010 .019 .038 .025 

S3 .10 10% .50 .001 .027 .029 .046 .008 .024 .028 .035 

S3 .30 10% .50 -.030 -.017 -.015 -.007 -.047 -.020 -.080 -.042 

S1 .10 30% .50 -.039 -.038 -.046 -.034 -.008 .005 .022 -.010 

S1 .30 30% .50 -.009 -.012 -.013 -.010 .001 -.008 .011 .017 

S2 .10 30% .50 .025 .021 .019 .018 .019 .023 .013 .009 

S2 .30 30% .50 .026 .009 .012 .013 .041 .004 -.016 .017 

S3 .10 30% .50 -.002 -.002 -.014 -.008 -.017 -.004 -.031 -.002 
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Table continued 

S3 .30 30% .50 .016 .024 .023 .023 .017 .020 .013 .014 

S1 .10 50% .50 -.038 -.029 -.018 -.021 -.049 -.037 .052 -.007 

S1 .30 50% .50 .029 .030 .036 .032 .007 .019 .019 .020 

S2 .10 50% .50 -.001 -.002 .002 .002 .005 .003 -.009 -.004 

S2 .30 50% .50 .021 .014 .021 .017 .019 .015 .031 .023 

S3 .10 50% .50 .037 -.005 .009 .000 .034 -.002 .030 .006 

S3 .30 50% .50 -.020 -.007 -.008 -.009 -.033 -.003 -.011 .003 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 138 

Table continued 

Size ICC Prob Effect 
Treatment Model C2 (Part 1) 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

S1 .10 10% .30 -.793 -.848 -.890 -.731 

S1 .30 10% .30 -1.005 -.980 -1.051 -.860 

S2 .10 10% .30 -1.390 -1.293 -1.396 -1.160 

S2 .30 10% .30 -.748 -.892 -.785 -.783 

S3 .10 10% .30 -.858 -1.003 -.926 -.885 

S3 .30 10% .30 -1.226 -1.278 -1.206 -1.151 

S1 .10 30% .30 -.859 -.807 -.778 -.698 

S1 .30 30% .30 -1.000 -.898 -.891 -.784 

S2 .10 30% .30 -1.298 -1.174 -1.150 -1.072 

S2 .30 30% .30 -.679 -.833 -.687 -.739 

S3 .10 30% .30 -1.150 -1.165 -1.016 -1.086 

S3 .30 30% .30 -1.653 -1.599 -1.475 -1.521 

S1 .10 50% .30 -.813 -.791 -.676 -.697 

S1 .30 50% .30 -1.274 -1.157 -1.024 -1.074 

S2 .10 50% .30 -1.752 -1.587 -1.482 -1.519 

S2 .30 50% .30 -.498 -.783 -.591 -.718 

S3 .10 50% .30 -.761 -.880 -.716 -.829 

S3 .30 50% .30 -1.254 -1.222 -1.035 -1.168 

S1 .10 10% .50 -.801 -.841 -.901 -.727 

S1 .30 10% .50 -.945 -.955 -.987 -.835 

S2 .10 10% .50 -1.287 -1.220 -1.324 -1.099 

S2 .30 10% .50 -.622 -.851 -.719 -.734 

S3 .10 10% .50 -.838 -.945 -.876 -.817 

S3 .30 10% .50 -1.272 -1.319 -1.238 -1.188 

S1 .10 30% .50 -.866 -.833 -.865 -.728 

S1 .30 30% .50 -1.025 -.933 -.891 -.824 

S2 .10 30% .50 -1.366 -1.218 -1.195 -1.120 

S2 .30 30% .50 -.692 -.832 -.668 -.733 

S3 .10 30% .50 -.708 -.894 -.756 -.821 

S3 .30 30% .50 -1.227 -1.210 -1.079 -1.141 

S1 .10 50% .50 -.881 -.792 -.684 -.687 

S1 .30 50% .50 -.878 -.833 -.686 -.744 

S2 .10 50% .50 -1.337 -1.215 -1.089 -1.135 

S2 .30 50% .50 -.640 -.787 -.589 -.725 

S3 .10 50% .50 -.730 -.912 -.723 -.852 

S3 .30 50% .50 -1.294 -1.202 -1.041 -1.157 
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Table continued 

Size ICC Prob Effect 
Treatment Model C2 (Part 2) 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 -.738 -.709 -.739 -.691 

S1 .30 10% .30 -.926 -.853 -.906 -.857 

S2 .10 10% .30 -1.356 -1.199 -1.476 -1.271 

S2 .30 10% .30 -.593 -.745 -.621 -.745 

S3 .10 10% .30 -.752 -.867 -.806 -.893 

S3 .30 10% .30 -1.131 -1.166 -1.237 -1.237 

S1 .10 30% .30 -.742 -.645 -.591 -.628 

S1 .30 30% .30 -.902 -.753 -.823 -.738 

S2 .10 30% .30 -1.220 -1.070 -1.318 -1.167 

S2 .30 30% .30 -.565 -.699 -.557 -.681 

S3 .10 30% .30 -1.039 -1.054 -1.143 -1.137 

S3 .30 30% .30 -1.493 -1.467 -1.627 -1.600 

S1 .10 50% .30 -.731 -.671 -.591 -.644 

S1 .30 50% .30 -1.216 -1.071 -1.295 -1.182 

S2 .10 50% .30 -1.613 -1.482 -1.731 -1.656 

S2 .30 50% .30 -.359 -.604 -.369 -.572 

S3 .10 50% .30 -.626 -.748 -.709 -.782 

S3 .30 50% .30 -1.143 -1.128 -1.243 -1.256 

S1 .10 10% .50 -.702 -.710 -.565 -.679 

S1 .30 10% .50 -.942 -.845 -.933 -.855 

S2 .10 10% .50 -1.220 -1.116 -1.302 -1.171 

S2 .30 10% .50 -.504 -.717 -.528 -.717 

S3 .10 10% .50 -.725 -.833 -.729 -.849 

S3 .30 10% .50 -1.156 -1.181 -1.270 -1.260 

S1 .10 30% .50 -.700 -.661 -.541 -.611 

S1 .30 30% .50 -.952 -.792 -.868 -.787 

S2 .10 30% .50 -1.297 -1.130 -1.408 -1.234 

S2 .30 30% .50 -.590 -.675 -.615 -.677 

S3 .10 30% .50 -.588 -.770 -.667 -.795 

S3 .30 30% .50 -1.114 -1.105 -1.235 -1.209 

S1 .10 50% .50 -.839 -.672 -.690 -.636 

S1 .30 50% .50 -.869 -.744 -.790 -.763 

S2 .10 50% .50 -1.272 -1.115 -1.329 -1.222 

S2 .30 50% .50 -.478 -.646 -.406 -.619 

S3 .10 50% .50 -.601 -.780 -.652 -.822 

S3 .30 50% .50 -1.205 -1.106 -1.298 -1.247 
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PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF 

SCENARIO C 

Size ICC Prob Effect 
Treatment Model C1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .805 .787 .788 .775 .791 .818 .763 .750 

S1 .30 10% .30 .912 .916 .902 .909 .929 .944 .852 .904 

S2 .10 10% .30 .941 .941 .938 .938 .942 .942 .936 .937 

S2 .30 10% .30 .894 .915 .888 .905 .899 .920 .879 .905 

S3 .10 10% .30 .956 .950 .943 .944 .961 .956 .930 .932 

S3 .30 10% .30 .917 .931 .927 .927 .924 .933 .922 .934 

S1 .10 30% .30 .940 .947 .932 .943 .949 .956 .869 .923 

S1 .30 30% .30 .941 .943 .940 .942 .942 .949 .907 .920 

S2 .10 30% .30 .958 .957 .953 .952 .958 .960 .941 .944 

S2 .30 30% .30 .925 .944 .931 .937 .928 .952 .899 .923 

S3 .10 30% .30 .934 .951 .946 .948 .934 .952 .928 .946 

S3 .30 30% .30 .929 .943 .935 .939 .936 .952 .926 .936 

S1 .10 50% .30 .953 .954 .949 .952 .962 .965 .885 .924 

S1 .30 50% .30 .965 .966 .964 .965 .968 .969 .945 .952 

S2 .10 50% .30 .961 .961 .960 .960 .962 .966 .944 .947 

S2 .30 50% .30 .929 .953 .945 .947 .939 .963 .887 .922 

S3 .10 50% .30 .926 .957 .951 .953 .928 .963 .915 .938 

S3 .30 50% .30 .941 .959 .958 .959 .945 .962 .942 .956 

S1 .10 10% .50 .897 .903 .890 .900 .904 .923 .848 .891 

S1 .30 10% .50 .884 .899 .896 .904 .883 .887 .853 .876 

S2 .10 10% .50 .934 .935 .932 .933 .937 .941 .926 .931 

S2 .30 10% .50 .895 .914 .888 .908 .901 .928 .877 .914 

S3 .10 10% .50 .899 .917 .903 .913 .902 .928 .894 .918 

S3 .30 10% .50 .920 .934 .925 .931 .919 .933 .907 .926 

S1 .10 30% .50 .925 .929 .919 .925 .946 .954 .871 .913 

S1 .30 30% .50 .944 .948 .943 .945 .951 .955 .917 .930 

S2 .10 30% .50 .956 .957 .957 .957 .958 .958 .946 .948 

S2 .30 30% .50 .919 .936 .923 .927 .915 .947 .863 .904 

S3 .10 30% .50 .927 .944 .933 .938 .932 .957 .919 .938 
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Table continued 

S3 .30 30% .50 .936 .949 .942 .945 .938 .956 .935 .947 

S1 .10 50% .50 .954 .958 .950 .955 .954 .965 .877 .925 

S1 .30 50% .50 .957 .957 .951 .952 .960 .966 .914 .938 

S2 .10 50% .50 .965 .966 .964 .964 .966 .968 .948 .954 

S2 .30 50% .50 .911 .953 .945 .951 .925 .964 .873 .922 

S3 .10 50% .50 .929 .961 .948 .953 .934 .970 .912 .945 

S3 .30 50% .50 .942 .964 .957 .959 .939 .966 .936 .948 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model C2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .179 .016 .105 .084 .115 .079 -.032 .061 

S1 .30 10% .30 .519 .574 .508 .618 .543 .617 .579 .621 

S2 .10 10% .30 .542 .575 .543 .617 .554 .606 .517 .584 

S2 .30 10% .30 .696 .673 .693 .710 .743 .719 .717 .710 

S3 .10 10% .30 .721 .754 .742 .771 .800 .809 .749 .795 

S3 .30 10% .30 .539 .523 .548 .568 .574 .564 .535 .540 

S1 .10 30% .30 .722 .753 .748 .784 .761 .800 .790 .802 

S1 .30 30% .30 .671 .709 .708 .744 .695 .750 .716 .755 

S2 .10 30% .30 .586 .631 .637 .662 .610 .662 .580 .632 

S2 .30 30% .30 .768 .745 .782 .774 .788 .785 .797 .787 

S3 .10 30% .30 .608 .605 .653 .632 .646 .641 .610 .615 

S3 .30 30% .30 .432 .452 .495 .479 .486 .497 .441 .452 

S1 .10 50% .30 .757 .769 .803 .796 .781 .804 .816 .809 

S1 .30 50% .30 .613 .649 .688 .673 .630 .674 .606 .640 

S2 .10 50% .30 .412 .468 .502 .490 .458 .502 .419 .444 

S2 .30 50% .30 .805 .770 .819 .787 .840 .822 .849 .825 

S3 .10 50% .30 .759 .744 .792 .760 .789 .783 .783 .774 

S3 .30 50% .30 .601 .613 .671 .630 .634 .642 .603 .602 

S1 .10 10% .50 .677 .685 .649 .719 .726 .733 .695 .741 

S1 .30 10% .50 .548 .531 .523 .581 .532 .556 .513 .546 

S2 .10 10% .50 .591 .612 .581 .649 .611 .645 .590 .629 

S2 .30 10% .50 .774 .724 .753 .758 .796 .764 .788 .763 

S3 .10 10% .50 .676 .649 .667 .691 .711 .688 .716 .684 

S3 .30 10% .50 .542 .533 .558 .578 .580 .580 .540 .551 

S1 .10 30% .50 .725 .742 .735 .775 .773 .796 .794 .803 

S1 .30 30% .50 .674 .709 .719 .742 .699 .753 .723 .755 

S2 .10 30% .50 .571 .618 .624 .648 .593 .646 .561 .616 

S2 .30 30% .50 .747 .725 .771 .755 .765 .774 .772 .772 

S3 .10 30% .50 .748 .713 .750 .734 .768 .750 .756 .739 

S3 .30 30% .50 .598 .602 .644 .625 .633 .636 .593 .601 

S1 .10 50% .50 .720 .757 .782 .788 .732 .791 .768 .797 

S1 .30 50% .50 .752 .764 .807 .789 .755 .788 .771 .780 

S2 .10 50% .50 .597 .635 .672 .659 .616 .665 .599 .633 

S2 .30 50% .50 .784 .770 .821 .787 .807 .808 .832 .810 

S3 .10 50% .50 .753 .724 .776 .741 .784 .763 .786 .751 

S3 .30 50% .50 .600 .632 .679 .644 .628 .661 .601 .619 
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STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO C 

Size ICC Prob Effect 
Treatment Model C1 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .005 .004 .005 .004 .004 .003 .007 .005 

S1 .30 10% .30 .004 .004 .004 .004 .004 .003 .006 .004 

S2 .10 10% .30 .003 .003 .003 .003 .003 .003 .003 .003 

S2 .30 10% .30 .005 .004 .005 .005 .005 .004 .006 .005 

S3 .10 10% .30 .005 .004 .005 .004 .004 .003 .005 .004 

S3 .30 10% .30 .004 .003 .003 .003 .004 .003 .004 .003 

S1 .10 30% .30 .004 .003 .004 .003 .003 .003 .007 .004 

S1 .30 30% .30 .003 .003 .003 .003 .003 .003 .005 .004 

S2 .10 30% .30 .002 .002 .003 .003 .002 .002 .003 .003 

S2 .30 30% .30 .004 .003 .004 .004 .004 .003 .006 .004 

S3 .10 30% .30 .003 .002 .003 .003 .003 .002 .004 .003 

S3 .30 30% .30 .003 .003 .003 .003 .003 .002 .004 .003 

S1 .10 50% .30 .003 .003 .003 .003 .002 .002 .008 .005 

S1 .30 50% .30 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .10 50% .30 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .30 50% .30 .004 .003 .003 .003 .004 .002 .007 .004 

S3 .10 50% .30 .004 .003 .003 .003 .004 .002 .005 .004 

S3 .30 50% .30 .003 .002 .002 .002 .003 .002 .003 .002 

S1 .10 10% .50 .005 .005 .005 .005 .004 .004 .008 .005 

S1 .30 10% .50 .004 .004 .004 .004 .004 .003 .006 .004 

S2 .10 10% .50 .004 .004 .004 .004 .004 .003 .004 .004 

S2 .30 10% .50 .006 .005 .006 .005 .005 .004 .007 .005 

S3 .10 10% .50 .005 .004 .005 .004 .005 .004 .006 .004 

S3 .30 10% .50 .004 .003 .004 .003 .004 .003 .004 .003 

S1 .10 30% .50 .004 .004 .004 .004 .003 .003 .007 .005 

S1 .30 30% .50 .003 .003 .003 .003 .003 .003 .004 .004 

S2 .10 30% .50 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .30 30% .50 .005 .003 .004 .004 .004 .003 .008 .005 

S3 .10 30% .50 .004 .003 .004 .003 .004 .002 .004 .003 

S3 .30 30% .50 .003 .003 .003 .003 .003 .002 .003 .003 

Appendix O 
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Table continued 

S1 .10 50% .50 .003 .002 .003 .003 .002 .002 .007 .005 

S1 .30 50% .50 .003 .003 .003 .003 .002 .002 .005 .004 

S2 .10 50% .50 .002 .002 .002 .002 .002 .002 .003 .003 

S2 .30 50% .50 .005 .003 .003 .003 .004 .002 .008 .005 

S3 .10 50% .50 .004 .002 .003 .003 .004 .002 .007 .003 

S3 .30 50% .50 .003 .002 .002 .002 .003 .002 .004 .003 

Note. S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM; 

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC) 
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Table continued 

Size ICC Prob Effect 
Treatment Model C2 

E1* 

O1 

E1* 

O2 

E2* 

O1 

E2* 

O2 

E3* 

O1 

E3* 

O2 

E4* 

O1 

E4* 

O2 

S1 .10 10% .30 .007 .005 .007 .005 .007 .005 .010 .006 

S1 .30 10% .30 .008 .005 .007 .005 .007 .005 .008 .005 

S2 .10 10% .30 .006 .004 .005 .004 .006 .005 .006 .005 

S2 .30 10% .30 .009 .006 .008 .006 .008 .005 .009 .006 

S3 .10 10% .30 .006 .004 .005 .005 .007 .004 .008 .005 

S3 .30 10% .30 .007 .004 .005 .004 .006 .004 .007 .005 

S1 .10 30% .30 .007 .005 .007 .005 .006 .004 .008 .005 

S1 .30 30% .30 .007 .004 .005 .004 .007 .004 .009 .005 

S2 .10 30% .30 .006 .004 .004 .004 .006 .004 .006 .004 

S2 .30 30% .30 .009 .004 .006 .004 .009 .004 .008 .005 

S3 .10 30% .30 .006 .003 .004 .004 .006 .003 .007 .004 

S3 .30 30% .30 .006 .004 .004 .004 .006 .004 .006 .004 

S1 .10 50% .30 .006 .004 .005 .004 .006 .003 .006 .005 

S1 .30 50% .30 .005 .002 .003 .003 .005 .002 .005 .003 

S2 .10 50% .30 .005 .003 .004 .003 .005 .003 .005 .004 

S2 .30 50% .30 .008 .004 .005 .004 .008 .004 .007 .005 

S3 .10 50% .30 .008 .003 .004 .003 .008 .003 .007 .004 

S3 .30 50% .30 .007 .003 .004 .004 .007 .003 .006 .004 

S1 .10 10% .50 .008 .006 .008 .006 .008 .006 .011 .006 

S1 .30 10% .50 .007 .005 .007 .006 .007 .005 .009 .006 

S2 .10 10% .50 .006 .005 .005 .005 .006 .005 .007 .005 

S2 .30 10% .50 .008 .006 .008 .006 .008 .005 .008 .006 

S3 .10 10% .50 .009 .006 .007 .006 .009 .006 .009 .006 

S3 .30 10% .50 .007 .005 .006 .005 .007 .005 .007 .005 

S1 .10 30% .50 .007 .005 .006 .005 .007 .004 .009 .006 

S1 .30 30% .50 .007 .004 .005 .004 .006 .003 .007 .004 

S2 .10 30% .50 .005 .003 .004 .003 .005 .003 .006 .004 

S2 .30 30% .50 .008 .004 .006 .005 .008 .004 .008 .005 

S3 .10 30% .50 .007 .004 .005 .005 .007 .004 .007 .004 

S3 .30 30% .50 .006 .004 .004 .004 .006 .003 .006 .004 

S1 .10 50% .50 .006 .004 .004 .004 .006 .003 .007 .005 

S1 .30 50% .50 .007 .003 .004 .004 .007 .003 .007 .004 

S2 .10 50% .50 .005 .002 .003 .003 .005 .002 .005 .003 

S2 .30 50% .50 .009 .003 .005 .004 .009 .003 .008 .005 

S3 .10 50% .50 .009 .003 .005 .004 .008 .003 .007 .004 

S3 .30 50% .50 .007 .003 .004 .004 .007 .003 .007 .003 

 


