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ABSTRACT

Randomized controlled trials (RCTs) or randomized experiments, have long
been considered as the most rigorowethod to determine whether causal effects exist
between a treatment and an outcpomeh as the effect of an educationatiméntion
However, RCTs are often infeasible due to practical or ethical reasons in educational
settings. Under such circumstances,-rammdomized observational studies are often
used to estimate treatment effects. The propensity score is defined asdhiecd
probability of receiving treatment given a set of observed pretreatment variables.
Under Rubindés causal model, the aim of
improve the quality of estimates by attempting to mimic the balance betweqys grou
that acurs through the randomization procéampensity score methods have been
developed primarily for singlevel data structures. In educational studies, data
typically have a clustered or hierarchical structure, where probability of receiving
treatment isa function of both individual and clustlvel factors.

Using the Monte Carlo simulations, this dissertation aims to compare two tree
based data mining approaches (i.e., generalized boosting modeling [GBM],
generalized linear mixedffects modetrees GLMERTREE]) to two parametric
models (i.e., multiple logistic regressifMLR], multilevel logistic regressiofiRC])

for propensity score estimation under different simulated settings. There are several

Xi
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primary findings in this studykirst, hidde bias fom unobserved covariates has a
very large impact on the estimate of causal eféectsssing covariates renders all
PSA approaches invalid. Second, under conditions ofadidlitivity and nordinearity,
the data mining approaches can provide bettgiopmane on predicting the
propensity score. However, all of the four estimation methods with an appropriately
specified outcome model can provide unbiased treatment effect estimates. Third,
although the MLR and RC outcome models performed similarihemelatve bias of
treatment effects, RGffers betteprecision byproducinglower standard errsiof
treatment effectd-ourth, among the eight estimation and outcome model
combinations, GBMRC combination provided a moagecurate an@recise treatment
effect eimates across thgreatest number agimulated conditions

There are several limitations in this stuyrst, this study did not consider
variedcorrelation between covariatdauture research can be ddonancorporate
variedcorrelatiors amoigy covariatesSecond, balanced cluster size scenarios were
created in this studyt is worth exploring the effect of the imbalance on the estimation
of treatment effectThird, this study included onlgropensity score weighting as the
conditioning methodFuture research can assess the performance of data mining
approaches to estimate the propensity score using matching and stratification
conditioning methodd-ourth, when using GBM to generate the gty score in
this study, only one algorithm specdtion was specified. Further research should

include different algorithm specifications for GBM with multilevel data.
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Chapter 1

INTRODUCTION

Doeskindergarten retention improve loitgrm student outcomes in
mahematics (Hong & Raudenbush, 2005)? Do studentsarter schools perform
better than those in the traditional schools (Xiang & Tarasawa, 2015)? Does
participation ininternational Baccalaureait@prove later student outcomes (May et
al., 2014)? These gstions share a common goal that aims to identifgalsal
relationship between a treatment (e.g., International Baccalaureate) and a subsequent
outcome (e.g., student performance). Smeatment effects can be identified using a
counterfactual model.pg&cifically, an effect is the difference between waattially
happened and what would have happened in the absence of the treatment (Holland,
1986; Rubin, 1974; Shadish, Cambell & Cook, 2002). In practice, a complete
counterfactual model cannot be obserd@ectly since units can only be assigned into
onecondition. Therefore, an effect can only be approximated (Shadish et al., 2002).
Randomized controlled trials (RCTs) or randomized experiments, have long
been considered as the most rigorous method to determine whether causal effects exist
between a treatemt and an outcome (Austin, 2011a; Cook, 2006). In a randomized
experiment, unitere randomly assigned to a treatment group or to a control group.

Random assignment balances both the observed and unobserved covariates between



groups, making any differene®etween the groups arbitrary (Rubin, 1974). As a
result, subsequent differendasoutcomes can be attributed to treatment effect
(Holland, 1986; Shadish, et al., 2002).

However, RCTs are often infeasible due to practical or ethical reasons in
educationbsettings (Cook, 2003). For example, it is not practical to investigate
causl effect of grade retention on student academic achievement usirgple€ause
it would be unethical to randomly assign students to retention or promotion groups.
Under sucttircumstances, nerandomized observational studies are often used to

estimate teatment effects (Austin, 2011).

1.1 Observational Studies

Observational studies refer to situations in which the causal effects are
identified without structural features of exjpeents (Shadish et al., 2002). In
observational studies, units are assignedgatinents without a randomization
process. Therefore, units in treatment and control groups may differ systematically
regarding relevant characteristics and may not be compatabctly (Rubin, 2008).
For example, when investigating the causal effecradig retention on student
academic achievement, it is likely that retained students have lower socioeconomic
status (SES) than promoted students. The causal effect of imengsbnfound with
the effect of SES on student academic achievement. As g thsudistimated casual

effect is biased.



Neverthelesspbservational studies have the same intent as a randomized
experiment: to estimate a causal effect (Austin, 2011; @oci965). Meanwhile,
well-designedbservational studies with appropriate staiéd methods are an
important category of study designs for causal inference (Rubin, 2007; Shadish et al.,
2002; What Works Clearinghouse [WW(C], 2017). During the past feadbs, a
number of norexperimental techniques have been developed to estimestal ca
effects in observational studies. These designs include regression discontinuity
(Thestlethwaite & Cambell, 1960), interrupted time series (Cambell & Stanley, 1966),
andinstrumental variableBpund, David & Regina, 1995In addition,Rosenbaum
andRubin (1983) introduced propensity score analysis (PSA) to reduce selection bias

through balancing on covariates.

1.2 Propensity Score Analysis

The propensity score is definedthe conditional probability of receiving
treatment given a set of observed pratimeent variables (@enbaum el al., 1983).
Under Rubi ndés cthaasneof conditiodire lon ti{e propensi)y score is
to improve the quality of estimates by attemg@tto mimic the balance between
groups that occurs through the randomizatiorc@ss (Rosenbaum & Rubin, 1984;
Shadish & Steiner, 2010). In essence, the propensity score analysis relies on the
assumption of strong ignorability in treatment assignmentefRmsum et al., 1983),
which states the potential outconas conditionally indegndent of treatment

assignmengiven a vector of covariates. If this assumption holds, individuals with the



same propensity score will have the same distribution on the atgnivhich is
referred as covariate balance. In practicanihdividual fromthetreatmentasthe
same propensity scoes anndividual fromthe control group, the probability of being
receivingthe treatment is the same faothindividuals. Hencethose individuals who
have the same propensity scdret arefrom different groys, are comparable.

Essentially estimating treatment effects using propensity scores includes the
following steps (1) selecting the appropriate covariates, (2) estimatiagtopensity
score, (3xonditioning on the propensity score, ésessing the quality of the
propensity score estimation model, (5) adjusting the model if necessary, and (6)
estimating treatment effects (Rosenbaum et al., 1983; Pan & Bai, 2015).

Since® s enbaum asamdnaMoklnil9B8, the application and syud
of propensity score analysis has grown in populaftgpensity scorenethods have
been applied to nerandomized studies across various disciplines such as medicine,
economics, and saisciences (Sekhon, 2011). Meanwhile, much attention has been
focusedon the mechanism of propensity score analysis in relevant topics such as the
estimation of propensity sca@Nestreich, Lessler & Funk, 2010), covariate selection
(Brookhart, et al., @06), and measurement error in covariates (Lockwood &

McCaffrey, 2A5).

1.3 Problem Statement
Regarding the estimation of propensity score, parametric modeling (e.g.,

multiple logistic regression) has been widely used since it can produce useful and



interpretdle inference (Rosenbaum, et al., 1983). However, parametric mgdeli

requires assumptions on variable selection, distributions of variables, and inclusions of
interactions and nelinearity terms (Agresti, 2007). If any of these assumptions are
violated covariate balance may not be achieved, whantresult in a biasetteatment

effect estimate (Lee, Lessier & Stuart, 2010). To this end, data mining methods have
been introduced to estimate propensity scores as alternatives to parametric modeling
(McCaffrey, Ridgeway & Morral, 2004). Contrary to conventional statistias t

assume a data model with parameters estimated from the data, data mining approaches
aim to extract the relationship between an outcome and predictors through a learning
algorithm withou an a priori data model (Breiman, 2001).

While there are numerowata mining approaches to choose from, the
techniques frequently examined in the literature of propensity score estimation include
classification trees (Westreich et al., 2010), boostgaession (McCaffrey et al.,

2004), random forests (Lee et al., 2jJdhd neural networks (Keller, Kim & Steiner,
2015 Setoguchi, Schneeweiss, Brookhart, Glynn & C&tl08. These data mining
approaches have been found to outperform logistic regressiestfimating the
propensity score in terms of reducing bias (Lieal.e 2010; McCaffrey et al., 2004,
Setoguchi et al., 2008).

PSA was developed primarifgr singlelevel data structusfRosenbaum et
al., 1983). In educational studieswever data tyjcally have a clustered or
hierarchical structure (e.gtudents g nested within classrooms; classrooms are

nested within schools; schools are nested within school disttictaddition to



possible dependencies among potential outcomes within clustertseatment
assignment can be affected by both individeakl and clustettevel characteristics

that vary across clustefglultilevel modelsincluding fixed effects and/or random
effectshave become popular as a means to address data clusteringsiiheting
propensity scores (e.g., Arpino & Mealli, 2011; ArpindC&nnas, 2016; Hong &
Raudenbush, 2006; Leite, et al., 2015). However, one issue when estimating the
propensity score using multilevel models is the potential for the treatment assignment
mechanism to vary across clusters. A great number of random stopms/ériates

would be required when capturing such variations and will result in model estimation
and convergence issues. This problem may be resolved using data mining approaches
that carautomatically identify and select covariate by cluster interastiGurel,

2015).

The performance of data mining approaches in estimating propensity scores
has been extensively examined in siAgkel data (e.g., Lee et al., 2010; Linden &
Yarnold, 20¥; McCaffrey et al., 2013; McCaffrey et al., 2004; Setoguchi £¢2@08).
However, there is limited research investigating the performance of those data mining

approaches for estimating propensity scores with multilevel data.

1.4 Purpose of this Dissertatio
In observational studies, since propensity scores are typicsdhyown and
unobservable, they must be estimated. The success of PSA depends on a good

specification of the propensity score model, such that the balancing property is



satisfied. Thereforat is crucial to know what methods produce the most accurate
estimdion of propensity scores under different scenatissng the Monte Carlo
simulations, this dissertation aims to compare twol@sed data mining approaches
(i.e., generalized boostingadeling, generalized linear mixedfects model trees) to

two paranetric models (i.e., multiple logistic regression, multilevel logistic regression)
for propensity score estimation under different simulatettilevel settings.

Specifically, three researcfuestions will be investigated.

1. How do the propensity scores oloiil by parametric and data mining techniques
compare based on (a) mean squared error and (b) the correlation between the
actual probability of being in the treatment group and the estirpab@ensity
score?

2. To what extent do the relative biastidatment effect estimates, proportion bias
reduction of treatment effectand the standard error of the treatment effects vary
across the method of propensity score estimation, propensityrsoded and
outcome model?

3. Do the relative bias of treatmesfifect estimates depend on #g@mnple size, ratios
of treatment exposure, treatment effects, and levels of intraclass correlations

(ICC)?

Although there are numeroesducationaktudies using thpropensity score
methods, very few studies incorporate dataing approaches to estimate propensity

scores. This study seeks to provide guidelines for educational researchers and



practitioners to draw better causal inferences using data mining appreaithes
multilevel data.

The organization of this dissertation study is as folloMss dhapter
introduced the background and purpose of current study. Chapter 29 eslievant
|l iterature by introducing Rubinotse causal r
implementation proadures of PSA, presenting the literature on PSA with multilevel
data, and reviewing the research on propensity score estimation using data mining
approaches. Chapter 3 provsdgetails orthi s s tesedrgh@esign and Monte
Carlosimulations. Chaptergresengresultsft r om t hi s studyés anal ys
Chapter 5 presesta discussion of the results, their implications for educational

research, limitations, and directions for future research.



Chapter 2

LITERATURE REVIEW

This study airs to evaluate the perfmance of data mining and parametric
propensity score estimation procedures in multilevel settings. This chapter begins by
introducing Rubinbés causal model , which se
study. Next, a detailededcription of PSA and ajor implementation steps in a single
level context is described. Then, the literature on PSA in multilevel settings and
propensity score estimation using data mining approaches is reviewed. Finally,
empirical gaps in the literatuege identified and a tianale for the proposed study is

offered.

21 Rubinds Causal Mo del

Rubinbés causal mod el (a.k.a., the poter
1978) focuses on the formal mathematical and statistical perspective related to causal
inference(West & Thoemmes, 20}0. I n Rubinés causal model ,
estimated by comparing the potential outcomes that would have been observed for an
individual under different conditions. To begin, | denote T as a treatment condition
and Y as a potdial outcome. For eaamiti (i= 1, ¢ 5 1 indigates tAat the

uniti is in the treatment group with a corresponding potential outcomand T= 0



represents that the uniis in the control group with a corresponding potential
outcome Y.l n t he Rubinds causal model , the qua
effect for each unit, which is defined as:

U= Y- Yo 1
Unfortunately, it § impossible to observe both potential outcomes for the same unit
simultaneously. In an experiment, one of the two outcomes can be observed, while the
other one will be missing. As a rdislt is impossible to estimate the treatment effect
foranindividml. Thi s i ssue has been regarded as t
Causal Inference" (Holland, 1986, p. 947; Rubin, 1978).

Rubinbés causal mod el can reageol ve this i
treatment effect (ATE; Holland, 1986; Rubin, 1974), which israkfias:

ATE = E(Y1i Yo) = E(Y1) i E(Yo) 2
where E(Y) is the expected value of Y for all the units under the treatomedition
and E(Yo) is the expected value of Y for all the units anthe control condition. In
RCTs, ATE is an unbiased estimate of the treatment effect since units in the treatment
group do not differ systematically from those in the control groumein tbserved
and unobserved background characteristics due tortdemazation process (Rubin,

1974).

Rubinds causal mo d e | all ows causal I nf e
observed from different units (Holland, 1986). In some situations, ATE islways
the quantity of interest (Heckman, Ichimura & Todd, 1997;iRu®77). For

example, one may be interested in the treatment effect of a dropout prevention

1C



program for atisk students who volunteer to participate in the program but not all at
risk students in the population. In this situation, one may be interestieel average
treatment effect for the treated (ATT; Imbens, 2004), which is defined as:
ATT =E(Y1T Yo| T=1)=EM| T=1) i E(Yo| T=1) 3
This can be understood as the difference in potential outcomes (ile amndtwithout
treatment) for only those who were actually treated (Caliendo & Kopening, 2008;
Holland, 1986). Since potential outcomes for all treatment conditions cannot be
observed foa | | uni t s, Rubinbds causal model requl

(Roenbaum et al., 1983; Rubin, 2010).

2.1.1 Strong Ignorability in Treatment Assignment (SITA)

SITA assumption refers to the process used to assign units to conditions. It
requires the assignmecndition to be independent and not associated with the
outcome andther factors. Suppose n units are randomly assigned to conditions, it is
assumed that the cause of assignment T is statistically independent from the outcomes
Y1 and Yoi. In nonrandomizd or observational studies, SITA assumption is met if all
the covarates that impact the treatment assignment havegreperlyaccounted for

(Rosenbaum et al., 1983).

2.1.2 Stable Unit Treatment Value Assumption (SUTVA)
SUTVA is defined as an "a priori assption that the value of Y for unit

when exposed to treatmenwill be the same no matter what mechanism is used to

11



assign treatmertto unitu and no matter what treatments the other units receive"

(Rubin, 1986, p. 961). In other word®&JTVA means th@bservation on one unit

should not be affected by the assignmertedtments to the other units. In practice,

this assumption is not always attainable. For example, a participant in a reading

program may share his or her experience of the treatmenhiwitr her friends who

happen to be in the control group. Such caritan at i on may affect the
performance on the outcome. This betwgenup contamination can be reduced by

improving designs (Stuart, 2010) to minimize betwgesup contamination.

2.2 Propensity Score Analysis
2.2.1 Logic of Propensity Score

Rosenbaum et al1983) introduced the concept of a balancing score, which is
defined as the "function of observed covariates, such that the conditional distribution
of these observed
covariates is the sa@e for treated and control units” (p. 42). In addition to treatment
condition Ti and an outcome;Ysuppose each unihas, a covariate value vector=X
(Xi1,  €éik), wWwhere K is the number of covariates. Rosenbaum et al. (1983) defined
a propensity sare for uniti, e(X), as the probability of the unit being assigned to the
treatment group, conditional on the covariate vector X

eX)=P(z=1]X

Propensityscores rely heavily on the two following assumptions under SITA

(Rosenbaum et al., 1983):
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Assumption 1: (i, Yo) U /}4X;

Assumption 2: 0 < e(X<1
Assumption 1 indicates a condition that treatment assignmanidTresponse (Y,
Yo) are conditbnally independent giveniX Assumption 2 i mplies
support o bathentamrdtontrohgeoups; namely, that all propensity scores
lie between 0 and 1, exclusively, aétthere is distributional overlap in propensity
scores for théreatment and control groups. Under these two assumptions, PSA can
produce unbiased estates of the treatment effects as a result of the reduced selection
bias through balancing the distributions of observed covariates between the treatment

and control goups (Rosenbaum et al., 1983; Pan et al., 2015).

2.2.2 Implementation of Propensity Score Anaysis

The process of implementing PSA to deal with selection bias involves multiple
steps. The first step of PSA is to evaluate which covariates should be included to
capture potential confounding impacts. This is followed by the estimation of the
propendiy scoresased on the covariateand then conditioning on thegmpensity
scoreestimates. Upon checking assumptions, estimation and conditioning schemes can
be revsed until satisfactory balance and distributional overlap are achieved. These

steps arelescribed in detail below.
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2.2.2.1 Covariate Selection

The first step of PSA is to generate a list of covariat@sh cancapture
potential confounding impacts. Since PSAegheavily upon the assumption of
SITA, all covariates related to treatment assignment and outcome should be included
(Rubin & Thomas; Stuart, 2010). There is no statistical test for this assumptitdmeand
decision of covariate selection relies on suttsta knowledge of the possible
confounders in the applied context (Shadish & Steiner, 2010; Steiner, Cook, Shadish
& Clark, 2010). Furthermore, according to Shadish, Luellen and Clark (2006), it is not
sufficient to only include demographic data suchexsdgr, ethnicity, and age.

Propensity score models that are conductedipasion some previously collected

data with only few covariates often fail to yield unbiased causal effect estimates
(Shadish, Lellen, & Clark, 2006). The exclusion of potential fmmders impacts the
treatment effect estimates and consequently threatens the validity of the inferences
(Rosenbaum et al., 1983; Shadish et al., 2010; Steiner, et al., 2011).

In practice, itcan bedifficult to classify baseline covariates into the true
confounders, those that only affect the treatment assignment, those that only affect
outcome, and those that affect neither treatment nor the outcome. In many settings,
most baseline covariates are likéb affect both treatment assignment and the
outcome To this end, it is suggested to include all measured baseline characteristics in

the propensity score model (Austin, 2011).

14



2.2.2.2 Propensity Score Estimation

The multiple logistic regression model is mosirenonly used to estimate
propensity scores (Pan et,&015; Thoemmes & Kim, 2011). A propensity score for a
uniti, e(X), can be estimated from the treatment assignmenmt the covariate vector

Xi (Agresti, 2007):

~

, | — bXi 4

whereb is a vector of the regression coefficients. The logit link is considered
favorable since the probabilities of being in thettresnt group are modeled as a

linear function of the covariates and the outcome, and the natural log of the odds is a
continuousapproximatelynormally distributed variable (O'Connell & Rivet Amico,

2010).

2.2.2.3 Conditioning Methods

Common propensity scores abtioning methods include matching,
stratification, and weighting in singlevel studies. Matching and stratification are
briefly discussed andh¢ weighting approach, as the primary focus in this study, is

extensively discussed as follows.

2.2.2.3.1 Propensity sore matching
Propensity score matching can be used to form matched sets of treated and
untreated units who share a similar value of the propensity score (Rosenbaum et al.,

1983). The most common implementation is-tmene or pakmatching in which
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pairsof treated ad untreated units are formedne example of or®-one matching

is the nearest neighbor (NN) matching (Rosenbaum et al., 1985). This method matches
each unii in the treatment grouwith a unitj in the control group that has the

smallest abolute diffeence between their propensity scores. If multiple units in the
control group have propensity scores that are equally close to one unit in the treatment
group, one of these units in the control group is selected at random.

Alternatively, caligger matching Cochran & Rubin, 1973) is similar to NN
matching. It restricts that the absolute difference in the propensity scores of matched
subjects must be below somespecified threshold. Rosenbaum et al. (1985)
suggested that the pspecified calipr should béess than or equal to .25 of a
standard deviation on the propensity score. Recently it was suggested that a caliper of
width equal to .20 of a standard deviation on the propensity score is the optimal
caliper distance (Austin, 2011b).

Thereare severala@ditional propensity score matching methods including
Mahalanobis metric matching (Rosenbaum & Rubin, 1985), Mahalanobis caliper
matching (Rubin & Thomas, 2000), and genetic matching (Diamond & Sekhon, 2013).

When researchers implement propgnscore mathing methods mentioned
above, there are two classes of matching algorithms that can be selected including (a)
greedy matching and (b) optimal matching (Rosenbaum, 1989). In greedy matching,
once a match is made, the unit in the control gisu longeeligible for
consideration as a match for other units in the treatment group. In optimal matching,

previously matched units can bematched until an overall minimum or optimal
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average withirmpair difference in propensity scoresaishievedWhen the sizef the

control group is large enough, both matching algorithms can produce similar matched
units. However, optimal matching performs better in minimizing the distance within
each pair. Furthermore, optimal matching can be helpful when trermamany
appropriate matched units in the control group (Gu & Rosenbaum, 1993; Ho, Imai,
King, & Stuart, 2011). Therefore, greedy matching is efficient if the goal is to find
well-matched groups, and optimal matching is preferable is the goal is tedihd

matchedoairs (Stuart, 2010, Bai el al., 2015).

2.2.2.3.2 Propensity score stratification

Propensity score stratification uses propensity scores to divide units into
mutually exclusive subsets. Units are ranked according to their estimated propensity
score.This method isalso known as interval matching, blocking, and subclassification
(Rosenbaum et al., 1983). Cochran (1968) found that five subclasses are often enough
to remove 95% of the bias associated with one single covariate. Rosenbaum and Rubin
(1984) exended Cochrds findings to PSA and discovered that stratifying
observations into quintiles based on their propensity scores can reduce approximately
90% of the bias due to the measured confounders.

Within each stratum, treated and untreated units &ilehsimilar alues of the
propensity score. As such, ttistribution of measured covariates will be generally
similar between treated and untreated units within the same stiEeneffects of

each stratum are pooled across the strata to estimate thER&SENbaumteal.,
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1984). This procedure can be considered asetaanalysis of a set of quaRICTs
since the effect of treatment on outcomes can be estimated by comparing outcomes

directly between treated and untreated units (Austin, 2011a).

2.2.2.3.3 Propensity score weightng

Propensity score weighting is another approach to account for selection bias by
using propensity scores. This method is similar to weighting in survey sampling that
accounts for overor undefrepresented subgroups (Lee, et al., 2010; Mogyd odd,
2008). The logic of using propensity scores as weights is to control the influence of
units by weighting their responses based on their propensity scores (McCaffrey et al.,
2004). One example of propensity score weighting is the inverse projpabili

treatmat weighting (IPTW; Rosenbaum, 1987), which is defined as:

Wi=— ——— 5
In this equation, Zs an indicator variable denoting whether or notitheurit

is treated, and e(Xis the propensity score for tith unit. Each unit weight is equal to
the inverse of the probability of receiving the treatment that the subject received. Then

the average treatment effect (ATE) can be estimated by:

z

ATEE- B — _B

In this equation, n denotes the number of units. Joffe, Ten Have, Feldman, and
Kimmel (2004)describe how regression models can be weighted by the inverse

probability of treatment testimate causal effects of treatments.
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2.2.2.4 Quality Evaluation of Propensity Score Estimation
The quality of an estimated propensity score primarily relies on the inclusion
of important andelevant covariates and the correct specification of the functional
form inthe model (Guo & Fraser, 2010). Regardless of the variable selectib
conditioning methods, both covariate balance and overlap must be achieved.
Therefore, no systematic differences remain between the treatment and control groups
and the common gyort assumption can be met (Guo et al., 2010; Ho et al., 2011).
The assessment of covariate balance can be checked by comparing the
distributions of the covariates and the estimated propensity scores before and after
conditioning using standardized meafiestences or graphical representations (Pan et
al., 2015). Thetandardized difference is the most common method to compare the
mean of continuous and binary variables between treatment and control groups. For a

continuous covariate, the standardizededdhce is defined as:

A — 7

wheredaf andaf indicate the sample mean of the covariate for the units in the
treament and control groups respectively.andi denote the sample variance for
the units in the treatment and control groups respectively. For dichotomous variables,

the standardized difference is defined as:

A — 8

19



whereb and B denote the prevalence or mean of the dichotomous variable for units
in the teatment and control groups respectively. The standardized difference
compares the difference in means in units of the pooled standard deAdttmuigh
there is no agreement arcutoff value to indicate covariate balance, a standard
difference that idelow .1 has been used to indicate a negligible difference in the
mean or prevalence of a covariate between treatment and control groups (Normand et
al., 2001; Austin, 2011a).

In addition to differences in means and proportions, graphical representations
such as sidéy-side boxplots, quantitquantile plots, cumulative distribution
functions, and empirical nonparametric density pbats be used to compare the
distribution of catinuous baseline covariates between treatment and control groups in
the matbed sample (Austin, 2009). Furthermore, statistical significance testing has
been frequently used to compare the mean of continuous covariates or the distribution
of categorical gariables between units in treatment and control groups. This approach
is dismuraged since results of significance testing are sensitive to the sample size. The
matched sample is often smaller than the original sample; thus, using significance
testing to @tect covariate balance may result in misleading resaits,(King &

Stuart 2008 Austin, 2009).
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2.3 Propensity Score Analysis in Multilevel Context
2.3.1 Propensity Score Estimation in Multilevel Context
In a multilevel context, the observations within a clusted to be
moresimilar than those in other clusters, which demonsttepsdencies among
individuals within clusters (Raudenbush & Byrk, 2002). Additionally, treatment
assignment may be dependent on cluster <che
deckion to participate in an aftechool program may partly depend on the
comps i ti onal characteristics or policies of
2006).Therefore, the treatment assignment can be viewed as a combination
of individual and clustelevel factos. This implies the need for multilevel modeling
in estimatingpropensity scies.
In the existing literature, fixed effects models and random effects models have
been used to estimate propensity scores under a multilevel modeling framework
(Arpiro & Mealli, 2011; Leite et al., 2015; Thoemmes & West, 2011). In the current
study, raom effects models will be included and discussed in more detail since these
models have flexibility to includeandom intercepbnly and randorinterceptand
slopes models withral without clustetevel covariates (Kim & Seltzer, 2007).
Random interceptsodel allows each Levé& unit to have different intercepts
but have common slopes (Raudenbush et al., 280@)opensity score for a unit
e(Xj), can be estimated from threatment assignmentdn the Levell covariate

vector X and Level2 covarate vector W
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, 1—— U+ Xb; A7 A 9

In thislogistic regressiorequationU represents the mean loglds of
propensity scores across clusts. is a vector of regressiaoefficients and Level
covariatesan?7 is a vector of regression coefficients and Le¥ebvariatesA refers
to the clustetevel residual and is assuth® be normally distributed with mean zero
and variance. By fixing the slopes, this mail assumes that the effects af oh
treatment assignment are constant across clusters (Hong et al., 2006).

Alternatively, a random effects model can be specifieallow random slopes,
in which the covariate coefficients are allowed to vary acrostgectusA vector of
random ef f ec tjsan bemdipdambguatios SinduEnce each of the
regression slopes of Levélcovariates.

Although observationatudies with a nested data structure are comns®Een
in educational research, only a lted number of studidsaveutilized multilevel
modelingin nonrandomized PSA designs for causal inference (e.g., Hong20G#8;,
Arpino & Mealli, 2011, Leite eal. 2015). The next section will review the existing

research on using PSA to draw caustdrence in a multilevel context.

2.3.2 Research on Propensity Score Analysis in a Multilevel Context
Hong and Raudenbush (2005) firstly extended the propensity scoysiarnal
the multilevel context. They applied a multilevel propensity score stratification

method to evaluate the effects of the kindergarten retention policy using the Early
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Childhood Longitudinal Study Kindergarten cohort (EGKpBdata. Hong and
Raudenbus (2006) explained the proposed approach in detail. Aldwel logistic
regressionmodelvea used to estimate studentsd prop:
kindergarten. Then students were stratified based on the estimated propensity scores.
Then, a tw-level outcome impact model with random intercepts and slopes was used.
Results indicatediikdergarten retention effect estimates decreased after the propensity
score adjustment. This study implied that the multilevel propensity score stratification
methal may reduce selection bias effectively. Most importantly, this study provided a
general framework for making causal inference in multilevel observational studies.

Kim et al. (2007) investigated the application of PSA in multisite studies on
the effects obducational programs where the treatment condition is enacted within
each school. They proped the use of multilevel logistic regression models for
propensity score estimation. Using data from the Early Academic Outreach Program
(EAOP), they compared theerformance of this approach with additional methods
(e.g., singldevel logistic regressibmodels). Results showed that the propensity score
estimation model with random effects in slopes can improve balance within each
school.

Kelcy (2009) assessed the effectiveness of multilevel PSA for causal inference.
Its primary goal was to investigateetrole of variable selection in the multilevel PSA.
Results suggested that the propensity score model one used to estimate treatment
effeds mattered to a lesser extent. In other words, it is more crucial to include the

appropriate variables in a modeathto use a specific model. Particularly, identifying
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Oappropriated variables to includenin a
by which to judge the inclusion of a variable.

Arpino and Mealli (2011) examined the performance of propensitg scor
matching techniques in multilevel observational studies when one or more unobserved
clusterlevel covariates are presemhey discussethe assumptions needed to identify
causal effects in multilevel settings and focus on situations where a treatment is
assigned at the individual level, but clustrel characteristics are associated with the
treatment and the potential outcomEésur prgensity score estimation models were
evaluated in the simulation study, including a singlevel model with covarias at
both levels, a singlevel model with levell covariates only, a fixed effect model
with school indicators/dummiganda multileve random intercept model. These four
models were evaluated through their performance on unbiased treatment effect
estmation and covariate balance. The findings revealed that omitted diexstér
variables have the strongest impact when they are highiglated with the potential
outcome. Furthermore, the results confirmed that it is not necessary to control for
cluser effects when the covariates only affect treatment assignment but have no
influence on the outcomes. In addition, both random effecfiaed effect models
captured the unobserved heterogeneity quite well. In particular, the propensity score
matching usg the fixed effect model with school indicators performs the best across
all simulation conditiongrinally, a simple model with clust@ndicators, despite
statistical prejudice one could have against it, serves quite well the scope of balancing

clusterlevel unobserved variables and so of reducing the bias of the PSM
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Thoemmes et al. (2011) extensively evaluated different wagstitmate the
propensity scores with clustered data through a simulation study and a case study. This
simulation study variethe estimation methods, matching strategies, sample size, and
the degree of intralass correlation (ICC). The estimation modetduded a single
level propensity score model with individuahd clustettevel covariates as well as
acrosslevel interactbns between the covariates, a fixed effect model with an indicator
variable for each cluster, a random effects model that accauristiveercluster
variations in treatment assignment and outcomes, and a random effects model where
treatment assignment €® not vary across clusters. The results confirmed the
necessity to consider the clustered nature when estimating the propensityisico
clustered data. Specifically, when the ICC was low, different propensity score
estimation methods and matching stgies yielded similar results. When ICC was
high, the random effects models outperformed other models in terms of bias, mean
square error, and coverage rate. In addition, the fixed effect model also performed
well on bias reduction.

Li, Zaslavsky, and Lagdrum (2013) focused on propensity
scoreweightingstrategies in the multilevel context. Through analytical derivations
and simulatias, they examined the performance of different weighting strategies (e.g.,
marginal, clustexveighted, doublyrobust estimatrs) and outcome models (e.g.,
singlelevel model, fixed effect model, random effects model) under violations to
unconfoundedness tite cluster level. The simulation study revealed three key

findings. First, estimators ignoring clustered data structulpetim propensity score
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and outcome models have larger bias and Root Mean Squared Error (RMSE). Second,
when unmeasured confounders present, ignoring the clustered data structure in the
outcome models results in worse estimates than ignoring it inmrdpemsity score

models. Third, among the doublgbust estimators, the benchmark or random effects
outcome model performed the be3terall, this study showed that explicitly

modelling the clustered data structure, either parametrically or nonparanhetiicat

least one stage of the PSA can greatly reduce these biases.

Arpino and Cannas (2015) compared different approaches foemsity score
matching with clustered data structures. They included multiple models (e.g., fixed
and random effects modelsf) propensity score estimation and matching strategies.
This study also proposed a preferential witblimster matching. This appaoh first
searches for control units to be matched to treated units within the same cluster. If
matching is not successfuithvin-cluster, then the algorithm searches in other clusters.
This study revealed that all approaches successfully reduced thribitsthe
omission of a clustelevel confounder. The preferential withituster matching
approach showed relatively gopdrformance for botlargeand small clusters.
Furthermore, the preferential withaluster matching approach is an effective method
to reduce the number of unmatched units as compared to pure-ghitbiar matching.

Leite et al. (2015) proposed a methiodmplement four PSA methods with
clustered data structures, including the creation of weights and three types of weight
scaling nethods (normalized, clusteormalized, and effective). Using a Monte Carlo

simulation study, this study revealed that thdtiievel modeling can provide
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unbiased estimates of the ATT. Furthermore, weighting may lead to biased results if
some units havexeremely large or small propensity scores, and weighting is more
sensitive to misspecification of the propensity score @stim model than matching

or stratification.

So far, all the literature reviewed here is based on a frequentist framework.
Kaplan aad Chen (2012) introduced a tvgtep Bayesian propensity score approach.
They evaluated its performance for propensity sestragification, weighting, and
optimal full matching. A slight advantage is shown for the Bayesian approach in small
samples. Lateon, Chen and Kaplan (201éxtended the twstep Bayesian
propensity score approach for multilevel observational studigxamined its
properties through two comprehensive simulation studies. Results indicated that a
Bayesian random intercept and slgpepensity score model with optimal full
matching via withircluster matching is recommended when the withirster sample

size is sufficient to facilitate close matches.

2.4 Data Mining Approaches as Alternatives to Estimang Propensity Scores
Recently, d&a mining approaches have been introduced to estimate propensity

scores as alternatives to parametric modeling (McCaffral,62004). This section

contains an overview of two data mining approaches including generalized boosted

modeling (GBM) and genediaed linear mixeeeffects model trees (GLMM), which

will be included in this study. This section also reviews relevamatiiee that

evaluated the performance of data mining approaches in estimating propensity scores.
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2.4.1 Classification and Regression Trees

Both GBM and GLMM were developed from classification and regression
trees (CART) algorithms. Therefore, it is necessamnierstand the CART approach
before discussing further those two algorithBieiman, Friedman, Stone and Olshen
(1984) introducedlassification and regression trees algorithms (CART). CART are
nonparametric classifiers that construct hierarchical dmtigsees by splitting data
among classes of the criterionthmhmdana rgulveen
applied to a setf predictors, into two child nodes repeatedly, from a root node that
contains the whole sample. Based on a CART algoritima single tree is built using
all observations. As the tree grows, the data are recursively partitioned into smaller
strata. The Maes of covariates for observations within the same stratum are similar.
During this process, each covariate is evaluatdithdothe best candidate at each split.
When the patrtition is completed, each terminal node of the tree will be labeled the
majority vote if the response variable is categorical or the mean value if the response
variable is continuouslames, Witten, Ha&ti& Tibshirani, 2013; Yan, 2013)

Compared with traditional approaches (e.qg., linear regression, logistic
regression), CART algohins have several advantages to solve classification and
prediction problems (e.g., propensity score estimation). Firsitsgsoduced by the
CART may be easier to explain. They can be displayed graphically and easily
interpreted by a neexpert. Second;ART algorithms are more capable of handling
categorical, ordinal, continuous, and missing data. Third, CART algorithms are

insensitive to outliers and monotonic transformation of variables. Fourth, splits in a
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tree can naturally model ndimearities andnteractions (James et al., 2013). However,
as the stopping rule for partitioning is loose, the tree based on CART algsitiuilt

as large as possible, which may lead to unstable classification and prediction results
(Hastie, Tibshirani & Friedman, 20).

Several approaches have been proposed to remedy the limitations of the
CART, including bagging, boosting, and randome&is. These methods use trees as
building blocks to construct more powerful classification and prediction models
(Hastie et al., 209). Bagging, or bootstrap aggregated CART, is a series of procedures
for reducing the variance of a data mining method.séhrocedures include fitting a
CART to a bootstrap sample with replacement using the original sample size, and then
repeating it may times. Finallyan average of all the predictions from different trees is
used, which is more robust than a single tBreifnan, 1996)Similarly, boosted
CART goes through multiple iterations of tree fitting on random subsets of the data.
However, wih several iterations, a new tree can place greater emphasis on the data
points that were incorrectly specified with the poes tree (McCaffrey et al., 2004,
James et al., 2013). GBM is one of a class of boosting methods which will be
discussed in the fldwing section. Random forests are similar with bagging but use a

random subsample of predictors to build each tree (Breig@Gol).

2.4.2 Generalized Boosted Modeling
GBM is one of the boosting methods. It keeps the primary features of CART

algorithms, but itan produce a smoother fit by combining many simple trees
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(Burgette, McCaffrey, Griffin, 2015When estimating the propetsscore, GBM
utilizes the Aforward stagewise additive &

Q8 11 e— 10
where X is the covariates and e(X) is grepensity score defined in Equation 4. The
algorithm begins with building a single regression tree and taking:

Q8 11 & 11
whereUis the mean of the treatment indicator for the entire sample. Then GBM adds a
simple regression treb(X), to the initial estimat’Q8 to obtain a better fit-it is
measured by the Bernoulli ldidkelihood of Equation 12 wheilargervalues indicate
better fit (McCaffrey et al., 2004).

0Q B :"8 11@® QouiRd 12

The added simple tree is obtained by fitting the residue’Q8 ‘versus X.

The"Q8 is updded by'Q8 _C & , where_ represents a shrinkage factor. It is
suggested that the shrinkage parameter can be .0005. McCaffery et al. (2004)

mentioned that the propensity score estimates may be obtained whespagfied

maximum number of iteratiorage reached.

2.4.3 Generalized Linear Mixed-Effects Model Trees (GLMM)
Like most traditional methods, CART algorithms assume independence
between measurements. This assumption is violated when data is clustered. Based on

treebased methods, a new algorithm ndrtiee generalized linear mixeifects
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model (GLMM) tree was developed to take account for nested data structure
(Fokkema, Smits, Zeileis, Hothorn, & Kelderman, 2018). This method has been found
to outperform other trebased methods and generalized limaadels in simulation
studies Also, unlikeother treebased approaches with random effects suahiaed
effects regression tre¢ldajjem, Bellavance & Larocqu@011) and REEM trees
(Sela & Simonoff2012), GLMM trees allow continuous as well as faaminuous
response variables.

According to Fokkema et al. (2018), the GLMM tree includes a raettatts
model to account for the dependence between observations. When building the
GLMM tree model, a random intercept and/or slopes are estimated per 8ursterit
is difficult to estimate the fixecand randoreffects parts simultaneously, an
expectation maximization (EMype approach that iterates between estimating the
random effectaind the partition (tree structure) is used. Due to the unknown random
effects in the beginning, GLMM tree starts with assuming the random effects to be 0.
The algorithm then iterates between the following two steps. First, given the current
random effectsthe partition (tree) is estimated. Second, given the partition (tinee),
nodespecific generalized linear models (GLMs) and the random effects are estimated.
The algorithm reaches convergence when the random effects no longer change
between consecutivterations. The predicted values for the observations in the
terminal rodes are determined by the node specific parameter estimates of the GLM,

while adjusting for the (globally estimated) random effects.
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2.4.4 Research on Propensity Score Analysis Using Dakdining Approaches

Several researchers have investigated the perfornodvegious data mining
procedures for estimating propensity scores of siteylel observational studies. This
section reviews existing research on PSA using data mining approaches.

Luellen, Shadish and Clark (2005) used secondary data to compare the
effediveness of the propensity score estimation using logistic regression, classification
trees, and bagging bootstrap replicates. These estimates were compared to estimates
from the randmized experiment. To estimate the logistic regression models, a
backwardstepwise logistic regression approach was implemented. Those covariates
that significantly predicted group membership at p< .50 were retained. 8 of the 25
covariates were retainedtine model. Two classification tree models and three
bootstrap replicatagsed the complete set of 25 covariates to estimate the PSs instead.
Results showed that it remains unclear which method of computing propensity scores
resulted in more accurate estiegmof treatment effects. No single model resulted in
the greatest redtion in bias for both outcomes.

Setoguchi et al. (2008) compared the performance of recursive partitioning,
neural networks, and ma#ffects only logistic regression in a simulatidndy. A
total of 10 binary or continuous covariates with seven scendiffesing by non
linear and/or noradditive association between exposure and covanades
simulated. Results showed that neural networks outperformed logistic regression in
terms @ percent bias reduction in some scenarios, including those in which the

selection model was most nonlinear and-additive.
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Westreich et al. (2010) reviewéalr techniques as alternatives to logistic
regression for estimating propensity scores, inclgideural networks, support vector
machines, CART, and GBM. The authorted that all four data mining approaches
have advantages and disadvantages compared with logistic regression. It has been
found that GBM and CART appear to be most promising for preipescore
estimation, since they are wallited to classification pbbems with highdimensional
data and do not require specification of a parametric model. However, the need for
pruning the decision tree algorithms makes CART less practical. Simitaudyal
networks and support vector machines show less potential the éapertise needed
in tuning the learning algorithms.

Lee et al. (2010) evaluated the performance of several machine learning
techniques such as classification and regression({t&dRT) as promising
alternatives to logistic regression for the estiorabf propensity scoreSpecific
properties for each of the scenarios were described as: additive and linear (main
effects only), mildly noflinear (one quadratic term), moderatebnfinear (three
guadratic terms), mildly neadditive (three tweway interaction terms), mildly nen
43 additive and notinear(three tweway interaction terms and one quadratic term,
moderately non additive (10 twmay interaction terms) and moderatelynradditive
and nonlinear (10 tweway interaction terms and three qudiréerms) (Lee et al.,
2010, p. 339)Propensity score weights were estimated using logistic regression (all
main effects), CART, pruned CART, and the ensemble methods of bagged CART,

random forests, and boosted CART. In the results, all methods disgleyeclly
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acceptable performance under conditions of eitheflinearity or noradditivity
alone. However, under conditions of both moderateauitivity and moderate nen
linearity, logistic regression had subpar performance, while ensemble methods
provided substantially better bias reduction and more consistent 95% CI coverage. The
results suggest that ensemble methods, especially boosted CART, may be particularly
well-suited for popensity score weighting.

Austin (2012) designed Monte Carlo simulagdrased on previous studies
(e.g.,Setoguchi et al. (2008).ee et al. (2010Q)andcompared the performance of
logistic regression and ensemble methods, including bagged regresssmanelom
forests, and boosted regression trédthough no method hagniformly superior
performance for estimating linear treatment effects for continuous outcosies,

boosted regression trees was fountdee very good performance compared with
competing approaches across a range of scendngsarticular, the usef boosted

regression trees with depths of three or four to directly impute potential binary or
continuous outcomes tended to result in estimates of average treatment effects with
lower bias.

Zhao, Su, Ge and Fan (2016) introduced the application ofndemaforest
on the estimation of propensity score matching. They proposed to estimate both the
propensity score and distance (proximity) by using random forest with treatmeat as th
output. Those proposed methods were applied to a study of body mastwindex

produce balanced smoker and fsmnoker groups. &ults showed that the matching
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methods based on distance alone or on distance within calipers defined by the
propensity score caproduce well balanced treatment groups.

Cannas and Arpino (2018) compatbd performance of several machine
learning algorithms (e.g., classification tree, bagged trees, random forest, boosted
trees, Neural Network, naive Bayes) and the standarditogggression on the
estimated propensity score. Additionally, several messof covariate balance
indicating the quality of the propensity score estimators were also assessed. The
results revealed that random forests performed the best when propenstysere
used for matching. Furthermore, both random forests and booetsdbutperformed
other techniqgues when used with propensity score weightingrms ofthe
performance of the several diagnostics of covariate balance, the Absolute Standardized
Average Mean difference of covariates (ASAM) predicted the bias of causal
estimators well.

Brown, Merrigan, and Royer (2018) evaluated the performance of propensity
score estimation techniques with machine learning algorithms in a simulation study.
They elied the simulations on a highmensional empirical dataset with a low ha
of treated and used the propensity score as covariate in a Cox Proportional Hazard
Model. In particular, they found that Least Absolute Shrinkage and Selection Operator
(LASSO),boosting and deep learning outperformed the random forests and the
traditional estimation approach in terms of bias in their simulations.

Tu (2019) conducted a simulation study to evaluate the performance of four

algorithms: multinomial logistic regressi, bagging, random forests, and gradient
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boosting, for estimating generaid propensity score (GPS). The author used the GPS
estimates computed from these four algorithms with the generalized doubly robust
(GDR) estimator to estimate ATEs in observatl@stadies. We evaluated these ATE
estimates in terms of bias and mean sqglareor. Results show that overall, the GB
algorithm produced the best ATE estimates based on these evaluation criteria.
Setodjiet al., (2017xompare two promising propensitycere estimation
methodsincluding GBM and covariatbalancing propensity sces,when assessing
the average treatment effect on theated Several conditions were manipulated
includingthe presence axtraneous variables, the complexity of the relatnom
between exposum@ outcome and covariates, and the residual variancatcome
and exposureResults showethat when noncomplex relationships existween
outcome or exposure and covariates, the covab@@ncingnethodperformed better
butunder complex relationship&BM outperformedhe covariatébalancing methad
In summary, this chapter reviewed existing theoretical and empirical literature
regarding causal inference and PSA in both sitgglel and multilevel settings. With
the contining focus on examining the effectiveness of educational programs, it is
critical that methodologists continue to evaluate the applicability of PSA in varied data
structures. Data mining approaches have received substantial attention in the recent
decades ahhave been widely used in big data applications. Several studies have
shown tlat data mining approaches are an improvement over traditional methods for

estimating propensity scores, including a few studies that extended those algorithms to
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a multilevel catext. This study aims to investigate the performance of two data

mining approahes in a Aevel hierarchical context.
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Chapter 3

METHOD

Using the Monte Carlo simulations, this dissertation aims to compare two tree
based data mining approaches (i.e., generalized boosting modeling, generalized linear
mixed-effects model trees) to two parameimodels (i.e., multiple logistic regression,
multilevel logistic regression) for propensity score estimation under different
simulatedmultilevel settings. This chapter describes the proposed methodology for

this study, including simulation design anthlytic procedures.

3.1 Simulation Design
The simulatbn desigrfor this studyis informed byearlier simulation studies
(e.g., Apino et al., 2011; Lingle, 2009; Leite, et al., 2015; Li, et al., 2013; Setoguchi et
al., 2008;Thoemmes et al., 2011) and severaionwide studies (e.g. Early
Childhood Longitudnal Study Kindergarten Class of 20101 [ECLSK: 2011],
Education Longitudinal Study of 2002 [ELS: 2002], High School Longitudinal Study
of 2009 [HSLS: 2009]conducted by the National Center for Edumatbtatistics
(NCES). The followingsevensectiors detailthe simulation desigased forthis study.

The main objective for the simulation design was to reflect common scenarios for
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sample size and structure, treatment assignment, and effects on outcomiesfact

evaluations of education interventions.

3.1.1 Covariates

In this dissertation, population treatment assignrhasa multilevel nature
with ten Levell (Xi, X2,  €1p) and four Level covariates (WW>,é , sW hree
different distributions were kxted to represent three different types of variables:
binary indicators, proportions, and continuous normal variaBl@eng the Levell
covariates, X, Xsand X were generatkfrom a Bernoulli distribution (i.e. ilmary)
with probability of success p50. X, Xsand X were generated using discrete
uniform distributions from 0 to {i.e., proportions)Xs, Xs , X9, and Xowere
generated using standard normal distributions with mean of zero and standard
deviation (®) of one.Additionally, X1, X2 andXzwere correlated with the treatment
assignment only. XXg andXg were correlated with the outcome onks, Xs andXs
were regarded as confounders at the individual lénagivere correlated with both the
treatmem assignment and outcomeipXvas regeded as an unmeasureonfoundemat
the individual level (See Table 1).

Among the LeveP covariates, Wwas generated from a Bernoulli distribution
with probability of success p=.5.3MWas simulated using discrete farm
distributions from 0 to 1. WandWj were simulated by standard normal distributions
with mean of zero and SD of one. Additionally; Was correlated with the treatment

assignment only. \Wvas correlated with the outcome only> Was regarded as
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corfounder at the cluster level which wemrrelated with both the treatment
assignment and outcome sWas regarded as an unmeaswenfoundeiat the cluster

level (See Table 1).

Tablel: Properties of Level and Level? Covariates

Correlated With
Treatment Outcome Both

Unmeasured

V
X2 \Y/
V

P
(6]
< <<

X
[ee]
<<<

Level2

W1 V

W> VvV

W3 V

W4 VvV V

3.1.2 Population Treatment Assignment Models

When evaluating the performance of propensity score estimation médinods
multilevel data, existing studies have relied on multilevel logistic models (e.g., Arpino
etal., 2011; Li et al., 2013). Howevesing such a modelanmake the estimation
techniques that utilize logistic regression (e.g., multivariate logisticsgigrerandom

coefficientlogit mode) performbetter than thewould otherwisesince thedata
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generation and analytimodels are congent(i.e., data generated from a Bernoulli
with a logit will favor analyses that employ a logit link and a Bernouslirdiution)
In the current study, this problem is avoided by using aliietamial mixed effects
model simulation to generate the data.

A betabinomial mixed effects model extends the Hetsomialgeneralized
linearregression to the inclusion of rande@ffiects in the linear predictor of the model.
The model is defined dellows. Conditional on some random effectstlue response
variable y(i.e., representing treatment assignméwitpws a betebinomial
distribution of parameters m, p and

yluD BB(m, p,%), uD Lognorma(0, D) 13
wherem ismaximum score number in each bBbtaomial observatiofwhich is fixed
at 1);p indicates the probabilitparametenf occurrencg%dndicateshevalue of the
dispersion parameter tfe conditional betdinomial distributionD is the variancef
the random effects. In this study, the lognormal distribution was applied to simulate
the random effeadf school intercept.

Following the marginal &abinomial regression approadhg prolability
parameter of the betsinomial distributions connectedavith some given covariates
X1,€ , nafhd the random effects by meansafauchit (tangentink function(i.e., as
opposed to a logit).

~ s N~ N s oA s A ~

AAOAEEOAAD - 128 :2z0 14

wherer is the matrix of fixed effects and Z is the matrix of random effects.
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In this study, iree scenarios (A, B, and C) were considered in the population
treatment assignmerwhich differ with the égree of linearity and/or additivity of
modeled associations between treatment and the covariates. Scenario A assumes linear
associations between treatment assignment and covariates. The population treatment
assignment model forc8nario A is shown as falvs.

AAOAEE® z B 1 8aeel 8neéB S 7iees 7ree

A 15

Y ~BB(m, p,%)

The terms in Equationsiwere defined similarly as in Equation(@. represents the

mean logodds of propensity scores across clusfEng. manipulations of coefficients

b ands will be discussed in a later sectioh. is a proxy for unmeasured cluster
level covariategi.e., a clustetevel residual) A wasdrawn from dognormal

distributionas defined earlier.

Scenario B describes thheoderate noitinearity andnonradditivity by adding
three quadratic tereand onanteraction ternfor Levell covariatesThe population
treatment assignment model for 8ago B is shown as follows.

AAOAEE® U+B BXpijh Xi0ijb 8
b 8 b 8 b XiieXog B s Whij
s Wai, A 16

Y ~BB(m, p,%)
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In Equation ,b ,b handb represent the regression coefficients for the three
guadratic termsh represents the regressiavefficient for theinteraction term. The
remaining terms were defined similarly as in Equatidn 1
Scenario C describes a more complex situation than Scenario B by adding a
crosslevel interaction term (Xand W). The population treatment assignment nhode
for Scenario Bs shown as follows.
AAOAEEQ( U B DbXpijbh Xi0ijb 8
b 8 b 8 b XiieXog B s Whij
S Waijb XsigWie A 17
Y ~BB(m, p,%)
In Equation Z, b represents the regression coefficient for the ciles®l interaction
term. The remaining terms were defined similarly as in Equdbo
Population Outcome Models

Secondary to thpopulation treatment modabove the population outcome
model was specified dsllows:
9 1 +B ¢ Xpij; © Xio0ijB [ Whij{ Waij;'Y
R 18
| DN(0,x),R DN (0,s?
In the above equation,j\are the observed outcomes gnds an intercepi¢ , are the
fixed effectscoefficientsof sevenLevell covariates XthroughXioand/ are the

fixed effectscoefficientsof Level2 covariates WthroughWa. gis the treatment
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effect. Tj is the treatment indicatdr, represents the influence of unobserved cluster
level factors on the individudével outcomer is thelevell residualThe sum ok

ands?is constrained to equal 1, withe ratio ofx/(x+s?) constrained to equal an
assumed intraclass correlation (ICC, defined below).

In addition, four factors were manipulated to simulate the data, all of which
were fully crossed. These factors include sample size, ratios of treatrpestiex
treatment effects, and levels of ICT#e rationale for choosing simulation conditions

is described in more depth in the sections that follow.

3.1.3 Sample Size

The simulated data in this study aims to mirror the educational data structure in
real wotd examples. Therefore, the sample charactesi§tom previous nationwide
observational studies and empirical research on multilevel PSA were reviewed. The
sample sizes for nationwide observational studies are normally over 10,000 students
and 500 schosl The withinschool sample sizes normally ra&igom 10 to 30For
example, data in thECLSK: 2011were obtained from 18,000 students in 1,000
schools (Tourangeau et al., 2015). ELS: 2002 comprises a sample including around
15,000 students from 750 sah® (Lauff & Ingels, 2014). HSLS: 2009 has over
23,000 students from about 1,000 schools (Radford, Fritch, Leu & Duprey, 2018).

In addition, sample characteristics from previous simulation studies under
multilevel frameworks are varied. Arpino et al. (2Dapplied sample sizes ranging

from 500 to 4,00. Thoemmes et al. (2011) simulated 20 clusters with 50 units each to
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represent a realistic large sample size and 200 clusters with 500 people each to
represent an asymptotic sample size. Li et al. (2013)laietldata based on hospital
settings, ranginfdrom 4,000 to 12,000. To capture the multilevel data structure, this
studyconsisted of three sizeBirst, 500 schools with 10 students each (similar to a
national survey); second, 200 schools with 30 stwdeatch (similar to a statede
study involving30 atrisk students in each of 200 lgeerforming schools); and 60
schools with 150 students each (similar to a diswide study involving a single 48
grade level)The overall sample sizgas5,000,6,000, and9,000. These cluster
conditionsweresekcted since they represent a rangsamhplesizes (from small to

large) based on educational data (Maas & Hox, 2005).

3.1.4 Treatment Exposure Level

Three levels of treatment exposure were manipulated in thig sasgd on
previous simulation and applied lisdure. The ratios of 1:3 and 1:1 (treated units vs.
control units) were chosen to represent ranges of exposure levels in the simulation
literature on the PSA (e.g., Rubin, 1979; Gu et al., 1993; Lingle, 2B@S)des, a 1:9
ratiowasincluded since it isimilar to those in the applied studies of Hong et al.
(2005) and Kim et al. (2007), which are pioneers to conduct PSA in the multilevel

context.
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3.1.5 Treatment Effects

In existing propensity score simulationdites, the population treatment effects
were normally set to 1.0 (e.g., Leite et al., 2015, Gurel, 2015, Abdia, Kulasekera,
Data, Boake & Kong, 2017) or 1.5 (e.g., Chen, 20&Ed)cation interventions
frequently hae small effects or no effect at all (Kra®018). Mark Lipsey and his
colleagues (2012) found an average effect size of only 0.28 SD among a sample of
124 randomized trial#s a result, the current study use8and0.5as the population

treatment efcts, which were set as the regressionfaoent for treatmentr( )

shown in Equation 15.

3.1.6 Intraclass Correlation Coefficient (ICC)

The ICC represents the proportion of variance in the outcome variable that is
explained by the groupingfructure of the hierarchical model. It is calculated &atio
of Level2 error variance over the total error varianGelfnan & Hill, 2007; Snijders

& Bosker, 199%

) #H#— 18
In educatbnal research, ICC levels typically range from .05 to .30 (Raudenbush et al.,
2002). As a result, the values of ICC included in this stuelse.10 and .30, both of

which are plausible in educational cluste data (Niehaus, Campbell, & Inkelas,

2014).
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In sum, the summary of simulation design factors is presented in Zable
total of 108 conditionsveresimulated to generate the data, and each conditasn
replicatedb00times. All the data generation mexduresvereperformed in R 3.6.1 (R

Core Team, 208).

Table2: Summary of Simulation Design Factors

Factor Level
Scenario A;B;C
Sample size (clusters * units) 500 * 10; 200 * 30; 60 * 150
Treatment exposure level 50%; 25%; 10%
Treatment Effects .30;.50
ICC 16 .30

Note.All factor levels will be flly crossed in the simulati@n

3.1.7 Analytic Procedures
This section introducghe analytic procedusancluding propensity score

estimation methods, AH estimation method, and evaluation criteria.

3.1.7.1 Propensity Score Estimation Methods
3.1.7.1.1 Multiple logistic regresson
The first estimation method, represented in Equation 4, is a multiple logistic

regression model (MLR), which will include all the Lexielnd Leel-2 covariates.
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This model providé information regarding the utility of PSA when ignoring the
effects ofclustering. The multiple logistic regressimasfitted using the glnifunction
in R.
3.1.7.1.2 Multilevel logistic regression

A random coefficient model (RC), one category of multilevel logistic
regression modelyasfit to estimate the propensity scores. This eladlows the
slopes of Levell covariates to vary across clusters along with the random intercepts.
Therefore, the é#ct of clustering is accounted for by allowing each L&vahit to
have its own unique intercept as well as its own unique slope. fitegfgihction in
the Ime4 R package (Version 121) wasused to fit the random coefficient model

(Bates, Maechler, Bkér, & Walker, 2019).

3.1.7.1.3 Generalized boosted modeling

When fitting the GBM, the cluster indicatamasincluded in addition to six
Levell and two Level2 covariates. Besides,vitasnecessary to tune the parameters
(e.g., interaction depth, numbers of iteyas, stopping rule) to produce well
calibrated probability estimates. According to McCaffrey et al. (2004), the interaction
depth shoulde no more than four since higher order interactions do little to improve
the predictive accuracy of the model. Angt2012) also recommended spgitif) the
interaction depth at three or four. Therefore, this studg tseinteraction depth of
three tofit the model. Additionally, McCaffrey et al. (2004) sug@ekttopping the

algorithm at the number of iterations whée balance metric (e.g., standardized

48



absolute mean difference [ASAM]) are optimized. The twang package (Version 1.5)

wasused to fit te GMB (Ridgeway, McCaffrey, Morral, Griffin, & Burgette ,2017)

3.1.7.1.4 Generalized linear mixedeffects model trees

When fitting the GLMM trees, each terminal node is associated with different
fixed-effects regression coefficients while adjusting for global randffetts (.e.,
akin torandom interceg). This allows for detection of subgroups with different fixed
effects paranter estimates, keeping the random effects constant throughout the tree
(Fokkema et al., 2018). For the estimation of GLMM trees, the glesepackage
(Version 0.22) wasused (Fokkema & Zeileis, 2019). The minimum number of

observations per node in tregasset to 20 and the interaction depthsset to three.

3.1.7.2 Estimating Treatment Effects

ThelPTW method for estimating the treatment effewas used to weight each
observation to make it representative of the entire populd&mreach estimation
method two separate treatment models were investigated. The first model (Model Al
B1; C1) included the same variables that were used to gentbeatlata. In addition to
the data generating model, a sgscified model (Model AZB2; C2) was also
implemented. Mdel A2, B2; C2 excluded the two unmeasured covariatas, X.).
With the propensity score estimated from each of the models and estimathods,
two outcome models, including the single level model (MLR) and the random effects

(RC) model, were investigated separately. The outcome variable was regressed on the
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treatment indicator and covariates, and the weights were specified as gamplin

weights. In total, 16 combinations were compared.

3.1.7.3 Evaluation Criteria

The following evaluation criteria are specified to answer three research
guestions. In order to answer thesfiresearch question, the mean squared error (MSE)
wascalculated to evahte the performance of different propensity score estimation
methods. MSE for propensity score using three true propensity score estimation
models (Scenario A, B and @)reportedin the results chaptefhe following
equatiorwasused to calculate the NES

b'yYoB — 19
where nis the number of observations. In adulitj helinear (i.e., Pearsororrelation
between propentsi scores and the actual probability of being in the treatment group
wascalculated.

In order to answer the second research question, both relative bias of treatment
effects and proportion biaschection were calculated. Relative bias measures the
averagdendency that the simulated treatment effect is below or above the treatment

effect, which is represented by a percentage. The following equation was used to

calculate the relative bias:

" _ 20
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In this equationf is the average treatment effect estimate in the baseline with
propensity scoreand] is the populatin treatment effe estimatehatis 1.0 and 1.5
in this study. Hoogland and Boomsma (1998) suggested that relative bias-\@&hin
and .05 is acceptable. Additionally, thportion bias reduction of treatment effects
was obtained via:

027 _ 21
wheref is the relative bias in the null model where no propensity score weighting
wasperformed to obtain trement effects anfl  is the relative bias of treatment
effects after propensity score weighting was added into the outcome model. It is
suggested that a propensity score estimation procedure performs well if it removes at
least 90% of the selectionasi (Gurel, 2015; Cochran9@8). Therefore, this condition
was also included to evaluate estimation methods. In additiestandard error of the
treatment effectw/as calculatetb assess the precision of the resulting treatment effect
estimates.

To arswer the thirdesearch question, a series of analyses of variance
(ANOVA) were used to investigate the effects of manipulated conditions on relative
bias of treatment effects. In these analyses, relative bias of treatment effects was used
as the dependemnariable. Thendependent variables include propensity score
estimation methods, propensity score models, outcome models, sample size, treatment
exposure level, treatment effects and ICC. The eta squared was used as the measure of

effect size on the relae bias of tratment effectsMeanwhile, since ICC determines
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the nested structure of data, its interaction effects with estimation methods and

outcome models were investigated as well.
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Chapter 4

RESULTS

This chapter outlines in detail the results of all theppnsity scorenodels
described in Chapter 3. Three scenaffxsenario A, B, and Qegardinghe
population treatment assignmeme discussed separately. For each scenario, the

presentation of results aligns directly to tlineeeresearch questions.

4.1 Scenario A

Scenaio A assumes linear associations between treatment assignment and
covariatedi.e., the data generation model does not include quadratic terms or
interactions) The population treatment assignment model for Scenario A can be found
in Equatian 15. In this sudy, the performance of various combinations of treatment
model, estimation methods, and outcome models was assessed. For each estimation
method, two separate treatment models were investigated. The first model (Model Al)
included the sameariables thatvere used to generate the data. In additidvioolel
Al, a misspecified model (Model A2) was also implemented. Model A2 excluded two
unmeasured covariatesipXWa). Propensity scorewereestimatedindereach of
these twomodels andhe four estimation methodg.e., MLR, RC, GBM, and

GLMERTRERB. Finally, two outcome models, including the single level model
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(MLR) and the random effects (RC) model, were investigated sepaf@iegn 32
combinations of sample characteristics, 288 combinatibconditions were
investigated on the MSE andreelation coefficients between the actual probability of
being in the treatment group and estimated propensity,sowmle5s76 combinations of
conditions were on the relative biases of treatment effgetent bias reduction of
propensity scorestimation, and standard errors.

To answer the first research question, MSE was calculated to evaluate the
performances of different propensity score estimation methods. MSE represents the
squared deviation of thetimated propensity scores from the true propensity scores
acrossb00iterations Figurel provided the mean MSE for each implemented
propensity score estimation mod@lerall, the MSE in Model A1 were lower than
those in Model A2The MSE for Model Alacross the MLR, RC, GBM, and
GLMERTREEwere.079, .050, .062and .®2 respectively. R®adthe lowest MSE
while MLR hadthelargestMSE. For the Model A2, RG.055)had the lowest MSE
among the four estimation methods while M{B86)hadthe worst MSEIn addition,

the detailed mean MSE for each simulated conditierereported in Appendix A.
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Average MSE across Simulated Conditions for Scenario A
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Figurel: Average MSE across Simulated Conditions for Scenario A

Correlation coefficients between the actual probability of being in the
treatment group and estimatepensity score that is obtained with four propensity
score estimation methods in each iteration veéseexaminedFigure 2showedthe
mean correlation coefficient for each implemented propensity score estimation model.
Overall, the correlation coeffiars in Model A1 were higher than those in Model A2.
For Model A1, RCand GLMERTREHEad the highest correlation coefficieri40),
followed byGBM (.769. MLR had the lowest correlation coefficier&5). For
Model A2, RC had the highest correlation caréint (.745), followed by GBM (726
and GLMERTREE 683). MLR had the lowest correlation coefficier31). In
addition, the deied mearcorrelation coefficientfor each simulated conditiomere

reported in AppendiB.
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Average Correlation for Scenario A
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Figure2: Average Correlation betweeéA\ctual Probability of Receiving the Treatment
and Estimated Propensity Scores across Conditions for Scenario A

In order to answer the second research question, relative biases of treatment
effects were calculated. Confirminiget presence of selectiorabiin the simulated
data, treatment effects obtained with the multilevel model without control variables
and propensity score weights were biased in all conditions.

Relative bias was much smaller under all conditions thatedilpropensity
scores. Figuwers 3 and 4 displayed the average relative bias across simulated conditions
for Model Al andA2, respectively. For Model AIno mattetthe cluster effects in the
outcome modelvere consideredhe relative biasesere extremely sall. GBM-RC
had the smallegelative bias which was extremely close to z&vbenexcludng two

unmeasured covariatesModel A2 both outcome models produbextremely large
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relative biases of treatment effectfieldetailedelative biasefor each simlated

conditionarerepored in AppendixC.

Average Relative Bias across Simulated Conditions

for Model Al
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Figure3: Average Relative Bias across Simulated Condition§fiotel A1
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Average Relative Bias across Simulated Conditions
for Model A2
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Figure4: Average Relative Bias across Simulated Conditionfiotel A2

In addition to the relative biathe percent bias reduction of propensity score
estimationin each conditionwas also presented to evalutite bias removal
performance of propensity scastimation methods. Figure 5 and 6 showed the
percent bias reduction across simulated conditions foreM&tl and A2. For Model
Al, the performance of four estinia methods and two outcome models were
similar, all of which were able to remove more than 90% of initial Bieong the
eight combinationgGBM-RC combination can remove 96.0% of initial biaslowed
by MLR-RC combination (95.2%}-or Model A2, no mater whether cluster effects
were included in the outcome model, all of the four estimation methods removed less
than 80.0% of initial biasThe percent bias reductidior each simulated conditias

reported in AppendiP.
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Percent Bias Reduction across Simulated Conditions
for Model A1
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Figure5: Percent Bias Reductiaacros Simulated Conditions favlodel A

Percent Bias Reduction across Simulated Conditions
for Model A2
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Figure6: Percent Bias Reductiaatross Simulated Conditions figlodel A2
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Furthermore, standard errabwere examined to compare theecisionof the
resulting treatment effect estimat®ghenincorporatingthe cluster effetsin the
outcome modelktandard errorsecame smalleacross condition$3BM-RC
combinatiorhad the smallest value of standard erradd3)0Ofollowed byMLR-RC
(.004) and GMERTREE-RC (.0049 combinationsFor Model A2, when
incorporatingthe cluster effcts in both propensity score and outcome models,
standard errorsecamesmaller as welhcross condition$sBM-RC combination had
the smallest value of standard error (.Q®&)owed byMLR-RC (.006) and
GLMERTREERC (.006 combinationsThe detailedgstandard errordor each

simulated conditionverereported in Appendik.

Standard Errors across Simulated Conditions

for Model A1
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Figure7: Standard Erroracross Simulated Conditions figlodel Al
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Standard Errors across Simulated Conditions

for Model A2
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Figure8: Standard Erroracross Simulated Conditions figlodel A2

In order to answer the third research quesamignalysisof variance
(ANOVA) was used to investigate the effectotfiermanipulated conditions dhe
relative bias ofreatment effectsTable4 displayed theffect size (&J2) of simulated
conditions on the relative bias wéatment effectsT he post hoc tests us
method for significant comparisons are also displayed (See Figure 9). Among these
conditions, the inclusion of unmeasured covariatestmadtrongestféect on the
relative bias of treatment effects (|2 = .482), which indicated tha48.2% of the
variation in the relative bias was attributed to the inclusion/exclusion of unmeasured
covariates. Additionallythe effect sizdor the ratio d treatment expsure(G d2 =
.056) wasabove .01The influence of propensity score estimation metlvadsmall

(G d2 = .001)eventhoughit wasstatistically significant. Lastlyhe interaction term
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between the outcome model and I@@&s significantputthe effect sizavasbelow.01

(G d®l).= .0

Table3: Effect Size on the Relative Bias of Treatment Effects for Scenario A

Variables Effect Size (&J2)

Sample Size .002 **
ICC .002 **
Ratio of Treatment Exposure .056 **
Treatment Effect Size <.001 **
Propensity Score Hatation Method .001 **
Outcome Model .000

Inclusion of Unmeasured Covariates A82**
ICC * Propensity Scor&stimation Method .000

ICC * Outcome Model .001 **

Note.**p<.01, *<.05
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Figure9: Multiple Comparisons of ANOVA for Scenario A

Note.S1 = 500*10;S2 = 200*30; S3 =60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;
E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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4.2 Scenario B

Scenario Bncludedmoderate nottinearity and noradditivity byincluding
three interaction terms and one quadradrm for Levell covariatesThe population
treatment assignment model for Scenarid@shownin Equation 16Similar to
Scenario A, for eaclstimation methd, two separate treatment models were
investigated. The first model (Model B1) included thens variables that were used
to generate the data. In additionrMo@delB1, a misspecified model (Model B2) was
also implemented. Model B2 excluded two unmeasaosdriates (Xo, Wa).
Propensity scorewereestimateduindereach of thee twomodels andour estimation
methodqi.e.,MLR, RC, GBM, and GLMERTREE Lastly, thetwo outcomeémpact
models(i.e., single levelmultiple linear regressiofMLR) and themultilevel random
coefficients(RC) mode), were investigated separately. In total, 16 combinatiwere
compared.

Figure10 showedthe mean MSE for each implemented propensity score
estimation modelNot surprisingly the MSEfor Model B1 werelower than those in
ModelB2. The MSE for ModeB1 across the MLR, RC, GBM, and GLMERTREE
were.093 .067, .060 and .@6 respectively GLMERTREEhadthe lowest MSEwhile
MLR hadthelargestMSE. For ModeB2, GLMERTREE(.064) hadthe lowest MSE
amongthe four estimation methods while M98 hadthe worst MSEThe mean

MSE for each simulated conditiasreported in Appendix.
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Average MSE across Simulated Conditions for Scenario
B
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Figure10: Average MSE across Simulated Conditions for Scerrio

Figurell showsthe mean correlation coefficients for each implemented
propensity score estimation model. Overall, the correlation coefficients in \adel
werehigher thanhose in ModeB2. For ModelB1, GLMERTREEhadthe highest
correlation coefficient 7.97), followed by GBM (.765). MLR hadthe lowest
correlation coefficient 480). For ModelB2, GBM hadthe highest correlation
coefficient (717), followed by GLMERTREE {04). MLR hadthe lowest correlation
coefficient (438). The detailed mean correlation coefficiefdr each simulated

conditionwerereported in Appendix.
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Average Correlation for Scenario B
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Figurell: Average Correlation between Actual Probability of Receiving the
Treatment and Estimated Progéy Scores across Conditions for
ScenaridB

In addition, relative biases of treatment effects veateulatedFigures 12 and
13 displayedthe averageelativebiasesacross simulated conditions for Modgl and
B2, respectivelyFor Model B1, no mattehe cluster effects in the outcome model
were considered, the relative biases were extremely ddlaR-MLR had the
smallest relative bias which was extremely close to zero. Whendng two
unmeasured covariatesModel A2, bothoutcome models produdextremely large
relative biases of treatment effect$ie detailed relative biases for each simulated

condition were reported in Appendtk
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Average Relative Bias across Simulated Conditions
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Figure12: Average Relative Bias across Simulated Conditions for MBdel
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Figure13: Average Relatig Bias across Simulaté&bnditions for ModeB2



Figures 14 and15 showedthe percent bias reduction across simulated
conditions for ModeB1 andB2. For ModelB1, the performance of four estimation
methods and two outcome models were similar, all of wiviele able to remove
more than 90% of initial bias. Among the eight combinations, GB® combination
can remove 95.2% of initial bias, followed by MIRRC combination (98%). For
Model B2, no matter whether cluster effects were included in the outcome nadidel
of the four estimtion methods removed around 70.0% of initial bldee percent bias

reductionfor each simulated conditiaa reported in Appendix.

Percent Bias Reduction across Simulated Conditions
for Model B1
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Figure14: Percent Bias Reduction across Simulated Conditions for Mgitlel
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Percent Bias Reduction across Simulated Conditions
for Model B2
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Figure15: Percent Bias Reduction across Simulated Gandi for ModelB2

Likewise the average standard errors across simulated conditions for Model
B1 and B2werepresentedn theFigure16 and17. Whenincorporatingthe cluster
effectsin theoutcome modekstandard errorsecame smaller across conditiof®r
Model B1, GBMRC and MLRRC combinations had the smallest value of standard
error (.003) For ModelB2, whenincorporatingthe cluster #ects in both propensity
score and outcome modedsandard errors became smaller as well across conditions.
All of the four estimation methods with RC outcome modelapguoximatelysimilar
value of standard error (.009)heaverage standard errd each simulated

conditionarereported in Appendix.
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Standard Errors across Simulated Conditions

for Model B1
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Figure16: Standard Errors acreSimulated Conditions for Mod&1
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Figurel7: Standard Errors across Simulated Conditions for MB@el
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Table5 displayed the effect size () of simulated conditions on the relative
bias oftreatment effectsAmong these conditions, the inclusion of unmeasured
covariates had the strongest effect on the relative bias of treatment &¥ets (

.523), which indicated thak2.3% of the variabn in the relative bias was attributed to
the inclusion/exclusion of unmeasured covariates. Additionally, the effect size for the
ratio of treatment exposur& @2 = .044) wasabove .01Theinfluence of propensity
score estimation method was sn{@ld2 < .001)eventhough it was statistically
significant. Lastly, lhe interaction term between the outcome model andwa@<

significant, but the effect size was below (0 d 21).= . 0

Table4: Effect Size on the Relative Bias bfeatment Effects for Scenario B

Variables Effect Size (GJ2)

Sample Size .001 **
ICC <.001 **
Ratio of Treatment Exposure 044 **
Treatment Effects <.001 **
Propensity Score Estimation Method <.001 **
Inclusion of Unmeasured Covariates 523**
Outcome Model .000

ICC* Propensity Sore Estimation Method .000

ICC*Outcome Model .00L **

Note.**p<.01, *<.05
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Figure18: Multiple Comparisons of ANOVA for Scenario B
Note.S1 = 500*10; S2 = 200*30; S3 = 6AL50; E1 = MLR; E2 = RC; E3 = GBM,;
E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = @uhe Model 2 (RC)
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4.3 ScenarioC

Scenario C involved an even more complex situation than Scenario B by
adding a crostevel interaction term (Xand W). The population ti@ment
assignment model for Scenario B v&m®wn in Equation . Similarto Scenario A
and B, two separate treatment models were investigated for each estimation method.
The first model (Model C1) included the same variables that were used to generate the
data. In addition to mod€l1, a misspecified model (Model C2) excluded three
covariaes (%, Xs, Xo) thatwerecorrelated with the outcome only and two
unmeasured covariatesip{Wa). Propensity scorewereestimatedindereach of
these twomodels andhe fourestimation method§.e., MLR, RC, GBM, and
GLMERTREE). Lastly, two outcome radels(i.e., the single level mltiple linear
regressiofMLR) and the randorooefficients(RC) mode) were investigated
separately. In total, 16 combinations were compared.

Figure19 showedthe mean MSE for each implemented propensity score
estimation modl. Overall, the MSEor Model C1 werelower than thoséor Model
C2. The MSE for ModeC1 across théILR, RC, GBM, and GLMERTRERvere
110, .087, .072and .®1, respectively GLMERTREEhadthe lowest MSE while
MLR hadthe worst MSE. For the Mod€l2, GLMERTREE(.069) hadthe lowest
MSE among the four estimation methods while MLRI6) hadthe worst MSEIn
addition, the detailed mean MSE for each simulated conditeereported in

AppendixK.
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Average MSE across Simulated Conditions
for Scenario C
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Figure19. Average MSE across Simulated Conditions for Scer@rio

Figure20 provided the mean correlation coefficients for each implemented
propensity score estimation model. Overall, the correlation coeffidi@enitdodel C1
werehigher than thostor Model C2. For ModelC1, GLMERTREEhadthe highest
correlation coeffient (807), followed byGBM (.761). MLR hadthe lowest
correlation coefficient 463). For ModelC2, GLMERTREEhadthe highest
correlation coefficient {.22), followed byGBM (.714). MLR hadthe lowest
correlation coefficiat (417). The mean correlatiocoefficients for each simulated

condition are reported in Appendix
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Average Correlation for Scenario C
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Figure20. Average Correlation between Actual Probability of Receiving the
Treatment and Estimated Propensity Scores across Conditions for
ScenaridC

Figures 21 and22 displayedthe averageelative biasescross simulated
conditions for ModelC1 andC2 respectivelyFor Model C1, no matter the cluster
effects in the outcome model were considered, the relative biases were extremely
small. MLR-MLR and GBMMLR combinationshad the smallest relge bias. When
excludng two unmeasured covariatesModel C2, both outcome models produced
extremely large relative biases of treatment effedts. detailed relative biases for

each simulated condition wereported inAppendixM.
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Average Relative Bias across Simulated Conditions
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Figure2l: Average Relave Bias across Simulated Conditions for MoG#|
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Figure22: Average Relative Bias across Simulated Conditions for MGdel



Figures 23 and24 showedthe percent bias reduction across simulated
conditions for ModelC1 andC2. For ModelC1, the performance of fw estimation
methods and two outcome models were similar, all of which were able to remove
more than 90% of initial bias. Among the eight combinations, @BB8icombination
can remove 94.9% of initial bias, folled by MLRRC combination (94.1%}-or
Model C2, no matter whether cluster effects were included in the outcome model, all
of the four estimation methods removeds thary0.0% of initial biasThe percent

bias reduction for each simulated condition weqgorted in Appendii.

Percent Bias Reduction across Simulated Conditions
for Model C1
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Figure23: Percent Bias Riuction across Simulated Conditions for Mo@4l
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Percent Bias Reduction across Simulated Conditions

for Model C2
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Figure24: Percent Bias Reduction across Simulated Conditions for Mcitlel

Figures 25 and26 displayed the average standard errors across simulated
conditions for Model C1 and C®henincorporatingthe clusteeffectsin the
outcome modeltandard errorsecame smaller across conditiof®r Model C1,
MLR-RC, RGRC and GBMRC combinations hadimilar standard errors
approximately(.003).For ModelC2, whenincorporatingthe cluster effects in both
propensity sore and outcome modelstandard errors became smaller as well across
conditionsMLR-RC, RGRC and GBMRC combinations hadery similar standard
errors(.004) Theaverage standard errds each simulated conditicarereported in

AppendixO.
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Standard Errors across Simulated Conditions

for Model C1
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Figure25: Stardard Errors acrasSimulated Conditions for Mod€}1
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Figure26: Standard Errors across Simulated Conditions for MG@el
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Table6showdt he ef f ect

size (G dq2) of

bias of treatment effects. Among the conditimc)usion of tnmeasured covariates

had the strongest effect on the relative bias of treatment effégts 586), which

indicated thab9.8% of the variation in the relative bias could be attributed to the

inclusion/exclusion of unmeasured covariafedditionally, the effect size for the

ratio of treatment exposur& @2 = .040) was above .0The influence of propensity

score estimation metbdovas smal(G d2 = .001)eventhough it was statistically

significant. Lastly, two interaction termigere significant, but it effect sizes were

extremely small.

Table5b. Effect Size on the Relative Bias Bfeatment Effects for Scenario C

Variables

Effect Siz (Gd2)

Sample Size

ICC

Ratio of Treatment Exposure

Treatment Effects

Propensity Scor&stimation Method
Inclusion of Unmeasured Covariates
Outcome Model

ICC* Propensity Score Estimation Methor

ICC*Outcome Model

<.001 **

.001 **

.040 **

.003**

.001**

.596**

.000

<.001 **

.001 **

Note.**p<.01, *<.05
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Figure27: Multiple Comparisons of ANOVA for Scenario C

Note.S1 = 50010; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;
E4 = GLMERTREE; O1 ©Dutcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Chapter 5

DISCUSSION

In observational studies, the absence of randomization is the fundamental
problem in estimating treatment affs. Thegoalof PSA methods is to summarize
multiple confounding variables in angjle variable for balancing covariates across
treatment and control units. Numerous studies have confirmed the effectiveness of
PSA methods in reducing selection bias iatmgent effect estimation caused by the
absence of nonrandom treatment assignmeuot$ervational studies.

Propensity score methodology was developed in the context of data with no
hierarchical structurén educational studidsowever the datas oftenhierarchical in
nature whichis of substantive importanc€he treatment assignment and outcome
may not only depend on individual characteristics but on the cluster characteristics as
well. Recently data mining approaches have been used to estimgieofensity
scores in singlelevel scenariosPrevious studies have shown that data mining
approaches outperform the traditional parametric method (e.g., multiple logistic
regression) in estimating the propensity score (e.g., McCaffrey et al., 2004; $etoguc
et al., 2008) in singhkevel settings. As an extension of that work, this dissertation
used Monte Carlo simulation to compare two4pased data mining approaches (i.e.,

generalized boosting modeling, generalized linear meféztts model trees) twvo
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parametric models (i.e., uttiple logistic regression, multilevel logistic regression) for
propensity score estimation in multilevel settings.

This chapter begins with summarizing and interpreting the most important
findings of the present simulatiotugly. Similarities and differeces of current results
with previous studies are presented, and implications for applied researchers are
discussed. Finally, limitations of this dissertation study and future research directions

are provided.

5.1 Summary of Findings
1. How do the propensity scores obtained by parametric and data mining techniques
compare based on (a) mean squared error and (b) the correlation between the
actual probability of being in the treatment group and the estimated propensity
score?

To ansver ths research question, MSE was calculated to evaluate the
performances different propensity score estimation methddSE represents a
combination of bias and variance and is a measure of the overall variability of the
estimation of propensity scardn Scenario A, RC provided lower MSE and higher
correlation coefficienbetween thérueand estimated propensity sceréhese results
matchedsome of previous studies. Thoemmes et al. (2011) found that RC
outperformed other mode{s.g., MLR, fixed efiectsmodels)in termsthe MSE.In
addition,Gurel (2015) showed thatultilevel models outperformed MLR and GBM

in terms of the correlation betwetre true andhe estimated propensity scar8u
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and Cortina (2009) found that using multilevel models botstimate propensity
scores and the treatment effect resulted in the smallest NiSEatter whether the
unmeasured covariates were included in the treatment nddil hadthe highest
MSE andowestcorrelation coefficient.

In Scenario B and C whermn-additivity and nonlinearity exist, GBM and
GLMERTREE provided better performance on predicting the propensity Jdwre.
poor performance of prediction by MLR and RC resulted from the violation
of linearity or additivity assumption. This wiproduceerroneous predictions the
propensity scoreSimilarly, Lin, Zhu and Chen (2019) found that data mining
approaches including GBM providéower MSE than MLR when the relationship

between the treatment assignment and the covana&sontlinear and no-additive.

2. To what extent do the relative bias of treatment effect estimates, proportion bias
reduction of treatment effects and the standard error of the treatment effects vary
across the method of propensity score estimation, propensity score model, and
outcome model?

The purpose of this research question was to understand the performance of
four propensity score estimation methodsemoval of selection bias and precision of
estimating treatment effectResults showed thall @f the four estimation ethods
producesmallrelative biasvhen no confounds are unmeasutddder such
conditions the difference of performance among the four estimation methods was

minimal. These results indicated thtae MLRIs still effective to remove selection
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biaswhen etimating propensity scores in multilevel studi€kis is in line with
findings from Gurel (2015) and Leite et al. (2015). Those two studies discovered MLR
ignoring cluster effects can provide adequate performance in reducing sebeatio

Meanwhile,althoughGBM and GLMERTREBad better performance in
predicting the true propensity scores, tdeynot outperformed MLR and Ri@ the
relative bias of treatment effects. Furthermore, the overall performance on the relative
bias among the four estimatioretinods did not degrade as the increased complexities
of treatment assignment model in Scenario B anth€se results indicated ththe
goal of the propensity score model is to efficiently control for confounders instead of
predicting treatment assignmemhe correctly specifiedutcomemodels can provide
another chance to control for confounders and variables only correlated with the
outcome.

These results support the findings presented by Setoguch{20@8)in a
comparison oMLR, neural natork, CART, and pruned CART ithe propensity
score modelApproximately unbiased estimates of the treatment effect estimates can
be obtained from both traditional parametric modeling and data mining propensity
score methods in a variety of scenarios difiig by additivity and linearity By
comparisonArpino et al.(2015) assessed the performance of MLR, RC, miakdct
regression tree, and boosted regression tree for the estimation of propensgty score
with clustered data. Tireresults confirmed that ken norlinearity and noradditivity

are presenthe performance of all methods degrades in terms of higher bias of the
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causal estimate€©ne explanation for this difference is that the current study did not
incorporate the netinearity and noradditivity in the outcome generation model.
Regarding the precision of estimating treatment effects, GBM produced lowest
standard errors of treatment effects across the three sce@a@explanation of the
decreased sampling variability of the GBM is thatat prodice fewerextreme values
of the weights (McCaffrey et al., 2004)he use of the piecewise constant&BM
has the effect of flattening the estimated propensity scores at the extreme values of the
predictors. This minimizes the chance of obtaining prediptebabilities near 0 or 1,
thus preventing the high variability in weights that can be problematicdpepsity
score weighting.
The current studglsoshowed thathe MLR and RC outcome models
performed similarly on the relative bias of treatmenta#fédowever,RC is more
effective to improve precision lgroducinglower standard errs oftreatment effects
One explanation is thMLR treats the units of analysis as independent observations.
One consequence of failing to recognize nested strudtutieat standard errors of
individuaklevel regression coefficients will Harger. Thiscanresult in an
understatemenof statistical significancéAs Li et al. (2013) suggestecbnsidering
cluster effect$n at least one stage greatly improves thareges in bias anstandard
errors of treatment effects.
ANOVA results suggested that the inclusions of unmeasured covariates played
a larger role than the propensity score estimation and outcome mt&igfkh, 52.3%

and 59.6%of the variation in the relate bias could be attributed to the
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inclusion/exclusion bunmeasured covariates in the three scendfidse unmeasured
covariates are confounders, which are not included in the propensity score and
outcome models, the SITA assumption is not met. Nohalcovariates that impact

the treatment assignment leglyeen properly accounted for. To this end, the bias in
treatment effect estimates are exacerbdibi finding was in agreement with studies
conducted by Kelcey (2009) and Arpino et al. (2011)cKgl(2009) claimed that the
inclusions of appropriate viables in a model were more crucial than the use of a
specific propensity score model. Similarly, Arpino et al. (2011) revealed that omitted
clusterlevel variables have the strongest impact when #éne highly correlated with

the potential outcome

3. Does the relative bias of treatment effect estimates depend on the cluster size,
ratios of treatment exposure, treatment effects, and levels of intraclass
correlations (ICC)?

A series of ANOVA tests we used to examine if threlative bias of treatment
effect estimates depends on the cluster size, ratios of treatment exposure, treatment
effects,and ICC. Furthermore, since the ICC quantifies the potential influence of
nesting in multilevel data, itstieraction effects with estimation methods and outcome
mockls were investigated as well. Results showed that variati@tias of treatment
exposuresvas asignificantcontributorto bias across all three scenaribeatment

exposure ratio at 10% levelw likely to have lower relative bias which was closer to
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zero. Besides, the two interaction terms between ICC and estimation methods/outcome
models were not significant or significant with the negligible effect sizes.

In summary, there are several priméindings in this studykirst, hidden bias
from unmeasaredcovariatehasa very larggmpact on the estimate ofawusal
effect®d missing covariates renders all PSA approaches invi¢idongdunder
conditions of noradditivity and norinearity, the datanining approaches can provide
better performance on prieting the propensity scorelowever, all of the four
estimation methods with an appropriately specified outcome model can provide
unbiased treatment effect estimates. Thalthough the MLR and RGutcome models
performed similarly on the relative biakteeatment effects, RGffersimproved
precision byproducingsmallerstandard errarof treatment effectd-ourth,among the
eightestimationand outcome model combinatigdBM-RC combination
congstentlyprovided a moreprecise treatment effeestimatescross the simulated

conditions

5.2 Implications for Educational Researchers

In educational researcthere is aonsistentnterest in evaluating the effects of
educationaprogramsandpolicies. Alargeand influential sector of researliteratue
provides identification and estimation strategies for treatment effects under the
potential outcomeframework for causal inferencelnder this framework, PSA has
been developed as a means to produad ealisal inference in observational studies.

Naturally, the use of PSA has been extended to the multilevel settings, especially in
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education research. This dissertataxamined the performance of four propensity

score estimation methods in various sinedasettingswhich extemledthe workof

Lee et al (2010) to clustered datadditionally, this study extergito a multilevel

setting previousesearch byetoguchi et al2008)and Stuart et a(2010) which

supported the use of data mining methodsropensity score estimation with single

level dataFindings from this dissertation confirm some earlier results, while also

illustrating some new findings, all of which have substairtiglications for

educational researchers who conduct RSultilevd settings Five key

recommendations basedontis ssertati onds results are as

1. Researchers shouttbvelopathoroughunderstandingf the treatment
assignment mechanisim orderto identify whether there are criticahmeasured
covariateghat ae related tdothtreatment assignmeand theoutcomelf the
potential for important confounders exists, then no modeling strategy is likely to
produce valid results.

2. Under the most realistic conditions (e.g., those with missing covariates,
nonlinearity and/or interactios), data mining techniques (i.e., GBM,
GLMERTREE) tend to outperform parametric modelgerms of precisionbut
only slightly so.

3. Whenresearchers find the variation at the clust®el in the form of random
interceps but no variabn in the form of a random slopemploying multilevel
modeling inthe outcome model Bdequate to providevalid and reliable

treatment effects
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4. Once the multilevel structure in the data has been captured by the multilevel
outcome modeit matters litle if some cluster level information is omitted from
the propensity score estimation model.

5. Researchershouldallow for nonlinear patterns and interactions when estimating

propensity scores.

GBM has been confirmed to perform well in the siFigheel setting
(McCaffrey et al., 2004 The current study showed thatloesprovide relatively
reliable and stable performanicethe multilevel settingsAs discussed by McCaffrey
et al., the GBM algorithm has some featutedimprove propensity score esttion
performancelor example, itises a piecewise linear combinatadmmultiple trees. To
reduce prediction error, each successive tree is estimated from a random subsample of
the data. Furthermore, the application of a shrinkage coefficient can prevent
overfitting efficiently.Finally, as mentioned earlier, GMB canoidthe high
variability in weights that can be problematic for propensity score weightiri®y.the
twang packages well establishetb fit the GMBto estimate propensity scores
(Ridgewa, et al, 2017) This package can also provide diagnostesistics (e.g.,
covariate balance) for PSA. Alternatively, Weightlt package was newly developed to
conduct propensity score weighting (Greifer, 2019).

GLMERTREE as one of theeeebased metha] wasnewly developed to take
accountof nested data struntes (Fokkemaet al, 2018).Despite this, the performance

of GLMERTREE was not superior to GBM in this study. Meanwhile, the computation
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time for GLMERTREE is much longer than GBM. In additiother results suggest

that the propensity score estimationdabcan ignore clustering with little to no
detriment, as long as the outcome impact model recognizes clustering. To this end, if
applied researchers would like to use a data mining approachfaonpéhe PSA,

GBM is still preferable.

Although some studs recommenetusing covariate balance checks
(Haviland, Nagin & Rosenbaum, 20(MgCaffrey et al., 2004), the covariate balance
is onlyone type opotential indicator of the level of overt bigsthe treatment effect
estimate. An ideal evaluation shdwdonsider the actual bias of the estimates. In
studies using real data, the true treatment effect is unknown, and the bias reduced by
PSA is unknown as well. Simulation studies can be usefurpare the bias of
treatment effect estimates, but simulagequire an assumed model of interest.
Meanwhile, it is unknown whether those assumed models and simulated conditions
can approximate reality. Applied researchers should be aware that simstatieas
are becoming more widely used in educational rebeaspecially as aomponent to
support the usand developmerdf PSA techniques.

In practice, applied researchers may consider multiple PSA techniques to
evaluate treatment effect estimatesobservational studies, it would be ideal to
minimize bothbias and variance. While bias is the primary concern in observational
studies, low variance is an appealing featgevell If different PSA techniques

produce similar point estimates of the treant effect, the one that yields a smaller
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variance of thatreatment effecti.e., a more precise estimateay be preferred

(McCaffrey et al., 2004Stuart & Green, 2008

5.3 Limitations and Future Research

Due tothe design of this study, there are gehzadility limitations to
consider This study incorporatellionte Carlo simulation methods éxamine the
performance ofour propensity score estimation methods in multilevel settings
Simulation methodsan control and manipulate tepecific design andata factors to
investigate the behavior of statisticaéthods (Guet al 2010) While this is amerit
to simulation research, it also limits tgeneralizability of the findings.

First, this study did not consideariedcorrelation between covariatéshas
been suggested that correlatlmtween covariagavould have an impact on the
accuracy and precision oasual inference estimation. Future research can be done to
incorporatevariedcorrelatiors among covariatend examinéow the PS methods
disaussed in the current study perform on estimatiaieéffect onthe outcome
variable.

Second, balanced cluster size scenarios were created in this study. It is of
interest to investigate the performance of different propensity score estimation
methods wbn cluster sizes are unbalanced across clusters. drilk @exploring the
effect of the imbalance on the estimation of treatment effect since the cluster sizes

obtained from observational studies are commonly imbalanced.
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Third, this study included only ppensity score weighting as the conditioning
method. Prpensity score matching and stratification, two other important PSA
conditioning methods, were not evaluated. Future research can assess the performance
of data mining approaches to estimate the preipeacore using matching (e.g.,
nearest neighbor matcty, caliper matchingylahalanobis metrimatching) and
stratification conditioning methods.

Fourth, when using GBM to generate the propensity score in this study, only
one algorithm specification wapecified. Further research should include different
algorithm specifications for GBM with multilevel data. In addition to the data mining
procedure that was investigated in this study, other promising data mining methods
(e.g., random forest, neural netks, support vector machinghould be extended to
dealwith selection bias in multilevel observational studies.

In conclusion, PSA has become an important statistical tool to draw causal
inference in nosrandomized studies. The PSA methods discussdiisistudygive
researcherseverabptiors to select a BA technique for their dataset and research
guestion. The choice of an optimal PSA technique can be expected to vary depending
on the dataset, the research question, and the desired generalizhiabyits. It is
suggested for researchers to compagateasured covariate balance achieved by
several combinations of estimation techniques, conditioning methods, and outcome
models.lt is likely that additionapropensity scorestimation and applicain methods

will be developedn the future
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Appendix A

AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO A

. TreatmenModel Al TreatmenModd A2

Size ICC Prob Effect E1 E2 E3 E4 EL E2 E3 Ea4
S1 .10 10% .30 .085 .073 .053 .047 .088 .075 .055 .054
S1 .30 10% .30 .119 .106 .076 .064 .127 .111 .084 .082
s2 .10 10% .30 .105 .097 .070 .061 .117 .105 .085 .087
S2 30 10% .30 .112 .072 .076 .067 .115 .073 .080 .080
S3 .10 10% .30 .132 .098 .091 .080 .139 .102 .098 .098
S3 30 10% .30 .109 .090 .076 .069 .120 .098 .090 .093
S1 .10 30% .30 .085 .074 .052 .040 .088 .075 .056 .049
S1 .30 30% .30 .119 .106 .076 .054 .127 .111 .084 .075
S2 .10 30% .30 .105 .096 .071 .052 .118 .105 .087 .081
S2 30 30% .30 .059 .008 .033 .024 .061 .009 .037 .042
S3 .10 30% .30 .071 .014 .068 .055 .078 .019 .072 .071
S3 30 30% .30 .065 .017 .078 .065 .075 .024 .082 .078
S1 .10 50% .30 .020 .006 .013 .012 .021 .007 .014 .015
S1 .30 50% .30 .034 .012 .044 .033 .042 .016 .047 .042
S2 .10 50% .30 .038 .015 .065 .046 .052 .023 .068 .057
S2 .30 50% .30 .060 .007 .030 .017 .062 .008 .031 .032
S3 .10 50% .30 .069 .011 .063 .040 .076 .016 .067 .058
S3 .30 50% .30 .062 .014 .076 .052 .074 .021 .081 .068
S1 .10 10% .50 .018 .009 .015 .019 .019 .009 .016 .021
S1 .30 10% .50 .036 .018 .046 .048 .044 .023 .049 .053
S2 .10 10% .50 .040 .023 .064 .061 .053 .030 .067 .068
S2 30 10% .50 .055 .011 .038 .041 .057 .012 .040 .052
S3 .10 10% .50 .075 .021 .073 .075 .082 .024 .077 .085
S3 30 10% .50 .066 .025 .079 .079 .076 .030 .083 .088
S1 .10 30% .50 .019 .007 .014 .015 .021 .007 .015 .018
S1 .30 30% .50 .037 .014 .047 .042 .045 .019 .050 .049
S2 .10 30% .50 .038 .018 .064 .053 .052 .025 .067 .062
S2 30 30% .50 .058 .008 .033 .025 .059 .009 .035 .041
S3 .10 30% .50 .076 .014 .071 .056 .083 .018 .075 .075
S3 30 30% .50 .065 .017 .079 .066 .077 .024 .083 .079
S1 .10 50% .50 .017 .006 .012 .012 .019 .007 .013 .014
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Tablecontinued

S1
S2
S2
S3
S3

.30
.10
.30
.10
.30

50%
50%
50%
50%
50%

.50
.50
.50
.50
.50

.035
.037
.061
.070
.063

011
.015
.006
012
014

.045
.064
.030
.063
076

.034
.046
.016
.040
.052

.044
051
.064
077
074

.016
.023
.008
.016
021

.048
.067
.032
.067
.081

.043
.056
.032
.059
.068

Notes.E1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=® * 150
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AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED

Appendix B

CONDITIONS OF SCENARIO A

Size ICC

Prob

Effect

TreatmenModel A1

TreatmenModel A2

El E2 E3 E4 E1 E2 E3 E4
S1 .10 10% .30 .478 .581 .771 .764 .452 573 .748 .721
S1 .30 10% .30 .494 573 .781 .785 .439 .548 .730 .701
S2 .10 10% .30 .514 570 .777 .775 422 514 .687 .632
S2 30 10% .30 .409 .687 .716 .722 .382 .679 .681 .649
S3 .10 10% .30 .449 .641 .736 .733 .398 .621 .687 .645
S3 .30 10% .30 .481 .607 .744 .729 .391 .560 .656 .590
S1 .10 30% .30 .479 .576 .778 .808 .452 .565 .749 .759
S1 .30 30% .30 495 575 .789 .824 441 547 .735 .735
S2 .10 30% .30 515 576 .779 .812 420 .517 .684 .665
S2 30 30% .30 .404 .940 .801 .815 .363 .932 .769 .655
S3 .10 30% .30 .654 .940 .748 .766 .608 .921 .710 .660
S3 .30 30% .30 .754 .940 .765 .769 .705 .918 .734 .702
S1 .10 50% .30 .610 .887 .776 .732 .559 .864 .758 .678
S1 .30 50% .30 .796 .934 .797 .810 .736 .905 .767 .751
S2 .10 50% .30 .853 .946 .815 .834 .792 916 .783 .784
S2 30 50% .30 437 .949 .827 .867 .402 .940 .814 .775
S3 .10 50% .30 .661 .951 .782 .835 .613 .930 .748 .741
S3 .30 50% .30 .763 .952 .786 .825 .708 .926 .750 .750
S1 .10 10% .50 571 .812 .686 .528 .527 .797 .653 .466
S1 .30 10% .50 .788 .898 .763 .710 .734 .871 .735 .665
S2 .10 10% .50 .847 914 .796 .765 .790 .886 .769 .724
S2 30 10% .50 402 908 .718 .627 .371 .902 .679 .460
S3 .10 10% .50 .635 .913 .705 .648 590 .898 .671 .572
S3 .30 10% .50 .747 914 .742 .700 .700 .894 .712 .651
S1 .10 30% .50 .589 .862 .737 .653 .538 .842 .708 .582
S1 .30 30% .50 .788 .924 .780 .766 .730 .897 .745 .707
S2 .10 30% .50 .853 .935 .804 .803 .795 .906 .774 .757
S2 30 30% .50 410 .937 .795 .808 .373 .929 .773 .658
S3 .10 30% .50 .634 .943 .745 .769 590 .924 .709 .654
S3 .30 30% .50 .750 .941 .761 .763 .699 .917 .726 .696

10¢€



Table continued

S1
S1
S2
S2
S3
S3

.10
.30
.10
.30
.10
.30

50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

.629
791
.858
417
.658
.760

878
.936
945
.950
951
.953

751
.798
814
.826
.786
.7184

.708
812
.834
874
.839
.825

581
733
.798
374
615
.709

.856
.907
915
941
931
927

729
.764
.785
818
.758
147

.662
/51
.786
A77
(44
.750

Notes.E1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=® * 150



Appendix C

AVERAGE RELATIVE BIAS FOR SIMULATED CONDITIONS OF

SCENARIO A
TreatmenModel Al

Size ICC Prob Effect Ei1* E1* E2* E2* E3* E¥ E4* E&

0L 02 01 02 01 02 01 02
S1 .10 10% .30 .016 .020 .018 .020 .023 .018 .002 .007
S1 .30 10% .30 .012 .012 .014 .014 .001 .003 -.003 .003
S2 .10 10% .30 .006 .004 .004 .002 .016 .010 .014 .014
S2 .30 10% .30 -.002 -.001 .010 .001 -.021 -.002 -.003 -.006
S3 .10 10% .30 -.004 -.010 -012 -011 .003 -.003 .005 -.006
S3 .30 10% .30 .039 .017 .027 .014 .024 .018 .024 .015
S1 .10 30% .30 -.014 -.005 -.007 -.004 -008 -.006 .029 .011
S1 .30 30% .30 .009 .010 .010 .011 .009 .008 .008 .009
s2 .10 30% .30 -.015 -.017 -.018 -019 -006 -.015 .002 -.002
S2 .30 30% .30 -.040 -.013 -.049 -001 -.012 -.008 -.055 -.014
S3 .10 30% .30 .047 .006 .051 .008 .004 -.029 .028 -.002
S3 .30 30% .30 .072 -.004 -051 -055 .036 -.017 .032 -.013
S1 .10 50% .30 .007 -.011 -.012 -003 -.028 -.031 .000 -.023
S1 .30 50% .30 -.054 -.043 -.048 -.029 -.015 -.018 -.024 -.020
S2 .10 50% .30 .016 .016 .017 .016 -.006 -.010 -.002 -.001
S2 .30 50% .30 -.117 -.040 -.036 -.035 -.025 -.005 .101 .023
S3 .10 50% .30 -043 .009 .024 .003 -010 .011 -010 .012
S3 .30 50% .30 -.025 .008 .025 .019 -.027 .007 -.023 -.012
S1 .10 10% .50 .042 .068 .021 .062 .059 .021 .080 .051
S1 .30 10% .50 -100 -.081 -126 -.089 -047 -.017 -.051 -.051
S2 .10 10% .50 .007 .012 .013 .026 .011 .005 .017 .016
S2 30 10% .50 -.012 -.050 -.056 -.071 .015 -.047 .036 -.060
S3 .10 10% .50 -.131 -.081 -196 -076 -.066 -.038 -.083 -.054
S3 .30 10% .50 .047 .022 .039 .047 .008 .012 .004 .008
S1 .10 30% .50 -.033 -.071 -.021 -.073 -.043 -.038 -.034 -.083
S1 .30 30% .50 -.007 .009 .053 .031 .004 .009 .010 .016
S2 .10 30% .50 .006 -.001 -.037 -.001 .031 .027 .019 .019
S2 .30 30% .50 .041 .048 .029 .049 .008 .056 .028 .040
S3 .10 30% .50 .032 .002 -.016 -.014 .038 .023 -.005 .002
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Tablecontinued

S3
S1
S1
S2
S2
S3
S3

.30
.10
.30
.10
.30
.10
.30

30%
50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50
.50

.001
.005
-.010
-.003
.008
-.053
.048

-.017
.020
-.029
-.008
.002
-.059
.078

-.044
.030
-.007
.044
.019
012
.059

-.023
.009
-.016
.005
024
-.039
.080

.028
031
-.022
-.001
.019
-.062
.036

.003
.019
-.030
.003
.006
-.027
.010

.032
.007
-.041
.006
-.014
-.051
.059

.017
-.019
-.030

.009

.028
-.073

.042

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;
E4 =GLMERTREE; O1 = Outcome Model 1 (MLRR2 = Outcome Model 2 (RC)



Table continued

Treatment Model A2 (Part 1)

Size ICC Prob Effect E1* E1* E2* E2*
o1 02 o1 02
S1 .10 10% .30 -667 -742 -587 -.622
S1 .30 10% .30 -1.099 -1.101 -1.019 -.981
S2 10 10% .30 -1.551 -1.510 -1.471 -1.390
S2 .30 10% .30 -550 -.788 -470 -.668
S3 .10 10% .30 -949 -1.108 -.869 -.988
S3 30 10% .30 -1.454 -1.497 -1.374 -1.377
S1 .10 30% .30 -690 -702 -610 -582
S1 .30 30% .30 -1.060 -1.018 -980 -.898
S2 10 30% .30 -1.578 -1.495 -1.498 -1.375
S2 .30 30% .30 -303 -632 -223 -512
S3 .10 30% .30 -827 -1.092 -747 -972
S3 .30 30% .30 -1.233 -1.200 -1.153 -1.080
S1 .10 50% .30 -396 -503 -316 -.383
S1 .30 50% .30 -1.232 -1.002 -1.152 -.882
S2 .10 50% .30 -1.702 -1.263 -1.622 -1.143
S2 .30 50% .30 -169 -598 -089 -.478
S3 .10 50% .30 -1.031 -1.024 -951 -.904
S3 .30 50% .30 -1.526 -1.264 -1.446 -1.144
S1 .10 10% .50 -261 -641 -181 -521
S1 .30 10% .50 -1.323 -1.332 -1.243 -1.212
S2 .10 10% .50 -1.790 -1.479 -1.710 -1.359
S2 .30 10% .50 -257 -756 -177 -.636
S3 .10 10% .50 -1.060 -1.319 -980 -1.199
S3 .30 10% .50 -1.319 -1.330 -1.239 -1.210
S1 .10 30% .50 -498 -651 -418 -531
S1 .30 30% .50 -1.183 -1.069 -1.103 -.949
S2 .10 30% .50 -1.747 -1.354 -1.667 -1.234
S2 .30 30% .50 -102 -602 -.022 -.482
S3 .10 30% .50 -820 -1.106 -.740 -.986
S3 .30 30% .50 -1.453 -1.305 -1.373 -1.185
S1 .10 50% .50 -247 -389 -167 -.269
S1 .30 50% .50 -1.121 -1.018 -1.041 -.898
S2 .10 50% .50 -1.706 -1.263 -1.626 -1.143
S2 .30 50% .50 -171  -573 -091 -.453
S3 .10 50% .50 -880 -1.059 -800 -.939
S3 .30 50% .50 -1.302 -1.196 -1.222 -1.076
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Table continued

Treatment Model A2 (Part 2)

Size ICC Prob Effect E3* E3* E4* E4*
o1 02 o1 02
S1 .10 10% .30 -707 -710 -671 -770
S1 .30 10% .30 -1.178 -1.124 -1.335 -1.265
S2 .10 10% .30 -1.574 -1510 -1.770 -1.685
S2 .30 10% .30 -546  -753 -587 -.828
S3 .10 10% .30 -960 -1.098 -1.095 -1.230
S3 .30 10% .30 -1.437 -1.4® -1.616 -1.624
S1 .10 30% .30 -723 -659 -640 -701
S1 .30 30% .30 -1.130 -1.035 -1.256 -1.185
S2 .10 30% .30 -1.568 -1.486 -1.742 -1.683
S2 .30 30% .30 -353 -567 -259 -576
S3 .10 30% .30 -879 -1.051 -865 -1.057
S3 .30 30% .30 -1.121 -1.087 -1.199 -1.174
S1 .10 50% .30 -415 -516 -331 -.493
S1 .30 50% .30 -1.224 -1.014 -1.103 -1.014
S2 .10 50% .30 -1.567 -1.161 -1.544 -1.235
S2 .30 50% .30 -269 -493 -078 -.473
S3 .10 50% .30 -1.000 -972 -981 -.983
S3 .30 50% .30 -1.336 -1.124 -1371 -1.217
S1 .10 10% .50 -351 -586 -231 -.592
S1 .30 10% .50 -1.299 -1.223 -1.292 -1.269
S2 .10 10% .50 -1.576 -1.311 -1.668 -1.397
S2 .30 10% .50 -245 -664 -278 -707
S3 .10 10% .50 -1.022 -1.171 -1.036 -1.230
S3 .30 10% .50 -1.229 -1.191 -1275 -1.266
S1 .10 30% .50 -465 -563 -370 -.591
S1 .30 30% .50 -1.254 -1.029 -1.173 -1.041
S2 .10 30% .50 -1.555 -1.198 -1.596 -1.270
S2 .30 30% .50 -291 -567 -143  -.508
S3 .10 30% .50 -816 -1.029 -816 -1.052
S3 .30 30% .50 -1.298 -1.162 -1.371 -1.244
S1 .10 50% .50 -329 -399 -151 -.396
S1 .30 50% .50 -1.187 -1.018 -1.064 -1.008
S2 .10 50% .50 -1.525 -1.153 -1.541 -1.230
S2 .30 50% .50 -297  -527 -242 -474
S3 .10 50% .50 -930 -1.002 -898 -1.019
S3 .30 50% .50 -1.177 -1.093 -1.206 -1.161
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Appendix D

PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF
SCENARIO A

TreatmenModel A1

Size ICC Prob Effect E1* E1* E2* E2* E3* E3* E4* E4*
01 02 01 02 01 02 01 02

S1 .10 10% .30 917 .924 911 921 .922 .934 .872 .908
S1 .30 10% .30 .938 .938 .937 .938 .941 .943 .925 .932
S2 .10 10% .30 .940 .941 939 .940 .941 .946 .930 .936
S2 30 10% .30 .887 .909 .888 .903 .888 .919 .880 .907
S3 .10 10% .30 .921 .931 .925 .927 .923 .935 .914 .925
S3 .30 10% .30 .923 .925 917 .923 .924 930 .904 .914
S1 .10 30% .30 .938 .941 931 .937 .945 .955 .888 .921
S1 .30 30% .30 .956 .957 .955 .955 .956 .960 .941 .945
S2 .10 30% .30 .946 .947 944 944 946 .951 .929 .933
S2 30 30% .30 .939 .955 930 .945 .952 .965 .931 .950
S3 .10 30% .30 .959 .976 951 970 .970 .980 .968 .975
S3 30 30% .30 .964 .97/5 951 .968 .974 .984 .972 .980
S1 .10 50% .30 .962 .962 .951 .958 .968 .976 .945 .956
S1 .30 50% .30 .965 .971 961 .969 .983 .985 .968 .973
S2 .10 50% .30 .978 .980 .966 .978 .989 .988 .986 .987
S2 .30 50% .30 .953 .970 .953 .963 .970 .979 .945 .966
S3 .10 50% .30 .965 .979 951 970 .974 .987 974 979
S3 .30 50% .30 .970 .982 943 971 .979 .988 .979 .983
S1 .10 10% .50 918 .935 .910 .932 .930 .947 .905 .933
S1 .30 10% .50 .960 .971 954 968 .973 .975 .962 .970
S2 .10 10% .50 .963 .971 .959 .967 .979 .980 .977 .977
S2 30 10% .50 .930 .945 922 938 .942 .951 .928 .943
S3 .10 10% .50 .954 965 .933 .958 .965 .972 .961 .966
S3 .30 10% .50 .961 .969 .948 .962 .970 .975 .968 .971
S1 .10 30% .50 .948 .953 .942 954 .958 .965 .923 .948
S1 .30 30% .50 965 .973 .958 .970 .979 .983 .972 .975
S2 .10 30% .50 971 975 962 973 .983 .985 .979 .980
S2 30 30% .50 .936 .947 917 940 .946 .964 .923 .943
S3 .10 30% .50 .957 971 943 964 .970 .978 .963 .971
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Table continued
S3 .30 30% .50 .969 .979 958 .972 .975 .983 .975 .981
S1 .10 50% .50 .959 .959 949 .957 .963 .973 .932 .948
S1 .30 50% .50 .972 .972 960 .969 .984 .987 .971 .975
S2 .10 50% .50 .970 .975 963 .973 .985 .986 .980 .981
S2 30 50% .50 .952 .960 936 .951 .960 .972 .938 .951
S3 .10 50% .50 .964 .977 949 970 .974 .984 973 .978
S3 .30 50% .50 .965 .979 949 975 .975 .986 .977 .983

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;

E4 = GLMERTREE; O1 ©Dutcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Table continued

TreatmenModel A2

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 758 742 778 778 743 .752 .717 .730
S1 .30 10% .30 .635 .639 660 .677 .612 .633 .564 .589
S22 .10 10% .30 531 545 556 582 518 543 458 493
sS2 .30 10% .30 .743 .686 .761 .726 .749 .700 .722 .673
S3 .10 10% .30 671 .630 .695 .669 .666 .633 .626 .590
S3 .30 10% .30 470 451 498 493 483 .462 .420 .408
S1 .10 30% .30 .784 787 .805 .821 .774 .799 .783 .786
S1 .30 30% .30 670 .684 .695 .721 .648 .679 .610 .633
S2 .10 30% .30 452 481 480 522 456 .483 .397 .416
s2 .30 30% .30 876 906 .879 918 905 914 914 912
S3 .10 30% .30 890 .877 .897 .891 .896 .882 .897 .881
S3 .30 30% .30 .863 .870 .870 .883 .877 .882 .869 .873
S1 .10 50% .30 908 .922 910 931 .923 926 .916 .921
S1 .30 50% .30 .863 .889 871 .902 .864 .888 .876 .888
S2 .10 50% .30 817 .864 825 .877 .831 .875 .834 .867
S2 .30 50% .30 886 .915 888 .926 .924 931 917 .921
S3 .10 50% .30 878 .888 .885 901 .887 .894 .889 .892
S3 .30 50% .30 832 .862 .840 .875 .854 877 .851 .867
S1 .10 10% .50 .861 .885 .863 .894 .892 .893 .870 .891
S1 .30 10% .50 842 .851 850 .864 .851 .862 .849 .858
S2 .10 10% .50 804 837 .812 .850 .827 .855 .817 .846
S2 30 10% .50 867 .866 .871 .880 .893 .877 .888 .871
S3 .10 10% .50 868 .844 875 .858 .876 .861 .872 .853
S3 .30 10% .50 .850 .850 .858 .863 .861 .866 .856 .857
S1 .10 30% .50 .886 .896 .892 908 .915 911 .879 .903
S1 .30 30% .50 861 .882 .868 .894 .860 .886 .867 .885
S2 .10 30% .50 813 .855 .821 .867 .833 .871 .829 .863
S2 .30 30% .50 .883 .895 .884 907 .899 901 .897 .902
S3 .10 30% .50 .887 .875 .893 .888 .899 .883 .897 .881
S3 .30 30% .50 843 .859 851 .872 .859 .874 .851 .865
S1 .10 50% .50 922 934 926 945 935 .942 918 .937
S1 .30 50% .50 .869 .888 .876 .901 .869 .889 .878 .890
S2 .10 50% .50 814 862 .822 876 .834 .874 .832 .866
S2 .30 50% .50 894 915 894 928 922 922 921 .922
S3 .10 50% .50 .889 .883 .895 .896 .892 .890 .898 .888
S3 .30 50% .50 854 871 .862 .884 870 .882 .868 .875
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Appendix E

STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO A

TreatmenModel A1

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .004 .004 .005 .004 .004 .003 .007 .006
S1 .30 10% .30 .003 .003 .003 .003 .003 .003 .004 .005
S22 .10 10% .30 .003 .003 .003 .003 .003 .003 .004 .005
s2 .30 10% .30 .005 .004 .005 .004 .005 .04 .006 .006
S3 .10 10% .30 .004 .004 .004 .004 .004 .003 .005 .005
S3 .30 10% .30 .004 .004 .004 .004 .004 .003 .004 .006
S1 .10 30% .30 .004 .003 .004 .004 .003 .003 .007 .005
S1 .30 30% .30 .002 .002 .002 .002 .002 .002 .003 .004
S2 .10 30% .30 .003 .003 .003 .003 .003 .002 .004 .005
S22 .30 30% .30 .007 .006 .008 .007 .006 .004 .009 .007
S3 .10 30% .30 .006 .004 .007 .004 .005 .003 .005 .005
S3 .30 30% .30 .006 .004 .008 .005 .004 .003 .005 .004
S1 .10 50% .30 .004 .005 .006 .005 .004 .003 .007 .006
S1 .30 50% .30 .005 .004 .006 .005 .003 .002 .005 .005
S2 .10 50% .30 .003 .003 .005 .003 .002 .002 .002 .003
S2 .30 50% .30 .006 .004 .007 .005 .004 .003 .008 .007
S3 .10 50% .30 .006 .003 .008 .005 .004 .002 .004 .004
S3 .30 50% .30 .005 .003 .009 .004 .003 .002 .003 .003
S1 .10 10% .30 .010 .008 .011 .008 .008 .007 .012 .009
S1 .30 10% .30 .006 .004 .007 .005 .004 .004 .006 .007
S22 .10 10% .30 .006 .004 .006 .005 .003 .003 .003 .005
S2 30 10% .50 .008 .006 .009 .007 .006 .005 .008 .009
S3 .10 10% .50 .006 .005 .009 .006 .005 .004 .005 .007
S3 .30 10% .50 .006 .005 .008 .006 .005 .004 .005 .006
S1 .10 30% .50 .007 .006 .007 .006 .005 .004 .010 .008
S1 .30 30% .50 .005 .004 .007 .005 .003 .003 .005 .005
S2 .10 30% .50 .005 .004 .006 .005 .003 .002 .003 .004
S2 30 30% .50 .008 .006 .010 .007 .006 .004 .009 .008
S3 .10 30% .50 .006 .004 .009 .005 .004 .003 .005 .006
S3 .30 30% .50 .005 .003 .007 .004 .004 .003 .004 .004
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Table continued
S1 .10 50% .50 .006 .006 .007 .006 .005 .004 .008 .006
S1 .30 50% .50 .004 .004 .006 .005 .002 .002 .005 .005
S2 .10 50% .50 .005 .004 .006 .004 .002 .002 .003 .003
S2 .30 50% .50 .006 .005 .008 .006 .005 .003 .008 .007
S3 .10 50% .50 .006 .004 .008 .005 .004 .002 .005 .004
S3 .30 50% .50 .005 .003 .008 .004 .004 .002 .004 .003

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3BM;

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Tablecontinued

TreatmenModel A2

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .008 .006 .007 .006 .008 .005 .005 .010
S1 .30 10% .30 .006 .004 .005 .004 .006 .004 .004 .007
S22 .10 10% .30 .006 .005 .006 .005 .006 .005 .004 .007
sS2 .30 10% .30 .009 .005 .008 .006 .008 .005 .004 .009
S3 .10 10% .30 .007 .005 .006 .005 .007 .005 .004 .008
S3 .30 10% .30 .007 .006 .006 .006 .007 .006 .004 .008
S1 .10 30% .30 .007 .004 .005 .004 .007 .004 .004 .008
S1 .30 30% .30 .005 .003 .004 .004 .005 .003 .003 .006
S2 .10 30% .30 .005 .004 .004 .004 .005 .004 .003 .006
s2 .30 30% .30 .015 .007 .012 .009 .011 .007 .006 .010
S3 .10 30% .30 .011 .005 .013 .007 .009 .005 .004 .009
S3 .30 30% .30 .011 .005 .012 .007 .009 .004 .003 .009
S1 .10 50% .30 .011 .006 .008 .006 .007 .005 .005 .010
S1 .30 50% .30 .010 .006 .009 .006 .007 .004 .004 .008
S2 .10 50% .30 .008 .004 .009 .005 .007 .003 .002 .007
S22 .30 50% .30 .014 .006 .010 .007 .009 .005 .005 .011
S3 .10 50% .30 .011 .004 .012 .006 .009 .003 .003 .008
S3 30 50% .30 .011 .004 .014 .006 .009 .003 .003 .008
S1 .10 10% .30 .015 .010 .015 .010 .012 .009 .008 .015
S1 .30 10% .30 .013 .007 .013 .008 .009 .007 .004 .011
S2 .10 10% .30 .009 .006 .011 .007 .006 .005 .003 .006
S2 30 10% .50 .014 .009 .016 .010 .011 .009 .006 .012
S3 .10 10% .50 .010 .007 .013 .008 .008 .006 .005 .009
S3 .30 10% .50 .011 .007 .012 .008 .008 .006 .005 .009
S1 .10 30% .50 .011 .008 .011 .008 .008 .007 .006 .013
S1 .30 30% .50 .012 .006 .012 .007 .008 .005 .004 .009
S2 .10 30% .50 .009 .005 .010 .006 .006 .004 .003 .006
S2 .30 30% .50 .015 .008 .015 .009 .011 .007 .006 .012
S3 .10 30% .50 .012 .006 .014 .008 .009 .005 .004 .009
S3 .30 30% .50 .010 .005 .012 .006 .007 .004 .003 .008
S1 .10 50% .50 .011 .006 .012 .006 .007 .004 .006 .011
S1 .30 50% .50 .011 .005 .010 .006 .008 .003 .004 .008
S2 .10 50% .50 .009 .005 .009 .005 .006 .003 .003 .007
S2 .30 50% .50 .014 .006 .010 .007 .010 .006 .006 .011
S3 .10 50% .50 .011 .005 .013 .007 .008 .003 .003 .008
S3 .30 50% .50 .010 .004 .013 .006 .009 .003 .003 .008




Appendix F

AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO B

TreatmenModel B1

TreatmenModel B2

Size ICC Prob Effect E1 E2 E3 E4 EL E2 E3 E4
S1 .10 10% .30 .050 .041 .029 .031 .052 .041 .032 .036
S1 .30 10% .30 .075 .062 .045 .044 .078 .064 .049 .052
S2 .10 10% .30 .110 .096 .073 .064 .120 .101 .084 .087
S2 30 10% .30 .085 .042 .056 .053 .087 .043 .060 .065
S3 .10 10% .30 .107 .062 .073 .067 .110 .063 .078 .082
S3 30 10% .30 .123 .089 .086 .079 .132 .095 .097 .102
S1 .10 30% .30 .051 .040 .030 .026 .053 .041 .033 .032
S1 .30 30% .30 .078 .063 .047 .038 .081 .064 .050 .049
S2 .10 30% .30 .109 .094 .072 .054 .120 .101 .084 .080
S2 .30 30% .30 .081 .042 .050 .033 .083 .043 .054 .049
S3 .10 30% .30 .105 .061 .068 .047 .108 .063 .074 .067
S3 .30 30% .30 .122 .088 .084 .063 .132 .094 .096 .091
S1 .10 50% .30 .051 .040 .029 .021 .053 .041 .031 .027
S1 .30 50% .30 .070 .059 .041 .029 .073 .061 .044 .039
S2 .10 50% .30 .109 .094 .071 .045 .119 .100 .084 .074
S2 30 50% .30 .088 .046 .052 .027 .090 .047 .054 .043
S3 .10 50% .30 .106 .060 .065 .034 .109 .062 .071 .055
S3 .30 50% .30 .120 .088 .082 .048 .130 .094 .094 .081
S1 .10 10% .50 .056 .045 .034 .035 .058 .046 .037 .040
S1 .30 10% .50 .076 .063 .047 .045 .079 .065 .049 .053
S2 .10 10% .50 .110 .095 .071 .064 .120 .102 .084 .087
S2 30 10% .50 .088 .046 .059 .054 .090 .047 .063 .066
S3 .10 10% .50 .107 .062 .073 .067 .111 .064 .078 .082
S3 30 10% .50 .122 .089 .086 .079 .132 .094 .097 .102
S1 .10 30% .50 .056 .045 .033 .028 .058 .046 .035 .035
S1 .30 30% .50 .077 .062 .045 .037 .080 .064 .049 .048
S2 .10 30% .50 .110 .096 .072 .053 .120 .102 .084 .080
S2 30 30% .50 .087 .046 .056 .037 .089 .047 .060 .054
S3 .10 30% .50 .107 .061 .069 .048 .111 .063 .075 .069
S3 30 30% .50 .122 .088 .084 .064 .132 .094 .096 .091
S1 .10 50% .50 .055 .045 .031 .023 .057 .046 .034 .030

11€



Table continued

S1
S2
S2
S3
S3

.30
.10
.30
.10
.30

50%
50%
50%
50%
50%

.50
.50
.50
.50
.50

072
109
.087
101
122

.060
.095
.046
.060
.087

041
.070
.050
.063
.083

.029
.045
027
.033
.050

075
120
091
105
131

.061
102
.047
.062
.093

.045
.084
.056
.068
.093

.040
.073
.044
.053
.080

Notes.E1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=®* 150



AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED

Appendix G

CONDITIONS OF SCENARIO B

Size ICC

Prob

Effect

TreatmenModel B1

TreatmenModel B2

El E2 E3 E4 E1 E2 E3 E4
S1 .10 10% .30 493 .622 .773 .730 .472 .616 .744 .683
S1 .30 10% .30 517 .627 .778 .762 .487 .615 .745 .704
S2 .10 10% .30 .531 .612 .777 .776 .465 .581 .709 .663
S2 30 10% .30 .391 .760 .707 .705 .369 .755 .669 .606
S3 .10 10% .30 426 .726 .709 .712 .394 .717 .667 .617
S3 .30 10% .30 477 .665 .734 .721 413 .638 .665 .606
S1 .10 30% .30 .501 .638 .781 .794 .481 .632 .748 .737
S1 .30 30% .30 .509 .635 .784 .810 .479 .623 .751 .739
S2 .10 30% .30 .530 .616 .788 .818 .461 .582 .712 .694
S2 30 30% .30 410 .751 .750 .824 .382 .745 .714 721
S3 .10 30% .30 435 .723 .744 812 .403 .713 .701 .708
S3 .30 30% .30 .487 .671 .752 .794 416 .641 .679 .662
S1 .10 50% .30 .504 .637 .794 .831 .483 .627 .763 .780
S1 .30 50% .30 .519 .617 .796 .841 .491 .604 .767 .779
S2 .10 50% .30 .532 .617 .795 .851 .465 .582 .717 .726
S2 30 50% .30 426 .744 777 .865 .396 .737 .752 .790
S3 .10 50% .30 442 .730 .775 .867 .410 .720 .735 .777
S3 .30 50% .30 493 .666 .766 .848 .421 .636 .693 .713
S1 .10 10% .50 499 631 .768 .739 477 .623 .742 .690
S1 .30 10% .50 514 626 .774 .759 .486 .616 .748 .704
S2 .10 10% .50 .532 .615 .786 .779 .464 581 .709 .662
S2 30 10% .50 .409 .750 .707 .714 387 .744 672 .621
S3 .10 10% .50 424 725 709 .711 393 .716 .670 .619
S3 .30 10% .50 481 .666 .735 .723 .417 .640 .665 .607
S1 .10 30% .50 .506 .636 .785 .796 .482 .627 .758 .739
S1 .30 30% .50 513 .633 .790 .814 .482 .622 .755 .745
S2 .10 30% .50 .526 .609 .791 .820 .459 574 .714 .699
S2 30 30% .50 422 .746 .739 .819 .396 .738 .704 .716
S3 .10 30% .50 432 .727 .742 815 400 .717 .700 .706
S3 .30 30% .50 .480 .669 .750 .790 .415 .640 .679 .662
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Table continued

S1
S1
S2
S2
S3
S3

.10
.30
.10
.30
.10
.30

50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

509
520
531
431
447
485

.623
.623
.610
744
719
673

.796
.798
.799
.781
A71
.764

.830
842
.853
.865
.865
.845

482
489
462
392
413
420

.614
.610
574
.736
.709
.643

765
.763
.718
742
.730
.699

A77
776
728
187
.780
716

Notes.E1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=® * 150
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Appendix H

AVERAGE RELATIVE BIAS FOR SIMULATED CONDITIONS OF

SCENARIO B
TreatmenModel B1

Size ICC Prob Effect E1* E1* E2* E2* E3* E3* E4* E&

o1 02 o1 02 0L 02 01 02
S1 .10 10% .30 -067 -.020 -033 -.014 -022 -017 .034 .010
S1 .30 10% .30 .072 .044 063 .035 .036 .037 -.017 .013
s2 .10 10% .30 -003 .009 .011 .016 .002 .001 -.014 -.007
S2 .30 10% .30 -052 -.027 -009 -.009 -.072 -033 -.052 -.021
S3 .10 10% .30 .082 .070 .093 .083 .042 .040 .082 .048
S3 .30 10% .30 .040 .029 .029 .029 .048 .025 .047 .023
S1 .10 30% .30 .050 .048 .057 .047 .023 -001 .052 .047
S1 .30 30% .30 -044 -037 -050 -.036 -012 -012 -.014 -.025
S2 .10 30% .30 .013 .008 .003 .000 -.003 .007 -.008 -.006
S2 .30 30% .30 -041 -021 -010 -.031 -.055 -.024 -130 -.069
S3 .10 30% .30 -035 -.005 -011 .008 -.045 -020 -.059 -.035
S3 .30 30% .30 .000 -.012 -006 -.010 .015 -010 .021 .002
S1 .10 50% .30 .015 .008 .002 .006 -.001 .001 -.006 .014
S1 .30 50% .30 .014 .004 .003 -.002 -.030 -.007 -.061 -.042
s2 .10 50% .30 -011 -.009 -008 -.006 .001 -001 -.005 -.003
S2 .30 50% .30 .039 .003 .019 .001 -.018 -.006 -.038 -.041
S3 .10 50% .30 .043 .020 .036 .030 .062 .016 .023 .027
S3 .30 50% .30 .021 .007 .004 .002 .025 .013 .028 .023
S1 .10 10% .50 -105 -.076 -073 -076 -110 -079 -124 -121
S1 .30 10% .50 -.048 -.026 -.049 -.029 .003 -012 .040 .026
S2 .10 10% .50 -001 -.005 .000 -.005 .001 -006 .013 .006
S2 .30 10% .50 -030 .006 .009 .013 -.041 .014 -.080 -.037
S3 .10 10% .50 -.027 -.034 -041 -021 -.033 -040 .020 -.005
S3 .30 10% .50 .027 .008 .005 .000 .018 .007 .022 .007
S1 .10 30% .50 -031 -.036 -.032 -.045 .003 -001 -.002 -.022
S1 .30 30% .50 .025 .033 .053 .040 .023 .016 .002 .021
S2 .10 30% .50 -005 -.005 -002 -.001 -015 -012 -.024 -.027
S2 .30 30% .50 .021 .018 .055 .033 .000 .002 .044 -.001
S3 .10 30% .50 .057 -016 .016 -.016 .055 -021 .027 .005
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Tablecontinued

S3
S1
S1
S2
S2
S3
S3

.30
.10
.30
.10
.30
.10
.30

30%
50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

50

079
-.002

042
-.013
-.078
-.035
-.012

.062
.010
.050
-.012
-.017
-.047
-.010

.068
022
.058
-.007
-.024
-.072
.006

.063
.023
.058
-.007
-.035
-.058
.004

.089
.010
031
-.010
-.109
-.036
-.016

.060
024
025
-.014
-.029
-.027
-.001

.094
.034
.017
.001
-.090
-.041
-.026

.088
.018
.039
-.002
-.090
-.067
.001

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3BM,;
E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Tablecontinued

TreatmenModel B2 (Part 1)

Size ICC Prob Effect E1* E1* E2* E2*
01 02 01 02
S1 .10 10% .30 -911 -809 -1.034 -.788
S1 .30 10% .30 -890 -891 -990 -.865
S2 .10 10% .30 -1.519 -1.359 -1.524 -1.312
S2 .30 10% .30 -618 -855 -908 -.824
S3 .10 10% .30 -706 -.848 -831 -.808
S3 .30 10% .30 -1.299 -1.330 -1.311 -1.283
S1 .10 30% .30 -742 -657 -793 -.654
S1 .30 30% .30 -916 -875 -.890 -.864
S2 .10 30% .30 -1.530 -1.295 -1.333 -1.287
S2 .30 30% .30 -602 -757 -645 -782
S3 .10 30% .30 -797 -900 -788 -.896
S3 .30 30% .30 -1.447 -1.371 -1.287 -1.373
S1 .10 50% .30 -712 -662 -701 -.662
S1 .30 50% .30 -858 -813 -757 -.806
S2 .10 50% .30 -1.493 -1.280 -1.195 -1.291
S2 .30 50% .30 -531 -760 -633 -.795
S3 .10 50% .30 -668 -859 -734 -.897
S3 .30 50% .30 -1.417 -1.305 -1.189 -1.358
S1 .10 10% .50 -899 -915 -1.045 -.899
S1 .30 10% .50 -919 -920 -1.053 -.896
S2 .10 10% .50 -1.548 -1.442 -1.586 -1.397
S2 .30 10% .50 -644 -864 -797 -.841
S3 .10 10% .50 -895 -1.045 -1.075 -1.016
S3 .30 10% .50 -1.337 -1.365 -1.371 -1.333
S1 .10 30% .50 -850 -758 -807 -.754
S1 .30 30% .50 -915 -800 -817 -.787
S2 .10 30% .50 -1.510 -1.302 -1.333 -1.286
S2 .30 30% .50 -543 -775 -639 -755
S3 .10 30% .50 -701 -918 -806 -.915
S3 .30 30% .50 -1.284 -1.257 -1.180 -1.286
S1 .10 50% .50 -792 -694 -629 -.666
S1 .30 50% .50 -834 -764 -680 -.768
S2 .10 50% .50 -1.526 -1.290 -1.216 -1.297
S2 .30 50% .50 -802 -808 -700 -.828
S3 .10 50% .50 -749 -896 -756 -.934
S3 .30 50% .50 -1.346 -1.324 -1.183 -1.354
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Tablecontinued

TreatmenModel B2 (Part 2)

Size ICC Prob Effect E3* E3* E4* E4*
01 02 01 02
S1 .10 10% .30 -608 -668 -531 -.653
S1 .30 10% .30 -928 -836 -974 -.853
S2 .10 10% .30 -1.530 -1.339 -1.666 -1.409
S2 .30 10% .30 -538 -753 -511 -729
S3 .10 10% .30 -707 -811 -750 -.820
S3 .30 10% .30 -1.280 -1.306 -1.414 -1.373
S1 .10 30% .30 -647 -570 -447 -523
S1 .30 30% .30 -934 -821 -857 -.810
S2 .10 30% .30 -1.536 -1.297 -1.665 -1.394
S2 .30 30% .30 -533 -685 -503 -.667
S3 .10 30% .30 -759 -874 -821 -.897
S3 .30 30% .30 -1.379 -1.342 -1.536 -1.449
S1 .10 50% .30 -602 -58 -368 -.516
S1 .30 50% .30 -868 -776 -772 -.758
S2 .10 50% .30 -1.471 -1.268 -1.575 -1.388
S2 .30 50% .30 -528 -695 -480 -.658
S3 .10 50% .30 -642 -792 -616 -.770
S3 .30 50% .30 -1.354 -1.280 -1.487 -1.408
S1 .10 10% .50 -861 -856 -.832 -.875
S1 .30 10% .50 -857 -848 -888 -.840
S2 .10 10% .50 -1.567 -1.420 -1.669 -1.479
S2 .30 10% .50 -579 -796 -670 -82
S3 .10 10% .50 -801 -983 -809 -.976
S3 .30 10% .50 -1.308 -1.326 -1.429 -1.393
S1 .10 30% .50 -749 -637 -657 -.605
S1 .30 30% .50 -897 -750 -847 -.746
S2 .10 30% .50 -1.515 -1.306 -1.632 -1.398
S2 .30 30% .50 -548 -709 -458 -.699
S3 .10 30% .50 -656 -857 -687 -.839
S3 .30 30% .50 -1.206 -1.215 -1.366 -1.311
S1 .10 50% .50 -684 -602 -550 -.604
S1 .30 50% .50 -864 -731 -728 -.701
S2 .10 50% .50 -1.492 -1.273 -1.602 -1.389
S2 .30 50% .50 -708 -723 -629 -741
S3 .10 50% .50 -730 -843 -689 -.833
S3 .30 50% .50 -1.301 -1.306 -1.423 -1.429
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Appendix |

PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF
SCENARIO B

TreatmenModel B1

Size ICC Prob Effect E1* E1* E2* E2* E3* E3* E4* E4*
01 02 01 02 01 02 01 02

S1 .10 10% .30 .900 .912 .892 .910 .901 .927 .842 .895
S1 .30 10% .30 911 .924 905 .918 .939 .947 .903 .924
S2 .10 10% .30 .937 .938 .935 .936 .943 .946 .931 .934
S2 30 10% .30 .898 .920 .882 .912 .896 .932 .879 911
S3 .10 10% .30 .898 .922 .906 .917 .896 .925 .890 .913
S3 .30 10% .30 .934 .942 940 .941 .931 .943 .927 .937
S1 .10 30% .30 .927 .937 .921 .933 .939 .952 .881 .925
S1 .30 30% .30 .947 .950 .941 .947 960 .964 .918 .935
S2 .10 30% .30 .949 .950 .947 .948 .957 .958 .943 .946
S2 30 30% .30 .892 .933 .908 .928 .916 .940 .883 .913
S3 .10 30% .30 .920 .947 .930 .940 .928 .955 .908 .927
S3 .30 30% .30 .937 .954 954 955 .934 959 .937 .954
S1 .10 50% .30 .941 .941 933 .938 .946 .960 .870 .913
S1 .30 50% .30 .951 .954 949 952 961 .971 .932 .944
S2 .10 50% .30 973 .972 .970 .970 .974 974 960 .961
S2 30 50% .30 919 .945 926 .938 .936 .962 .897 .936
S3 .10 50% .30 .935 .963 .949 957 .944 971 .930 .943
S3 .30 50% .30 .948 .966 .958 .958 .948 .969 .949 957
S1 .10 10% .50 .893 .907 .885 .94 913 .927 .841 .892
S1 .30 10% .50 .922 .930 .915 .929 .936 .944 .899 .927
S2 .10 10% .50 926 .928 .927 .928 .933 .935 .923 .928
S2 30 10% .50 .884 .914 .870 .908 .893 .921 .863 .914
S3 .10 10% .50 909 .926 .904 .923 .910 .929 .890 .916
S3 30 10% .50 .924 941 933 .940 .929 .942 .925 .938
S1 .10 30% .50 .923 .933 .919 .932 .940 .952 .893 .920
S1 .30 30% .50 .948 .954 945 950 .952 .960 .921 .939
S2 .10 30% .50 .958 .958 .955 .955 .960 .961 .946 .948
S2 30 30% .50 919 .945 917 .936 .927 .955 .895 .928
S3 .10 30% .50 .927 .953 .935 .945 931 .957 .918 .940
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Table continued
S3 .30 30% .50 .932 .953 .945 949 .935 .955 .932 .946
S1 .10 50% .50 .938 .939 .929 935 .950 .964 .889 .927
S1 .30 50% .50 .954 .955 .947 952 .963 .969 .918 .942
S2 .10 50% .50 .966 .966 .964 .965 .969 .970 .953 .958
S2 .30 50% .50 .914 .946 .923 .935 .929 .953 .898 .929
S3 .10 50% .50 .934 .959 .941 .948 .945 .969 .926 .942
S3 .30 50% .50 .947 .965 .956 .955 .950 .968 .946 .959

Note.S1 = 500*10; S2 200*30; 8 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)




Table continued

TreatmenModel B2

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 717 770 700 .776 .783 .798 .756 .794
S1 .30 10% .30 .740 .744 716 .750 735 .759 .719 .753
S22 .10 10% .30 544 591 544 606 536 595 .496 574
sS2 .30 10% .30 .746 730 .687 .731 771 .759 .761 .767
S3 .10 10% .30 .713 .692 .684 .703 .718 .715 .714 .718
S3 .30 10% .30 .601 .591 .600 .605 .607 .598 .63 .576
S1 .10 30% .30 773 .819 779 .820 .793 .835 .799 .838
S1 .30 30% .30 .71 .768 .760 .771 .750 .782 .765 .786
S2 .10 30% .30 571 .637 626 .640 570 .637 .35 .610
s2 .30 30% .30 .752 .785 801 .779 778 .796 .798 .797
S3 .10 30% .30 761 .735 .767 .740 764 739 .744 731
S3 .30 30% .30 583 599 625 599 .604 .608 .57 576
S1 .10 50% .30 .782 .810 .800 .809 .810 .834 .851 .847
S1 .30 50% .30 776 .794 806 .795 779 .804 .797 .805
S2 .10 50% .30 594 653 .676 .650 .600 .656 572 .625
S22 .30 50% .30 .780 .796 .820 .786 .801 .813 .821 .820
S3 .10 50% .30 807 .776 .806 .765 .816 .794 .818 .796
S3 .30 50% .30 589 624 656 .609 .605 .630 .571 .595
S1 .10 10% .50 729 744 701 .749 730 .750 .710 .742
S1 .30 10% .50 742 748 712 754 759 764 .746 .766
S2 .10 10% .50 B505 539 496 553 496 546 .466 529
S2 30 10% .50 734 736 .720 .747 750 .756 .747 742
S3 .10 10% .50 .698 .674 664 .681 .710 .688 .709 .689
S3 .30 10% .50 584 586 577 596 592 598 556 579
S1 .10 30% .50 .754 803 .778 .804 .797 .835 .806 .839
S1 .30 30% .50 767 .798 .794 801 .777 .810 .788 .809
S2 .10 30% .50 561 .618 .609 .622 560 .617 .525 .589
S2 .30 30% .50 .793 .788 .804 .790 .802 .808 .822 .809
S3 .10 30% .50 79 741 770 741 791 757 .786 .763
S3 .30 30% .50 .633 .637 .658 .628 .655 .649 .611 .623
S1 .10 50% .50 .789 .818 .821 .824 .819 .845 .843 .839
S1 .30 50% .50 .788 .808 .825 .806 .781 .818 .810 .823
S2 .10 50% .50 577 641 661 .639 587 .646 .57 .613
S2 .30 50% .50 747 773 793 .765 789 .797 .805 .790
S3 .10 50% .50 .782 .767 .801 .757 .791 .782 .809 .784
S3 .30 50% .50 626 .632 671 .624 .638 .637 .605 .602
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Appendix J

STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO B

TreatmenModel B1

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .006 .005 .007 .005 .006 .004 .010 .006
S1 .30 10% .30 .006 .005 .006 .005 .004 .003 .006 .005
S22 .10 10% .30 .004 .004 .004 .004 .003 .003 .004 .004
s2 .30 10% .30 .006 .005 .007 .005 .005 .004 .007 .005
S3 .10 10% .30 .005 .004 .005 .005 .005 .004 .006 .005
S3 .30 10% .30 .004 .003 .003 .003 .004 .003 .004 .004
S1 .10 30% .30 .005 .004 .005 .005 .004 .003 .008 .005
S1 .30 30% .30 .004 .003 .004 .003 .003 .002 .006 .004
S2 .10 30% .30 .003 .003 .003 .003 .003 .003 .004 .003
S22 .30 30% .30 .006 .004 .006 .004 .005 .003 .007 .005
S3 .10 30% .30 .005 .003 .004 .003 .004 .003 .006 .004
S3 .30 30% .30 .004 .003 .003 .003 .004 .002 .004 .003
S1 .10 50% .30 .004 .003 .004 .004 .003 .003 .008 .005
S1 .30 50% .30 .003 .003 .003 .003 .003 .002 .005 .004
S2 .10 50% .30 .002 .002 .002 .002 .002 .002 .003 .003
S2 .30 50% .30 .005 .003 .004 .004 .004 .002 .007 .004
S3 .10 50% .30 .004 .002 .003 .003 .004 .002 .005 .004
S3 .30 50% .30 .003 .002 .002 .002 .003 .002 .003 .003
S1 .10 10% .50 .006 .005 .006 .005 .005 .004 .009 .006
S1 .30 10% .50 .005 .004 .005 .004 .004 .003 .006 .004
S2 .10 10% .50 .004 .04 .004 .004 .003 .003 .004 .004
S2 30 10% .50 .006 .005 .007 .005 .006 .005 .008 .006
S3 .10 10% .50 .005 .004 .005 .004 .005 .004 .006 .005
S3 .30 10% .50 .004 .003 .004 .004 .004 .003 .004 .004
S1 .10 30% .50 .005 .004 .005 .004 .004 .003 .008 .006
S1 .30 30% .50 .004 .003 .004 .003 .003 .003 .006 .004
S2 .10 30% .50 .002 .002 .003 .003 .002 .002 .003 .003
S2 30 30% .50 .005 .004 .005 .004 .005 .003 .007 .005
S3 .10 30% .50 .004 .003 .004 .003 .004 .003 .006 .004
S3 .30 30% .50 .004 .003 .003 .003 .003 .003 .004 .003



Table continued

S1
S1
S2
S2
S3
S3

.10
.30
.10
.30
.10
.30

50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

.004
.003
.002
.005
.004
.003

.004
.003
.002
.003
.003
.002

.005
.004
.002
.005
.004
.003

.004
.003
.002
.004
.003
.003

.003
.002
.002
.004
.003
.003

.003
.002
.002
.003
.002
.002

.008
.006
.003
.007
.006
.003

.005
.004
.003
.005
.004
.003

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3BM,;
E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcomedil® (RC)
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Tablecontinued

TreatmenModel B2

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .011 .007 .010 .007 .010 .007 .013 .008
S1 .30 10% .30 .008 .006 .008 .006 .008 .006 .009 .006
S22 .10 10% .30 .006 .005 .005 .005 .006 .005 .006 .005
sS2 .30 10% .30 .012 .006 .011 .007 .010 .006 .011 .006
S3 .10 10% .30 .009 .006 .008 .006 .009 .006 .009 .006
S3 .30 10% .30 .007 .005 .006 .005 .007 .005 .007 .006
S1 .10 30% .30 .009 .006 .009 .006 .008 .006 .010 .007
S1 .30 30% .30 .007 .004 .006 .004 .006 .004 .007 .005
S2 .10 30% .30 .006 .004 .004 .004 .006 .004 .006 .004
s2 .30 30% .30 .012 .005 .009 .006 .011 .005 .011 .006
S3 .10 30% .30 .009 .004 .007 .005 .009 .005 .009 .005
S3 .30 30% .30 .007 .004 .004 .004 .007 .004 .007 .004
S1 .10 50% .30 .008 .004 .007 .005 .006 .004 .008 .005
S1 .30 50% .30 .007 .004 .005 .004 .007 .003 .007 .005
S2 .10 50% .30 .005 .003 .003 .003 .005 .003 .005 .004
S22 .30 50% .30 .011 .004 .007 .005 .009 .004 .009 .004
S3 .10 50% .30 .009 .003 .005 .005 .008 .003 .008 .005
S3 .30 50% .30 .007 .003 .004 .004 .007 .003 .007 .003
S1 .10 10% .50 .010 .007 .009 .007 .009 .007 .011 .008
S1 .30 10% .50 .008 .005 .008 .005 .007 .005 .009 .006
S2 .10 10% .50 .007 .005 .006 .005 .007 .005 .007 .005
S2 30 10% .50 .012 .007 .012 .007 .011 .007 .012 .007
S3 .10 10% .50 .009 .006 .009 .006 .009 .006 .010 .007
S3 .30 10% .50 .008 .005 .006 .005 .008 .005 .008 .005
S1 .10 30% .50 .010 .006 .009 .006 .009 .006 .010 .007
S1 .30 30% .50 .008 .004 .006 .004 .007 .004 .008 .005
S2 .10 30% .50 .005 .004 .004 .004 .005 .004 .005 .004
S2 .30 30% .50 .011 .005 .009 .006 .010 .005 .009 .006
S3 .10 30% .50 .009 .004 .006 .005 .009 .004 .009 .005
S3 .30 30% .50 .007 .004 .005 .004 .007 .004 .007 .004
S1 .10 50% .50 .007 .005 .007 .005 .006 .004 .007 .005
S1 .30 50% .50 .007 .004 .005 .004 .007 .003 .007 .005
S2 .10 50% .50 .006 .003 .003 .003 .006 .003 .005 .003
S2 .30 50% .50 .010 .004 .007 .005 .008 .004 .008 .005
S3 .10 50% .50 .009 .003 .005 .004 .009 .003 .008 .004
S3 .30 50% .50 .006 .003 .004 .004 .006 .003 .006 .003
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Appendix K

AVERAGE MSE FOR SIMULATED CONDITIONS OF SCENARIO C

TreatmenModel C1

TreatmenModel C2

Size ICC Prob Effect E1 E2 E3 E4 EL E2 E3 E4
S1 .10 10% .30 .080 .069 .051 .045 .082 .070 .053 .051
S1 .30 10% .30 .100 .087 .061 .054 .104 .089 .066 .064
s2 .10 10% .30 .119 .107 .077 .065 .128 .112 .085 .084
S2 30 10% .30 .107 .067 .072 .064 .109 .068 .077 .076
S3 .10 10% .30 .125 .083 .085 .074 .129 .085 .091 .088
S3 30 10% .30 .131 .100 .089 .079 .139 .105 .099 .099
S1 .10 30% .30 .079 .068 .049 .037 .081 .069 .052 .044
S1 .30 30% .30 .099 .087 .061 .045 .103 .089 .065 .056
S2 .10 30% .30 .119 .107 .075 .054 .128 .113 .085 .075
S2 30 30% .30 .111 .072 .073 .049 .114 .074 .078 .066
S3 .10 30% .30 .131 .098 .090 .063 .139 .102 .098 .087
S3 30 30% .30 .108 .088 .076 .058 .119 .096 .090 .085
S1 .10 50% .30 .085 .074 .052 .033 .087 .075 .056 .043
S1 .30 50% .30 .119 .106 .076 .046 .127 .111 .084 .068
S2 .10 50% .30 .105 .096 .071 .044 .117 .105 .087 .075
S2 .30 50% .30 .103 .067 .067 .035 .105 .068 .070 .050
S3 .10 50% .30 .123 .083 .081 .041 .127 .085 .087 .061
S3 .30 50% .30 .128 .099 .089 .049 .137 .104 .096 .076
S1 .10 10% .50 .078 .068 .048 .044 .080 .069 .051 .050
S1 .30 10% .50 .100 .088 .062 .054 .104 .090 .065 .063
S2 .10 10% .50 .120 .108 .075 .065 .129 .113 .085 .084
S2 30 10% .50 .106 .067 .071 .064 .109 .069 .074 .075
S3 .10 10% .50 .123 .083 .083 .072 .127 .085 .087 .087
S3 30 10% .50 .130 .098 .089 .079 .139 .104 .097 .098
S1 .10 30% .50 .078 .068 .048 .036 .080 .069 .051 .044
S1 .30 30% .50 .100 .087 .063 .045 .104 .089 .065 .058
S2 .10 30% .50 .120 .107 .076 .055 .129 .112 .086 .077
S2 30 30% .50 .107 .067 .071 .046 .110 .069 .076 .063
S3 .10 30% .50 .125 .083 .085 .056 .129 .085 .088 .075
S3 30 30% .50 .131 .099 .089 .064 .139 .104 .097 .088
S1 .10 50% .50 .080 .068 .050 .032 .082 .069 .052 .041
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Table continued

S1
S2
S2
S3
S3

.30
.10
.30
.10
.30

50%
50%
50%
50%
50%

.50
.50
.50
.50
.50

.098
119
107
122
129

.085
107
.067
.083
.099

.062
077
.069
.080
.088

.038
.046
.036
041
.050

102
128
110
127
138

.087
113
.069
.085
104

.065
.085
075
.085
.096

.050
.070
.052
.062

077

Notes.E1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=® * 150
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AVERAGE CORRELATION COEFFICIENTS FOR SIMULATED

Appendix L

CONDITIONS OF SCENARIO C

Size ICC

Prob

Effect

TreatmenModel C1

TreatmenModel C2

El E2 E3 E4 E1 E2 E3 E4
S1 .10 10% .30 .470 .576 .759 .758 .446 .568 .736 .717
S1 .30 10% .30 479 576 .779 .775 .448 564 .746 .723
S2 .10 10% .30 .500 .572 .782 .784 .440 .544 .729 .693
S2 30 10% .30 .409 .693 .710 .721 .382 .685 .676 .647
S3 .10 10% .30 416 .671 .719 .727 .381 .661 .679 .654
S3 .30 10% .30 452 .629 .742 .735 .394 .605 .678 .637
S1 .10 30% .30 .481 .578 .771 .807 .455 .568 .746 .761
S1 .30 30% .30 .482 574 .781 .817 .449 560 .748 .760
S2 .10 30% .30 .498 .569 .793 .825 .440 538 .735 .7#A
S2 30 30% .30 417 .680 .740 .813 .390 .671 .703 .728
S3 .10 30% .30 451 .639 .749 .802 .397 .616 .694 .698
S3 .30 30% .30 .480 .615 .747 .780 .390 .565 .657 .636
S1 .10 50% .30 .483 .572 .781 .841 .456 .560 .750 .791
S1 .30 50% .30 .494 569 .792 .853 .439 540 .737 .761
S2 .10 50% .30 517 574 .785 .844 423 514 .689 .697
S2 30 50% .30 426 .673 .754 .856 .402 .665 .726 .792
S3 .10 50% .30 430 .667 .757 .861 .396 .655 .717 .785
S3 .30 50% .30 464 .629 .756 .850 .403 .602 .707 .744
S1 .10 10% .50 475 571 .772 .761 .454 564 .746 .721
S1 .30 10% .50 .480 .571 .772 .775 .448 559 .744 724
S2 .10 10% .50 492 568 .789 .786 .435 .539 .732 .697
S2 30 10% .50 .404 688 .714 .719 .380 .681 .687 .651
S3 .10 10% .50 422 669 .722 .732 .388 .659 .689 .658
S3 .30 10% .50 457 .637 .743 .737 .399 .612 .687 .642
S1 .10 30% .50 476 570 .774 .808 .453 .559 .749 .763
S1 .30 30% .50 479 576 .776 .817 .445 561 .750 .756
S2 .10 30% .50 496 574 .789 .822 435 542 729 .727
S2 30 30% .50 411 685 .734 .813 .382 .677 .695 .730
S3 .10 30% .50 421 675 .736 .812 .390 .664 .706 .725
S3 .30 30% .50 453 .631 .749 .798 .395 .607 .694 .693
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Table continued

S1
S1
S2
S2
S3
S3

.10
.30
.10
.30
.10
.30

50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

480
.500
416
434
465
480

578
.569
.686
.667
.632
578

178
791
152
.759
.759
778

.848
.855
.857
.862
.849
.848

447
439
.384
399
403
447

.564
535
677
.655
.606
564

A47
134
711
721
.705
47

480
.500
416
434
465
480

NotesE1l = MLR, E2 = RC, E3 = GBM, E4 = GLMERTREE, S1605 10, S2 =

200 *30, S3=® * 150
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AVERAGE RELATIVE BIAS FOR SIMULATED CONDITIONS OF

Appendix M

SCENARIO C
TreatmenModel C1

Size ICC Prob Effect E1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 02 o1 02 01 02
S1 .10 10% .30 .009 .014 .019 .018 -.013 .021 -.048 -.014
S1 .30 10% .30 .007 .012 .014 .015 .001 .003 .090 .030
S2 .10 10% .30 032 .032 .036 .035 .022 .021 .018 .029
S2 .30 10% .30 -.038 .005 .007 .015 -.033 .007 -.063 -.018
S3 .10 10% .30 .021 .007 .001 .009 .027 .000 .023 .003
S3 .30 10% .30 .001 .007 .012 .014 .006 .009 -.006 -.007
S1 .10 30% .30 -.025 -.029 -.033 -.030 -.010 -.016 -.036 .000
S1 .30 30% .30 -.016 -.023 -.034 -.031 -.007 -.003 .021 -.012
S2 .10 30% .30 040 035 .035 .031 .040 .036 .056 .044
S2 .30 30% .30 -.022 .000 .000 .010 -.037 -.012 .011 .012
S3 .10 30% .30 .016 -.003 .000 -.003 .013 -.005 -.005 -.008
S3 .30 30% .30 018 .014 .013 .013 .022 .018 .026 .019
S1 .10 50% .30 .009 .004 .003 .000 -.010 -.010 .019 -.005
S1 .30 50% .30 -.016 -.018 -.021 -.020 -.007 -.006 -.010 -.010
s2 .10 50% .30 -.006 -.007 -.008 -.008 -.003 -.005 -.012 -.013
S2 .30 50% .30 .001 -005 -018 -.011 .016 .017 .043 .030
S3 .10 50% .30 -.044 .012 .013 .018 -.045 .015 .017 .054
S3 .30 50% .30 .001 .002 .009 .011 .004 -.001 .042 .032
S1 .10 10% .50 -.007 -.023 -.012 -.022 -.023 -.029 .014 -.031
S1 .30 10% .50 .011 .012 .017 .018 -.001 -.017 .003 -.004
S2 .10 10% .50 017 .011 .009 .004 .020 .021 .014 .011
S2 .30 10% .50 .014 .030 .038 .038 .010 .019 .038 .025
S3 .10 10% .50 .001 .027 .029 .046 .008 .024 .028 .035
S3 .30 10% .50 -.030 -.017 -.015 -.007 -.047 -.020 -.080 -.042
S1 .10 30% .50 -.039 -.038 -.046 -.034 -.008 .005 .022 -.010
S1 .30 30% .50 -.009 -.012 -.013 -.010 .001 -.008 .011 .017
S2 .10 30% .50 025 .021 .019 .018 .019 .023 .013 .009
S2 .30 30% .50 026 .009 .012 .013 .041 .004 -.016 .017
S3 .10 30% .50 -.002 -.002 -.014 -.008 -.017 -.004 -.031 -.002
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Table continued

S3
S1
S1
S2
S2
S3
S3

.30
.10
.30
.10
.30
.10
.30

30%
50%
50%
50%
50%
50%
50%

.50
.50
.50
.50
.50
.50

50

016
-.038
.029
-.001
021
.037
-.020

.024
-.029
.030
-.002
.014
-.005
-.007

.023
-.018
.036
.002
021
.009
-.008

.023
-.021
.032
.002
.017
.000
-.009

017
-.049
.007
.005
.019
.034
-.033

.020
-.037
.019
.003
015
-.002
-.003

.013
.052
.019
-.009
.031
.030
-.011

.014
-.007
.020
-.004
.023
.006
.003

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3 = GBM,;
E4 = GLMERTREE; O1 = Outcome Mode(MLR); O2 = Outcome Model 2 (RC)



Tablecontinued

TreatmenModel C2 (Part 1)

Size ICC Prob Effect E1* E1* E2* E2*
01 02 01 02
S1 .10 10% .30 -793 -848 -890 -.731
S1 .30 10% .30 -1.005 -980 -1.051 -.860
S2 .10 10% .30 -1.390 -1.293 -1.396 -1.160
S2 .30 10% .30 -748 -892 -785 -.783
S3 .10 10% .30 -858 -1.003 -926 -.885
S3 .30 10% .30 -1.226 -1.278 -1.206 -1.151
S1 .10 30% .30 -859 -807 -778 -.698
S1 .30 30% .30 -1.000 -.898 -.891 -.784
S2 .10 30% .30 -1.298 -1.174 -1.150 -1.072
S2 .30 30% .30 -679 -833 -687 -.739
S3 .10 30% .30 -1.150 -1.165 -1.016 -1.086
S3 .30 30% .30 -1.653 -1.599 -1.475 -1.521
S1 .10 50% .30 -813 -791 -676 -.697
S1 .30 50% .30 -1.274 -1.157 -1.024 -1.074
S2 .10 50% .30 -1.752 -1.587 -1.482 -1.519
S2 .30 50% .30 -498 -783 -591 -.718
S3 .10 50% .30 -761 -880 -716 -.829
S3 .30 50% .30 -1.254 -1.222 -1.035 -1.168
S1 .10 10% .50 -801 -841 -901 =727
S1 .30 10% .50 -945 -955  -987 -.835
S2 .10 10% .50 -1.287 -1.220 -1.324 -1.099
S2 .30 10% .50 -622 -851 -719 -734
S3 .10 10% .50 -838 -945 -876 -.817
S3 .30 10% .50 -1.272 -1.319 -1.238 -1.188
S1 .10 30% .50 -866 -833 -865 -.728
S1 .30 30% .50 -1.025 -933 -.891 -.824
S2 .10 30% .50 -1.366 -1.218 -1.195 -1.120
S2 .30 30% .50 -692 -832 -668 -.733
S3 .10 30% .50 -708 -894 -756 -.821
S3 .30 30% .50 -1.227 -1.210 -1.079 -1.141
S1 .10 50% .50 -881 -792 -684 -.687
S1 .30 50% .50 -878 -833 -686 -.744
S2 .10 50% .50 -1.337 -1.215 -1.089 -1.135
S2 .30 50% .50 -640 -787 -589 -.725
S3 .10 50% .50 -730 -912 -723 -852
S3 .30 50% .50 -1.294 -1.202 -1.041 -1.157
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Tablecontinued

TreatmenModel C2 (Part 2)

Size ICC Prob Effect E3* E3* E4* E4*
01 02 01 02
S1 .10 10% .30 -738 -709 -739 -.691
S1 .30 10% .30 -926 -853 -906 -.857
S2 .10 10% .30 -1.356 -1.199 -1.476 -1.271
S2 .30 10% .30 -593 -745 -621 -.745
S3 .10 10% .30 -752 -867 -806  -.893
S3 .30 10% .30 -1.131 -1.166 -1.237 -1.237
S1 .10 30% .30 -742 -645 -591 -.628
S1 .30 30% .30 -902 -753 -823 -.738
S2 .10 30% .30 -1.220 -1.070 -1.318 -1.167
S2 .30 30% .30 -565 -699 -557 -.681
S3 .10 30% .30 -1.039 -1.054 -1.143 -1.137
S3 .30 30% .30 -1.493 -1.467 -1.627 -1.600
S1 .10 50% .30 -731 -671 -591 -.644
S1 .30 50% .30 -1.216 -1.071 -1.295 -1.182
S2 .10 50% .30 -1.613 -1.482 -1.731 -1.656
S2 .30 50% .30 -359 -604 -369 -572
S3 .10 50% .30 -626  -748 -709 -.782
S3 .30 50% .30 -1.143 -1.128 -1.243 -1.256
S1 .10 10% .50 -702 -710 -565 -.679
S1 .30 10% .50 -942 -845 -933 -855
S2 .10 10% .50 -1.220 -1.116 -1.302 -1.171
S2 .30 10% .50 -504 -717 -528 -717
S3 .10 10% .50 -725 -833 -729 -.849
S3 .30 10% .50 -1.156 -1.181 -1.270 -1.260
S1 .10 30% .50 -700 -661 -541 -.611
S1 .30 30% .50 -952 -792 -868 -.787
S2 .10 30% .50 -1.297 -1.130 -1.408 -1.234
S2 .30 30% .50 -590 -675 -615 -.677
S3 .10 30% .50 -588 -770 -.667 -.795
S3 .30 30% .50 -1.114 -1.105 -1.235 -1.209
S1 .10 50% .50 -839 -672 -690 -.636
S1 .30 50% .50 -869 -744 -790 -.763
S2 .10 50% .50 -1.272 -1.115 -1.329 -1.222
S2 .30 50% .50 -478 -646  -406 -.619
S3 .10 50% .50 -601 -780 -.652 -.822
S3 .30 50% .50 -1.205 -1.106 -1.298 -1.247




Appendix N

PERCENT BIAS REDUCTION FOR SIMULATED CONDITIONS OF
SCENARIO C

TreatmenModel C1

Size ICC Prob Effect E1* E1* E2* E2* E3* E3* E4* E4*
01 02 01 02 01 02 01 02

S1 .10 10% .30 .805 .787 .788 .775 .791 .818 .763 .750
S1 .30 10% .30 912 916 .902 .909 .929 .944 852 .904
S2 .10 10% .30 .941 941 938 .938 .942 942 936 .937
S2 30 10% .30 .894 915 .888 .905 .899 .920 .879 .905
S3 .10 10% .30 .956 .950 .943 944 961 .956 .930 .932
S3 .30 10% .30 917 .931 927 927 .924 933 .922 .934
S1 .10 30% .30 .940 .947 932 943 .949 956 .869 .923
S1 .30 30% .30 .941 .943 940 .942 .942 .949 .907 .920
S2 .10 30% .30 .958 .957 .953 .952 .958 .960 .941 .944
S2 30 30% .30 .925 944 931 937 .928 .952 .899 .923
S3 .10 30% .30 .934 951 946 .948 .934 .952 .928 .946
S3 30 30% .30 .929 943 935 939 936 .952 .926 .936
S1 .10 50% .30 953 .954 949 952 962 .965 .885 .924
S1 .30 50% .30 .965 .966 .964 .965 .968 .969 .945 952
S2 .10 50% .30 .961 .961 .960 .960 .962 .966 .944 947
S2 30 50% .30 .929 .953 .945 947 939 .963 .887 .922
S3 .10 50% .30 .926 .957 .951 .953 .928 .963 .915 .938
S3 .30 50% .30 .941 959 958 .959 .945 962 .942 .956
S1 .10 10% .50 .897 .903 .890 .900 .904 .923 .848 .891
S1 .30 10% .50 .884 .899 .896 .904 .883 .887 .853 .876
S2 .10 10% .50 .934 935 932 933 .937 .941 926 .931
S2 30 10% .50 .895 .914 888 .908 .901 .928 .877 .914
S3 .10 10% .50 .899 .917 903 .913 .902 .928 .894 .918
S3 .30 10% .50 .920 .934 925 931 .919 .933 .907 .926
S1 .10 30% .50 .925 .929 919 925 946 .954 .871 .913
S1 .30 30% .50 .944 948 943 945 951 955 917 .930
S2 .10 30% .50 .956 .957 .957 .957 .958 .958 .946 .948
S2 30 30% .50 919 936 .923 927 915 .947 .863 .904
S3 .10 30% .50 .927 .944 933 .938 .932 .957 919 .938
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Table continued
S3 .30 30% .50 .936 .949 942 945 938 .956 .935 .947
S1 .10 50% .50 .954 .958 950 .955 .954 965 .877 .925
S1 .30 50% .50 .957 .957 951 .952 .960 .966 .914 .938
S2 .10 50% .50 .965 .966 .964 .964 .966 .968 .948 .954
S2 .30 50% .50 .911 .953 945 951 .925 .964 .873 .922
S3 .10 50% .50 .929 .961 .948 .953 .934 .970 .912 .945
S3 .30 50% .50 .942 964 957 .959 .939 .966 .936 .948

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; E1 = MLR; E2 = RC; E3BM;

E4 = GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Table continued

TreatmenModel C2

Size ICC Prab Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 179 .016 .105 .084 .115 .079 -.032 .061
S1 .30 10% .30 519 574 508 .618 543 .617 579 .621
sS2 .10 10% .30 542 575 543 617 554 606 517 584
S2 .30 10% .30 696 .673 .693 .710 .743 .719 .717 .710
S3 .10 10% .30 721 754 742 771 .800 .809 .749 .795
S3 .30 10% .30 539 523 548 568 574 564 535 540
S1 .10 30% .30 722 753 .748 .784 761 .800 .790 .802
S1 .30 30% .30 671 .709 .708 .744 695 .750 .716 .755
S2 .10 30% .30 586 .631 .637 .662 .610 .662 .580 .632
S2 .30 30% .30 768 .745 782 774 788 .785 .797 .787
S3 .10 30% .30 .608 .605 .653 .632 .646 .641 .610 .615
S3 .30 30% .30 432 452 495 479 486 .497 441 452
S1 .10 50% .30 .7/57 .769 .803 .796 .781 .804 .816 .809
S1 .30 50% .30 .613 .649 .688 .673 .630 .674 .606 .640
S2 .10 50% .30 412 468 502 490 .458 502 .419 444
S2 .30 50% .30 805 .770 .819 .787 .840 .822 .849 .825
S3 .10 50% .30 .759 744 792 .760 .789 .783 .783 .774
S3 .30 50% .30 .601 .613 .671 .630 .634 .642 .603 .602
S1 .10 10% .50 677 .685 .649 .719 .726 .733 .695 .741
S1 .30 10% .50 548 531 523 581 532 556 513 546
S2 .10 10% .50 591 612 581 649 611 .645 590 .629
S2 .30 10% .50 J74 724 753 758 796 .764 .788 .763
S3 .10 10% .50 676 .649 667 .691 .711 .688 .716 .684
S3 .30 10% .50 542 533 558 578 580 .580 .540 551
S1 .10 30% .50 725 742 735 775 773 .796 .794 .803
S1 .30 30% .50 674 709 719 .742 699 .753 .723 .755
S2 .10 30% .50 571 .618 .624 .648 593 .646 .561 .616
S2 .30 30% .50 J47 725 771 755 765 774 772 772
S3 .10 30% .50 748 713 750 .734 768 .750 .756 .739
S3 .30 30% .50 598 .602 .644 .625 .633 .636 .593 .601
S1 .10 50% .50 720 757 782 .788 732 .791 .768 .797
S1 .30 50% .50 .752 .764 807 .789 755 .788 .771 .780
S2 .10 50% .50 597 635 672 .659 .616 .665 .599 .633
S2 .30 50% .50 .784 770 .821 .787 .807 .808 .832 .810
S3 .10 50% .50 753 724 776 .741 .784 763 .786 .751
S3 .30 50% .50 .600 .632 .679 .644 628 .661 .601 .619
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Appendix O

STANDARD ERRORS FOR SIMULATED CONDITIONS OF SCENARIO C

TreatmenModel C1

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .005 .004 .005 .004 .004 .003 .007 .005
S1 .30 10% .30 .004 .004 .004 .004 .004 .003 .006 .004
S2 .10 10% .30 .003 .003 .003 .003 .003 .003 .003 .003
S2 .30 10% .30 .005 .004 .005 .005 .005 .004 .006 .005
S3 .10 10% .30 .005 .004 .005 .004 .004 .003 .005 .004
S3 .30 10% .30 .004 .003 .003 .003 .004 .003 .004 .003
S1 .10 30% .30 .004 .003 .004 .003 .003 .003 .007 .004
S1 .30 30% .30 .003 .003 .003 .003 .003 .003 .005 .004
S2 .10 30% .30 .002 .002 .003 .003 .002 .002 .003 .003
S2 .30 30% .30 .004 .003 .004 .004 .004 .003 .006 .004
S3 .10 30% .30 .003 .002 .003 .003 .003 .002 .004 .003
S3 .30 30% .30 .003 .003 .003 .003 .003 .002 .004 .003
S1 .10 50% .30 .003 .003 .003 .003 .002 .002 .008 .005
S1 .30 50% .30 .002 .002 .002 .002 .002 .002 .003 .003
S2 .10 50% .30 .002 .002 .002 .002 .002 .002 .003 .003
S2 .30 50% .30 .004 .003 .003 .003 .004 .002 .007 .004
S3 .10 50% .30 .004 .003 .003 .003 .004 .002 .005 .004
S3 .30 50% .30 .003 .002 .002 .002 .003 .002 .003 .002
S1 .10 10% .50 .005 .005 .005 .005 .004 .004 .008 .005
S1 .30 10% .50 .004 .004 .004 .004 .004 .003 .006 .004
S2 .10 10% .50 .004 .004 .004 .004 .004 .003 .004 .004
S2 .30 10% .50 .006 .005 .006 .005 .005 .004 .007 .005
S3 .10 10% .50 .005 .004 .005 .004 .005 .004 .006 .004
S3 .30 10% .50 .004 .003 .04 .003 .004 .003 .004 .003
S1 .10 30% .50 .004 .004 .004 .004 .003 .003 .007 .005
S1 .30 30% .50 .003 .003 .003 .003 .003 .003 .004 .004
S2 .10 30% .50 .002 .002 .002 .002 .002 .002 .003 .003
S2 .30 30% .50 .005 .003 .004 .004 .004 .003 .008 .005
S3 .10 30% .50 .004 .003 .004 .003 .004 .002 .004 .003
S3 .30 30% .50 .003 .003 .003 .003 .003 .002 .003 .003
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Table continued
S1 .10 50% .50 .003 .002 .003 .003 .002 .002 .007 .005
S1 .30 50% .50 .003 .003 .003 .003 .002 .002 .005 .004
S2 .10 50% .50 .002 .002 .002 .002 .002 .002 .003 .003
S2 .30 50% .50 .005 .003 .003 .003 .004 .002 .008 .005
S3 .10 50% .50 .004 .002 .003 .003 .004 .002 .007 .003
S3 .30 50% .50 .003 .002 .002 .002 .003 .002 .004 .003

Note.S1 = 500*10; S2 = 200*30; S3 = 60 * 150; EMER; E2 = RC; E3 = GBM,;

E4 =GLMERTREE; O1 = Outcome Model 1 (MLR); O2 = Outcome Model 2 (RC)
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Tablecontinued

TreatmenModel C2

Size ICC Prob Effect Eg1* E1* E2* E2* E3* E3* E4* E4*

01 02 01 O2 0oL 02 o1 02
S1 .10 10% .30 .007 .005 .007 .005 .007 .005 .010 .006
S1 .30 10% .30 .008 .005 .007 .005 .007 .005 .008 .005
S22 .10 10% .30 .006 .004 .005 .004 .006 .005 .006 .005
sS2 .30 10% .30 .009 .006 .008 .006 .008 .005 .009 .006
S3 .10 10% .30 .006 .004 .005 .005 .007 .004 .008 .005
S3 .30 10% .30 .007 .004 .005 .004 .006 .004 .007 .005
S1 .10 30% .30 .007 .005 .007 .005 .006 .004 .008 .005
S1 .30 30% .30 .007 .004 .005 .004 .007 .004 .009 .005
S2 .10 30% .30 .006 .004 .004 .004 .006 .004 .006 .004
s2 .30 30% .30 .009 .004 .006 .004 .009 .004 .008 .005
S3 .10 30% .30 .006 .003 .004 .004 .006 .003 .007 .004
S3 .30 30% .30 .006 .004 .004 .004 .006 .004 .006 .004
S1 .10 50% .30 .006 .004 .005 .004 .006 .003 .006 .005
S1 .30 50% .30 .005 .002 .003 .003 .005 .002 .005 .003
S2 .10 50% .30 .005 .003 .004 .003 .005 .003 .005 .004
S22 .30 50% .30 .008 .004 .005 .004 .008 .004 .007 .005
S3 .10 50% .30 .008 .003 .004 .003 .008 .003 .007 .004
S3 .30 50% .30 .007 .003 .004 .004 .007 .003 .006 .004
S1 .10 10% .50 .008 .006 .008 .006 .008 .006 .011 .006
S1 .30 10% .50 .007 .005 .007 .006 .007 .005 .009 .006
S2 .10 10% .50 .006 .005 .005 .005 .006 .005 .007 .005
S2 30 10% .50 .008 .006 .008 .006 .008 .005 .008 .006
S3 .10 10% .50 .009 .006 .007 .006 .009 .006 .009 .006
S3 .30 10% .50 .007 .005 .006 .005 .007 .005 .007 .005
S1 .10 30% .50 .007 .005 .006 .005 .007 .004 .009 .006
S1 .30 30% .50 .007 .004 .005 .004 .006 .003 .007 .004
S2 .10 30% .50 .005 .003 .004 .003 .005 .003 .006 .004
S2 .30 30% .50 .008 .004 .006 .005 .008 .004 .008 .005
S3 .10 30% .50 .007 .004 .005 .005 .007 .004 .007 .004
S3 .30 30% .50 .006 .004 .004 .004 .006 .003 .006 .004
S1 .10 50% .50 .006 .004 .004 .004 .006 .003 .007 .005
S1 .30 50% .50 .007 .003 .004 .004 .007 .003 .007 .004
S2 .10 50% .50 .005 .002 .003 .003 .005 .002 .005 .003
S2 .30 50% .50 .009 .003 .005 .004 .009 .003 .008 .005
S3 .10 50% .50 .009 .003 .005 .004 .008 .003 .007 .004
S3 .30 50% .50 .007 .003 .004 .004 .007 .003 .007 .003
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