
TOPICS IN COMPUTABILITY, COMPLEXITY, CONSTRUCTIVITY

& PROVABILITY

by

Michael Ralston

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Spring 2014

c© 2014 Michael Ralston
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3631206

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3631206

TOPICS IN COMPUTABILITY, COMPLEXITY, CONSTRUCTIVITY

& PROVABILITY

by

Michael Ralston

Approved:
Errol L. Lloyd, Ph.D.
Chair of the Department of Computer Science

Approved:
Babatunde Ogunnaike
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
John Case, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
James Royer, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
David Saunders, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Daniel Chester, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. John Case, for all his assistance with this

thesis; he helped me find interesting problems when my first line of research proved

unfruitful, he has helped me immensely with my rhetoric, and last but not least he has

provided me with the encouragement and motivation required to complete this work

while also working at my place of employment.

I also want to thank the remaining members of my committee, Dr. David Saun-

ders, Dr. Daniel Chester, and Dr. James S. Royer, for their time and feedback.

I futher want to thank Dr. Timo Kötzing, my advisor’s just previous Ph.D.

student, who has served as a role model and has provided assistance as well as the

perspective of a fellow student.

I also want to thank the other researchers with whom I have had the honor of

corresponding, especially Dr. Yohji Akama.

In addition, I want to thank my place of employment, IMVU, for giving me the

time I’ve needed to complete this research.

And last, but certainly not least, I want to thank my mother for her unflagging

support of my educational endeavors.

iv

TABLE OF CONTENTS

ABSTRACT . vii

Chapter

1 INTRODUCTION . 1

1.1 Background Concepts . 1
1.2 Summary of Content Chapters . 6

2 NON-OBFUSCATED YET UNPROVABLE PROGRAMS 10

2.1 Introduction . 10

2.1.1 Background . 10
2.1.2 Mathematical Preliminaries 11

2.1.2.1 Complexity-Bounded Computability 11
2.1.2.2 Computably Axiomatized, Powerful, True Theories . 13

2.2 Results . 15

2.2.1 Main Result . 15
2.2.2 Further Results . 17

3 BEYOND ROGERS’ NON-CONSTRUCTIVELY COMPUTABLE
FUNCTION . 29

3.1 Introduction . 29

3.1.1 Our f and Variants . 29
3.1.2 Our g and Variants . 33

3.2 Preliminaries . 34

v

3.3 Results . 36

3.3.1 Results About frs . 36
3.3.2 Results About grs . 46

4 A NON-UNIFORMLY C-PRODUCTIVE SEQUENCE &
NON-CONSTRUCTIVE DISJUNCTIONS 50

4.1 Motivation . 50
4.2 Basic Definition & Relevant Theorem 52
4.3 Characterizing the Index Set Cases 54

4.3.1 Uniform C-Productivity of Sq, q ∈M 54
4.3.2 The Characterization . 56
4.3.3 Another Corollary of the Characterization 60

4.4 Further Examples and Future Work 65

4.4.1 An Index Set Neither C.E. Nor C-Productive 65
4.4.2 Some Subrecursive Examples 67

4.4.2.1 Preliminaries . 68
4.4.2.2 Results . 71

BIBLIOGRAPHY . 75

vi

ABSTRACT

The three content chapters of this doctoral dissertation involve each of the

concepts Computability, Complexity, Constructivity & Provability from the title.

One of these chapters is devoted to showing that unverifiable programs need not

be obfuscated. An application casts some doubts on an interesting 1980 argument of

Putnam’s. It is also shown that there is an acceptable programming system, of course

with infinitely many universal simulating programs, presented so that it has exactly

one verifiable such universal program, and there is another acceptable system presented

so that it has no verifiable universal programs.

Another chapter was suggested by two functions in Rogers’ book which are based

on eventual, currently unknown patterns in the decimal expansion of π. One of them

is classically and not at all constructively provably computable, and there is no known

algorithm for it. For the other it is unknown whether it is computable. A problem is

that advances in relevant knowledge about these now unknown patterns in π may de-

stroy Rogers’ examples. Presented in this chapter is a safer computable real to replace

π so that the associated first function retains its classically provable computability, but

has unprovability of the correctness of any particular program for it. For the second

Rogers’ function π is replaced by a real with each bit linear-time computable in the

length of its position, but with the associated second function provably uncomputable.

The last chapter features some computability results which are shown to prov-

ably require non-constructivity, e.g., that the program equivalence problem for accept-

able programming systems is not computably enumerable (c.e.). Characterized is how

to divide this example problem into non-trivial cases of disjoint index sets, where show-

ing each of these index sets to be non-c.e. has a kind of unformity not found for the full

vii

equivalence problem, and each set’s being non-c.e. is of ostensibly lower degree of non-

constructivity. Lastly, some related results are presented for natural run-time bounded

programming systems — with run time bounds all the way down to linear-time. This

chapter suggests a Reverse Mathematics project to minimize non-constructivity here

and elsewhere.

viii

Chapter 1

INTRODUCTION

This doctoral dissertation consists of four chapters together with a single bibliog-

raphy. Chapter 1 is this introductory chapter. Chapters 2–4 are the content chapters.

The three content chapters each involve the concepts of Computability, Complexity,

Constructivity & Provability from the title.

We explain in the next section (Section 1.1) each of these concepts as it applies

herein.

Then, in the next and last introductory section (Section 1.2) we discuss the

three content chapters and briefly summarize the contents of each of them.

1.1 Background Concepts

In what follows, any residually unexplained notation or concept is from at least

one of [44, 47, 35].

The Computability component is, of course, about that for which there are

algorithms [44] (and that for which there are not).

In each content chapter the Complexity component involves run-time complexity

at or above the level of linear-time computability (in the lengths of the inputs in binary)

— all on efficiently described/coded, deterministic, multi-tape Turing machines (TMs)

[47], essentially a base model for deterministic run time costs.

The Constructivity component involves various levels, and, for a generic com-

puter science audience, we need to explain the concept and its herein relevant levels.

1

First we explain full-fledged constructivity with a general statement re its intent.

The idea, beginning with the intuitionist1 (constructivist) Brouwer, from about 1908

(see [7]), is that mathematical proofs at every layer and step should permit the explicit

presentation/computation of examples proved to exist. This places some limitations

(compared to classical mathematics) not only on the logical operator ∃, but also on the

logical operator ∨. The problem with ∨ is nicely illustrated in [2] where a proof by cases

(this case ∨ its opposite) permits non-constructivity. The classically valid principle of

the Law of Excluded Middle (LEM) says that any proposition ∨ its opposite holds. In

constructively permissible proofs by cases, to employ LEM, it must be decidable as to

which case/disjunct holds.

By the way, constructive proofs and even partially constructive proofs are of

interest for computer science — since they permit information to be computationally

extracted from such proofs. In the case of the wonderful old AI project, Shakey the

Robot, Shakey extracted, from proofs about its goals, its corresponding plans of actions

to achieve those goals (see, [22, 20, 48]). Fortunately Shakey’s proofs just happened

to be constructive (perhaps because its world was so very finite) so its proof-mining

was possible.2 More modern computational scientists who are on about information

extraction from proofs are very explicitly aware that that extraction requires at least

some constructivity (or some way of easily introducing it). For example, [29] nicely

employs such proof-mining to get numerical analysis convergence bounds.

It is useful to discuss an important example theorem from theoretical computer

science whose original proof is partially constructive, but for which it became known

that other parts of its proof that one would also like to be constructive provably can

never be made so. The example is the famous, surprising Blum Speed-Up Theorem [3,

1 Technically, Intuitionism is a brand of Constructivism somewhat more subjective
in focus than general constructivism. We will not and need not explore herein the
subjectivism of Brouwer’s Intuitionism.

2 The project suffered instead from the slow speed of finding the proofs [48].

2

15]. Informally it says that, for any (possibly large) computable factor h (e.g., super-

exponential), there is a {0, 1}-valued computable function f so that, for any program i

for f , there is another program j for f which, on all inputs excluding a finite exception

set depending on i, j is h-faster than i. The finite exception set must be there since,

of course, run-times are not infinitely descending and cannot go below zero.

The constructive part of the original proof of the Speed-Up Theorem: an explicit

program is displayed for defining f , and such a defining program is computable from

any program for a pre-given h. That is nice since we are not stuck with a proof of

f ’s existence without knowing an example of f . In [4] it is shown that, in general3,

no h-sped-up program j for f is computable from any pre-given i for f for which j

is an h-speed-up of i. This unfortunate bit of non-constructivity cannot, then, be

repaired by a better proof. Later in [49, 50] it is shown that, in general, there is

no computable from i simultaneous upper-bound for both the corresponding sped-up

js and the corresponding exceptional values — more irreparable non-constructivity.

Much later, in [6], it is shown that, in general, there is no computable function of an

initial program i (for f) that gives an upper-bound on just the associated exceptional

values for a speed-up j (another irreparable non-constructivity); but that, if the upper-

bounding function is taken as a function of the sped-up program j, then it can be chosen

to be computable (a new, tiny bit of constructivity found). In a fully constructive proof

of the Blum Speed-Up Theorem (which, by the above remarks, cannot exist), the j

and all the exceptional values would be exactly computable.

The sets (of non-negative integers) in the (Kleene-Mostowski) Arithmetical Hi-

erarchy [44] are those which can be defined by a computably-decidable predicate with

zero or more numerical quantifiers (over the elements of N def
= {0, 1, 2, . . .}) in front.

These defining formulas can be algorithmically put into a kind of normal form [35, 44]

in which the quantifiers, if any, alternate between ∃ and ∀. The more alternations,

the more sets that are so definable [44] — whence the term, Hierarchy. The sets so

3 In the context of Blum Speed-Up, ‘in general’ means: for all sufficiently large com-
putable h.

3

definable are called arithmetical. The arithmetical sets are nicely characterized [44]

as the sets semantically definable in so-called first-order arithmetic [35, 44], a theory

with names for the non-negative integers, symbols for equality and the operations of

successor, addition, and multiplication of them, and with quantifiers over them. The

Peano Axioms [35, 44] can be formulated in this theory underpinned by first order

logic (with standard equality axioms) [35]. All the theorems in an elementary number

theory text book can be formulated and proved thereby.4 We’ll refer to this axioma-

tized theory as (first order) Peano Arithmetic (PA for short). Within this dissertation,

the mathematics for which we’ll consider unprovability results is all expressible in the

language of PA. There is an extension of this language which allows quantifiers also

over the sets of non-negative numbers and which is needed for expressing other parts

of mathematics (see, e.g., [51, 44]), but we have no need of the extra expressibility of

such an extension. When we discuss the concept of Provability below, though, we’ll

have a need for such stronger theories, but only for their ability to prove more theorems

which theorems are still expressible in first order arithmetic.

Brouwer’s student, Heyting, formulated a variant of first order logic called in-

tuitionistic logic which is just like first order logic except it is is missing unrestricted

LEM; it captures thereby Brouwer’s constructivist ideas in the context of logic [26].

Heyting Arithmetic (abbreviated: HA) is just PA but underpinned instead by intu-

itionistic logic (see also [52, 53]). It captures Brouwer’s ideas about the mathematics

expressible in it. We won’t need to consider herein constructivism for mathematics not

expressible in first order arithmetic.

There has been somewhat recent interest in adding some arithmetically limited

version of LEM (and other principles) to HA. One, then, gets theories of strictly

intermediate strength between HA and PA [38, 1, 25]. We give an example next, of

some interest for this dissertation.

4 But, by the first Gödel Incompleteness Theorem [21, 35], neither the Peano Axioms
(nor any other computably decidable set of true axioms) suffice to prove all the first
order expressible truths of the arithmetic of non-negative integers.

4

An important example for us: the Π0
2 sets in the arithmetical hierarchy are just

those that, for some computable predicate R, are of the form

{w | (∀u)(∃v)R(u, v, w)}. (1.1)

Π0
2-LEM, an example intermediate theory, is, then, the class of instances of LEM of

the form

(∀u)(∃v)R(u, v, w) ∨ ¬(∀u)(∃v)R(u, v, w), (1.2)

where R is some computable predicate.5

More generally, Π0
n is the class of arithmetical sets defined by a formula of

the form, an alternation between n instances of ∀ & ∃ quantifying distinct variables

beginning with ∀ and followed by a computable predicate. The n = 2 case is spelled

out more concretely just above. Σ0
n is the class of arithmetical sets defined by a formula

of the form, an alternation between n instances of ∀ & ∃ quantifying distinct variables

beginning with ∃ and followed by a computable predicate. ∆0
n = Π0

n ∩ Σ0
n.

For each of these example classes of arithmetical sets A, A-LEM is the class of

instances of LEM of the form

A ∨ ¬A, (1.3)

where A is some member of A.

Let HA+A-LEM denote the result of adding the A-LEM formulas to HA.

Essentially from [1], we have that, for example, HA, HA+Π0
1-LEM, HA+Σ0

1-

LEM, HA+∆0
2-LEM, HA+Π0

2-LEM, HA+Σ0
2-LEM, HA+Π0

3-LEM, ... is a sequence

of ever stronger (i.e., more non-constructive) theories.

One can put any formula of first order arithmetic into a classically equivalent

normal form variant with all its quantifiers in front and alternating, but this equiva-

lence, in some cases, is not provable in HA. However, from [1], for A, for example, one

of the arithmetical classes defined above, (HA+A-LEM) is strong enough to prove the

5 It turns out, in the cases there are quantifiers in front of R, we can take the Rs to be
primitive recursive [44]. Then, for example, Π0

2-LEM is a computably decidable set of
sentences. In this way proof-checking in, for example, (HA+ Π0

2-LEM) is algorithmic.

5

equivalence of the normal form variant of formulas classically equivalent to formulas

defining the members of A.

In some cases of these strictly intermediate theories [38], while objects proved

to exist may not be computable, they are limiting-computable, computable by a to-

tal “mind-changing” algorithm which eventually stops changing its mind and then it

lands on a correct answer (but there may be no algorithm to find when the mind-

changes stop). In general, these strictly intermediate theories measure degrees of non-

constructivity.

The Constructivity component of this dissertation ranges from being about the

mere ability to compute some proved-to-exist examples; to full-fledged provably-correct

in HA; to the latter with the addition of arithmetically-limited, LEM principles.

Next we briefly discuss the Provability concept as it occurs in the current disser-

tation. The Provability component is mostly about the existence (or non-existence) of

formal proofs in algorithmically-decidably (computably) axiomatized, classical first or-

der theories such as PA through (large cardinal axiom extensions of) Zermelo-Frankel

Set Theory with the Axiom of Choice (ZFC)6 [45, 27, 17, 28] but with (relevant) con-

sequences expressible and true in first order arithmetic. As we’ve seen above, some of

it is about provability in HA sometimes supplemented as mentioned just above with

some limited non-constructive principles.

1.2 Summary of Content Chapters

Much of the material described in Chapters 2 and 4 has already been presented

at the respective conferences [11, 13] and is joint work with my dissertation advisor,

John Case, with [13] also joint work with Yohji Akama from the Mathematical Institute,

Tohoku University, Sendai, Japan. Much of that described in Chapter 3 appears in a

conference proceedings [12] and is joint work with my dissertation advisor, John Case.

6 ZFC essentially enables proof of all of standard, non-mathematical logic, text book
mathematics.

6

In addition, each of the three content chapters has now been submitted as a full

paper to a referred outlet — different outlets for different content chapters.

Notation useful just below is the linear-time computable and invertible pairing

function 〈·, ·〉 from [47]. This function maps all the pairs of elements of N 1-1, onto N.

We also employ this notation, based on iterating, 〈·, ·〉, as in [47], to code also triples,

quadruples, . . . of elements of N 1-1, onto N. Also useful just below is the concept

of acceptable programming systems. These are characterized as those intercompilable

with standard, natural programming systems such as full Turing machine systems. In

the content chapters further below we freely use Church’s lambda notation somewhat

as in many dialects of Lisp, but we use the Greek letter instead of its English spelling.

For example, λu, v (u2 + v) denotes the function which on input (u, v) returns the

corresponding value of (u2 + v).

In several parts of this dissertation there are results to the effect that some

inequalities hold for small constants. The proofs of these inequalities are seen to

employ some cited inequalities from [47]. A careful analysis of the proofs of these

latter inequalities would enable a tight upper bound calculation of the numerical value

of these constants. It is clear from a casual inspection of these cited proofs in [47]

that the associated constants would be close to low double digit numbers. The results

referring to small constants are stronger for their interpretations that the size of them

is so limited.

Next is our summary of the three content chapters.

Summary of Chapter 2: The International Obfuscated C Code Contest was a

programming contest for the most creatively obfuscated C code. In many cases, the

winning programmer did something simple in such an obscure but succinct way that it

was hard for other (human) programmers to see how his/her code actually worked. By

contrast, the interest of this chapter is in programs which are relatively succinct and

fast; which, in a sense, are easily seen to be correct; but which cannot be proved correct

in any pre-assigned, computably axiomatized, powerful, true theory T. Specifically, it

is shown that, for any deterministic, multi-tape TM program p, there will be an easily

7

seen equivalent such program q almost (i.e., within small linear factors) as fast and

succinct as p, but this equivalence will not be provable in T. My advisor’s original

motivation: in a 1980 book chapter, the philosopher Hilary Putnam essentially says

that all the (semantically normal7) short-fast programs p for deciding membership in

the set of well-formed formulas of the propositional calculus are similar and intrinsic,

but my advisor believed one could create also (at least extensionally, semantically

normal) short-fast programs q easily seen equivalent to such p but quite dissimilar in

that their equivalence wasn’t provable (by pre-assigned, powerful, suitable, true T).

This is, then, realized as a special case of (the proof of) the just above result. Further

and related questions and subtleties are considered and resolved. For example, it is

shown there is an acceptable programming system, which, then, must have infinitely

many universal simulating programs, but presented so that exactly one such universal

program is provably correct, and there is another acceptable system presented so that

there are no provably correct universal programs.

Summary of Chapter 3: On page 9 of Rogers’ computability theory book [44]

he presents two functions each based on eventual, currently unknown patterns in the

decimal expansion of π. One of them is easily (classically) seen to be computable, but

the proof is highly non-constructive and, conceptually interestingly, there is no known

example algorithm for it. This function on any non-negative integer x is 1 if there is a

consecutive sequence of 5s the decimal expansion of π of length at least x; else, it is 0.

For the other, it is unknown as to whether it is computable. This function is like the first

but with at least replaced by exactly. In the future, though, these unknown patterns

in the decimal expansion of π may be sufficiently resolved, so that, for the one, we

will know a particular algorithm for it, and/or, for the other whether it’s computable.

This chapter provides a “safer” computable real to replace π so that the associated

one function retains its trivial computability but has unprovability of the correctness

of any particular program for it. Re the other function, a real r to replace π is given

7 Semantically normal means here that p’s definition of grammaticality parallels the
standard semantic definition of the corresponding truth-tables.

8

with each bit of this r uniformly linear-time computable in the length of its position

and so that the Rogers’ other function associated with r is provably uncomputable.

Summary of Chapter 4: Let ϕ be an acceptable programming system/numbering

of the partial computable functions: N = {0, 1, 2, . . .} → N , where, for p ∈ N , ϕp is

the partial computable function computed by program (number) p of the ϕ-system and

Wp = domain(ϕp); Wp is, then, the computably enumerable (c.e.) set accepted by p.

My advisor taught in a class a recursion theorem proof employing a pair of cases

that, for each q, {x | ϕx = ϕq} is not c.e. The particular (non-constructive) disjunction

of cases employed was: domain(ϕq) is infinite vs. finite. Some student asked why the

proof involved an analysis by cases. The answer given straightaway to the student was

that his teacher didn’t know how else to do it. This chapter provides, among other

things, a better answer: any proof that, for each q, {x | ϕx = ϕq} is not c.e. provably

must involve some such non-constructiveness. Furthermore, completely characterized

are all the possible such pairs of cases that will work! The well-known completely-

productive sets (abbr: c-productive) are the effectively non-c.e. sets. A set sequence

Sq, q = 0, 1, 2, . . . is said to be uniformly c-productive iff there is a computable f so that,

for all q, x, f(q, x) is a counterexample to Sq = Wx. Certainly a completely constructive

proof that each Sq is not c.e. would entail the Sqs forming a uniformly c-productive

sequence. Relevantly shown is that the set sequence {x | ϕx = ϕq}, q = 0, 1, 2, . . . is not

uniformly c-productive — and this even though, of course, the set {〈q, x〉 | ϕx = ϕq} is

c-productive. For some results we upper-bound them as to position in the Arithmetical

Hierarchy of LEM needed. For another we also have a loose lower-bound. This begins

a Reverse Mathematics (en.wikipedia.org/wiki/Reverse mathematics) program to

find the minimum non-constructivity needed for theorems. Results are also obtained

for some similar problems, including for run-time bounded programming systems. Proof

methods include recursion theorems.

9

Chapter 2

NON-OBFUSCATED YET UNPROVABLE PROGRAMS

2.1 Introduction

2.1.1 Background

The International Obfuscated C Code Contest (see the Wikepedia entry) was a

programming contest for the most creatively obfuscated C code, held annually between

1984 and 1996, and thereafter in 1998, 2000, 2001, 2004, and 2006.

In many cases, the winning programmer did something simple in such an obscure

but succinct way that it was hard for other (human) programmers to see how his/her

code actually worked.

By contrast, the interest of this chapter is in programs which are, in a sense, eas-

ily seen to be correct, but which cannot be proved correct in pre-assigned, computably

axiomatized, powerful, true theories T. A point is that, then, unverifiable programs

need not be obfuscated!

Our main theorem of this chapter (Theorem 1 in Section 2.2.1 below) entails:

for any deterministic, multi-tape Turing Machine (TM) program p, there will be an

easily seen equivalent such TM program q almost (i.e., within small, linear factors) as

fast and succinct as p, but this equivalence will not be provable in T.

A point of the just mentioned, small, linear factors is that the unprovability is

not based on some huge (or at least non-linear) growth in run-time and/or program

size in passing from p to q. In fact we’ll see in the proof of the main theorem of this

chapter that q will be like p except that q in effect encapsulates p in a top-level if-then-

else with: 1. p being the else-part and 2. the succinct, linear-time testable if-condition

being easily seen never to come true.

10

A motivated, concrete, special case will be presented (also in Section 2.2.1 be-

low).

As will be seen, details regarding the main theorem of the present chapter

suggest pleasantly subtle problems, and some are solved herein (in Section 2.2.2 below).

2.1.2 Mathematical Preliminaries

2.1.2.1 Complexity-Bounded Computability

Let ϕTM be the efficiently laid out and Gödel-numbered acceptable program-

ming system (numbering) from [47, Chapter 3 & Errata] and which is based on de-

terministic multi-tape Turing Machines (with base two I/O). Its programs are named

by all numbers in N = {0, 1, 2, . . .}. ϕTM
p is the partial computable function N → N

computed by ϕTM-program (number) p. The numerical naming just mentioned does

not feature prime powers and factorization, but, instead, is a linear-time computable

and invertible coding. Let ΦTM be the corresponding step-counting Blum Complexity

Measure [3]. (ϕTM,ΦTM) is a base model for deterministic run time costs.

Within this chapter, we will use the linear-time computable and invertible pair-

ing function 〈·, ·〉 from [47]. This function maps all the pairs of elements of N 1-1,

onto N. We also employ this notation, based on iterating, 〈·, ·〉, as in [47], to code also

triples, quadruples, . . . of elements of N 1-1, onto N.

Ltime is the class of functions: N → N each computable by some ϕTM-program

running within a ΦTM-time bound linear in the length of its base-two expressed ar-

gument. Of course by means of the iterated 〈·, ·〉 function mentioned just above, we

can and sometimes will speak of multi-argument functions as being (or not being) in

Ltime.

A k ∈ N, k could be a numerically named program in ϕTM or just a datum. We

let |k| = the length of k, where k is written in binary. We can write this length as

(dlog2(k + 1)e)+, where (·)+ turns 0 into 1; else, leaves unchanged.1

1 This formula can be derived as the minimal number of whole bits needed to store
any one of the k + 1 things 0 through k, except that the case of k = 0 needs only 0

11

Rogers [44] uses the terms ‘converges’ for computations which halt and provide

output and ‘diverges’ for those that do not. Within this chapter we use the respective

notations (due to Albert Meyer) ↓ and ↑ in place of these terms of Rogers.

From [47, Lemma 3.14], there are small positive a ∈ N and function if-then-else

∈ Ltime st, for all p0, p1, p2, x ∈ N, ϕTM

if-then-else(p0,p1,p2)
(x) =

ϕTM
p1

(x), if ϕTM
p0

(x)↓ 6= 0;

ϕTM
p2

(x), if ϕTM
p0

(x)↓ = 0;

↑, otherwise;

(2.1)

and ΦTM

if-then-else(p0,p1,p2)
(x) ≤

a · (ΦTM
p0

(x) + ΦTM
p1

(x))+, if ϕTM
p0

(x)↓ 6= 0;

a · (ΦTM
p0

(x) + ΦTM
p2

(x))+, if ϕTM
p0

(x)↓ = 0;

↑, otherwise.

(2.2)

Essentially from (the k,m = 1 case of) [47, Theorem 4.8], we have the following

constructive, efficient, and parametrized version of Kleene’s 2nd (not Rogers’) Recur-

sion Theorem [44, Page 214].

There are small positive b ∈ N and function krt ∈ Ltime st, for all parameter values

p, tasks r, inputs x ∈ N:

ϕTM
krt(p,r)(x) = ϕTM

r (〈krt(p, r),p,x〉); (2.3)

and ΦTM
krt(p,r)(x) ≤

b · (|p|+ |r|+ |x|+ ΦTM
r (〈krt(p, r),p,x〉)). (2.4)

bits; however, a single 0 has length 1.
This and more general use of (·)+ also helps to deal with the fact that zero values can
cause trouble for O-notation. A problem comes with complexity bounds f of more
than one argument. Jim Royer gave the example of two functions mapping pairs from
N, f(m,n) = (m ·n) & g(m,n) = (m+1) · (n+1). Suppose, as might be expected, g is
O(f). Then there are positive a, b such that, for eachm,n ∈ N, g(m,n) ≤ a·f(m,n)+b.
Then we have, for each n, n + 1 ≤ a · f(0, n) + b = b, a contradiction. However, g is
O((f)+).

12

Above, in (2.3), on the left-hand side, the ϕTM-program krt(p, r) has p, r stored inside,

and, on x, it: makes a self-copy (in linear-time), forms y = 〈self-copy, p, x〉 (in linear-

time), and runs task r on this y. From (2.4) just above, for each p, r, any super-linear

cost of running ϕTM-program krt(p, r) on its input is from the running of ϕTM-task r

on its linear-time producible input.

2.1.2.2 Computably Axiomatized, Powerful, True Theories

Let T be a computably axiomatized first order (fo) theory extending fo Peano

arithmetic (PA) [35, 44] — but with numerals represented in base two to avoid size

blow up from unary representation (see [8, Page 29])2 — and which does not prove

(standard model for PA [35]) falsehoods expressible in f.o. arithmetic.

T could be, for example: fo Peano arithmetic (PA) itself, the two-sorted fo

Peano arithmetic permitting quantifiers over numbers and sets of numbers [44, 51] (a

second order arithmetic), Zermelo Frankel Set Theory with Choice (ZFC) [23], ZFC

plus ones favorite large cardinal axiom [45, 27, 17, 28], etc.

2 Let’s suppose 0 is PA’s numeral for zero and that S is PA’s symbol for the successor
function on N. In effect, in, e.g., [35], the numeral n for natural number n is S(n)(0),
where

S(n) = S◦. . .◦S︸ ︷︷ ︸
n Ss

, (2.5)

for iterated composition of Ss. This is a base one representation. Note that the

length of this n is O(n) which is O of 2the symbol length of n — too high for feasible
complexity. However, the symbol length for the binary representation of n grows only
linearly with n — feasibly.
Based on [8, Page 29], within this chapter, by contrast with the just above, we can
define our numeral n for n ∈ N thus. We suppose · is the symbol for PA’s multiplication
over N. We let: 2 = S◦S(0); for (n > 1), n ∈ N,

2n = (2 · n); (2.6)

and, for n ∈ N,
(2n) + 1 = S(2n). (2.7)

Then, the length of n is in O of the symbol length of n — feasible.

13

If E is an expression such as ‘the partial function computed by ϕTM-program #

p is total’ and which is expressible in PA and where p is a particular element of N, we

shall write � E � to denote a typically naturally corresponding, fixed standard cwff

(closed well-formed formula) of T which (semantically) expresses E — and where p is

expressed as the corresponding numeral in base two (as indicated above). We have

that

if E′ is obtained from E by substituting a numerical value k, then � E′ �
can be algorithmically obtained from � E � in linear-time in (|� E �|+ |
k|).

By [47, Theorem 3.6 & Corollary 3.7] and their proofs, the running of a carefully

crafted, time-bounded, ϕTM-universal simulation up through time t takes time a little

worse than exponential in |t|. Early complexity theory, e.g., [5, 32, 31], provided

delaying tricks to achieve polynomial time. From [47, Theorem 3.20] and its proof,

the above mentioned carefully crafted, time-bounded universal simulation of any ϕTM-

program can be uniformly delayed by a log log factor on the time-bound to run in

Ltime.

The theorems of T form a computably enumerable set, so we can/do fix an

automatic theorem prover for T. Let

T `x � E � (2.8)

mean that a delayed as above, linear-time computable, time-bounded simulation of the

fixed automatic theorem prover proves � E � from T within x steps — that’s linear-

time in (|� E �|+ |x|).

Let Dx be the finite set (⊆ N) with canonical index x (see, e.g., [44]). x codes,

for example, both how to list Dx and how to know when the listing is done. For the

purposes of this chapter, we can and do restrict our canonical indexing of finite sets

to those of sets cardinality ≤ 2. We do that in linear-time thus. Let 0 be the code of

14

∅, and, for set {u, v} (where u might or might not equal v), let the code be 〈u, v〉+ 1.

This coding is linear-time codable/decodable.3

2.2 Results

2.2.1 Main Result

Theorem 1. There exists g ∈ Ltime and small positive c, d ∈ N such that, for any p,

|Dg(p)| = 2 and there is a q ∈ Dg(p) for which:

ϕTM
q = ϕTM

p ; (2.9)

for all x ∈ N,

ΦTM
q (x) ≤ c · (|p|+ |x|+ ΦTM

p (x)); (2.10)

|q| ≤ d· |p|; (2.11)

yet

T 6` � ϕTM
q = ϕTM

p �. (2.12)

Our proof below of Theorem 1, as will be seen, makes it easily transparent that

ϕTM
q = ϕTM

p . Hence, q is not obfuscated, yet its correctness (at computing ϕTM
p), as will

also be seen, is unprovable in T. From the time and program size complexity content of

the theorem, q is nicely only slightly, linearly more complex than p. Furthermore, our

proof is what is called in [47, Page 131] a rubber wall argument : we set up a rubber

wall, i.e., a potential contradiction off of which to bounce, so that, were the resultant

construction to veer into satisfaction of an undesired condition (undesired here is the

failure of (2.12) above), it bounces off the rubber wall (i.e., contradiction) toward our

goal, here (2.12), instead.4

3 As an aside: [10] canonically codes any size finite sets in cubic time & decodes them
in linear-time.

4 More discussion on identifying contradictions with walls, a.k.a. boundaries, can be
found on [47, Page 131].

15

Proof of Theorem 1.

By two applications of linear-time: krt, if-then-else (these from Section 2.1.2.1

above), and λE, x (T `x E) (this from Section 2.1.2.2 above), from any ϕTM-program

p, one can algorithmically find in linear-time (in |p|), programs e1,p and e2,p behaving

as follows.

For each x, ϕTM
e1,p

(x) =
ϕTM

p (x) + 1, if T `x

� ϕTM
e1,p

= ϕTM
p �;

ϕTM
p (x), otherwise;

(2.13)

and ϕTM
e2,p

(x) = 0, if T `x � ϕTM
e2,p

= ϕTM
p �;

ϕTM
p (x), otherwise.

(2.14)

Let g ∈ Ltime be such that, for each p, Dg(p) = {e1,p, e2,p}. We consider cases

re p for the choice of the associated q ∈ Dg(p).

Case (1). domain(ϕTM
p) ∞. Suppose for contradiction, for some x, T `x �

ϕTM
e1,p

= ϕTM
p �. Since, by assumption, T does not prove false such sentences, ϕTM

e1,p
=

ϕTM
p , and by (2.13) above, for all x′ ≥ x, ϕTM

e1,p
(x′) also = ϕTM

p (x′) + 1, but, since

domain(ϕTM
p) ∞, we have a contradiction. Choose q = e1,p. Then, trivially, again

by (2.13), ϕTM
q = ϕTM

p , but T does not prove it.

Case (2). domain(ϕTM
p) finite. Suppose for contradiction, for some x, T `x �

ϕTM
e2,p

= ϕTM
p �. Since, by assumption, T does not prove false such sentences, ϕTM

e2,p
=

ϕTM
p , and by (2.14) above, for all x′ ≥ x, ϕTM

e2,p
(x′) also = 0, making domain(ϕTM

e2,p
)∞,

and, hence, domain(ϕTM
p)∞, a contradiction. Choose q = e2,p. Then, trivially, again

by (2.14), ϕTM
q = ϕTM

p , but T does not prove it.

In each case, by if-then-else and krt being linear-time (hence, at most linear

growth) functions, λE, x (T `x E) ∈ Ltime, and by the complexity upper bounds (2.2)

and (2.4) (in Section 2.1.2.1 above) as well as the assertion (in Section 2.1.2.2 above) of

16

the linear-time (and, hence, linear size) cost of substituting numerals into formulas of

PA, we have small positive c, d such that the theorem’s time complexity bound (2.10)

and it’s program size bound (2.11) above each hold.

Theorem 1

Next is the promised, motivated, concrete example.

Putnam [40] notes that the typical inductive definitions of grammaticality (i.e.,

well-formedness) for propositional logic formulas parallel the typical definitions of truth

(under any truth-value assignment to the propositional variables) for such formulas,

and that the first kind of inductive definition provides a short and feasible decision pro-

gram for grammaticality.5 He goes on to say, though, that the other ways of providing

short and feasible inductive definitions of such grammaticality which also parallel an

inductive definition of truth are so similar as to constitute intrinsic grammars (and

semantics). Let p be one of these typical short and fast decision procedures for propo-

sitional calculus grammaticality expressed naturally and directly as a ϕTM-program.

Then by Theorem 1 above and its proof also above, there is an obviously semantically

equivalent ϕTM-program q only slightly linearly more complex than p in size and run

time (so it too is short and feasible); q also provides the same inductive definition of

grammaticality as p which, then, parallels the truth definition like p does (after all

the else part of q is p and the if-part of q never comes true); but the unprovability

(in pre-assigned T) of the semantic equivalence of q with p makes q a bit peculiar

as an intrinsic grammar for propositional logic, providing a basis to doubt Putnam’s

assertion. However, we do note that intensionally [44] q is a bit unlike p — since it

performs an always false (quick) test p doesn’t.

2.2.2 Further Results

It’s interesting to ask: can the condition |Dg(p)| = 2 in Theorem 1 be improved

to |Dg(p)| = 1? If so, it makes sense to replace a singleton set, {q}, by just q and

5 In computer science these inductive definitions would be called recursive.

17

use g(p) = q (not the code of {q}). Anyhow, the answer to the question is, No (see

Theorem 2 below). Before we present and prove this theorem, it is useful to have for

its proof the unsurprising lemma (Lemma 1) just below.6

Lemma 1. If ϕTM
p (x)↓ = y, then

PA ` � ϕTM
p (x)↓ = y � . (2.15)

Proof of Lemma 1. The relation, in p, x, y, t, that holds iff ϕTM
p (x)↓ = y within

t steps, where the steps are measured by the natural ΦTM, is trivially computable

(a.k.a. recursive) [3].

Suppose ϕTM
p (x)↓ = y. Then there is some t such that ϕTM

p (x)↓ = y within t

steps. By Gödel’s Lemma [21, 35] that recursive relations are numeralwise provably-

representable in, e.g., PA, PA ` � ϕTM
p (x)↓ = y within t steps �. By existential gen-

eralization inside PA, we have PA ` � (∃t)[ϕTM
p (x)↓ = y within t steps] �. Hence,

PA ` � ϕTM
p (x)↓ = y �. Lemma 1

The next theorem implies that, in Theorem 1 above, the condition |Dg(p)| = 2

cannot be improved to |Dg(p)| = 1 (or equivalent as discussed above). The proof of this

next theorem (Theorem 2) provides positive cases re proving true program properties

in PA.

Theorem 2. It is not the case that there exists computable g such that, for any p,

for q = g(p),

T 6`� ϕTM
q = ϕTM

p � . (2.16)

Proof of Theorem 2. Suppose for contradiction otherwise.

Suppose d is a ϕTM-program for g, i.e., suppose ϕTM
d = g.

Of course λp, x [ϕTM
ϕTM

d (p)
(x)] is partially computable, and, importantly, this is

constructively provable in PA. Later in this proof we explain why we want this con-

structivity; for now, we sketch how we know the constructive provability in PA.

6 We bother to prove it since we do not know a citation for its proof.

18

For example, one step in showing the constructivity is to explicitly construct a

ϕTM universal program u so that its detailed correctness is (trivially, albeit tediously)

constructively provable in PA. In particular,

PA ` � (∀p, x)[ϕTM
u (p, x) = ϕTM

p (x)] �. (2.17)

For ϕTM, the construction of a relatively efficient, but time-bounded variant of such a

u is outlined in the proof of [47, Theorem 3.6]. This construction could be altered to

remove the time-boundedness and just get a suitable u.

Another step would be to spell out a ϕTM-program c for a computable function

comp for computing a ϕTM-program for the composition of the (partial) functions

computed by its ϕTM-program arguments as in [47, Lemma 3.10] and its proof —

where, again, PA constructively proves correctness (including comp = ϕTM
c is total).

Relevance of u and c: clearly we have,

ϕTM
ϕTM

d (p)(x) = ϕTM
u (ϕTM

d (p), x), (2.18)

and the right-hand side of (2.18) just above is a composition and, then, can be further

expanded employing c.7 With u and c, then, we can explicitly compute a ϕTM-program

for λp, x [ϕTM
ϕTM

d (p)
(x)] and constructively prove it correct in PA.

So, then, by Constructive Kleene’s Second Recursion Theorem but without the

parameter p as above in Section 2.1.2.1, we have a (self-referential) p0 such that, for

any x,

ϕTM
p0

(x) = ϕTM
ϕTM

d (p0)(x). (2.19)

Below we’ll refer to this parameter-free version of the above Constructive Kleene The-

orem as KRT. Then we have a ϕTM-program k for the above function krt again with

parameter p completely omitted, and, with this k representing in the language of PA

this modified version of the function krt, KRT is completely constructively provable

in PA.

7 Further below in Section 2.2.2, we’ll consider, among other things, some program-
ming systems with provability subtleties re universality and/or composition.

19

Hence, by our remarks above about obtaining and constructively proving correct

a program for λp, x [ϕTM
ϕTM

d (p)
(x)], we can obtain a p0 as in (2.19) and constructively

prove it correct in PA, we have in particular,

PA ` � ϕTM
p0

= ϕTM
ϕTM

d (p0) �. (2.20)

Now, here’s why we care about the constructivity in PA. Existence proofs in

PA in general do not deliver a numerical value such as p0 above for proved existence

statements, but constructive proofs do [53, 52], and we need this numerical value

from PA’s constructive proof of the employed special case of the Kleene Theorem to

know (2.20) just above.

However, we don’t know enough about g (and d) to know whether we can prove

g’s totality in PA — including by representing g as ϕTM
d ; fortunately, we won’t need

that.

We do know (at least outside PA) that g is total (since it’s a consequence of

g’s assumed computability). Hence, we know (at least outside PA) that g(p0)↓. Since,

from above, d is a ϕTM-program for g, we have that ϕTM
d (p0)↓ = to some explicit

numerical value q0. Therefore, from Lemma 1 above,

PA ` � ϕTM
d (p0)↓ = q0 � . (2.21)

Hence, by substitution of equals for equals and reflexivity of equals inside PA, (2.20),

and (2.21),

PA ` � ϕTM
q0

= ϕTM
p0

�, (2.22)

a contradiction to our beginning assumption — since T extends PA.

Theorem 2

So far we have considered the natural, deterministic complexity theory relevant,

acceptable system, ϕTM. After we got Theorem 2 just above showing a condition in

Theorem 1 further above (in Section 2.2.1) couldn’t be improved, we wondered if there

were some (possibly not quite so natural but, perhaps, still acceptable) systems ψ for

20

which we don’t have the just above Theorem 2. We initially obtained the first part

of the next theorem (Theorem 3) which provides such a ψ, but we didn’t, then, know

whether our ψ was acceptable. We subsequently obtained Theorem 3’s furthermore

clause providing our ψ’s acceptability together with a surprise we didn’t expect. We

explain the surprise after the statement of Theorem 3 and before its proof.

Theorem 3. There is a programming system ψ and a computable g such that, for all

p, ψg(p) = ψp, yet, for q = g(p), T 6` � ψq = ψp �.

Furthermore, ψ is acceptable, and, surprisingly,

(∀p)[ψp = ϕTM
p]. (2.23)

How can (2.23) be true — in the light of the rest of the just above theorem

(Theorem 3)? It seems to contradict Theorem 2 further above. The answer is that, in

the proof just below of the just above theorem (Theorem 3), the needed ψ is, in effect,

defined by an unusual ϕTM-program e in (2.26, 2.27) below, and, in the language of

PA, for formulating (un)provability about ψ in T, ψ is, of course, represented by its

defining e.8 ϕTM itself, on the other hand, can be and is understood to be naturally

(not unusually) represented in the language of PA.9

To aid us in some proofs below, including that of the above Theorem 3, we

present the following lemma (Lemma 2), where the recursion theorem part of its proof

is from H. Friedman [19].

Lemma 2 (T-Provable Padding-Once). Suppose ϕ is any acceptable programming sys-

tem such that T proves ϕ’s acceptability.

Then, there is a total computable function g such that for any p, g(p) 6= p, but

ϕg(p) = ϕp.
10

8 An original source for unusual representations in arithmetic (as is our e) is [18].

9 See the informal discussion about the notation � E � in Section 2.1.2.2 above,
where, in effect, the particular example � ϕTM

p is total � is employed.

10 Of course, the more general, constructive infinite padding holds [33], but we do not
need that for the results of this chapter.

21

Furthermore, this padding-once result is, then, expressible and provable in T.

Proof of Lemma 2. Assume the hypothesis, i.e., that T proves ϕ’s acceptability.

Then T proves Kleene’s S-m-n Theorem, so we obtain that T proves the Pa-

rameterized Second Kleene Recursion Theorem (as above in Section 2.1.2.1, but with

witnessing functions not necessarily in Ltime, and we don’t need in this result, to have

T “calculate” numerals for the self-referential programs).

Then, from this Kleene Theorem, we have a computable function f such that,

for each p, x,

ϕf(p)(x) =

ϕp(x), if f(p) 6= p;

ϕp+1(x), if f(p) = p.

(2.24)

Then, let g be defined as follows.

g(p) =

f(p), if f(p) 6= p;

p+ 1, if f(p) = p.

(2.25)

We consider two cases.

Case one: f(p) 6= p. Then, from (2.24), ϕf(p) = ϕp, and, from (2.25), g(p) =

f(p) 6= p.

Case two: f(p) = p. Then, from (2.24), ϕf(p) = ϕp+1, which, by Case two, = ϕp.

From (2.25), g(p) = p+ 1 6= p.

By this case-analysis, g satisfies Padding-Once. The above is so simple as to be

provable in T — as needed. Lemma 2

Proof of Theorem 3. By Kleene’s second recursion theorem (again without pa-

rameter), there is a (self-referential) ϕTM-program e and an associated ψ both such

that, for each p, x,

ψp(x)
def
= ϕTM

e (〈p, x〉), which = (2.26)

22


p, if T `x

� (∃q, r | q 6= r)[ψq = ψr] �;

ϕTM
p (x), otherwise.

(2.27)

N.B. The mentions of ψ in (2.27) just above with variable subscripts q, r should be

understood, employing ψ’s definition (2.26) above, to be ϕTM
e (〈q, ·〉), ϕTM

e (〈r, ·〉), re-

spectively.

Claim 1. T 6` � (∃q, r | q 6= r)[ψq = ψr] �.

Proof of Claim 1. Suppose for contradiction otherwise.

Then there exists an x0 such that T `x0 � (∃q, r | q 6= r)[ψq = ψr] �.

However, then, by (2.26, 2.27) above, we have (∀p)[ψp(x0)↓ = p], and thus (∀p, q | p 6=

q)[ψp(x0) 6= ψq(x0)]; therefore, T has proven a sentence of first order arithmetic which

is false in the standard model, a contradiction. Claim 1

Claim 2. (∀p)[ψp = ϕTM
p]; hence, ψ is acceptable.

Proof of Claim 2. By Claim 1, the first clause in (2.27) above is false for each p, x.

Therefore, by (2.26, 2.27) above, (∀p, x)[ϕTM
e (〈p, x〉) = ϕTM

p (x)]; hence, (∀p)[ψp = ϕTM
p]

— making ψ acceptable too. Claim 2

Claim 3. There is a computable g such that, for all p, g(p) 6= p, ψg(p) = ψp, and, for

q = g(p), T 6` � ψq = ψp � .

Proof of Claim 3. The acceptability of ϕTM is provable in PA, hence, in T. By

Lemma 2, there exists a computable g such that (∀p)[g(p) 6= p ∧ ϕTM
g(p) = ϕTM

p]. By

Claim 2, ψ = ϕTM; thus, for this same g, (∀p)[ψg(p) = ψp].

Suppose arbitrary p is given. Let q = g(p) Suppose for contradiction, T ` �

ψq = ψp � . Clearly by Gödel’s Lemma (employed in the proof of Lemma 1 above),

23

PA ` � q 6= p�. Then, by this and existential generalization in T, T ` � (∃q, r |

q 6= r)[ψq = ψr] �, a contradiction to Claim 1 above. Claim 3

Theorem 3

For the next three corollaries (Corollaries 1, 2, and 3), the mentioned ψ is that

from Theorem 3 and its proof, including (2.26, 2.27) above.

Corollary 1. ψ = ϕTM, but T 6` � ψ = ϕTM �.

Proof of Corollary 1. ψ = ϕTM is from Theorem 3 above. Suppose for contra-

diction T ` � ψ = ϕTM �.

Then, from this and the proof of Theorem 2 above, one obtains a Theorem 2

but with ψ replacing ϕTM. This contradicts Theorem 3 above (which is also about ψ).

Corollary 1

To understand the corollary (Corollary 2) and its proof just below, it may be

useful to review the roles of ϕTM-programs u, c, k in the proof of Theorem 2 above.

This corollary says there can be no analog of all three of these programs for ψ (in place

of ϕTM).

Corollary 2. There are no u, c, k such that simultaneously:

T ` � u is a witness to universality in ψ �, (2.28)

T ` � c is a witness to composition in ψ �,& (2.29)

T ` � k is a witness to KRT in ψ � . (2.30)

Proof of Corollary 2. Suppose for contradiction otherwise. Then, enough is

provable in T about ψ to make Theorem 2 above also provable for ψ — in place of

ϕTM. This contradicts Theorem 3 about ψ. Corollary 2

24

Re Corollary 2 just above, it is well known that, from [33, 34], Kleene’s S-m-

n can be constructed out of a program c for composition and, then, Kleene’s proof

of KRT can be done from S-m-n; so, it might appear that (2.30) just above could be

eliminated. This is actually open. The reason is that, while each of these just mentioned

constructions requires some easily existing auxiliary ψ-programs, for Corollary 2 we’d

ostensibly also need these auxiliary ψ-programs to be T-provably correct.11 The T-

provable correctness is the hard part.

Corollary 3. T 6` � ψ is acceptable�.

Proof of Corollary 3. Assume for contradiction otherwise. Then, by Lemma 2

above, T ` � (∃p)[ψp is total ∧ (∀q)(∃r = ψp(q) | r 6= q)[ψq = ψr] �.

From this we have, T ` � (∃q, r | q 6= r)[ψq = ψr] �, a contradiction to

Claim 1 above. Corollary 3

The next and last two theorems of the present chapter (Theorems 4 and 5)

provide two more acceptable programming systems, η, θ, respectively, each defined

(as was ψ above) by respective, unusual ϕTM-programs. The first of these theorems

(Theorem 4) provides a surprise, part positive, part negative, regarding proving in

T that universality holds for η. The contrast between these last two theorems of the

prsent chapter is also interesting. Of course, since each of η, θ is acceptable, universality

holds for each of them (at least outside T).

Below, for (partial) function ξ, ρ(ξ) denotes the range of ξ.

Theorem 4. There exists an acceptable programming system η and an e such that

PA ` � e is universal for η �, yet, surprisingly, for each p,

If T ` � p is universal for η �, then p = e. (2.32)

11 Machtey and Young’s construction [33, 34] of an S-m-n function out of a composition
function, for example, employs auxiliary ψ-programs q0, q1 such that

ψq0 = λz 〈0, z〉; and ψq1 = λ〈y, z〉 〈y + 1, z〉. (2.31)

Marcoux’s more efficient solution [34] employs three such auxiliary ψ-programs.

25

Of course, in η, there are infinitely many universal programs, but exactly one provably

so in T.

Proof of Theorem 4. Kleene Second Recursion Theorem provides a ϕTM-program

e and an associated η both such that, for each p, x,

ηp(x)
def
= ϕTM

e (〈p, x〉), which = (2.33)


p, if [p 6= e ∧ T `x

� (∃q, r | r 6= q)[ηq = ηr] �];

ϕTM
p (x), otherwise.

(2.34)

Of course, since KRT for ϕTM is constructively provable in PA, we can get the numeral

for e inside PA as well as the universally quantified equation just above for the value

of ϕTM
e (〈p, x〉) by cases.

Claim 4. T 6` � (∃q, r | q 6= r)[ηq = ηr]

Proof of Claim 4. Assume for contradiction that T ` � (∃q, r | q 6= r)[ηq = ηr] �.

Let x0 be the minimum number of steps in any such proof. Also, since T does not

prove false things like the just above,

(∃q, r | q 6= r)[ηq = ηr]. (2.35)

Then, for f(p) = ϕTM
e (〈p, x0〉), ρ(f) ⊇ (N−{e}). Clearly, ηe = ϕTM

e , and ηe has infinite

range. Furthermore, (∀p 6= e)(∀x ≥ x0)[ηp(x) = p]; therefore, (∀p 6= e)[ηp has finite

range], and, thus, there is no η-program whose code number is not e whose computed

function is equal to ηe. Furthermore, (∀p, q | p 6= e ∧ p 6= q ∧ q 6= e)[ηp(x0) =

p ∧ ηq(x0) = q], thus there are no two distinct programs that compute the same

function, a contradiction to (2.35). Claim 4

Claim 5. (∀p, x)[ηp(x) = ϕTM
p (x)]; hence, η is acceptable.

26

Proof of Claim 5. By Claim 4, the if clause of (2.34) is always false, hence,

by (2.33, 2.34), (∀p, x)[ηp(x) = ϕTM
e (〈p, x〉) = ϕTM

p (x)]. Claim 5

Claim 6. There does not exist p, q such that p 6= q, and T ` � ηp = ηq �.

Proof of Claim 6. Suppose for contradiction otherwise. Then by existential

generalization in T, we obtain a contradiction to Claim 4. Claim 6

Claim 7. PA ` � e is universal for η �.

Proof of Claim 7. We need not prove in PA that η is a programming system for

the 1-argument partial computable functions. Instead, it suffices for us to argue only

that

PA ` � (∀p, x)[ηe(< p, x >) = ηp(x)] �. (2.36)

Then, from (2.33) above, the definition of η by e in the ϕTM-system, applied to

each side of (2.36), it, then, suffices to show that PA `

� (∀p, x)[ϕTM
e (〈e, 〈p, x〉〉) = ϕTM

e (〈p, x〉)] �. (2.37)

By the otherwise case of (2.33, 2.34) above, applied to � ϕTM
e (〈e, 〈p, x〉〉) �,

where p, x are variables (not numerals), we get its provable in PA value to be

� ϕTM
e (〈p, x〉) � — again with p, x variables. This together with universal general-

ization inside PA on the variables p, x, verifies in PA the sufficient (2.37) just above.

Claim 7

Claim 8. For all p 6= e, T 6` � p is universal in η �.

Proof of Claim 8. Immediate from Claims 6 and 7. Claim 8

Theorem 4

27

Theorem 5. There exists an acceptable programming system θ such that, for each u,

T 6` � u is universal in θ � . (2.38)

Of course, in θ, there are infinitely many universal programs, but none are provably so

in T.

Proof of Theorem 5. Kleene’s Recursion Theorem provides a ϕTM-program e and

an associated θ both such that, for each p, x,

θp(x)
def
= ϕTM

e (〈p, x〉) which = (2.39)


p, if T `x

� (∃u)[u is universal in θ] �;

ϕTM
p (x), otherwise.

(2.40)

Assume for contradiction that T ` � (∃u)[u is universal in θ] �. Then, since

T does not prove false things of this sort, universality holds in θ.

Let x0 be the smallest number of steps in any proof as is assumed just above to

exist.

Then, since (∀p, x | x ≥ x0)[θp(x) = p], we have, (∀p)[|ρ(θp)| ≤ 1 + x0]. By

contrast, ρ(θ) = N. Then there is no p such that ρ(θp) = ρ(θ); therefore, there cannot

be any universal programs for θ, a contradiction.

Therefore, T 6` � (∃u)[u is universal in θ] �, and, thus, (∀p, x)[θp(x) =

ϕTM
p (x)]. This makes θ acceptable.

Furthermore, it is not the case that (∃u)[T ` � u is universal in θ �], since, if

T proved such a thing, it would immediately follow from Existential Generalization in

T that � (∃u)[u is universal in θ] � is provable in T, which has already been shown

not to be provable by T. Theorem 5

We expect that analogs of Theorems 4 and 5 just above can be obtained for

other properties besides universality, but we did not pursue this herein.

28

Chapter 3

BEYOND ROGERS’ NON-CONSTRUCTIVELY COMPUTABLE
FUNCTION

3.1 Introduction

Rogers [44, Page 9] defines functions f and, then, g — each based on even-

tual patterns in the decimal expansion of π.1 We’ll discuss each of these in turn (in

Sections 3.1.1 and 3.1.2), but opposite the order in which Rogers discusses them.2

3.1.1 Our f and Variants

As will be seen, the second of these Rogers’ functions, which we’re calling f , is

clearly computable but not constructively so — and there is currently apparently no

known way to compute it.

For each x ∈ N = {0, 1, 2, . . .}, let f(x)
def
= 1, if ∃ at least x consecutive 5’s in

π’s decimal expansion; 0, otherwise.

Clearly, f is either constantly 1 — in case (i) π’s decimal expansion has arbi-

trary long, finite runs of consecutive 5’s — or f steps exactly once from 1 to 0 —

(ii) otherwise. In each possibility f is trivially computable: in case (i), employing

Church’s Lambda Notation [44], f = λx (1); in case (ii), if n is the maximum length

of any consecutive sequences of 5s in the decimal expansion of π, f = λx (1 if x ≤ n; 0

otherwise). Hence, in any case, f is trivially computable.

It’s unknown which of cases (i) and (ii) just above holds, and, if (ii) became

known, it might still be unknown the exact size of a largest consecutive run of 5’s in

1 Brouwer first similarly employed patterns in π’s digits, e.g., [7].

2 To preserve alphabetical order in our discussion, we’ll call his g, f , and his f , g.

29

π’s decimal expansion. Then we still wouldn’t know exactly where f steps from 1 to 0

— and we still wouldn’t know how to compute f .

This Rogers’ example very nicely illustrates the (classical) conceptual difference

between, there is an algorithm for f and the human race knows an algorithm for f :

the former is true, but the latter is currently false. However, in the future, the above

unknowns about the decimal expansion of π may be suitably resolved, so that, then,

Rogers’ example will no longer illustrate this just above pleasant conceptual difference.3

As will be seen, our Theorems 7 and 8 below provide “safer” replacements for f

— so as to preserve an interesting version of the nice (classical) conceptual difference

above.

Suppose T is any fixed, computably axiomatized extension of first order Peano

Arithmetic (PA) [35, 44]. E.g., T might be: PA itself, the also first order variant

with variables for both natural numbers and for sets thereof and with induction ex-

pressed for sets (e.g., from [44]), or ZFC. We also need that (certain of) T’s theorems

which are expressible in PA are true (essentially those featured in the proofs of The-

orems 7 and 8 below). T being computably axiomatized makes its set of theorems

computably enumerable, so T plays the role of an algorithmic extractor of (relevant)

true information.

Except for π, from now on, we’ll restrict our attention to reals r in the interval

[0, 1] represented as an infinite expansion in binary (not in base 10).4

We say that such a real r = .r0r1r2 . . ., where the rjs are its successive binary

digits, is computable iff the function λj (rj) is computable.

3 A future proof as to which function is f may still be non-constructive, but, impor-
tantly for the present chapter, re the nice conceptual difference above, we would have
the less interesting (and more normal) situation that both there is an algorithm for f
and the human race knows an algorithm for f are true — of course, classically.

4 There can be two expansions for a single real, e.g., 01000 · · · vs. 001111 · · · , but this
causes us no problem herein.

30

For a real r, for each x ∈ N, we let

fr(x)
def
=

1, if ∃ at least x consecutive 1’s in r’s binary expansion;

0, otherwise.

(3.1)

Clearly, fr, just as is f , is trivially computable — even if r is not computable.

Again, even for computable r, it may, in some cases, be hard to know that some

particular program q is a program for fr.

We can and do consider the acceptable programming systems (synonym: ac-

ceptable numberings) [43, 44, 33, 41, 42, 46] as those programming systems for the

1-argument partial computable functions: N → N which are intercompilable with nat-

urally occurring general purpose programming formalisms such as a full Turing machine

formalism or a LISP programming language. Typically, for theoretical work, one works

with numerical names for the programs in these systems — whence the term ‘number-

ing.’ Let ϕ be any fixed acceptable programming system. ϕp denotes the 1-argument

partial computable function: N → N and computed by program (number) p in the

ϕ-system. We write Wp for the domain of ϕp, i.e., the c.e. set accepted by ϕ-program

p. Below ↓ means converges or is defined, and ↑ means diverges or is undefined.

If E is an expression such as ‘ϕp is total’, where p is a particular element of N,

we shall write � E � to denote a naturally corresponding, fixed standard cwff (closed

well-formed formula) of PA which (semantically) expresses E. We assume that

if E′ is obtained from E by changing some numerical values, then � E′ �
can be algorithmically obtained from those changed numerical values and
� E �.

It is well known that cwffs extensionally equivalent may not be intensionally or

even provably equivalent [18]. In what follows, when we use the � E � notation, it

will always be for E that are easily and naturally (semantically) expressible in PA as

� E �.

‘`’ denotes the provability relation, and ‘6`’ is its negation.

31

Our theorems 7 and 8 below each imply that there are computable reals r such

that, for any p, q which compute r and fr, respectively,

T 6` � q computes fϕp � . (3.2)

Of course, the word any just above is important, since, then, the desired result is not

the result of only pathological choices of p, q for computing r and fr, respectively.

There is, though, some residual subtlety left in what is and is not actually

allowed to contribute to the unprovability in (3.2). First what isn’t subtle (then, what

is): suppose, as above, p, q which compute r and fr, respectively. Then, trivially, ϕq’s

totality is provable if we already had a proof that ϕq = fϕp , so including ϕq’s totality

as part of a translation of q computes fϕp does not contribute to its unprovability.

What is subtle: ϕp’s totality. Were it included in a translation of what we want to

say is unprovable, then it might contribute to the overall unprovability. We’d like to

minimize this contribution — to make the theorems just mentioned above stronger. A

bit below, then, we’ll consider two translations (Translations 1 and 2). Provability of

the first one does not entail ϕp is total, but, instead, by Claim 14 below, it entails only

Wp is infinite. Furthermore, Translation 1, which follows, is quite sensible.

Translation 1. � (∀x)[ϕq(x)↓ ≤ 1 & [ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤ z <

y + x)[ϕp(z)↓ = 1]] & [ϕq(x) = 0 =⇒ (∀y)(∃z | y ≤ z < y + x)[ϕp(z)↓ = 0]]] �.

We’ll abbreviate this first translation as � q computes fϕp �1
, so that, for

Theorems 7 and 8 below, (3.2) above becomes

T 6` � q computes fϕp �1 . (3.3)

The second translation follows. It also sensible but weaker than the first. Its

provability does not also entail that Wp is infinite.

Translation 2. � (∀x)[ϕq(x)↓ ≤ 1 & [ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤ z <

y + x)[ϕp(z)↓ = 1]] & [ϕq(x) = 0 =⇒ ¬(∃y)(∀z | y ≤ z < y + x)[ϕp(z)↓ = 1]]] �.

32

We’ll abbreviate this second translation as � q computes fϕp �2

As we will see, a stronger analog of our Theorem 7 also holds (for Translation 2

instead of Translation 1), namely, Theorem 9. However, by contrast, an interesting

constructive opposite of Theorem 8 holds for Translation 2, namely Theorem 10.

Importantly, in the light of (3.3) above, the following is perhaps surprising. For

Theorem 7, fr is made = λx (1). The same happens for the stronger Theorem 9. For

Theorem 8, for each n > 0, a corresponding fr is made = λx (1 if x ≤ n; 0 otherwise).

The solution to the apparent paradoxes, one for each of these three theorems, is that

T does not and cannot know (i.e., prove) that theorem’s information about which

function fr is!

3.1.2 Our g and Variants

The first of Rogers’ functions [44, Page 9], which we’re calling g, is defined thus.

For each x ∈ N, let g(x)
def
= 1, if ∃ exactly x consecutive 5’s in π’s decimal expansion;

0, otherwise.

Rogers [44, Page 9] points out that it is unknown whether g just above is com-

putable. Of course in the future enough may become known about the distributions

of runs of consecutive 5s in the decimal expansion of π for whether g is computable to

be resolved. Again we’ll consider only reals r (except for π), as in Section 3.1.1 above,

which are restricted to the interval [0, 1] and represented as an infinite expansion in

binary (not in base 10).

For a such a real r, for each x ∈ N, we let

gr(x)
def
=

1, if ∃ exactly x consecutive 1’s in r’s binary expansion;

0, otherwise.

(3.4)

For clarity as to what is meant by ‘exactly’ just above, we define a consecutive

run of exactly x 1s to be one that is bounded on both sides by a 0.

Trivially, there are many examples, such as r = .00000 . . ., so that gr is com-

putable. My advisor has given the next theorem (Theorem 6) as a course exercise with

hints.

33

Theorem 6. There is a primitive recursive r such that gr is not computable.

We’ll omit the hints since we describe next a considerable improvement.

Our last theorem of the present chapter (Theorem 11) is about reals r = λj (rj)

computable in linear-time in |j|, the length of j (and not requiring prior computing of

ri, for any i < j); this theorem says that, for each computably enumerable set A, there

is real r = λj (rj) computable in linear-time in |j| such that gr is the characteristic

function of (A ∪ {0}); if we choose A = K, where K is the diagonal halting problem

set from [44], then gr is not computable.5

3.2 Preliminaries

The material in this section (Section 3.2) is largely important for our machine-

dependent, natural-complexity theorem (Theorem 11) and its proof.

ϕTM is the specific fixed acceptable programming system from [47, Chapter 3]

for the partial computable functions: N → N; it is a system based on deterministic,

multi-tape Turing machines (TMs). In this system the ϕTM-programs are efficiently

given numerical names or codes. This efficient numerical coding guarantees that many

simple operations run in linear-time in the length of input.

ΦTM denotes the natural TM step counting complexity measure (also in [47,

Chapter 3]) and associated with ϕTM. In the present chapter, we employ a number of

complexity bound results from [47, Chapters 3 & 4] regarding ΦTM, ϕTM. These results

will be clearly referenced as we use them.

For the purposes of this chapter, linear-time computable means computable in

linear-time in the length of inputs — of course as measured by ΦTM in the ϕTM system.

We let 〈·, ·〉 : N×N → N be the fixed, 1-1, onto, linear-time computable pairing

function from [47, Section 2.3]. Its respective left and right inverses, π1 and π2, are

also linear-time computable [47, Section 2.3]. 〈·, ·〉 enables us to restrict our attention

to one-argument partial computable functions and still handle, with iterated coding

5 In [24] there is a nice, unrelated conjecture about reals r = λj (rj) computable in
linear-time in j.

34

by 〈·, ·〉, multiple argument cases. The linear-time computable functions π1 and π2 are

employed below in the proof of the present chapter’s last theorem (Theorem 11).

We employ the convenient discrete log function from [47, Page 22]: for each

x ∈ N, log(x)
def
= (blog2(x)c, if x > 1; 1, if x ≤ 1).

We let ΦSlowedDownTM be the special, slowed down step-counting measure asso-

ciated with the acceptable ϕTM-system from [47, Theorem 3.20]. In the proof of [47,

Theorem 3.20], for the case of (ϕTM,ΦTM), ΦSlowedDownTM is obtained from the standard

ΦTM measure associated with ϕTM — in part by a standard log-factors slow down trick.

ΦSlowedDownTM has the nice property (among others) that the predicate

T
def
= λp, x, t (1, if ΦSlowedDownTM

p (x) ≤ t; 0, otherwise) (3.5)

is linear-time computable!

In the proof of Claim 25 below (part of the proof of the present chapter’s last the-

orem, Theorem 11), we’ll make use of the following lemma from [47] concerning a very

efficiently implemented conditional (i.e., if-then-else) control structure for (ϕTM,ΦTM).

In particular we’ll employ the remark immediately following this lemma (Remark 1).

Lemma 3 (Lemma 3.14, [47]). There is a k > 0 and a linear-time computable function

cond such that, for all a, b, c, x ∈ N,

ϕTM
cond(〈a,b,c〉)(x) =


ϕTM

b (x), if ϕTM
a (x)↓ > 0;

ϕTM
c (x), if ϕTM

a (x)↓ = 0;

↑, otherwise;

(3.6)

and

ΦTM
cond(〈a,b,c〉)(x) ≤ k ·


(ΦTM

a + ΦTM
b (x)) + 1, if ϕTM

a (x)↓ > 0;

(ΦTM
a + ΦTM

c (x)) + 1, if ϕTM
a (x)↓ = 0;

↑, otherwise.

(3.7)

Remark 1. Note that from (3.7) just above, that, if ϕTM-programs a, b, c each run in

time linear in input length, then so does ϕTM-program cond(〈a, b, c〉).

35

3.3 Results

The notations, basic assumptions, and some employed technical observations

are from the Introduction and Preliminaries (Sections 3.1 and 3.2) above. Recall from

there that, for any choice of real r, fr is always computable.

3.3.1 Results About frs

In what follows u .− v
def
= 0, if u < v;

u− v, if u ≥ v.

(3.8)

Theorem 7. There is a computable real r such that, for any p, q which compute r and

fr, respectively, T 6` � q computes fϕp �1. Furthermore, fr = λx (1).

Proof of Theorem 7. As above in Section 3.1, our expansion of T `� q computes

fϕp �1 is: T ` � (∀x)[ϕq(x)↓ ≤ 1 & [ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤ z <

y + x)[ϕp(z)↓ = 1]] & [ϕq(x) = 0 =⇒ (∀y)(∃z | y ≤ z < y + x)[ϕp(z)↓ = 0]]] �1.

Define program list as follows. list runs a theorem prover for T and algorithmi-

cally lists, in some order, all the (p, q) such that T `� q computes fϕp �1.

The global variable seq has value at any point a finite sequence of bits with

known canonical index, and its initial value is empty. We reconceptualize this initial

value equivalently as an infinite sequence of known-to-be-undefined values.

Define no-input subroutine longest run (with global variable seq) as follows,

and let longest run with no arguments stand for the value returned by a call to this

subroutine: longest run scans seq to find the longest subsequence of contiguous 1s in

seq and returns the length of that subsequence.

Define subroutine outputs ones (with global variable seq) as follows. On input

x, outputs ones scans seq for the first x contiguous known-undefined values in seq and

defines them all to be 1.

Define subroutine setup seq (with global variable seq) as follows.

36

On input (p, q), setup seq runs q on all values between 0 and longest run

inclusive. If ϕq returns 0 on any of these values, setup seq returns and

does nothing.

Otherwise, let x be longest run+1, and setup seq runs q on x. If it returns

a 0, then setup seq calls outputs ones on x and returns.

If ϕq(x) returns a non-zero value, then setup seq dovetails an enumeration

of the values of ϕp, and compares them against the corresponding entries

of seq. If any entries are defined as something different from ϕp’s values,

it returns and does nothing. If it finds a value v such that ϕp(v)↓ and

seq(v) is still known-undefined, it defines seq(v) to be 1 .− ϕp(v) and

returns.

If none of the previously-listed stopping conditions are met, or if setup seq

runs a program that goes undefined, it runs forever.

Define program define real (with global variable seq) as follows.

On input x, define real does the following:

Set i to 0.

For x+ 1 iterations, do:

Run another step of list, and if, by the end of that step, it outputs

some (p, q), pass (p, q) to setup seq.6

If seq(i) is known-undefined after that, define it equal to 0.

Increment i by 1.

Output the value of seq(x).

Claim 9. If setup seq is passed a (p, q) such that T ` � q computes fϕp �1, then it

will terminate.

Proof of Claim 9. Since T ` � q computes fϕp �1, and T does not prove

false things (of this sort), it follows that (∀x)[ϕq(x)↓ ≤ 1]. Thus, running q on a

6 list can output either nothing or exactly one ordered pair on a given step.

37

finite set of values must terminate. As only finitely many elements of seq can be

defined during a call to setup seq, all calls to outputs ones must terminate. The only

remaining case is that (∀x | x ≤ longest run + 1)[ϕq(x) = 1], from which it follows

that (∃y)(∀z | y ≤ z < y + longest run + 1)[ϕp(z)↓ = 1], which provides a sequence of

consecutive 1s that is longer than the longest sequence of consecutive 1s in seq, which

means there is at least one value of ϕp which is defined equal to 1 whose corresponding

value of seq is not defined to be equal to 1, and thus setup seq will terminate in this

case as well. Claim 9

Claim 10. For any p, q, if T ` � q computes fϕp �1, then passing (p, q) to setup seq

results in a seq such that the set of reals compatible with the defined values of seq does

not include ϕp.

Proof of Claim 10. Case one: for some x less than or equal to the value of

longest run, ϕq(x) = 0, in which case seq is already incompatible with ϕp as seq has a

run of 1s which are longer than the longest such run in ϕp.

Case two: ϕq(longest run + 1) = 0, in which case setup seq calls outputs ones

and makes seq incompatible with ϕp for the same reason as case one.

Case three: (∀x | x ≤ longest run + 1)[ϕq(x) = 1]. In this case, setup seq will

search for a value of ϕp whose corresponding entry in seq either doesn’t match or is

known-undefined and will be set to not match. By Claim 9, such a value will be found,

after which seq will not be compatible with ϕp. Claim 10

Claim 11. The program define real does, in fact, define a real.

Proof of Claim 11. outputs ones clearly terminates, by Claim 9 and the definition

of list, all setup seq calls will terminate, and, on any input x to define real, list is only

run for a finite number of steps. Thus, define real will always output a value from seq.

The loop in define real includes a step that ensures that the element of seq output by

define real will be defined, and all times when elements of seq are assigned values, they

38

are assigned a value of either 0 or 1. So, define real computes a total {0, 1}-valued

function, a real. Claim 11

Claim 12. For any p, q, if T ` � q computes fϕp �1, then ϕp 6= ϕdefine real.

Proof of Claim 12. By Claim 11, ϕdefine real defines a real, and thus, if ϕp does not

define a real, they are not equal. By Claim 10 and the fact that define real’s output is

always compatible with seq, if ϕp does define a real, the real it defines is not equal to

ϕdefine real. Therefore, ϕp 6= ϕdefine real. Claim 12

Claim 13. fϕdefine real
= λx (1).

Proof of Claim 13. For all positive n, by provable in PA (hence, in T) padding

for the ϕ-system, there’s an infinite set of ps & qs such that q computes λx (1 if x ≤ n;

0 otherwise) and T ` � q computes fϕp �, so outputs ones is called infinitely often.

For such calls, it provides a sequence of consecutive 1s longer than prior such.

Claim 13

By Claims 11, 12, and 13, the statement of the theorem follows with r =

ϕdefine real. Theorem 7

In general, λx (1) is only one possibility for fr, so the question naturally arises:

does there exist computable real r such that (∀p, q)[ϕp = r =⇒ T 6` � q computes

fϕp �1, where fr 6= λx (1)?

For all fr of the form λx (1 if x ≤ n; 0 otherwise), except for the case where

n = 0, the answer is, Yes. For fr = λx (1 if x = 0; 0 otherwise), there is precisely one

such real, λx (0), and there exists p, q such that ϕp = λx (0) & PA ` � q computes

fϕp �1.

Theorem 8. For every n > 0, there is a computable real r such that, for any p, q which

compute r and fr, respectively, T 6` � q computes fϕp �1. Furthermore, fr = λx (1

if x ≤ n; 0 otherwise).

39

Proof of Theorem 8. As above in Section 3.1, our expansion of T `� q computes

fϕp �1 is: T ` � (∀x)[ϕq(x)↓ ≤ 1 & [ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤ z <

y + x)[ϕp(z)↓ = 1]] & [ϕq(x) = 0 =⇒ (∀y)(∃z | y ≤ z < y + x)[ϕp(z)↓ = 0]]] �.

Define program list as follows. list runs a theorem prover for T and algorithmi-

cally lists, in some order, all the (p, q) such that T `� q computes fϕp �1.

The global variable seq has value at any point a finite sequence of bits with

known canonical index, and its initial value is a sequence whose first n values are all

1s, followed by a 0, and all other values are empty. We reconceptualize this initial

value equivalently as a finite sequence followed by an infinite sequence of known-to-be-

undefined values.

Define subroutine setup seq (with global variable seq) as follows.

On input (p, q), setup seq dovetails execution of p on all values x, until, if

ever, a first x is found satisfying the following condition:

ϕp(x) is defined, the position in seq corresponding to x is known undefined,

and the positions in seq immediately before and immediately after that

position are either known undefined or defined equal to 0.

If such an x is found, then define the position in seq corresponding to x to be

1 .− ϕp(x), and replace in seq any known undefineds immediately before

or after that position with 0. After updating seq, setup seq returns.

If there are no values for which the condition holds, setup seq will run

forever.

Define program define real (with global variable seq) as follows.

On input x, define real does the following:

Set i to 0.

For x+ 1 iterations, do:

Run another step of list, and if, by the end of that step, it outputs

40

some (p, q), pass (p, q) to setup seq.7

If seq(i) is known-undefined after that, define it equal to 0.

Increment i by 1.

Output the value of seq(x).

Claim 14. For any (p, q) such that T ` � q computes fϕp �1, it follows that Wp is

infinite.

Proof of Claim 14. Since T ` � q computes fϕp �1, and T does not prove false

things (of this sort), it follows that (∀x)[ϕq(x)↓ ≤ 1], ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤

z < y + x)[ϕp(z)↓ = 1], and ϕq(x) = 0 =⇒ (∀y)(∃z | y ≤ z < y + x)[ϕp(z)↓ = 0].

Thus, one of the following two cases about q holds:

Case one: ϕq = λx (1). Then, ϕp does not have a longest run of 1s; the claim

immediately follows for this case.

Case two: ϕq = λx (1 if x ≤ m; 0 otherwise), for some m. Then, ϕq(m+1)↓ = 0;

by that and the third conjunction in Translation 1 above, it follows that (∀y)(∃z | y ≤

z < y +m+ 1)[ϕp(z)↓ = 0], from which the claim follows. Claim 14

Claim 15. If setup seq is passed a (p, q) such that T ` � q computes fϕp �1, then it

will terminate.

Proof of Claim 15. Since T ` � q computes fϕp �1, by Claim 14, it follows

that Wp is infinite. As only finitely many elements of seq can be defined during a

call to setup seq, there will be some value for which the condition in setup seq will be

satisfied; therefore, setup seq will terminate. Claim 15

Claim 16. For any p, q, if T ` � q computes fϕp �1, then passing (p, q) to setup seq

results in a seq such that the set of reals compatible with the defined values of seq does

not include ϕp.

7 list can output either nothing or exactly one ordered pair on a given step.

41

Proof of Claim 16. By Claim 15, setup seq will terminate. When it does, it will

have found an empty location in the just prior seq corresponding to some value x such

that it can set that position’s value equal to 1 .− ϕp(x); therefore, the resultant seq

will not be compatible with ϕp. Claim 16

Claim 17. The program define real does, in fact, define a real.

Proof of Claim 17. By Claim 15 and the definition of list, all setup seq calls will

terminate, and, on any input x to define real, list is only run for a finite number of steps.

Thus, define real will always output a value from seq. The loop in define real includes

a step that ensures that the element of seq output by define real will be defined, and

all times when elements of seq are assigned values, they are assigned a value of either

0 or 1. So, define real computes a total {0, 1}-valued function, a real. Claim 17

Claim 18. For any p, q, if T ` � q computes fϕp �1, then ϕp 6= ϕdefine real.

Proof of Claim 18. By Claim 17, ϕdefine real defines a real, and thus, if ϕp does not

define a real, they are not equal. By Claim 16 and the fact that define real’s output is

always compatible with seq, if ϕp does define a real, the real it defines is not equal to

ϕdefine real. Therefore, ϕp 6= ϕdefine real. Claim 18

Claim 19. fϕdefine real
= λx (1 if x ≤ n; 0 otherwise).

Proof of Claim 19. seq is initialized with a run of exactly n 1s followed by a 0.

Whenever setup seq is executed, it creates a run in seq of consecutive 1s of length at

most 1, with 0s on each side. If a value of seq is ever defined otherwise, it is defined

by define real to be 0; therefore, ϕdefine real contains a run of exactly n 1s and does

not contain any longer runs of 1s - which is merely another way to state the claim.

Claim 19

By Claims 17, 18, and 19, the statement of the theorem follows with r =

ϕdefine real. Theorem 8

42

Now we begin to examine in detail what happens with Theorems 7 and 8 above,

when we employ the weaker Translation 2 instead of Translation 1. By essentially the

same proof, Theorem 7 merely becomes the stronger

Theorem 9. There is a computable real r such that, for any p, q which compute r and

fr, respectively, T 6` � q computes fϕp �2. Furthermore, fr = λx (1).

As for Theorem 8 above, as noted above, under Translation 2, instead of Trans-

lation 1, it becomes a constructive opposite. It is useful to rewrite Translation 2 as its

simple equivalent as follows.

Translation 3. � (∀x)[ϕq(x)↓ ≤ 1 & [ϕq(x) = 1 =⇒ (∃y)(∀z | y ≤ z < y +

x)[ϕp(z)↓ = 1]] & [ϕq(x) = 0 =⇒ (∀y)(∃z | y ≤ z < y+x)[ϕp(z)↑ ∨ ϕp(z)↓ 6= 1]]] �.

Of course, we’ll continue to abbreviate this reworded, equivalent second trans-

lation as � q computes fϕp �2
.

Theorem 10. There exist constructively computable functions p and q such that, for

any program r and integer n for which fϕr = λx (1 if x ≤ n; 0 otherwise), PA ` �

q(r, n) computes fϕp(r,n)
�2, and ϕp(r,n) = ϕr.

Proof of Theorem 10. By Kleene’s S-m-n theorem [44], constructively provable

in PA, there is a constructively computable function p such that, for each x, r, n,

ϕp(r,n)(x) =

ϕr(x), if (∀y | x .− n ≤ y ≤ x)(∃z | y ≤ z ≤ y + n)[ϕr(z)↓ 6= 1 ∨ Φr(z) > Φr(x)];

↑, otherwise.

(3.9)

By Kleene’s S-m-n theorem [44], again constructively provable in PA, there is a con-

structively computable function q such that, for each x, r, n,

ϕq(r,n)(x) =

1, if x ≤ n;

0, otherwise.

(3.10)

Claim 20. For all n, PA ` � q(r, n) = λx (1 if x ≤ n; 0 otherwise) �2.

43

Proof of Claim 20. Thanks to the constructivity, PA proves the claim.

Claim 20

Claim 21. For all r, n such that fϕr = λx (1 if x ≤ n; 0 otherwise), ϕp(r,n) = ϕr.

Proof of Claim 21. By assumption about r and n, for all x, because the longest

run of 1s in ϕr is of length no more than n, it is the case that (∀y)(∃z | y ≤ z < y+n+

1)[ϕr(z)↑ ∨ ϕr(z)↓ 6= 1]; by restricting the range of y and replacing z < y+n+1 with

z ≤ y+n, it follows that (∀y | x .− n ≤ y ≤ x)(∃z | y ≤ z ≤ y+n)[ϕr(z)↓ 6= 1 ∨ ϕr(z)↑].

Furthermore, for each x, one of the following three cases holds:

Case one: ϕr(x)↑. In this case, both clauses of (3.9) have the same result;

ϕp(r,n)(x)↑; thus, ϕp(r,n)(x) = ϕr(x).

Case two: ϕr(x)↓ 6= 1. In this case, (∀y | x .− n ≤ y ≤ x), z = x satisfies

(∃z | y ≤ z ≤ y + n)[ϕr(z)↓ 6= 1]; thus, the first clause of (3.9) holds. Therefore,

ϕp(r,n)(x) = ϕr(x) in this case.

Case three: ϕr(x)↓ = 1. Since, in this case, Φr(x) has a finite value, it follows

from the last formula in the first paragraph of this proof, that (∀y | x .− n ≤ y ≤

x)(∃z | y ≤ z ≤ y + n)[ϕr(z)↓ 6= 1 ∨ Φr(z) > Φr(x)]; thus, the first clause of (3.9)

holds again. Therefore, ϕp(r,n)(x) = ϕr(x) in this case as well.

The statement of the claim follows immediately. Claim 21

Claim 22. For all r, n such that fϕr = λx (1 if x ≤ n; 0 otherwise), PA ` � (∃y)(∀z |

y ≤ z < y + n)[ϕp(r,n)(z)↓ = 1] �, i.e., PA proves that ϕp(r,n) has a run of at least

n 1s.

Proof of Claim 22. By Claim 21 and the definition of fϕr , it follows that ϕp(r,n)

has a run of n consecutive 1s; from this, there exists some y, t such that (∀z | y ≤ z <

y + n)[ϕp(r,n)(z)↓ = 1within t steps]. By Gödel’s Lemma [21, 35] that computable (or

recursive) relations are numeralwise, provably-representable in, e.g., PA, for that y, t,

PA ` � (∀z | y ≤ z < y+n)[ϕp(r,n)(z)↓ = 1 within t steps] �. By two applications of

44

existential generalization in PA, PA ` � (∃y)(∀z | y ≤ z < y + n)[ϕp(r,n)(z)↓ = 1] �;

thus PA ` � (∃y)(∀z | y ≤ z < y + n)[ϕp(r,n)(z)↓ = 1] �. Claim 22

Claim 23. For each r, n, PA ` � (∀y)(∃z | y ≤ z ≤ y+n)[ϕp(r,n)(z)↑ ∨ ϕp(r,n)(z)↓ 6=

1] �, i.e., PA proves that ϕp(r,n) does not have a run of more than n 1s

Proof of Claim 23.

Fix r, n.

We first reason that (∀y)(∃z | y ≤ z ≤ y + n)[ϕp(r,n)(z)↑ ∨ ϕp(r,n)(z)↓ 6= 1].

Assume by way of contradiction that (∃y)(∀z | y ≤ z ≤ y + n)[ϕp(r,n)(z)↓ = 1];

fix some such y. Fix an x such that y ≤ x ≤ y + n and Φr(x) maximal in that range.

From the fact that ϕp(r,n)(x)↓, it follows that the first clause of (3.9) holds; i.e.,

(∀y | x .− n ≤ y ≤ x)(∃z | y ≤ z ≤ y + n)[ϕr(z)↓ 6= 1 ∨ Φr(z) > Φr(x)]. By universal

specification, it follows that for y as previously fixed, (∃z | y ≤ z ≤ y + n)[ϕr(z)↓ 6=

1 ∨ Φr(z) > Φr(x)]. Fix such a z.

Case one: ϕr(z)↓ 6= 1. This is a contradiction to our assumption for contradic-

tion, in conjunction with the fixed y.

Case two: Φr(z) > Φr(x). This is a contradiction to Φr(x) being maximal in

the range.

Therefore, ¬(∃y)(∀z | y ≤ z ≤ y + n)[ϕp(r,n)(z)↓ = 1], which is equivalent to

(∀y)(∃z | y ≤ z ≤ y + n)[ϕp(r,n)(z)↑ ∨ ϕp(r,n)(z)↓ 6= 1]. This completes our above

announced first part.

Next we observe that the above reasoning can be carried out in PA, which is un-

derpinned first order logic, and which, in turn, allows reasoning with non-constructive

cases.

Hence, PA ` � (∀y)(∃z | y ≤ z ≤ y + n)[ϕp(r,n)(z)↑ ∨ ϕp(r,n)(z)↓ 6= 1] �.

Claim 23

Claim 24. For all r, n such that fϕr = λx (1 if x ≤ n; 0 otherwise), PA ` � q(r, n)

computes fϕp(r,n)
�2

45

Proof of Claim 24. This follows from Claims 20, 22, and 23. Claim 24

The theorem follows immediately from Claims 24 and 21. Theorem 10

3.3.2 Results About grs

Next we present our strong, promised theorem regarding grs.

Theorem 11. For any computably enumerable (c.e.) set A containing 0, there exists

a linear-time computable real r such that gr is the characteristic function of A.8

Proof of Theorem 11. Since set A is c.e., there exists a ϕTM-program a which

half-decides A, terminating after possibly arbitrarily much computation for inputs in

A, and going undefined for inputs not in A.

We informally define ϕTM-program r, which computes the corresponding, de-

sired real r, as follows. It is to be understood, that this r makes implicit use of the

efficient conditional control structure from Lemma 3 and Remark 1 above. In (3.11)

just below the T predicate is the one defined in (3.5) above. For each x ∈ N, let

ϕTM
r (x) =



0, if (x < 4 ∨

T (a, π1(log log(x)), π2(log log(x))) = 0 ∨

x = 2log(x) ∨

x > π1(log log(x)) + 2log(x));

1, otherwise.

(3.11)

Claim 25. ϕTM-program r runs in time linear in the length of its input.

Proof of Claim 25. Clearly, comparing x to a constant can be done in constant

time. Computing log(x) can be done in time linear in the length of x [47, Lemma

8 For technical reasons, it is difficult, in the proof just below, to produce a real that
does not contain two consecutive 0s. A real r with two consecutive 0s always satisfies
gr(0) = 1.

46

3.2(k)], as can computing 2log(x).9 As noted in Section 3.2 above, calculation of each

of π1 and π2 take time linear in the length of their input. Then, from (3.5) and line

following (3.5) (above), T (a, π1(log log(x)), π2(log log(x))) can be computed in time

linear in the length of log log(x). Adding two numbers can be done in time linear in

the length of the longer, and comparing the result to another number can once again

be done in time linear in the length of the longer number [47, Lemma 3.2(f, g)]. By [47,

Lemma 3.18], linear-time computable predicates are closed under Boolean operations.

Thus, from r’s implicit employment of cond from Lemma 3 above, and by Remark 1

above, r itself executes in time linear in the length of its input x. Claim 25

Claim 26. ϕTM-program r defines a real.

Proof of Claim 26. From Claim 25 it follows that r is total. Since r returns only

values in the range {0, 1}, it follows that it defines a real. Claim 26

Claim 27. For all x such that ϕTM
r (x) = 1, it is the case that for all y such that

2log(x) < y ≤ x, ϕTM
r (y) = 1.

Proof of Claim 27. Let x be any value such that ϕTM
r (x) = 1. Clearly, x is not a

power of 2, T (a, π1(log log(x)), π2(log log(x))) = 1, and x ≤ π1(log log(x)) + 2log(x). If

x− 1 is not a power of 2, then it follows that log(x) = log(x− 1). From these facts, it

follows that T (a, π1(log log(x − 1)), π2(log log(x − 1)) = 1 and x − 1 ≤ π1(log log(x −

1)) + 2log(x−1), and thus it follows that ϕTM
r (x − 1) = 1, if and only if x − 1 is not a

power of 2. By downwards induction on x, the claim follows. Claim 27

Claim 28. For all x such that ϕTM
r (x) = 1, it is the case that for all y such that x ≤ y ≤

π1(log log(x)) + 2log(x), ϕTM
r (y) = 1, and also that ϕTM

r (1 +π1(log log(x)) + 2log(x)) = 0.

9 An algorithm for this latter, with I/O in binary number representation, is to scan
x (as usual left to right), and, on the output tape from right to left, writing a 0 onto
an output tape for each symbol in x, then replacing the last-written 0 with a 1 when
the end of x is reached. The ϕTM-system is based on dyadic I/O [47], but, by [47,
Lemma 3.2(b)] passing between binary and dyadic is linear-time computable.

47

Proof of Claim 28. Let x be any value such that ϕTM
r (x) = 1. Clearly, x is not

a power of 2, T (a, π1(log log(x)), π2(log log(x))) = 1, and x ≤ π1(log log(x)) + 2log(x).

If x + 1 is a power of 2, then ϕTM
r (x + 1) = 0. If x + 1 is not a power of 2, then

it follows that log(x) = log(x + 1), from which it follows that T (a, π1(log log(x +

1)), π2(log log(x+1))) = 1, and thus ϕTM
r (x+1) = 1 if and only if x+1 is not a power

of 2 and x + 1 ≤ π1(log log(x + 1)) + 2log(x+1). By induction on x and the fact that

2log(x) + π1(log log(x)) < 2log(x)+1, the claim follows. Claim 28

Claim 29. For all x such that ϕTM
r (x) = 1, there is a run of exactly π1(log log(x)) 1s

in the real r, and the position x is in one such run.

Proof of Claim 29. From Claims 27 and 28, as well as the fact that, for all x,

ϕTM
r (2log(x)) = 0, it follows that, for all x such that ϕTM

r (x) = 1, there is a run of 1s

from 2log(x) + 1 to π1(log log(x)) + 2log(x), bounded on both sides by 0s. The claim

follows immediately by use of basic algebra and arithmetic. Claim 29

Claim 30. For all y > 0 and for all t, if ϕTM
a (y) terminates within t steps, then

ϕTM
r (22<y,t>

+ 1) = 1.

Proof of Claim 30. The claim follows directly from the definitions of a and r.

Claim 30

Claim 31. gr is the characteristic function of A.

Proof of Claim 31. By Claim 26 and the definition of gr, it follows gr is a well-

defined total {0, 1}-valued function. From Claims 29 and 30, as well as the fact that,

for all y, for all but finitely many t, for some xs, < y, t >= log log(x), it follows that, for

all y > 0 such that ϕTM
a (y)↓, there is a run of exactly y 1s in the binary representation

of r, and thus gr(y) = 1. Assume by way of contradiction that there is some y > 0

such that ϕTM
a (y)↑ but gr(y) = 1. Then, there must be a run of exactly y 1s in r.

Let x be the least number such that position x is in such a run. Then, by Claim 29,

48

π1(log log(x)) = y. From the definition of r, it follows that T (a, y, π2(log log(x))) = 1,

a contradiction to the assumption that ϕTM
a (y)↑. The previous shows that the claim

holds for all inputs > 0. It is clear that ϕTM
r (0) = ϕTM

r (1) = 0, therefore gr(0) = 1,

and thus, by the assumption that 0 is in A, the claim is proven. Claim 31

The theorem follows from Claims 25, 26, and 31. Theorem 11

49

Chapter 4

A NON-UNIFORMLY C-PRODUCTIVE SEQUENCE &
NON-CONSTRUCTIVE DISJUNCTIONS

4.1 Motivation

Let ϕ be an acceptable programming system/numbering of the partial com-

putable functions: N = {0, 1, 2, . . .} → N, where, for p ∈ N, ϕp is the partial com-

putable function computed by program p of the ϕ-system; such numberings are charac-

terized as being intercompilable with naturally occurring general purpose programming

formalisms such as a full Turing machine formalism; let Wp = domain(ϕp) [43, 44, 33,

46]. Wp is, then, the computably enumerable (c.e.) set ⊆ N accepted by ϕ-program p.

We let Φ be a corresponding Blum Complexity Measure [3] for the ϕ-system.

My advisor taught a recursion theorem proof by employing a pair of cases that,

for each q, {x | ϕx = ϕq} is not c.e. The disjunction of cases used was:

domain(ϕq) is ∞ vs. is finite. (4.1)

A student asked why the proof involved an analysis by cases. The answer given straight-

away to the student was that his teacher didn’t know how else to do it.

The present chapter provides, among other things, a better answer. Of course,

by Rice’s Theorem [44], the cases (4.1) above are non-constructive.1

The better answer is: any proof that, for each q, {x | ϕx = ϕq} is not c.e. prov-

ably must involve some such non-constructivity.

We assume the reader is familiar with the definitions and names of the levels

of the (classical) Arithmetical Hierarchy as in Rogers’ book [44]. The classically valid

1 More about constructivity below.

50

Law of Excluded Middle (LEM) is: either a formula or its negation holds. The idea

of constructive mathematical proof, beginning with the intuitionist (constructivist)

Brouwer 2, from about 1908 (see [7]), is that mathematical proofs at every layer and

step should permit the explicit presentation/computation of examples proved to exist.

For this chapter, we need this concept only for parts of mathematics expressible in the

language of First Order Peano Arithmetic (PA) [44, 35], and we again assume reader

familiarity. This “proof-mineability” places some limitations (compared to classical

mathematics) on the logical operators ∨ and ∃ (think of ∨ as a finitary version of

∃). Classical mathematics has no such absolute constraints on existence proofs. A nice

example contrasting non-constructive and constructive proofs is found in [2] where it is

made clear that unrestricted LEM is a source of non-constructivity: in constructively

permissible proofs by cases, it must be decidable as to which case/disjunct holds.

Brouwer’s student, Heyting, formulated a variant of first order logic [35] called

intuitionistic logic which is just like first order logic except it is missing unrestricted

LEM; it captures thereby Brouwer’s constructivist ideas in the context of logic [26].

Heyting Arithmetic (abbreviated: HA) is just PA but underpinned instead by intu-

itionistic logic (see also [52, 53]). It captures Brouwer’s ideas about the mathematics

expressible in it.

There has been recent interest in adding some arithmetically limited version of

LEM (and other principles) to HA. One, then, gets theories of strictly intermediate

strength between HA and PA [38, 1, 25]. For example, Π0
2-LEM is the set of all

instances of LEM, where, the instances are all and only those of the form

(∀u)(∃v)R(u, v, w) ∨ ¬(∀u)(∃v)R(u, v, w), (4.2)

for some computable predicate R.3

2 Technically, Intuitionism is a brand of Constructivism somewhat more subjective
in focus than general constructivism. We will not and need not explore herein the
subjectivism of Brouwer’s Intuitionism.

3 It turns out, in the cases there are quantifiers in front of R, we can take such Rs to be

51

If we replace in (4.1) above ‘is finite’ by ‘is not infinite’, then the result above

can be easily shown to be provable in (HA + Π0
2-LEM).4

If, instead, we replace in (4.1) above, ‘is infinite’ by ‘is not finite’, the result

is in Σ0
2-LEM. Since, from [1], (HA + Π0

2-LEM) is strictly less non-constructive than

(HA + Σ0
2-LEM), we choose to employ the indicated replacement for (4.1) above which

is in Π0
2-LEM:

domain(ϕq) is ∞ vs. is not ∞. (4.3)

Note that, while one can put any formula of PA into a classically equivalent

normal form variant with all its quantifiers in front and alternating [44, 35], this equiv-

alence, in some cases, is not provable in HA. However, from [1], for A, a standard

level (such as Π0
2) in the arithmetical hierarchy, (HA + A-LEM) is strong enough to

prove the equivalence of the normal form variant of formulas classically equivalent to

formulas defining the members of A.

4.2 Basic Definition & Relevant Theorem

Recall that the completely productive (abbr: c-productive) sets (⊆ N) [39, 37,

16, 44] are the effectively non-c.e. sets, i.e., the sets S such that

(∃ computable f)(∀y)[f(y) ∈ ((S −Wy) ∪ (Wy − S))]. (4.4)

Idea: in (4.4) just above, f(y) is a counterexample to S = Wy.
5

primitive recursive [44]. Then, for example, Π0
2-LEM becomes a computably decidable

set. Hence, the axioms of (HA + Π0
2-LEM) are computably decidable — importantly,

then, making proof-checking there algorithmic.

4 See the proofs of Proposition 1 and 2 below in Section 4.3.1.

5 Below we’ll write ((S −Wy) ∪ (Wy − S)) as (S 4Wy), the symmetric difference of
S,Wy.

52

Definition 1. A set sequence Sq, q ∈ N, is uniformly c-productive iff there is a com-

putable f so that, for all q, y, f(q, y) is a counterexample to Sq = Wy.
6

Relevance: a completely constructive proof that each Sq is not c.e. would entail

the Sqs forming a uniformly c-productive sequence.7

Let Eq = {x | ϕx = ϕq}. Then:

Theorem 12. The set sequence Eq, q ∈ N, is not uniformly c-productive.

We’ll include the following short, sweet proof of Theorem 12 just above. Theo-

rem 12 is generalized by Corollary 4 below.

Proof of Theorem 12. Suppose for contradiction that f is a computable function

so that, for all q, y, f(q, y) is a counterexample to Eq (i.e., {x | ϕx = ϕq}) = Wy.

By the Double Recursion Theorem [44] there are programs q0, y0 each of which

creates a copy of itself and the other (outside themselves8) and each uses its copies

together with an algorithm for f to compute f(q0, y0) with:

ϕq0 = ϕf(q0,y0) & (4.5)

Wy0 = {f(q0, y0)}. (4.6)

From just above,

f(q0, y0) ∈ ({x | ϕx = ϕq0} ∩Wy0). (4.7)

Clearly, then, f(q0, y0) fails to be a counterexample to Eq0 = Wy0 , and we get a

contradiction. Theorem 12

6 These set sequences are, in motivation and mathematically, reasonably unrelated to
Cleave’s creative sequences [14].
This defined notion will be generalized a bit in a formal definition below (Definition 2
in Section 4.3).

7 That’s entail or imply, not hold-iff.

8 There is no need for infinite regress.

53

In this chapter, as in others, we will use the linear-time computable and invert-

ible pairing function 〈·, ·〉 from the Royer-Case monograph [47]. This function maps

all the pairs of elements of N 1-1, onto N. We also employ this notation, based on

iterating, 〈·, ·〉, as in the Royer-Case monograph [47], to code also triples, quadruples,

. . . of elements of N 1-1, onto N. Technically, each ϕp takes one argument ∈ N. For

some p and some n > 1, and some x1, . . . , xn, we will sometimes write ϕp(x1, . . . , xn) as

an abbreviation for ϕp(〈x1, . . . , xn〉). We’ll sometimes so abbreviate for other functions

which technically take a single argument ∈ N.

In the next paragraph we assume reader familiarity with employed notions and

relevant characterizations thereof and treated in Rogers’ book [44].

By contrast, {〈q, x〉 | ϕx = ϕq} is, of course, c-productive, Why? Insight-

ful answer: Let q1 be such that, say, ϕq1 = λy (1). Then, easily K ≤1{x | ϕx =

ϕq1}≤1 {〈q, x〉 | ϕx = ϕq}— and this entails [44] the c-productivity of {x | ϕx = ϕq1} as

well as of {〈q, x〉 | ϕx = ϕq}. We see, then, that the c-productivity of {〈q, x〉 | ϕx = ϕq}

can be shown exercising only one q-value, q1; whereas uniform c-productivity must ex-

ercise all q-values.

4.3 Characterizing the Index Set Cases

4.3.1 Uniform C-Productivity of Sq, q ∈M

An index set [44] is a set of ϕ-programsM so that, for some class of (1-argument)

partial computable functions S, M = {p | ϕp ∈ S}.

Example (complementary) index sets include those implicit in the

non-constructive disjunction of cases mentioned early on above (in Section 4.1):

Minf = {q | domain(ϕq) ∞} vs. Mfin = {q | domain(ϕq) not ∞}.

Next we give the promised generalization of the notion of uniformly c-productive.

For computations ↓ means converges and ↑ means diverges, English terms used as in

Rogers’ book [44].

54

Definition 2. For any index set M , we define the sequence of sets Sq, q ∈ M , to be

uniformly c-productive iff, for some partial computable η, for any q ∈ M & any y,

η(q, y)↓ to a counterexample to Sq = Wy.

It can be seen from the proof of the Characterization Theorem (Theorem 13 in

Section 4.3.2 below) that, for Sq = Eq, when η just above exists, it can be taken to be

total.

Below we write δ for domain and ρ for range.

By a pair of Kleene Parametric Recursion Theorem (KPRT) [44] arguments,

for each M ∈ {Minf ,Mfin}, the corresponding sequence Eq, q ∈ M , is uniformly c-

productive:

Proposition 1. The sequence Eq, q ∈Minf , is uniformly c-productive.

Proof of Proposition 1. By KPRT, there is a computable function f st, for each

q, y, z,

ϕf(q,y)(z) =

↑, if f(q, y) ∈ Wy in ≤ z steps;

ϕq(z), otherwise.

(4.8)

Suppose q ∈Minf .

Case one: f(q, y) ∈ Wy. Then by (4.8) just above, δϕf(q,y) not ∞, so, ϕf(q,y) 6=

ϕq. Hence, f(q, y) 6∈ Eq.

Case two: f(q, y) 6∈ Wy. Then by (4.8) just above, ϕf(q,y) = ϕq. Hence, f(q, y) ∈

Eq.

Therefore, in any case, f(q, y) ∈ (Eq 4Wy). Proposition 1

Proposition 2. The sequence Eq, q ∈Mfin, is uniformly c-productive.

Proof of Proposition 2. By KPRT, there is a computable function f st, for each

q, y, z,

ϕf(q,y)(z) =

1, if f(q, y) ∈ Wy in ≤ z steps;

ϕq(z), otherwise.

(4.9)

55

Suppose q ∈Mfin.

Case one: f(q, y) ∈ Wy. Then by (4.9) just above, δϕf(q,y) is ∞, so, ϕf(q,y) 6= ϕq.

Hence, f(q, y) 6∈ Eq.

Case two: f(q, y) 6∈ Wy. Then by (4.9) just above, ϕf(q,y) = ϕq. Hence, f(q, y) ∈

Eq.

Therefore, in any case, f(q, y) ∈ (Eq 4WW). Proposition 1

These two just prior proofs each involve Σ0
1-LEM, already strictly subsumed

in Π0
2-LEM [1]. Here is why. Each of these two proofs employ for its only non-

constructivity, for some computable f , the disjunction of cases

f(q, y) ∈ Wy ∨ ¬[f(q, y) ∈ Wy], (4.10)

clearly in Σ0
1-LEM.

This provides a now-known-to-be necessarily non-constructive proof that, for

each q ∈ N, Eq = {x | ϕx = ϕq} is not c.e. It’s non-constructivities (plural) can all be

handled in (HA + Π0
2-LEM).

4.3.2 The Characterization

There are divisions into non-constructive (top level) disjunctions besides the

above example for proving that, for each q ∈ N, Eq = {x | ϕx = ϕq} is not c.e.

For example, the division into {q | domain(ϕq) is not computable} vs. its com-

plement also works, but it’s Π0
3-LEM, more non-constructive than Π0

2-LEM above [1].

Let Fx, x ∈ N, be a canonical indexing [44, 33] of all/only the finite functions :

N → N. Below we identify partial functions with their graphs (as sets of pairs). We

have for our characterization:

Theorem 13. For any index set M and corresponding sequence of sets Eq(= {x | ϕx =

ϕq}), q ∈M , the sequence is uniformly c-productive iff

(∃ c.e. A ⊆M)(∀x)(∃y ∈ A)[ϕy ⊇ Fx]. (4.11)

56

Without loss of generality: in each direction y can be taken to be algorithmic in

x.

The disjoint index sets partitioning N, {q | domain(ϕq) 6= ∅} (c.e.) vs. its com-

plement, {q | domain(ϕq) = ∅}, do not work — since, by our just above characterization

and the Rice-Shapiro-Myhill-McNaughton Theorem [44],

Corollary 4. For any c.e. index set M , Eq, q ∈M , is not uniformly c-productive.

Since N is trivially a c.e. index set, Theorem 12 above in Section 4.1 follows from

Corollary 4 just above. Since [44] the c.e. sets are the Σ0
1 sets and their complements

are the Π0
1 sets, the problem of proving, for each q ∈ N, Eq is not c.e. is upper-bounded

(can be done) with (HA + Π0
2-LEM) (by Propositions 1 and 2 in Section 4.3.1

above) and lower-bounded (can’t be done) with (HA + Σ0
1-LEM)9 — the latter

at least for employing a division into cases involving index sets. We conjecture that

(HA + ∆0
2-LEM) is a maximal lower-bound (cannot be done) — at least for employing

a division into cases involving index sets. In general, we don’t know about divisions

into cases not involving index sets and we don’t know whether (HA + Π0
2-LEM) is

a minimum required with respect to the Arithmetically-Limited-LEMs from Akama,

Berardi, Hayashi, and Kohlenbach’s paper [1].

Proof of the Characterization Theorem 13. Fix index set M .

Claim 32. If Eq, q ∈M , is uniformly c-productive, then

(∃ C.E. A ⊆M)(∀x)(∃y ∈ A)[ϕy ⊇ Fx]. (4.12)

Proof of Claim 32. Let partial computable η be a witness to the uniform c-

productivity of Eq, q ∈M ; that is, for each q, y st q ∈M , η(q, y)↓ ∈ (Eq 4Wy).

By Kleene’s S-m-n theorem [44] there is a computable function t st, for each x,

Wt(x) = {z | ϕz ⊇ Fx}. (4.13)

9 From [1], (HA + Π0
1-LEM) is strictly less non-constructive than (HA + Σ0

1-LEM).

57

By Kleene’s Parametric Recursion Theorem [44] there is a computable function

s st, for each x, z,

ϕs(x)(z) =

Fx(z), if z ∈ δFx;

ϕη(s(x),t(x))(z), otherwise.

(4.14)

Subclaim 1. (∀x)[s(x) ∈M]

Proof of Subclaim 1. Suppose by way of contradiction there exists some x such

that that s(x) ∈M . Fix that x. By the assumption that s(x) ∈M ,

η(s(x), t(x))↓ ∈ (Es(x) 4Wt(x)). (4.15)

Case one: η(s(x), t(x)) ∈ Wt(x). Then, for all z, one of two subcases holds.

Subcase one: z ∈ δFx. In this subcase, as ϕη(s(x),t(x)) extends Fx, ϕη(s(x),t(x))(z) =

Fx(z), and, by the first clause of (4.14), ϕs(x)(z) = Fx(z); therefore, ϕs(x)(z) =

ϕη(s(x),t(x))(z).

Subcase two: z 6∈ δFx. In this subcase, by the second clause of (4.14), ϕs(x)(z) =

ϕη(s(x),t(x))(z).

Thus, (∀z)[ϕs(x)(z) = ϕη(s(x),t(x))(z)]. This means η(s(x), t(x)) ∈ Es(x) ∧

η(s(x), t(x)) ∈ Wt(x); a contradiction to (4.15).

Case two: η(s(x), t(x)) 6∈ Wt(x). Then there exists some z ∈ δFx such that

ϕη(s(x),t(x))(z) 6= Fx(z), thus, by clause one of (4.14), ϕη(s(x),t(x)) 6= ϕs(x). This means

η(s(x), t(x)) 6∈ Es(x) ∧ η(s(x), t(x)) 6∈ Wt(x); a contradiction to (4.15).

Both cases lead to a contradiction; the subclaim immediately follows.

Subclaim 1

Let A = ρs. The claim then follows from Subclaim 1, the fact that A is the

range of a computable function, and (4.14). Claim 32

Claim 33. If there exists a c.e. set A that is a subset of M such that, for any finite

function F , there is a program in A which computes a function that extends F , then

the sequence of sets Eq, q ∈M , is uniformly c-productive.

58

Proof of Claim 33. Assume the existence of such an A.

Let s be a ϕ-version of the following program on inputs q, y, e.

Determine how many steps it takes to get an output from program y on
input e; if it never terminates, never terminate from this point.

Compute the canonical index of the finite function F whose graph is the
set of (z, ϕq(z)) such that Φy(e) > z and Φy(e) > Φq(z).

Dovetail an algorithmic enumeration of A, until, if ever, an element a is
found such that ϕa extends F . If such an a is found, output that a. Oth-
erwise, ↑.

The ϕ-program s just below in (4.16) is from the second line in this proof of

Claim 33. By Kleene’s Parametric Recursion Theorem [44] there is a computable

function f st, for each q, y, z,

ϕf(q,y)(z) =



ϕq(z), if Φy(f(q, y)) > z

∧ Φy(f(q, y)) > Φq(z);

ϕϕs(q,y,f(q,y))(z), if ϕy(f(q, y))↓

∧ ϕs(q, y, f(q, y))↓

∧ [Φy(f(q, y)) ≤ z

∨ Φy(f(q, y)) ≤ Φq(z)];

↑, otherwise.

(4.16)

Subclaim 2. f is a witness to the uniform c-productivity of Eq, q ∈M .

Proof of Subclaim 2. Fix q and y.

Case one: f(q, y) ∈ Wy. Thus, Φy(f(q, y)) converges. Because of this, we

can compute the canonical index of the finite function F whose graph is {(z, ϕq(z)) |

Φy(f(q, y)) > z ∧ Φy(f(q, y)) > Φq(z)}; from that and the assumption about A,

it follows that ϕs(q, y, f(q, y))↓ to an a ∈ A such that ϕa extends F . By careful

examination of the clauses in (4.16) and the behavior of program s on q, y, f(q, y), it

follows that ϕf(q,y) = ϕa. By assumption about A, a ∈ M , from which it follows that

f(q, y) ∈M , thus f(q, y) 6∈ Eq.

59

Case two: f(q, y) 6∈ Wy. Then, for all z such that ϕq(z)↓, ϕf(q,y)(z) = ϕq(z) by

the first clause of (4.16), and for all z such that ϕq(z)↑, ϕf(q,y)(z)↑ by the third clause

of (4.16); thus, ϕf(q,y) = ϕq. Therefore, f(q, y) ∈ Eq.

Thus, by Case one and Case two, (∀q, y)[f(q, y) ∈ Eq 4Wy]: f is a witness to

the uniform c-productivity of the sequence Eq, q ∈M . Subclaim 2

The claim follows from Subclaim 2 and the computability of f . Claim 33

.

The theorem follows immediately from Claims 32 and 33. Theorem 13

4.3.3 Another Corollary of the Characterization

Above, we’ve looked at proving each Eq is not c.e., with the proof’s top level

non-constructivity confined to disjunctions with two disjuncts as to which of two par-

titioning index sets contains q. How about such disjunctions but with numbers of such

irreducible disjuncts more than 2? Thanks to our characterization:

Corollary 5. For each n ≥ 2, there are n pairwise disjoint, non-trivial index sets
M0, . . . ,Mn−1 unioning to N such that:

• For each i < n, the sequence Eq = {x | ϕx = ϕq}, q ∈ Mi, is uniformly c-
productive, but

• For each i, j < n such that i 6= j, the sequence Eq, q ∈ (Mi∪Mj), is not uniformly
c-productive.

A simple extension of the just above Corollary’s proof (just below) yields the n =

ω, infinitary, irreducible disjunctions case too. We omit the details of that extension.

Proof of Corollary 5. Assume n ≥ 2.

Let

O = {〈i, j〉 | i 6= j ∧ i < n ∧ j < n}. (4.17)

Let

O0 = {q | ϕq(0)↑ ∨ [ϕq(0)↓ 6∈ O ∧ Wq infinite]}. (4.18)

60

Let

O1 = {q | ϕq(0)↓ 6∈ O ∧ Wq finite}. (4.19)

For each i < n, let

Si =

{q | [ϕq(0)↓ ∈ {〈x, i〉 | 〈x, i〉 ∈ O} ∧ Wq finite] ∨

[ϕq(0)↓ ∈ {〈i, x〉 | 〈i, x〉 ∈ O} ∧ Wq infinite]}.
(4.20)

Let

M0 = (S0 ∪O0). (4.21)

Let

M1 = (S1 ∪O1). (4.22)

For each i ≥ 2 st i < n, let

Mi = Si. (4.23)

Claim 1. The union of all Mi is N.

Proof of Claim 1. Suppose by way of contradiction there exists some q such that

q is not in the union of all the Mi.

Case one: ϕq(0)↑. Then, q ∈M0 by (4.18); a contradiction.

Case two: ϕq(0)↓ 6∈ O, and Wq is infinite. Then, q ∈M0 by (4.18); a contradic-

tion.

Case three: ϕq(0)↓ 6∈ O, and Wq finite. Then, q ∈M1 by (4.19); a contradiction.

Case four: ϕq(0)↓ ∈ O. Then, by (4.17), there exists some i, j such that i 6=

j, i < n, j < n, 〈i, j〉 ∈ O, and ϕq(0) = 〈i, j〉.

Subcase one: Wq finite. Then, by (4.20), q is in Mj; a contradiction.

Subcase two: Wq is infinite. Then, by (4.20), q is in Mi; a contradiction.

Hence, in any case we have a contradiction. Therefore, q is in the union of all

Mi, and the claim follows. Claim 1

Claim 2. For any i < n, and any j < n, st i 6= j, Mi and Mj are disjoint.

61

Proof of Claim 2. Suppose by way of contradiction there exists some i, j < n,

and there exists q such that i 6= j and q ∈ (Mi ∩Mj).

Case one: ϕq(0)↑. Then, q ∈ M0 by (4.18). By (4.19) and (4.20), q is not in

any other set; a contradiction.

Case two: ϕq(0)↓ 6∈ O, and Wq is infinite. Then, q ∈ M0 by (4.18). By (4.19)

and (4.20), q is not in any other set; a contradiction.

Case three: ϕq(0)↓ 6∈ O, and Wq finite. Then, q ∈ M1 by (4.19); By (4.18) and

(4.20), q is not in any other set; a contradiction.

Case four: ϕq(0)↓ ∈ O, and Wq is infinite. Then, by (4.17), ϕq(0) = 〈i′, j′〉, i′ <

n, j′ < n, and i′ 6= j′. q is not in O0 nor O1 by (4.18) and (4.19). By (4.20), q is in

Si′ , and not in Sj′ . Then, by (4.21), (4.22), and (4.23), q is in exactly and only Mi′ , a

contradiction.

Case five: ϕq(0)↓ ∈ O, and Wq finite. Then, by (4.17), ϕq(0) = 〈i′, j′〉, i′ <

n, j′ < n, and i′ 6= j′. q is not in O0 nor O1 by (4.18) and (4.19). By (4.20), q is in

Sj′ , and not in Si′ . Then, by (4.21), (4.22), and (4.23), q is in exactly and only Mj′ , a

contradiction.

All of the cases lead to a contradiction. Therefore, there are no such i, j, q; the

claim immediately follows. Claim 2

Claim 3. For any i, j < n st i 6= j, the sequence Eq, q ∈ (Mi ∪Mj) is not uniformly

c-productive.

Proof of Claim 3. By Theorem 13, (Mi ∪Mj) is uniformly c-productive if and

only if Mi ∪Mj contains a c.e. set A st A has a program for some extension of each

finite function. Suppose for contradiction the claim fails; hence, there is such a c.e. A.

By (4.20), all finite function extensions of (0, 〈j, i〉) have all their programs in

Mi, and all infinite partial computable extensions of (0, 〈j, i〉) have all their programs

in Mj; thus, all partial computable extensions of (0, 〈j, i〉) have all their programs in

(Mi ∪Mj); hence, the complement of that set (which includes A) has no programs for

such extensions, a contradiction. Claim 3

62

Claim 4. For any i < n, the set Mi is uniformly c-productive.

Proof of Claim 4. By Kleene’s S-m-n Theorem [44], there exist computable func-

tions q1, q2, q3 such that, for each x, z,

ϕq1(x)(z) =

Fx(z), if z ∈ δFx;

0, otherwise.

(4.24)

ϕq2(x)(z) = Fx(z). (4.25)

ϕq3(x)(z) =

〈i, i〉, if z = 0;

Fx(z), otherwise.

(4.26)

Case one: i ≥ 1 st i < n. Let p be the code number of a program as follows:

ϕp(x) =

q1(x), if (∃y)[Fx(0)↓ = 〈y, i〉 ∧ Fx(0) ∈ O];

q2(x), otherwise.

(4.27)

Subclaim 3. ϕp is total.

Proof of Subclaim 3. Determining if Fx(0) is defined is computable, treating

it as an ordered pair and extracting the second component to compare to i is also

computable, and determining if something is a member of O is computable in a similar

fashion. Thus, the subclaim follows. Subclaim 3

Subclaim 4. The range of ϕp is a subset of Mi

Proof of Subclaim 4. For all x, one of the following two cases holds:

Case (a): (∃y)[Fx(0)↓ = 〈y, i〉 ∧ Fx(0) ∈ O]. Then, by (4.27) (∃y)[ϕϕp(x)(0)↓ =

〈y, i〉 ∧ 〈y, i〉 ∈ O], and Wϕp(x) is infinite. Therefore, ϕp(x) is not in Mi.

Case (b): Otherwise. Thus, ϕϕp(x) = Fx, and therefore Wϕp(x) is finite.

By (4.20), all programs which are in Mi and compute finite functions are such that the

63

value of their computed function on input 0 is 〈y, i〉 for some y < n. If Fx were such a

function, Case (a) would hold instead. Therefore, ϕp(x) is not in Mi.

Subclaim 4

Subclaim 5. For all x, there is a program in the range of ϕp which computes a partial

function that extends Fx.

Proof of Subclaim 5. This follows directly from (4.27) and Subclaim 3.

Subclaim 5

By Subclaims 3, 4, and 5, the range of ϕp is a c.e. subset of Mi such that for

any finite function Fx, there is a program in that c.e. subset which extends Fx. By

Theorem 13, Mi is uniformly c-productive in this case.

Case two: i = 1. Let p be the code number of a program as follows:

ϕp(x) =

q1(x), if (∃y)[Fx(0)↓ = 〈y, i〉 ∧ Fx(0) ∈ O] ∨ Fx(0)↓ 6∈ O;

q2(x), otherwise.

(4.28)

The proof of Subclaim 3 is applicable to an identical subclaim mutatis mutandis. The

proof of Subclaim 4 works if Case (a) is replaced with two subcases; Subcase i is

identical to Case (a), while Subcase ii is the case where Fx(0)↓ 6∈ O; in that instance,

ϕp(x) is in M0 by (4.18), and thus by Claim 2 is not in M1. The proof of Subclaim 5

holds mutatis mutandis. Thus, just as per Case one, M1 is uniformly c-productive.

Case three: i = 0. Let p be the code number of a program as follows:

ϕp(x) =


q3(x), if 0 6∈ Fx;

q1(x), if (∃y)[Fx(0)↓ = 〈y, i〉 ∧ Fx(0) ∈ O];

q2(x), otherwise.

(4.29)

The proof of Subclaim 3 is applicable to an identical subclaim mutatis mutandis. The

proof of Subclaim 4 works if Case (b) is renamed to Case (c) and a new Case (b) is

inserted between Case (a) and Case (c); the new Case (b) is: 0 is not in Fx. In Case (b),

64

ϕq is finite and ϕq(0)↓ 6∈ O; thus, by (4.19), q in M1. Thus, by Claim 2, q is not in M0.

The proof of Subclaim 5 holds mutatis mutandis. Thus, just as per Cases one and two,

M0 is uniformly c-productive.

As Mi is uniformly c-productive for all i < n, the claim holds. Claim 4

Claims 1, 2, 3, 4 together provide exactly the statement of the corollary.

Corollary 5

4.4 Further Examples and Future Work

We see that Eq = {x | ϕx 6= ϕq}. Clearly, for each q such that domain(ϕq) = ∅,

Eq is c.e.

Let Mne = {q | domain(ϕq) 6= ∅}.

Then, by an omitted Σ0
1-LEM KPRT argument, the sequence, Eq, q ∈Mne,

is uniformly c-productive — as witnessed by a total computable function. Again,

our division into cases is of the form (4.10), and it is open whether this is minimally

non-constructive.

The sequence {x | Wx = Wq}, q ∈ N, and its complementary sequence satisfy

results like the Eqs and Eqs mutatis mutandis, e.g., for the Characterization Theorem,

Fx is replaced by Rogers’ [44] Dx, the finite set with canonical index x. We omit the

straightforward details.

An aside: my advisor initially suspected that each index set is either c.e. or

c-productive, but couldn’t prove it; we can now prove that some index set S (perhaps

a possible Sq) is neither c.e. nor c-productive! We prove this in the next subsection

(Section 4.4.1). Curiously, then, by a proof of Rice’s Theorem [44], S must be ≥1 K,

hence [44] c-productive.

4.4.1 An Index Set Neither C.E. Nor C-Productive

Theorem 14. Given any set S, there exists an index set S ′ such that S ′ is c.e if and

only if S is c.e., and, if S ′ is c-productive, then so is S.

65

Proof of Theorem 14. Let S ′ = {p | ϕp(0)↓ ∈ S}.

Clearly S ′ is an index set.

Clearly too, if S is c.e., then S ′ is c.e..

Claim 34. If S ′ is c.e., then S is c.e..

Proof of Claim 34. Assume S ′ is c.e.. Then there exists s′ such that Ws′ = S ′.

Let s be a program such that Ws = {x | (∃p ∈ Ws′)[ϕp(0) = x]}. Clearly, S = Ws,

therefore S is c.e. Claim 34

Claim 35. If S ′ is c-productive, then S is c-productive.

Proof of Claim 35. Assume S ′ is c-productive as witnessed by computable function

f ′.

Let p be defined such that ϕp(x, y) is the yth element (if any) in a double-

dovetailed enumeration of programs which on input 0 output a value in Wx, and un-

defined if no such element exists.

By S-m-n there is a computable function λx (px) st, for each x, y, ϕpx(y) =

ϕp(x, y).

Let θ be the partial computable function st, for each x, θ(x) = ϕf ′(px)(0).

Suppose by way of contradiction that θ is not total. Let x be least st θ(x)↑.

Then, by the assumption that f ′ witnesses the c-productivity of S ′, there is some w =

f ′(px) st ϕw(0)↑. Then, w 6∈ Wpx . Furthermore, by the definition of S ′, w 6∈ S ′. But

this means that f ′ does not witness the c-productivity of S ′ on input px, a contradiction.

Therefore, f = θ is total. So, f is computable st, for each x, f(x) = ϕf ′(px)(0).

By the assumption that f ′ witnesses the c-productivity of S ′, it follows that, for

each x, exactly one of the following two cases holds:

Case one: f ′(px) ∈ (Wpx − S ′). By the construction of px and the definition of

S ′, this implies that ϕf ′(px)(0) ∈ (Wx − S). Thus, f(x) ∈ (Wx − S).

Case two: f ′(px) ∈ (S ′ −Wpx). Thus, f(x) ∈ (S −Wx).

66

Therefore, by Cases one and two, f is a witness to the c-productivity of S.

Claim 35

The theorem follows from the claims. Theorem 14

The desired result for the present subsection follows.

Corollary 6. There exists an index set which is neither c.e. nor c-productive.

Proof of Corollary 6. Immune sets are neither c.e. nor c-productive, thus, by

Theorem 14 above, there exists an index set S ′, corresponding to an immune set S,

which is neither c.e. nor c-productive. Corollary 6

4.4.2 Some Subrecursive Examples

In this section we consider a wide variety of “natural” subrecursive programming

systems ψ, including for such subrecursive classes as: for k > 0, the functions com-

putable in time bounded by a k-degree polynomial; the polynomial time computable

functions; the elementary recursive functions; and other levels of the Meyer-Ritchie

[36] loop hierarchy.

Let Cq = {x | ψx = ψq}. Trivially, each Cq is c.e.

In this section our main goal is to prove Theorem 16 below (in Section 4.4.2.2

below) that the sequence Cq, q ∈ N, is uniformly c-productive, and, interestingly, as

witnessed by a two-argument function f computable in linear-time in the lengths of its

inputs. We had had an f linear-time in the length of its second input, and Jim Royer

supplied a suggestion which enabled getting f linear-time in the lengths of both its

inputs.

Before we prove that theorem, we describe a bit informally (but with references

to more detail) nice clocked programming systems for subrecursive classes such as

the above. We spell out two Assumptions as to for which subrecursive classes and

corresponding programming systems we can prove this theorem. We prove (mostly

with a few citations and hints as to underlying ideas from the Royer-Case monograph

67

[47]), as an example, Theorem 15 (in Section 4.4.2.2) below that, for k > 0, the nice

clocked systems for the class of functions computable in k-degree polynomial time do

satisfy our two Assumptions.

Let θk be such a programming system. For this system, let f be the associated

function mentioned above. For each fixed q, y, f(q, y) is a θk-program, which, then, on

any input z, runs within time O(|z|k). For these particular θk-systems, the lower -bound

run time cost of running corresponding universal (simulator) programs is known to be

very high. We examine the best known (exponential) upper -bound cost of simulating,

for the associated f , the run time cost, as a function of all of q, y, z, of computing

θk
f(q,y)(z). Lastly, Theorem 17 (in Section 4.4.2.2) below lays out an explicit O-formula

for this exponential cost.

4.4.2.1 Preliminaries

Residually unexplained notation or terminology is from Rogers’ book and/or

the Royer-Case monograph [44, 47].

As above we choose our multi-argument “pairing” 〈·, . . . , ·〉 (and unpairing)

function(s) to be computable in linear-time in the lengths of arguments on multi-tape

Turing Machines.10 For one-argument functions α we write α(z1, . . . , zm) to mean

α(〈z1, . . . , zm〉) [47].

For this section we suppose S is a c.e. class of one-argument computable func-

tions [44] and that ψ is a “natural” subrecursive programming system (numbering)

for this S, with ψ’s universal function λ〈q, z〉 (ψq(z)) being (at least) computable11,

10 Of course, as in Rogers’ book [44], for each m > 1, λy1, . . . , ym (〈y1, . . . , ym〉) :
Nm → N is 1-1 and onto. For this chapter, we won’t need names for the unpairing
functions.

11 Of course, since all the ψqs are total, λ〈q, z〉 (ψq(z)) is not in S.
In [47] there are many calculations of complexity upper-bounds (and some lower-
bounds) for universal functions. In the proof of the last theorem below in Section 4.4.2.2
(Theorem 17), we employ one such upper-bound.

68

and where S and ψ satisfy the “closure” properties Assumptions 1 and 2 spelled out

further below.

First it is pedagogically useful to provide typical examples of such S and ψ.

We let ϕTM be the acceptable programming system based on efficiently num-

bered, deterministic, base 2 I/O, multi-tape Turing machines (TMs) — all from [47,

Chapter 3 & Errata]. ΦTM is the corresponding TM step-counting Blum Complexity

Measure [3].

Suppose k > 0.

We let Ptimek [47, Definition 3.3] be the class of functions: N → N each com-

puted by some ϕTM-program which, on each input z, has ΦTM-complexity in O(|z|k).

Ltime denotes Ptime1, the class of linear-time computable functions. Of course

Ptime=
⋃

k>0Ptimek is the class of polynomial time computable functions.

We let θk be a very natural, so-called Ltime-effective clocked programming sys-

tem (numbering) with respect to (ϕTM,ΦTM) and for the class Ptimek (see especially

[47, Sections 3.2.2 & 4.2 & Chapter 6]). Associated with θk are functions trans and

positive-valued bound, each nicely ∈ Ltime. Each θk-program q directly/efficiently

codes both a ϕTM-program p and a positive coefficient a for the run time (upper)

bound (a|z|)k.12

Here is how to think about the running of θk-program q on input z. The ϕTM-

program trans(q) does the work: trans(q) on z computes (a|z|)k and directly runs p on

z for no more than (a|z|)k steps. If p halts by then, trans(q)’s (as well as q’s) output

is p’s output; else, trans(q) outputs some default value (which is, then, also q’s output

value). The working of trans(q), of course, may take a bit more than time on z than

12 As in [47] we are using (a|z|)k instead of the more natural a(|z|)k. Curiously, the
latter does not provide Ltime-effective full composition for all of Ptime, but the former
(with an extra +1) does. Ltime-effective inner and outer composition with Ltime
for Ptimek does work for the latter, but with somewhat larger coefficients for the
compositions and a little smaller exponent for [47, Theorem 6.4]. We employ this
latter theorem in the proof of our Theorem 17 below, so we’ll stick with (a|z|)k for
Ptimek for our Section 4.4.2.2 below.

69

(a|z|)k, e.g., because it spends time on computing this run time bound coded in q;

however, in any case, trans(q) on z runs within time (bound(q)|z|)k. In symbols:

(∀q, z)[θk
q (z) = ϕTM

trans(q)(z) & ΦTM
trans(q)(z) ≤ (bound(q)|z|)k]. (4.30)

Both general and specific technical details about various clocked systems are in [47,

Section 3.2.2 & Chapters 4–6].

Technical details for many Ltime-effective clocked systems, including also for

the polynomial time computable functions, the elementary recursive functions, other

levels of the Meyer-Ritchie [36] loop hierarchy, . . . , can be found in [47, Section 4.2

& Chapters 5 & 6].

As we will see in Theorem 15 further below, (S, ψ) = (Ptimek, θ
k) satisfies our

above mentioned Assumptions 1 and 2 which are presented shortly below. Actually,

the other complexity classes and corresponding clocked systems mentioned at the end

of the just prior paragraph also satisfy Assumptions 1 and 2, but we omit herein

verification details regarding that.

Assumption 1. S contains the identity function and is closed under inner and outer

composition with Ltime; hence, in particular, S contains Ltime and is closed under

finite variants. Moreover, the closure of S under outer composition with Ltime is

Ltime-effective for ψ in the following somewhat weak sense.13 For each g ∈ Ltime and

each m > 0, there is a function comp ∈ Ltime st, for each q1, . . . , qm, z,

ψcomp(q1,...,qm)(z) = g(ψq1(z), . . . , ψqm(z)). (4.31)

Assumption 2. ψ satisfies the Constructive Ltime-effective Parametric Recursion

Theorem, i.e., for each m > 0, there is a function r ∈ Ltime st, for each p, y1, . . . , ym, z,

ψr(p,y1,...,ym)(z) = ψp(r(p, y1, . . . , ym), y1, . . . , ym, z). (4.32)

Intuitively, (4.32) says that ψ-program r(p, ~y) has p, ~y stored inside, and, on input z:

it creates a self-copy (seen on the right-hand side of (4.32)); it pulls p, ~y out of storage;

13 This weak sense is a little more than enough to prove our Theorem 16 below.

70

and it runs ψ-task/program p on its self-copy, ~y, z. Task p represents the use which

r(p, ~y) makes of its self-copy/self-knowledge (and of its stored p, ~y and input z).14

We employ the convenient discrete log function from [47, Page 22]: for any

x ∈ N, log x
def
= (blog2 xc, if x > 1; 1, if x ≤ 1).

4.4.2.2 Results

Theorem 15. (S, ψ) = (Ptimek, θ
k) satisfies our Assumptions 1 and 2 just above.

Proof of Theorem 15. The essential idea behind the proof of this theorem (and

of similar results for the other nicely clocked programming systems mentioned above)

is that clocked systems inherit effective closure properties (which can be thought of

as instances of control structures, e.g., see [47, Section 4.2.3] & [46]) from the system,

e.g., ϕTM, out which they are built.15

One gets Assumption 1 and much more, for (Ptimek, θ
k), from [47, Theo-

rem 6.3(a, b)].

Assumption 2 and more, for (Ptimek, θ
k), follows from [47, Theorem 6.3(d)].

Theorem 15

14 Our Assumptions 1 and 2 imply the analogous pair of assumptions in [9], but,
thanks to the weak Ltime-effectivity part of Assumption 1 above, the assumptions in
this chapter are apparently stronger.
Actually, all the classes and corresponding systems mentioned above satisfy much
stronger Ltime-effective closure under compositions (including inner ones too) with
Ltime. For k ≥ 2, Ptimek is not closed under compositions with Ptimek, but, each
of the other subrecursive classes mentioned just above together with corresponding
clocked system satisfies full Ltime-effective closure under arbitrary compositions of
functions within the class.
Moreover, each class above and corresponding clocked system satisfies the Constructive,
Ltime-effective Multiple Parametric Recursion theorem. For some details, see the above
mentioned parts of [47].

15 They also inherit corresponding complexity e.g., ΦTM, properties from the control
structures.

71

As above, let Cq = {x | ψx = ψq}. As noted above: trivially, each Cq is c.e.,

and, as indicated above, the next theorem’s proof employs help from Jim Royer. It’s

proof is constructive relative to the limited non-constructivity Σ0
1-LEM [1].

Theorem 16. The sequence Cq, q = 0, 1, 2, . . . is uniformly c-productive — as witnessed

by a two-argument function f ∈ Ltime.

Proof of Theorem 16. We let ΦSlowedDownTM be the special, slowed-down/delayed

step-counting measure associated with the acceptable ϕTM-system from [47, Theo-

rem 3.20]. In the proof of [47, Theorem 3.20], for the case of (ϕTM,ΦTM), ΦSlowedDownTM

is obtained from the standard ΦTM measure associated with ϕTM, by a log log-delay

trick. ΦSlowedDownTM has the nice property (among others) that the predicate T
def
=

λw, y, z (1, if ΦSlowedDownTM
y (w) ≤ z; 0, otherwise) ∈ Ltime! (4.33)

It is an immediate ϕTM-programming exercise to show

Ltime is closed under definition by if-then-else. (4.34)

Hence, by (4.33, 4.34), g just below is clearly ∈ Ltime.

g(w, x, y, z) =

1 + x, if T (w, y, z);

x, otherwise.

(4.35)

Therefore, by Assumption 1, there is a function cmp ∈ Ltime st,

(∀w, q, y, z)[ψcmp(q)(w, y, z) = g(w,ψq(z), y, z)]. (4.36)

Hence, by (4.35, 4.36), for all w, q, y, z,

ψcmp(q)(w, y, z) =

1 + ψq(z), if T (w, y, z);

ψq(z), otherwise.

(4.37)

By the m = 2 case of Assumption 2, we have that there is a function r ∈ Ltime

st, for all p, q, y, z,

ψr(p,q,y)(z) = ψp(r(p, q, y), q, y). (4.38)

72

From the p = cmp(q) case of (4.38) and the w = r(cmp(q), q, y) case of (4.37),

for all, q, y, z,

ψr(cmp(q),q,y)(z) =

1 + ψq(z), if T (r(cmp(q), q, y), y, z);

ψq(z), otherwise.

(4.39)

Let f(q, y) = r(cmp(q), q, y). f is a composition of functions ∈ Ltime; hence, f

is also ∈ Ltime.

It is, then, straightforward to verify that, for each q, y ∈ N,

f(q, y) ∈ (Cq 4Wy); (4.40)

however, this verification involves consideration of the cases f(q, y) ∈ Wy vs. not, and

this is what employs Σ0
1-LEM. Theorem 16

Future work: minimize non-constructivity here & elsewhere, a Reverse Mathe-

matics project.

From here until the end of the present section we will work primarily with

(S, ψ) = (Ptimek, θ
k). To make this clear below, we will mostly write θk in place of ψ.

Let f be from Theorem 16 for the case of (S, ψ) = (Ptimek, θ
k). We know

already that f(q, y) can be computed in linear-time in the lengths of q, y. Of course,

for each fixed q, y, f(q, y) is a θk-program, and, so, θk
f(q,y) runs within time some k-

degree polynomial evaluated at the lengths of its arguments.

We are interested next in how hard it is to compute θk
f(q,y)(z) as a function of

all of q, y, z. We, then, run up against the high cost of universality for the θk-system.

From [47, Theorem 6.5], the general cost of universality even for θ1 is worse than Ptime.

Kozen [30, Theorem 7.4] showed the general cost of universality for sensible systems

for all of Ptime is worse than Pspace.

Theorem 17. For some constants b, c > 0, θk
f(q,y)(z) is computable in

O(2b(ck+1)|(|q|+|y|)||z|k log |z|) time. (4.41)

73

Proof of Theorem 17. Since f ∈ Ltime,

(∃ a constant b > 0)(∀q, y)[|f(q, y)| ≤ b(|q|+ |y|)]. (4.42)

Mostly from [47, Theorem 6.4] and parts of its proof, we have:

for some constant

c > 0, θk
p(z) is computable in

O(2(ck+1)|p||z|k log |z|) time. (4.43)

In particular, we see that the run time just above is exponential in the size of

the program p to be simulated.

The proof of [47, Theorem 6.4] makes use of the inequalities (4.30) above re trans

and bound, that they are each in Ltime, the sentence just before [47, Theorem 4.16],

and, also, [47, Corollary 3.7] which provides an upper-bound on the general time cost of

time-bounded (ϕTM,ΦTM)-universal simulation. That cost is exponential in the length

of the time-bound’s value.

Therefore, from (4.42, 4.43), we have the desired theorem. Theorem 17

74

BIBLIOGRAPHY

[1] Y. Akama, S. Berardi, S. Hayashi, and U. Kohlenbach. An arithmetical hierarchy
of the law of excluded middle and related principles. 19th Annual Symposium on
Logic in Computer Science (LICS’04), pages 192–201, 2004.

[2] A. Bauer. Constructive gem: irrational to the power of irrational that is rational,
2009. See math.andrej.com/2009/12/28/ for the article.

[3] M. Blum. A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322–336, 1967.

[4] M. Blum. On effective procedures for speeding up algorithms. J. ACM, 18(2):290–
305, 1967. http://doi.acm.org/10.1145/321637.321648.

[5] A. Borodin, R. Constable, and J. Hopcroft. Dense and nondense families of com-
plexity classes. In Tenth Annual Symposium on Switching and Automata Theory,
pages 7–19, 1969.

[6] D. Bridges and C. Calude. On recursive bounds for the exceptional values in
speed-up. Theoretical Computer Science, 132:387–394, 1994.

[7] L.E.J. Brouwer. In D. van Dalen, editor, Brouwer’s Cambridge Lectures on Intu-
itionism. Cambridge University Press, 1981.

[8] S. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986. Revision of 1985 Ph.D.
Thesis: http://www.math.ucsd.edu/~sbuss/ResearchWeb/BAthesis/ (Depart-
ment of Mathematics, Princeton University).

[9] J. Case. Effectivizing inseparability. Zeitschrift für Mathema-
tische Logik und Grundlagen der Mathematik, 37:97–111, 1991.
http://www.eecis.udel.edu/˜case/papers/mkdelta.pdf corrects missing set
complement signs in definitions in the journal version.

[10] J. Case and T. Kötzing. Difficulties in forcing fairness of polynomial time induc-
tive inference. In 20th International Conference on Algorithmic Learning Theory
(ALT’09), volume 5809 of Lecture Notes in Artificial Intelligence, pages 263–277,
2009.

75

[11] J. Case and M. Ralston. Non-obfuscated yet unprovable pro-
grams, 2011. Asian Logic Conference 2011, Wellington, NZ. See
www.eecis.udel.edu/~case/slides/obfusc-slides.pdf for the slides.

[12] J. Case and M. Ralston. Beyond Rogers’ non-constructively computable function.
In P. Bonizzoni, V. Brattka, and B. Löwe, editors, The Nature of Computation
- Ninth Conference of Computability in Europe (CiE 2013), Proceedings, volume
7921 of Lecture Notes In Computer Science, pages 45–54. Springer, Berlin, 2013.

[13] J. Case, M. Ralston, and Y. Akama. A non-uniformly c-productive sequence &
non-constructive disjunctions, 2013. Asian Logic Conference 2013, Guangzhou,
P.R. China. See www.eecis.udel.edu/~case/slides/unif-prod-slides.pdf

for the slides.

[14] J.P. Cleave. Creative functions. Zeitschrift für Mathematische Logik und Grund-
lagen der Mathematik, 10:205–212, 1961.

[15] M. Davis, R. Sigal, and E. Weyuker. Computability, Complexity, and Languages.
Academic Press, second edition, 1994.

[16] J. Dekker. Productive sets. Trans. of AMS, 78:129–149, 1955.

[17] F. Drake. Set Theory: An Introduction to Large Cardinals. North-Holland, 1974.

[18] S. Feferman. Arithmetization of metamathematics in a general setting. Funda-
menta Mathematicae, 49:35–92, 1960.

[19] H. Friedman. A proof of padding-once, 1974. Private communication.

[20] M. Genesereth. Logical Foundations Of Artificial Intelligence. Morgan Kaufmann,
1987.

[21] K. Gödel. On formally undecidable propositions of Principia Mathematica and
related systems I. In S. Feferman, editor, Kurt Gödel. Collected Works. Vol. I,
pages 145–195. Oxford Univ. Press, 1986.

[22] C. Green. Application of theorem proving to problem solving. In Proceedings of
the First International Joint Conference on Artificial Intelligence, pages 219–239.
Morgan Kaufmann, 2081.

[23] P. Halmos. Naive Set Theory. Springer-Verlag, NY, 1974.

[24] J. Hartmanis and R. Stearns. On the computational complexity of algorithms.
Transactions of the American Mathematical Society, 117:285–306, 1965.

[25] S. Hayashi. Mathematics based on incremental learning — excluded middle and
inductive inference. Theoretical Computer Science, 350:125–139, 2006.

76

[26] A. Heyting. Intuitionism: An Introduction. North-Holland, Amsterdam, 1971.
Third edition.

[27] T. Jech. Set Theory. Academic Press, NY, 1978.

[28] A. Kanamori. The Higher Infnite: Large Cardinals in Set Theory from their
Beginnings. Springer-Verlag, 2008.

[29] U. Kohlenbach. Proof theory and computational analysis. Electronic Notes in
Theoretical Computer Science, 13:124–157, 1998.

[30] D. Kozen. Indexings of subrecursive classes. Theoretical Computer Science,
11:277–301, 1980.

[31] R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22:155–171, 1975.

[32] M. Machtey. On the density of honest subrecursive classes. Technical report,
Computer Science Department, Purdue University, 1973.

[33] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

[34] Y. Marcoux. Composition is almost (but not quite) as good as s-1-1. Theoretical
Computer Science, 120:169–195, 1993.

[35] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, London,
fifth edition, 2009.

[36] A. Meyer and D. Ritchie. The complexity of loop programs. In Proceedings of the
22nd National ACM Conference, pages 465–469. Thomas Book Co., 1967.

[37] J. Myhill. Creative sets. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 1:97–108, 1955.

[38] M. Nakata and S. Hayashi. A limiting first order realizability interpretation.
Scientiae Mathematicae Japonicae Online, 5:421–434, 2001.

[39] E. Post. Recursively enumerable sets of positive integers and their decision prob-
lems. Bulletin of the American Mathematical Society, 50:284–316, 1944.

[40] H. Putnam. What is innate and why: Comments on the debate. In M. Piattelli-
Palmarini, editor, Language and Learning: The Debate between Jean Piaget and
Noam Chomsky, pages 287–309. Harvard University Press, Cambridge, MA, 1980.

[41] G. Riccardi. The Independence of Control Structures in Abstract Programming
Systems. PhD thesis, SUNY Buffalo, 1980.

77

[42] G. Riccardi. The independence of control structures in abstract programming
systems. Journal of Computer and System Sciences, 22:107–143, 1981.

[43] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic
Logic, 23:331–341, 1958.

[44] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press, 1987.

[45] J. Roitman. Introduction to Modern Set Theory. 2011.
http://www.math.ku.edu/~roitman/stb3fullWeb.pdf finds the revision

to the out of print original.

[46] J. Royer. A Connotational Theory of Program Structure. Lecture Notes in Com-
puter Science 273. Springer-Verlag, 1987.

[47] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and Suc-
cinctness. Research monograph in Progress in Theoretical Computer Science.
Birkhäuser Boston, 1994. See www.eecis.udel.edu/~case/RC94Errata.pdf for
corrections.

[48] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-
Hall, NJ, third edition, 2012.

[49] C. Schnorr. Does the computational speed-up concern programming? In Proceed-
ings of the First International Colloquium on Automata, Languages and Program-
ming. North Holland, Amsterdam, 1972.

[50] C. Schnorr. Rekursive Funktionen und ihre Komplexität. Teubner, Stuttgart, 1974.

[51] S. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag, 1999.

[52] A. Troelstra, editor. Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer, 1973.

[53] A. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction,
Volume I. Studies in Logic and The Foundations of Mathematics, Number 121.
Elsevier, 1988.

78

	Table of Contents
	Abstract
	1 Introduction
	1.1 Background Concepts
	1.2 Summary of Content Chapters

	2 Non-Obfuscated Yet Unprovable Programs
	2.1 Introduction
	2.1.1 Background
	2.1.2 Mathematical Preliminaries
	2.1.2.1 Complexity-Bounded Computability
	2.1.2.2 Computably Axiomatized, Powerful, True Theories

	2.2 Results
	2.2.1 Main Result
	2.2.2 Further Results

	3 Beyond Rogers' Non-Constructively Computable Function
	3.1 Introduction
	3.1.1 Our f and Variants
	3.1.2 Our g and Variants

	3.2 Preliminaries
	3.3 Results
	3.3.1 Results About frs
	3.3.2 Results About grs

	4 A Non-Uniformly C-Productive Sequence & Non-Constructive Disjunctions
	4.1 Motivation
	4.2 Basic Definition & Relevant Theorem
	4.3 Characterizing the Index Set Cases
	4.3.1 Uniform C-Productivity of Sq, q M
	4.3.2 The Characterization
	4.3.3 Another Corollary of the Characterization

	4.4 Further Examples and Future Work
	4.4.1 An Index Set Neither C.E. Nor C-Productive
	4.4.2 Some Subrecursive Examples
	4.4.2.1 Preliminaries
	4.4.2.2 Results

	Bibliography

