Multi-axis Manufacture of Conformal Metasurface Antennas

Author(s)Gupta, Ellen
Author(s)Bonner, Colin
Author(s)Lazarus, Nathan
Author(s)Mirotznik, Mark S.
Author(s)Nicholson, Kelvin J.
Date Accessioned2023-09-07T20:14:34Z
Date Available2023-09-07T20:14:34Z
Publication Date2023-06-09
DescriptionThis article was originally published in IEEE Antennas and Wireless Propagation Letters. The version of record is available at: https://doi.org/10.1109/LAWP.2023.3282556. © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This article will be embargoed until 6/9/2025.
AbstractA conformal metasurface antenna exhibiting a pencil beam radiation pattern at 10.0 GHz has been designed using the Voronoi partition approach, and fabricated on the Kahu Uninhabited Aerial System (UAS) fuselage. Two manufacturing methods are presented and compared. The first approach utilized a 3-axis Trotec fiber laser to etch the flattened metasurface geometry in copper foil. The etched pattern was then ‘stretched’ over the UAS geometry. The second approach utilized a 6-axis nScrypt (retrofitted with an IDS aerosol jetting tool) to conformally print the metasurface pattern directly on the UAS fuselage. An electroless copper plating step was then utilized to improve the radiofrequency (RF) conductivity of the printed silver. Both manufacturing methods yielded functional metasurface antennas with equivalent performance at the operating frequency. However, the first method is limited to geometries that can be ‘flattened’ with acceptable tolerances, whereas the second approach is amenable to all practical geometries. This demonstration of two manufacturing techniques is a critical step forward in the cost-effective deployment of truly conformal metasurface antennas on realistic geometries.
SponsorThis work was supported in part by the Australian Government – Defence International Fellowship program.
CitationE. Gupta, C. Bonner, N. Lazarus, M. S. Mirotznik and K. J. Nicholson, "Multi-axis Manufacture of Conformal Metasurface Antennas," in IEEE Antennas and Wireless Propagation Letters, doi: 10.1109/LAWP.2023.3282556.
ISSN1548-5757
URLhttps://udspace.udel.edu/handle/19716/33293
Languageen_US
PublisherIEEE Antennas and Wireless Propagation Letters
Keywordsantenna
Keywordsmetasurface
KeywordsVoronoi
Keywordsadditive manufacturing
Keywordsaerosol
TitleMulti-axis Manufacture of Conformal Metasurface Antennas
TypeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Multi-axis Manufacture of Conformal Metasurface Antennas.pdf
Size:
4.89 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
124 B
Format:
Item-specific license agreed upon to submission
Description: