Boundary Integral Methods in Low Frequency Acoustics
Date
2000
Authors
Hsiao, George C.
Wendland, W.L.
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Mathematical Sciences
Abstract
This expository paper is concerned with the direct integral formulations
for boundary value problems of the Helmholtz equation. We discuss unique
solvability for the corresponding boundary integral equations and its relations
to the interior eigenvalue value problems of the Laplacian. Based on the integral
representations, we study the asymptotic behaviors of the solutions to the
boundary value problems when the wave number tends to zero. We arrive at
the asymptotic expansions for the solutions, and show that in all the cases, the
leading terms in the expansions are always the corresponding potentials for the
Laplacian. Our integral equation procedures developed here are general enough
and can be adapted for treating similar low frequency scattering problems.
Description
Keywords
boundary integral equations , the Calderon projector low frequency acoustics , asymptotic expansion