Department: University of Delaware. Department of Chemical & Biomolecular Engineering.
Publisher: Elsevier
Date Issued: 2017
Abstract: It has been proposed that the combination of metal and acid sites is critical for effective ring opening of biomass-derived furans to linear molecules, a reaction that holds promise for the production of renewable polymer precursors and alkanes. In this work, we use 2,5-dimethylfuran (DMF) as a model compound to investigate hydrogenolysis and hydrogenation pathways using a combination of H2SO4 and Ru-mediated catalytic transfer hydrogenation in 2-propanol. Acid-catalyzed hydrolytic ring opening of DMF to 2,5-hexanedione (HDN) occurs readily at 80 °C with a selectivity of 89% in 2-propanol. Over Ru/C, HDN is fully converted after only 2 h at 80 °C, forming a mixture of both ring-closed products (~68% total yield), i.e., 2,5-dimethyltetrahydrofuran (DMTHF) and 2,5-dimethyl-2,3-dihydrofuran (DMDHF), as well as ring opened products (~28% total yield), i.e., 2,5-hexanediol (2,5-HDL) and 2-hexanol (HOL). Rather than observing sequential hydrolysis/hydrogenation reactions, we observe severe suppression of metal chemistry when having both Ru/C and H2SO4 in the reaction system. While minor leaching of Ru occurs in the presence of mineral acids, X-ray photoelectron spectroscopy coupled with CO chemisorption studies suggest that the primary cause of the lack of Ru-mediated chemistry is poisoning by strongly adsorbed sulfate species. This hypothesis is supported by the observation of Ru-catalyzed chemistry when replacing H2SO4 with Nafion, a solid Brønsted acid, as sulfonic acid groups tethered to the polymer backbone cannot adsorb on the metal sites.
Description: Author's final draft after peer review
Gilkey, Matthew J., Dionisios G. Vlachos, and Bingjun Xu. "Poisoning of Ru/C by homogeneous Brønsted acids in hydrodeoxygenation of 2, 5-dimethylfuran via catalytic transfer hydrogenation." Applied Catalysis A: General 542 (2017): 327-335.