Open Access Publications
Permanent URI for this collection
Open access publications by faculty, staff, postdocs, and graduate students from the Catalysis Center for Energy Innovation.
Browse
Browsing Open Access Publications by Subject "climate action"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dynamic Electrification of Dry Reforming of Methane with In Situ Catalyst Regeneration(ACS Energy Letters, 2023-02-10) Yu, Kewei; Wang, Cong; Zheng, Weiqing; Vlachos, Dionisios G.We report the design and performance of a rapid pulse Joule heating (RPH) reactor with an in situ Raman spectrometer for highly endothermic, reversible reactions. We demonstrate it for methane dry reforming over a bimetallic PtNi/SiO2 catalyst that shows better performance than its monometallic counterparts. The catalyst temperature ramp rate can reach ∼14000 °C/s, mainly owing to the low thermal mass and resistivity of the heating element. Joule heating elements afford temperatures unachievable by conventional technology to enhance performance and more than double the energy efficiency. Dynamic electrification can increase syngas productivity and rate. Extensive characterizations suggest that pulse heating creates an in situ catalyst regeneration strategy that suppresses coke formation, sintering, and phase segregation, resulting in improved catalyst stability, under many conditions. Potentially driven by renewable electricity, the RPH can provide superb process advantages for high-temperature endothermic reactions and lead to negative carbon emissions.Item Sustainable Aviation Fuel Molecules from (Hemi)Cellulose: Computational Insights into Synthesis Routes, Fuel Properties, and Process Chemistry Metrics(ACS Sustainable Chemistry and Engineering, 2024-08-13) Chang, Chin-Fei; Paragian, Kristin; Sadula, Sunitha; Rangarajan, Srinivas; Vlachos, Dionisios G.Production of sustainable aviation fuels (SAFs) can significantly reduce the aviation industry’s carbon footprint. Current pathways that produce SAFs in significant volumes from ethanol and fatty acids can be costly, have a relatively high carbon intensity (CI), and impose sustainability challenges. There is a need for a diversified approach to reduce costs and utilize more sustainable feedstocks effectively. Here, we map out catalytic synthesis routes to convert furanics derived from the (hemi)cellulosic biomass to alkanes and cycloalkanes using automated network generation with RING and semiempirical thermochemistry calculations. We find >100 energy-dense C8–C16 alkane and cycloalkane SAF candidates over 300 synthesis routes; the top three are 2-methyl heptane, ethyl cyclohexane, and propyl cyclohexane, although these are relatively short. The shortest, least endothermic process chemistry involves C–C coupling, oxygen removal, and hydrogen addition, with dehydracyclization of the heterocyclic oxygens in the furan ring being the most endothermic step. The global warming potential due to hydrogen use and byproduct CO2 is typically 0.7–1 kg CO2/kg SAF product; the least CO2 emitting routes entail making larger molecules with fewer ketonization, hydrogenation, and hydrodeoxygenation steps. The large number of SAF candidates highlights the rich potential of furanics as a source of SAF molecules. However, the structural dissimilarity between reactants and target products precludes pathways with fewer than six synthetic steps, thus necessitating intensified processes, integrating multiple reaction steps in multifunctional catalytic reactors.