Browsing by Author "Wang, Ziqing"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency(PLoS ONE, 2022-07-01) Wang, Ziqing; Özçam, Mustafa; Abasht, BehnamFeed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2).Item RNA-sequencing revisited data shed new light on wooden breast myopathy(Poultry Science, 2024-06-21) Bordini, Martina; Wang, Ziqing; Soglia, Francesca; Petracci, Massimiliano; Schmidt, Carl J.; Abasht, BehnamWooden Breast (WB) abnormality represents one of the major challenges that the poultry industry has faced in the last 10 years. Despite the enormous progress in understanding the mechanisms underlying WB, the precise initial causes remain to be clarified. In this scenario, the present research is intended to characterize the gene expression profiles of broiler Pectoralis major muscles affected by WB, comparing them to the unaffected counterpart, to provide new insights into the biological mechanisms underlying this defect and potentially identifying novel genes likely involved in its occurrence. To this purpose, data obtained in a previous study through the RNA-sequencing technology have been used to identify differentially expressed genes (DEGs) between 6 affected and 5 unaffected broilers’ breast muscles, by using the newest reference genome assembly for Gallus gallus (GRCg7b). Also, to deeply investigate molecular and biological pathways involved in the WB progression, pathways analyses have been performed. The results achieved through the differential gene expression analysis mainly evidenced the downregulation of glycogen metabolic processes, gluconeogenesis, and tricarboxylic acid cycle in WB muscles, thus corroborating the evidence of a dysregulated energy metabolism characterizing breasts affected by this abnormality. Also, genes related to hypertrophic muscle growth have been identified as differentially expressed (e.g., WFIKKN1). Together with that, a downregulation of genes involved in mitochondrial biogenesis and functionality has been detected. Among them, PPARGC1A and PPARGC1B chicken genes are particularly noteworthy. These genes not only have essential roles in regulating mitochondrial biogenesis but also play pivotal roles in maintaining glucose and energy homeostasis. In view of that, their downregulation in WB-affected muscle may be considered as potentially related to both the mitochondrial dysfunction and altered glucose metabolism in WB muscles, and their key involvement in the molecular alterations characterizing this muscular abnormality might be hypothesized.Item Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens(Scientific Reports, 2024-02-11) Wang, Ziqing; Khondowe, Paul; Brannick, Erin; Abasht, BehnamThis study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.