Browsing by Author "Wang, Lingyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Coherent Integration Method for Moving Target Detection in a Parameter Jittering Radar System Based on Signum Coding(IEEE Signal Processing Letters, 2022-11-04) Huang, Penghui; Xia, Xiang-Gen; Wang, Lingyu; Liu, Xingzhao; Liao, GuishengIn this letter, we propose a novel long-time coherent integration detection method to detect an uncooperative moving target in a frequency and pulse repetition interval randomly jittering radar system based on signum coding (SC). In the proposed algorithm, an additional reference waveform is applied to eliminate the third-order harmonic influence induced by SC. Then, a generalized Keystone transform (GKT) is proposed to resolve the complex coupling among the range frequency, jittered carrier frequency, and nonuniformly sampled time. Simulation results are presented to validate the effectiveness and feasibility of the proposed method.Item A New Sampling Mismatch Compensation Method for Moving Target Detection Based on Hooke–Jeeves Optimization Processing(IEEE Geoscience and Remote Sensing Letters, 2022-09-08) Wang, Lingyu; Huang, Penghui; Xia, Xiang-Gen; Liu, Yanyang; Zhang, Xuepan; Liu, Xingzhao; Liao, GuishengIn this letter, we propose a novel range and Doppler sampling mismatch compensation method for moving target detection, which can effectively improve the output signal-to-noise ratio (SNR) of a moving target. In the proposed method, after performing the target coherent integration by using the well-known Keystone transform (KT), the range and Doppler sampling mismatch errors (SMEs) are estimated and compensated based on the constructed optimization model with the consideration of the change rate of a moving target peak amplitude. In order to improve the computational efficiency, the Hooke–Jeeves method is applied to achieve the optimal solution of the constructed optimization problem, thus efficiently solving the target energy diffusion problem caused by the SMEs. Simulated experiment is presented to verify the effectiveness and feasibility of the proposed method.