Browsing by Author "Trammell, Tara L. E."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Heterogeneity in soil chemistry relates to urbanization while soil homogeneity relates to plant invasion in small temperate deciduous forests(Landscape Ecology, 2022-02-07) Trammell, Tara L. E.; Pouyat, Richard V.; D ’Amico, Vince IIIContext: Soil heterogeneity versus homogeneity patterns are observed within and across urban landscapes at multiple scales. To fully evaluate human-mediated influences on soil properties and processes, we need to understand spatial patterns and variation in soil characteristics within a single ecosystem patch type (e.g., forests) in and near cities. Objectives: Our research objectives were to: (1) identify soil characteristics important in driving variation in soil chemistry within urban forests, and (2) examine whether urbanization and invasion gradients were related to variation in soil chemistry within these forests. Methods: We measured soil chemical properties within 36 forests across the U.S. mid-Atlantic. The forests are spatially distributed across an urbanization gradient and comprise a gradient of non-native plant invasion. Results: Urbanization was related to more variation in soil chemistry, whereas plant invasion was related to less variation in soil chemistry within our forests. Soil Ca and Mg concentrations increase with plant invasion yet are less variable within invaded forests most likely due to invasive plants taking up and concentrating these elements. Soil pH, Ca, Mg, Zn, and Cu increase in forests surrounded by greater urbanization, however, these elements are more variable within urban forests likely due to edge effects altering element deposition. Conclusions: Our results demonstrate that while urbanization and invasion can increase soil chemical concentrations, they differentially alter variation in soil chemistry within urban forests. Plant invasion and urban environmental conditions need separate consideration in future conceptual models of urban ecological theory since non-native invasive plants influence soil chemistry independent of other urban factors.Item Human-mediated dispersal drives the spread of the spotted lanternfly (Lycorma delicatula)(Scientific Reports, 2023-01-19) Ladin, Zachary S.; Eggen, Donald A.; Trammell, Tara L. E.; D’Amico, VincentThe spotted lanternfly (Lycorma delicatula) is a novel invasive insect from Asia now established and spreading throughout the United States. This species is of particular concern given its ability to decimate important crops such as grapes, fruit trees, as well as native hardwood trees. Since its initial detection in Berks County, Pennsylvania in 2014, spotted lanternfly infestations have been detected in 130 counties (87 under quarantine) within Connecticut, Delaware, Indiana, Maryland, New Jersey, New York, Ohio, Virginia, and West Virginia. Compounding this invasion is the associated proliferation and widespread distribution of the spotted lanternfly’s preferred host plant, the tree-of-heaven (Ailanthus altissima). While alternate host plant species have been observed, the tree-of-heaven which thrives in disturbed and human-dominated areas (e.g., along roads and railways) is likely facilitating the population growth rates of spotted lanternfly. We simulated the population and spread dynamics of the spotted lanternfly throughout the mid-Atlantic USA to help determine areas of risk and inform continued monitoring and control efforts. We tested the prediction that spotted lanternfly spread is driven by human-mediated dispersal using agent-based models that incorporated information on its life-history traits, habitat suitability, and movement and natural dispersal behavior. Overwhelmingly, our results suggest that human-mediated dispersal (e.g., cars, trucks, and trains) is driving the observed spread dynamics and distribution of the spotted lanternfly throughout the eastern USA. Our findings should encourage future surveys to focus on human-mediated dispersal of egg masses and adult spotted lanternflies (e.g., attachment to car or transported substrates) to better monitor and control this economically and ecologically important invasive species.Item Nonnative plant invasion increases urban vegetation structure and influences arthropod communities(Diversity and Distributions, 2023-08-07) Mitchell, J. Christina; D'Amico, Vincent III; Trammell, Tara L. E.; Frank, Steven D.Aim Ecological theory and empirical evidence indicate that greater structural complexity and diversity in plant communities increases arthropod abundance and diversity. Nonnative plants are typically associated with low arthropod abundance and diversity due to lack of evolutionary history. However, nonnative plants increase the structural complexity of forests, as is common in urban forests. Therefore, urban forests are ideal ecosystems to determine whether structural complexity associated with nonnative plants will increase abundance and diversity of arthropods, as predicted by complexity literature, or whether structural complexity associated with nonnative plants will be depauperate of arthropods, as predicted by nonnative plant literature. Location We sampled 24 urban temperate deciduous and mixed forests in two cites, Raleigh, North Carolina and Newark, Delaware, in the eastern United States. Methods We quantified ground cover vegetation and shrub layer vegetation in each forest and created structural complexity metrics to represent total, nonnative and native understory vegetation structural complexity. We vacuum sampled arthropods from vegetation and quantified the abundance, biomass, richness and diversity of spiders and non-spider arthropods. Results Nonnative plants increase understory vegetation complexity in urban forests. In Raleigh and Newark, we found support for the hypotheses that dense vegetation will increase arthropod abundance and biomass, and against the hypothesis that nonnative vegetation will decrease arthropods. Urban forest arthropod abundance and biomass, but not diversity, increased with greater nonnative and native structural complexity. Main Conclusions Invaded urban forests may provide adequate food in the form of arthropod biomass to transfer energy to the next trophic level, but likely fail to provide ecological services and functions offered by diverse species, like forest specialists. Urban land managers should survey urban forests for nonnative and native plant communities and prioritize replacing dense nonnative plants with native species when allocating vegetation maintenance resources.Item Plant community dynamics following non-native shrub removal depend on invasion intensity and forest site characteristics(Ecosphere, 2023-01-13) Moore, Eric; D'Amico, Vincent; Trammell, Tara L. E.Globally, temperate deciduous forests are threatened by invasion of non-native (exotic) plant species. In the eastern United States, Rosa multiflora is a dominant shrub invader in forests, which often forms dense thickets that reduce sunlight availability in the understory, where decreased native plant diversity and abundance are observed. Management and restoration are difficult but desirable, especially when invasion intensity is still low. Few studies have examined the relative success of different management strategies under varying invasion intensities. Our study objectives were to conduct a R. multiflora removal experiment in three forest sites experiencing different invasion intensities and to restore native plant biodiversity while preventing secondary invasion. We utilized three management strategies: invasive plant removal, removal followed by native seed addition, and removal plus native seed and mulched invasive stem addition. We investigated the similarity between seed bank species composition and existing vegetation before and after removal to assess the potential for passive restoration. Two seasons after removal, we found that simply removing roses increased native species richness, native floristic quality assessment (FQAIN), and native shrub abundance in our medium invasion site, and total species richness in our low and medium invasion sites. Compared to removal alone, native seed addition, with and without mulch addition, resulted in larger native and total species richness and FQAIN increases at all sites, larger increases in native shrub abundance and exotic species richness in our medium invasion site, and larger reductions in exotic and total shrub abundance in our low and medium invasion sites. Following removal, species similarity between the seed bank and vegetation improved for all three sites. Our results indicate that removal of R. multiflora alone increased native plant biodiversity in the medium invasion scenario, but the seed bank may not provide a large native species pool. Additional management strategies lead to improved outcomes, especially in our most invaded forest, demonstrating the need to conduct multiple plant removal treatments across forests with varying site conditions and plant invasion intensity to improve management recommendations.Item Saturated, Suffocated, and Salty: Human Legacies Produce Hot Spots of Nitrogen in Riparian Zones(Journal of Geophysical Research: Biogeosciences, 2022-12-09) Inamdar, Shreeram P.; Peck, Erin K.; Peipoch, Marc; Gold, Arthur J.; Sherman, Melissa; Hripto, Johanna; Groffman, Peter M.; Trammell, Tara L. E.; Merritts, Dorothy J.; Addy, Kelly; Lewis, Evan; Walter, Robert C.; Kan, JinjunThe compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial-scale legacies of milldams and decadal-scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid-Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt-rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium-N accumulation in near-stream sediments and groundwaters. Riparian groundwater ammonium-N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1 while soil-bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium-N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant. Plain Language Summary: Human activities can combine to exacerbate environmental pollution. We studied the effects of milldams and road salt runoff on nitrogen (N) pollution in streamside/riparian soil and groundwaters in Pennsylvania (Chiques Creek) and Delaware (Christina River). While nitrate-N concentrations in groundwaters and soils were low, ammonium-N concentrations for both sites were unexpectedly high. We attributed the high groundwater ammonium concentrations to processes of ammonification and/or dissimilatory nitrate reduction to ammonium that occurred under stagnant and persistently reducing riparian groundwater conditions. Road salt runoff inputs from an interstate highway above the Christina River site likely exacerbated the groundwater ammonium concentrations because of sodium displacement of ammonium-N from sediment surfaces into solution. We suggest that dam removals could enhance the natural variability in groundwater, induce nitrification-denitrification removal of N, and thus mitigate N pollution in riparian zones. Greater consideration needs to be given to environmental impacts of human legacies in watershed management. Key Points: - The coupled effects of anthropogenic legacies for nitrogen dynamics are not well understood - Ammonium-N may accumulate in riparian groundwater and sediments upstream of milldams due to stagnant, poorly mixed, and reducing conditions - Road salt salinization may further enhance the concentrations of ammonium in riparian groundwatersItem Soil nitrogen cycling in forests invaded by the shrub Rosa multiflora: importance of soil moisture and invasion density(Biogeochemistry, 2024-03-23) Moore, Eric R.; Pouyat, Richard V.; Trammell, Tara L. E.Invasive plants often alter ecosystem function and processes, especially soil N cycling. In eastern United States forests, the shrub Rosa multiflora (“rose”) is a dominant invader, yet potential effects on N cycling are poorly understood. Moreover, invasive plant management can impact soil N cycling by decreasing plant N uptake and disturbing the soil. The objectives of this study were to evaluate N cycling along a gradient of rose invasion (observational) and investigate potential changes to N cycling (manipulative) under four different management strategies: (1) do nothing (the control), (2) invasive plant removal, (3) removal followed by native seed mix addition, (4) removal, native seed mix, and chipped rose stem addition. We selected three forest sites experiencing a Low, Medium, or High amount of shrub invasion, and measured N cycling in the early (June) and late (September) growing seasons. We found N was immobilized in June and mineralized in September. One year after experimental management, removal alone had no effect on N cycling compared to control plots, but addition of native seed mix and chipped stems reduced early-season nitrification in our Medium invasion site. Our findings suggest that rose invasion may increase N cycling rates when soils are dry, which may occur more frequently with future climate change. In addition, N cycling responds differentially to management in the year following invasive plant removal, but most noticeably under moderate rose invasion.