Browsing by Author "Kohlstedt, David L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy(AGU Publications, 2016-04-22) Hansen, Lars N.; Warren, Jessica M.; Zimmerman, Mark E.; Kohlstedt, David L.; Lars N.Hansen, Jessica M.Warren, Mark E.Zimmerman, David L.Kohlstedt; Warren, Jessica M.The development of crystallographic textures in olivine-rich rocks leads to a marked anisotropy in viscosity of the upper mantle, strongly influencing a variety of large-scale geodynamic processes. Most estimates of the magnitude of viscous anisotropy in the upper mantle are derived from micromechanical models that predict textural and mechanical evolution numerically. Unfortunately, relatively few data exist with which to benchmark these models, and therefore their applicability to geodynamic processes remains in question. Here we present the results from a series of laboratory deformation experiments that yield insight into the magnitude and evolution of the anisotropy of olivine aggregates during deformation along complex loading paths. Aggregates of Fo50olivine were first deformed in extension in a gas-medium apparatus at a temperature of 1473K, confining pressure of 300MPa, and a variety of stresses and strain rates. Early in the extension experiments, samples exhibited viscosities similar to those previously determined for isotropic aggregates. Extensional deformation was accompanied by formation of crystallographic textures with [100] axes dominantly aligned with the extension axis. Samples were subsequently deformed in torsion under similar conditions to shear strains of up to 15.5. Early in the torsion experiments, samples supported stresses a factor of ∼2 larger than measured at the end of extension experiments, demonstrating a marked anisotropy in viscosity. Textures at the end of torsion experiments exhibited [100] axes dominantly aligned with the shear direction, comparable to previous experimental observations. Evolution of the textures resulting from extension to those resulting from torsion was analyzed through examination of radial sections of torsion samples. Our results confirm that texture produces viscous anisotropy in olivine aggregates, and we provide a simple, calibrated parameterization of viscous anisotropy for use in geodynamic models. Our results also provide an extensive dataset for future calibration of micromechanical models that track the evolution of anisotropy in upper mantle rocks.Item Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model(AGU Publications, 2016-10-25) Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.; Lars N. Hansen, Clinton P. Conrad, Yuval Boneh, Philip Skemer, Jessica M. Warren, and David L. Kohlstedt; Warren, Jessica M.The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.Item Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model(American Geophysical Union, 2016-09-27) Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.; Lars N. Hansen, Clinton P. Conrad, Yuval Boneh, Philip Skemer, Jessica M. Warren, and David L. Kohlstedt; Warren, Jessica M.The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.