Browsing by Author "Huang, Hongzhan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A crowdsourcing open platform for literature curation in UniProt(PLOS Biology, 2021-12-06) Wang, Yuqi; Wang, Qinghua; Huang, Hongzhan; Huang, Wei; Chen, Yongxing; McGarvey, Peter B.; Wu, Cathy H.; Arighi, Cecilia N.The UniProt knowledgebase is a public database for protein sequence and function, covering the tree of life and over 220 million protein entries. Now, the whole community can use a new crowdsourcing annotation system to help scale up UniProt curation and receive proper attribution for their biocuration work.Item InterPro in 2017––beyond protein family and domain annotations(Oxford University Press, 2016-11-28) Finn, Robert D.; Attwood, Teresa K.; Babbitt, Patricia C.; Bateman, Alex; Bork, Peer; Bridge, Alan J.; Chang, Hsin-Yu; Doszt´anyi, Zsuzsanna; El-Gebali, Sara; Fraser, Matthew; Gough, Julian; Haft, David; Holliday, Gemma L.; Huang, Hongzhan; Huang, Xiaosong; Letunic, Ivica; Lopez, Rodrigo; Lu, Shennan; Marchler-Bauer, Aron; Mi, Huaiyu; Mistry, Jaina; Natale, Darren A.; Necci, Marco; Nuka, Gift; Orengo, Christine A.; Park, Youngmi; Pesseat, Sebastien; Piovesan, Damiano; Potter, Simon C.; Rawlings, Neil D.; Redaschi, Nicole; Richardson, Lorna; Rivoire, Catherine; Sangrador-Vegas, Amaia; Sigrist, Christian; Sillitoe, Ian; Smithers, Ben; Squizzato, Silvano; Sutton, Granger; Thanki, Narmada; Thomas, Paul D.; Tosatto, Silvio C. E.; Wu, Cathy H.; Xenarios, Ioannis; Yeh, Lai-Su; Young, Siew-Yit; Mitchell, Alex L.; Robert D. Finn, Teresa K. Attwood, Patricia C. Babbitt, Alex Bateman, Peer Bork, Alan J. Bridge, Hsin-Yu Chang, Zsuzsanna Doszt´anyi, Sara El-Gebali, Matthew Fraser, Julian Gough, David Haft, Gemma L. Holliday, Hongzhan Huang, Xiaosong Huang, Ivica Letunic, Rodrigo Lopez, Shennan Lu, Aron Marchler-Bauer, Huaiyu Mi, Jaina Mistry, Darren A Natale, Marco Necci, Gift Nuka, Christine A. Orengo, Youngmi Park, Sebastien Pesseat, Damiano Piovesan, Simon C. Potter, Neil D. Rawlings, Nicole Redaschi, Lorna Richardson, Catherine Rivoire, Amaia Sangrador-Vegas, Christian Sigrist, Ian Sillitoe, Ben Smithers, Silvano Squizzato, Granger Sutton, Narmada Thanki, Paul D Thomas, Silvio C. E. Tosatto, Cathy H.Wu, Ioannis Xenarios, Lai-Su Yeh, Siew-Yit Young and Alex L. Mitchell; Wu, Cathy H.; Huang, HongzhanInterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against Inter- Pro’s predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences.Item Protein Ontology (PRO): enhancing and scaling up the representation of protein entities(Oxford University Press, 2016-11-28) Natale, Darren A.; Arighi, Cecilia N.; Blake, Judith A.; Bona, Jonathan; Chen, Chuming; Chen, Sheng-Chih; Christie, Karen R.; Cowart, Julie; D’Eustachio, Peter; Diehl, Alexander D.; Drabkin, Harold J.; Duncan, William D.; Huang, Hongzhan; Ren, Jia; Ross, Karen; Ruttenberg, Alan; Shamovsky, Veronica; Smith, Barry; Wang, Qinghua; Zhang, Jian; El-Sayed, Abdelrahman; Wu, Cathy H.; Darren A. Natale, Cecilia N. Arighi, Judith A. Blake, Jonathan Bona, Chuming Chen, Sheng-Chih Chen, Karen R. Christie, Julie Cowart, Peter D’Eustachio, Alexander D. Diehl, Harold J. Drabkin, William D. Duncan, Hongzhan Huang, Jia Ren, Karen Ross, Alan Ruttenberg, Veronica Shamovsky, Barry Smith, Qinghua Wang, Jian Zhang, Abdelrahman El-Sayed and Cathy H. Wu; Arighi, Cecilia N.; Chen, Chuming; Chen, Sheng-Chih; Cowart, Julie; Huang, Hongzhan; Ren, Jia; Wang, Qinghua; Wu, Cathy H.The Protein Ontology (PRO; http://purl.obolibrary. org/obo/pr) formally defines and describes taxonspecific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and proteincontaining complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translationalmodification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.Item RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism(PLOS (Public Library of Science), 2015-10-07) Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J.; Cogburn, Larry A.; Christopher W. Resnyk, Chuming Chen, Hongzhan Huang, Cathy H. Wu, Jean Simon, Elisabeth Le Bihan-Duval, Michel J. Duclos, Larry A. Cogburn; Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Cogburn, Larry A.Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5–2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.Item RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism(Public Library of Science (PLOS), 2015-10-07) Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J.; Cogburn, Larry A.; Christopher W. Resnyk, Chuming Chen, Hongzhan Huang, Cathy H. Wu, Jean Simon, Elisabeth Le Bihan-Duval, Michel J. Duclos, Larry A. Cogburn; Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Cogburn, Larry A.Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5–2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern growth and metabolism of visceral fat in this unique avian model of juvenile-onset obesity and glucose-insulin imbalance.