Department of Physical Therapy
Permanent URI for this community
Visit the Department of Physical Therapy for more information.
The UDSpace community for this department contains open-access research materials created by members of this department.
Browse
Browsing Department of Physical Therapy by Author "Beisheim, Emma H."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Gait asymmetry is associated with performance-based physical function among adults with lower-limb amputation(Physiotherapy Theory and Practice, 2021-10-17) Seth, Mayank; Coyle, Peter C.; Pohlig, Ryan T.; Beisheim, Emma H.; Horne, John R.; Hicks, Gregory E.; Sions, Jaclyn MeganBACKGROUND Adults with lower-limb amputation walk with an asymmetrical gait and exhibit poor functional outcomes, which may negatively impact quality-of-life. OBJECTIVE To evaluate associations between gait asymmetry and performance-based physical function among adults with lower-limb amputation. METHODS A cross-sectional study involving 38 adults with a unilateral transtibial (N = 24; 62.5 ± 10.5 years) or transfemoral amputation (N = 14; 59.9 ± 9.5 years) was conducted. Following gait analysis (capturing step length and stance time asymmetry at self-selected (SSWS) and fast walking speeds (FWS)), participants completed performance-based measures (i.e. Timed Up and Go (TUG), the 10-Meter Walk Test (10mwt), and the 6-Minute Walk Test (6MWT)). RESULTS Step length and stance time asymmetry (at SSWS and FWS) were significantly correlated with each performance-based measure (p < .001 to p = .035). Overall, models with gait measures obtained at SSWS explained 40.1%, 46.8% and 40.1% of the variance in TUG-time (p = .022), 10mwt-speed (p = .003) and 6MWT-distance (p = .010), respectively. Models with gait measures obtained at FWS explained 70.0%, 59.8% and 51.8% of the variance in TUG-time (p < .001), 10mwt-speed (p < .001), and 6MWT-distance (p < .001), respectively. CONCLUSIONS Increases in step length or stance time asymmetry are associated with increased TUG-time, slower 10mwt-speed, and reduced 6MWT-distance. Findings suggest gait asymmetry may be a factor in poor functional outcomes following lower-limb amputation.