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Abstract

Nonsyndromic orofacial clefts (NSOFCs) represent a large proportion

(70%–80%) of all OFCs. They can be broadly categorized into nonsyndromic

cleft lip with or without cleft palate (NSCL/P) and nonsyndromic cleft palate

only (NSCPO). Although NSCL/P and NSCPO are considered etiologically

distinct, recent evidence suggests the presence of shared genetic risks. Thus,

we investigated the genetic overlap between NSCL/P and NSCPO using

African genome‐wide association study (GWAS) data on NSOFCs. These data

consist of 814 NSCL/P, 205 NSCPO cases, and 2159 unrelated controls. We

generated common single‐nucleotide variants (SNVs) association summary
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DE28300, DE024776 statistics separately for each phenotype (NSCL/P and NSCPO) under an

additive genetic model. Subsequently, we employed the pleiotropic analysis

under the composite null (PLACO) method to test for genetic overlap. Our

analysis identified two loci with genome‐wide significance (rs181737795

[p= 2.58E−08] and rs2221169 [p= 4.5E−08]) and one locus with marginal

significance (rs187523265 [p= 5.22E−08]). Using mouse transcriptomics data

and information from genetic phenotype databases, we identified MDN1,

MAP3k7, KMT2A, ARCN1, and VADC2 as top candidate genes for the

associated SNVs. These findings enhance our understanding of genetic

variants associated with NSOFCs and identify potential candidate genes for

further exploration.
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1 | INTRODUCTION

Orofacial clefts (OFC) are one of the most common birth
defects affecting one in 700 live births worldwide
(Rahimov et al., 2012). Anatomically, OFC phenotypes
include cleft lip only (CLO), cleft lip and palate (CLP),
and cleft palate only (CPO) (Carinci et al., 2007). CLO
and CLP are often grouped as cleft lip with or without
palate (CL/P) due to a common embryological and
epidemiological pattern (Sperber, 2002). OFCs can also
be grouped as syndromic and nonsyndromic (NS),
depending upon the presence or absence of other birth
defects (Calzolari et al., 2007). NSOFCs occur more
frequently than syndromic OFCs, and among NSOFCs,
the estimated prevalence of NSCL/P is more than double
that of NSCPO (70% vs. 30%) (Marazita et al., 2002).

NSOFCs are thought to be caused by multiple genes
acting alone or in combination with environmental
factors. NSCL/P and NSCPO are considered etiologically
distinct and genetic studies for each phenotype have
identified over 50 loci for NSCL/P and 13 loci for NSCPO
(Butali et al., 2019; Leslie et al., 2017; Slavec et al., 2022;
Sun et al., 2015). The smaller number of NSCPO‐specific
risk loci identified to date could be attributed to its lower
prevalence than NSCL/P, resulting in smaller sample
sizes for NSCPO compared to NSCL/P in most genome‐
wide association studies (GWASs) (Moreno Uribe
et al., 2017).

Co‐occurrence of both NSCL/P and NSCPO within
the same family suggests that some genetic variants may
be common to both phenotypes (Rahimov et al., 2012).
For example, variants in the FOXE1 gene have been

reported to be statistically significantly associated with
both NSCL/P and NSCPO (Leslie et al., 2017). The
hypothesis that a specific variant or gene can manifest
pleiotropic effects has the potential to illuminate shared
biological mechanisms contributing to the genesis of
various phenotypes, thus playing an integral role in
enhancing the accuracy of genetic counseling. However,
analyzing NSCL/P and NSCPO data together is under-
powered to identify pleiotropic loci if the effect of the
variant on both phenotypes is in the opposite direction or
if the sample size for one phenotype is considerably
larger than that for the other phenotype (Moreno Uribe
et al., 2017). To help overcome these limitations, we
propose applying pleiotropic analysis under the compos-
ite null hypothesis (PLACO) (Ray & Chatterjee, 2020) to
data obtained from an African GWAS of NSOFCs to
identify gene variants associated with both NSCL/P and
NSCPO. PLACO uses GWAS summary statistics data and
has been applied successfully in determining pleiotropic
loci for other traits, including NSOFCs (Ray &
Chatterjee, 2020; Ray et al., 2021). Additionally, a
substantial number of the pleiotropic loci for NSOFCs
reported by Ray et al. were novel, not previously reported
in GWASs analyzing NSCL/P and NSCPO independently
or combined in any population. With the African
population being the ancestral origin to modern humans
and harboring the most extensive genetic variation
(Conrad et al., 2006), we hypothesize that investigating
pleiotropy in this population (with only one independent
GWAS on NSOFCs to date) will lead to the discovery of
novel loci/genes associated with both NSCL/P and
NSCPO.
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2 | METHODS

2.1 | Study population

A detailed description of the African case‐control GWAS
study population has been published (Butali et al., 2019).
To summarize, the GWAS data consisted of 1019 NSOFC
cases (814 NSCL/P and 205 NSCPO) recruited from cleft
clinic visits and during free surgical cleft repair missions
in Ethiopia, Ghana, and Nigeria (Table 1). Eligible case
children were patients diagnosed with NSCL/P or
NSCPO and had both biological parents from Africa
and still residing in Africa. Controls were children
without a diagnosis of a birth defect from biological
parents residing in Africa and attending immunization/
welfare clinics in the same sites as the case children.
Participants were recruited country‐wide at several
centers in Nigeria, at Kwame Nkrumah University in
Ghana, and at Addis Ababa University in Ethiopia.
Ethical approval was obtained from the local Institu-
tional review board at the participating sites. Case and
control child ascertainment was completed by pediatri-
cians and cleft surgeons at the participating sites using a
standardized phenotyping protocol to ensure NS pheno-
types for case children and the absence of a birth defect
for control children. Additionally, all eligible case
children underwent echocardiography as part of pre-
surgical planning to rule out congenital heart defects.
Following ascertainment, the study was introduced to
parents, who were provided with the details of the study
and informed of their right to withdraw at any time.

2.2 | Data collection, DNA extraction,
and genotyping

After obtaining informed consent from the case or control
child's parent/guardian, demographic information (age,
sex, and residential location), and limited exposure
information (self‐reported folic acid [yes/no], vitamins
[yes/no], and other medications used during pregnancy)

were obtained. However, exposure information was only
available from the Lagos site (one of the six participating
sites in Nigeria) and was not included further in data
analyses. Saliva specimens were collected using the
Oragene saliva kit, either through spitting or using a
cheek swab. The specimens were deidentified and shipped
to the Butali laboratory at the University of Iowa where
DNA extraction was performed using the standard
Oragene saliva DNA extraction protocol and quantified
using Qubit (http://www.invitrogen.com/site/us/en/
home/brands/Product-Brand/Qubit.html; Thermo Fisher
Scientific). As part of preliminary quality control (QC), the
reported sex of the participants was confirmed using
Taqman XY genotyping. Subsequently, a 25 μL aliquot
with a concentration ≥50 ng/μL was sent to the Center for
Inherited Disease Research for genotyping using the
Multi‐Ethnic Genotyping Array (MEGAv2 15070954A2)
(genome build 37) platform. The array consisted of over 2
million common and 60,000 rare variants selected from
populations of African origin.

2.3 | Data cleaning and imputation

To ensure high‐quality genotype data preimputation, the
genotyped data were checked for relatedness, missing
call rates, and chromosomal defects. A detailed descrip-
tion of the imputation and QC measures used were
published elsewhere (Butali et al., 2019). Briefly, data
were filtered for missing call rates ≥ 2%, Hardy–Weinberg
equilibrium p value < 10−3, and minor allele frequency
(MAF) < 0.01. Continental ancestry confirmation was
conducted by comparing GWAS data to HapMap
specimens using a previously published approach (Laurie
et al., 2010) and implemented in R packages: GWAS
tools, SNPRelate, and GENESIS. Imputation was con-
ducted using the IMPUTE2 program, and ~45 million
single‐nucleotide variants (SNVs) were inputted. Post-
imputation QC included restricting SNVs to those with
an MAF ≥ 0.01 and info score ≥ 0.3. About 17 million
imputed variants passed the postimputation QC and

TABLE 1 Distribution of the study population by country, cleft status, and sex.

Country

NSCL/P cases NSCPO cases Controls

TotalMales Females Males Females Males Females

Ghana 126 224 32 56 334 594 1366

Nigeria 79 141 22 40 210 373 865

Ethiopia 88 156 20 35 233 415 947

Total 293 521 74 131 777 1382 3178

Abbreviations: NSCL/P, nonsyndromic cleft lip with or without cleft palate; NSCPO, nonsyndromic cleft palate only.

ALADE ET AL. | 3
Version of Record at: https://doi.org/10.1002/gepi.22564

http://www.invitrogen.com/site/us/en/home/brands/Product-Brand/Qubit.html
http://www.invitrogen.com/site/us/en/home/brands/Product-Brand/Qubit.html


were included in the downstream analyses, together with
the 1,034,233 variants that passed the preimputation QC.

2.4 | Data analysis

Using GMMAT (Chen et al., 2016), SNV associations were
analyzed using linear mixed models that adjusted for sex
and study sites as detailed elsewhere (Butali et al., 2019).
These analyses generated common SNV (MAF> 1%)
association summary statistics for each phenotype
(NSCL/P or NSCPO vs. controls). These summary
statistics included the score test statistic and p value for
each test, along with other information. The p values and
signs (positive/negative) of the score test statistics were

used to obtain Z scores for the SNVs, and data were
harmonized to ensure that each phenotype association
reported the same effect allele. Because the same control
participants were included in the GWAS analysis of
NSCL/P and NSCPO, Z scores were decorrelated to
account for correlation and prevent p value inflation
according to the method proposed by Ray and Chatterjee
(2020). Subsequently, genetic overlap between NSCL/P
and NSCPO was tested by implementing the PLACO
method (Ray & Chatterjee, 2020) in R. This test is based
on the null hypothesis that at most one of the phenotypes
is associated with a genetic variant. The rejection of this
null hypothesis indicates that the variant is associated
with both phenotypes. A genome‐wide significance
threshold of 5E−08 was used, same as what we used for
the published discovery GWAS (Butali et al., 2019). To
examine systematic bias in the analysis, a Q–Q plot was
constructed to evaluate the relationship between the
observed and expected p values (Figure 1). Furthermore,
spurious or mediated pleiotropy was examined by
checking for the pleiotropic SNVs or SNVs in linkage
disequilibrium (r2 ≥ 0.5) in the GWAS catalog database
(Buniello et al., 2019) to determine if any had been
previously reported to be associated with NSOFCs or
known precursors (e.g., mandibular hypoplasia that
causes secondary cleft palate).

3 | RESULTS

3.1 | SNVs showing statistical evidence
of genetic overlap and direction of effects

Two genome‐wide significant loci (rs181737795 p= 2.58E
−08 and rs2221169 p= 4.5E−08) and one locus
with marginal genome‐wide significance (rs187523265

FIGURE 1 Q–Q plot for the genetic overlap analysis result.
PLACO, pleiotropic analysis under the composite null.

TABLE 2 Results from the PLACO analysis.

Chr SNV ID BP Ref Eff NSCL/P_MAF NSCPO_MAF PLACO_pval

6 rs181737795 90860856 A G 0.01 0.01 2.58E−08

10 rs2221169 77558657 C T 0.35 0.36 4.5E−08

11 rs187523265 118516932 C T 0.02 0.02 5.22E−08

1 rs6692379 99221575 A G 0.54 0.55 7.29E−08

12 rs148804070 30826545 A G 0.01 0.01 7.45E−08

7 rs115128289 32365116 C G 0.04 0.04 7.51E−08

1 rs73110867 221915804 C T 0.03 0.04 7.87E−08

Note: SNVs in bold texts showed statistically significant evidence of genetic overlap.

Abbreviations: BP, base pair position; Chr, chromosome; Eff, effect allele; MAF, minor allele frequency; NSCL/P, nonsyndromic cleft lip with or without
cleft palate; NSCPO, nonsyndromic cleft palate only; PLACO, pleiotropic analysis under the composite null; pval, p value; Ref, reference allele;
SNVs, single‐nucleotide variants.
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p= 5.22E−08) were identified (Table 2 and Figures 2
and 3). When analyzed separately, the effect allele at
rs181737795 showed a null effect on both NSCL/P (odds
ratio [OR]: 1.0, 95% confidence interval [CI]: 0.5–1.8) and
NSCPO (OR: 1.0, 95% CI: 0.3–3.8). For rs222116, the
effect allele was associated with an increased risk of
NSCPO (OR= 1.5, 95% CI: 1.2–1.8) and a null effect on
NSCL/P (OR= 1.0, 95% CI: 0.9–1.1). The region plots
showing the other SNPs within the same region as the lead
SNPs and their associated p values can be found in
Supporting Information S1: Figures A–C. On evaluation of
mediated or spurious pleiotropy, none of these three SNVs
showed any evidence of horizontal/spurious pleiotropy
(Supporting Information S1: Table 2). Four additional SNVs
showed near genome‐wide significant associations
(5 × 10−8 < p<9× 10−8). These SNVs included rs6692379
(p=7.3E−08), rs148804070 (p=7.5E−08), rs115128289
(p=7.5E−08), and rs73110867 (p=7.9E−08). The full
results of all the SNPs showing significant/suggestive
associations (p ≤E−07) can be found in Supporting
Information S1: Table 1.

3.2 | Identification and prioritization
of candidate genes

The SNVs, rs181737795, rs2221169, and rs187523265 are
noncoding; thus, we constructed a topologically associated
domain (TAD) around each SNV to identify potential
genes interacting within the same TAD (<1MB) of the
SNV. This approach is based on the premise that
noncoding regulatory regions of the human genome
influence the expression of genes within the same TAD
(Dixon et al., 2012). Subsequently, SysFACE (system tool

FIGURE 2 Manhattan plot showing the pleiotropic analysis results for NSCL/P and NSCPO. The chromosome numbers are colored
differently and indicated on the x‐axis. Dotted horizontal lines were placed at 5 × 10−6 (red), 5 × 10−7 (yellow), and 5 × 10−8 (green) to
indicate suggestive, near, and genome‐wide significance, respectively. NSCL/P, nonsyndromic cleft lip with or without cleft palate;
NSCPO, nonsyndromic cleft palate only.

FIGURE 3 Circular Manhattan plot for the genome‐wide
results for NSCL/P, NSCPO, and overlap between the two
phenotypes. The plots above show the log‐transformed p values for
the CPO GWAS results (outer circle), CLP GWAS results (middle
circle), and the PLACO analysis results for the overlap between
CLP and CPO (inner circle). The dotted red lines are used to
indicate the different levels of significance (10−6 and 10−8).
Chromosome numbers are indicated along the outermost border.
Variants below the genome‐wide significant cut‐off were colored
green and those below the suggestive significant cut‐off were
colored red. CLP, nonsyndromic cleft lip with or without cleft
palate; CPO, nonsyndromic cleft palate only; GWAS, genome‐wide
association study; NSCL/P, nonsyndromic cleft lip with or without
cleft palate; NSCPO, nonsyndromic cleft palate only; PLACO,
pleiotropic analysis under the composite null.
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for craniofacial expression‐based gene discovery) (https://
bioinformatics.udel.edu/research/sysface/) was used to
interrogate transcriptomics data from the frontonasal,
maxilla, palatal, and mandibular tissues from the devel-
oping mouse face. Mouse transcriptomics data available
through the National Center for Biotechnology Informa-
tion gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) and FaceBase (https://www.facebase.
org/) databases were meta‐analyzed for this analysis, as
previously published (Cox et al., 2018; Liu et al., 2017).
Additionally, tissue enrichment in gene expression was
examined by comparing the gene expression level in the
tissue of interest to that of the whole embryo body. Tissue‐
enriched gene expression may be a good indicator of
potential function, especially for constitutively expressed
genes (Anand & Lachke, 2017). Following gene‐level
expression and enrichment analyses (Figures 4–6),
MAP3k7, MDN1, CASP8AP2, and BACH2 were identified
as potential candidate genes for rs181737795 (Figure 4),
BCL9L, H2AFX, HINFP, KMT2A, RPS25, UPK2, VPS11,
HYOU1, PHLDB1, ARCN1, ATP5L, CCDC84, DDX6, and
MPZ12 for rs187523265 (Figure 5), and VADC2 for
rs2221169 (Figure 6). Furthermore, MDN1, MAP3k7,
KMT2A, and ARCN1 were prioritized based on the
presence of clefting phenotypes in mice or humans with
mutations affecting these genes.

4 | DISCUSSION

We identified two genome‐wide significant loci,
rs181737795 (chr6q15) and rs2221169 (chr10q22), and
one locus, rs187523265 (chr11q23), with marginal
genome‐wide significance of genetic overlap between
NSCL/P and NSCPO. On evaluation for mediated or
spurious pleiotropy, none of the genome‐wide significant
SNVs or SNVs in linkage disequilibrium have been reported
to be associated with known cleft predisposing factors or
directly with cleft phenotypes. Using the expression and
enrichment information from mouse face development, we
identified 19 potential candidate genes (MAP3k7, MDN1,
CASP8AP2, BACH2, BCL9L, H2AFX, HINFP, KMT2A,
RPS25, UPK2, VPS11, HYOU1, PHLDB1, ARCN1, ATP5L,
CCDC84, DDX6, MPZ12, and VADC2) within the TAD of
the significantly associated SNVs. Subsequently, we priori-
tized MDN1, MAP3k7, KMT2A, and ARCN1 as the top
candidates at rs181737795 and rs187523265 loci based on
the presence of cleft phenotypes in mouse models or
individuals with reported variants in these genes.

MAP3K7 encodes a serine/threonine kinase protein,
and mutations in this gene have been implicated in
fronto‐metaphyseal dysplasia with CPO as one of the
clinical presentations (Wade et al., 2016). Additionally,
mice with mutations inMAP3K7 present with cleft palate

FIGURE 4 SysFACE‐based expression analysis of genes in 1MB region flanking rs181737795 (GRCh37/hg19). Expression of four
mouse ortholog genes in frontonasal, palate, maxillary, and mandible tissue in embryonic (E) and postnatal (P) stages. Heat map shows the
extent of expression and values represent the average fluorescence intensity for individual genes. The heat map on the right side shows the
tissue‐enriched expression of the genes in comparison to the whole embryo body. MB, megabase; SysFACE, system tool for craniofacial
expression‐based gene discovery.
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FIGURE 5 SysFACE‐based expression analysis of genes in 1MB region flanking rs187523265 (GRCh37/hg19). Expression of 24 mouse
ortholog genes in frontonasal, palate, maxillary, and mandible tissue in embryonic (E) and postnatal (P) stages. Heat map shows the extent
of expression and values represent the average fluorescence intensity for individual genes. The heat map on the right side showed the
tissue‐enriched expression of the genes in comparison to the whole embryo body. MB, megabase; SysFACE, system tool for craniofacial
expression‐based gene discovery.
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FIGURE 5 (Continued).
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(Yumoto et al., 2013). MDN1 functions in the maturation
and export of the pre‐60S ribosome subunits from the
nucleus (Raman et al., 2016), with protein‐altering de
novo mutations in this gene previously reported in
individuals with NSCL/P (Ishorst et al., 2022). Germline
mutations in KMT2A have been reported in individuals
with Wiedemann–Steiner syndrome—a condition char-
acterized by craniofacial dysmorphism, including thin
upper vermilion and wide nasal bridge, among others
(Jones et al., 2012). ARCN1 functions in the intracellular
trafficking of proteins between the endoplasmic reticu-
lum and the Golgi apparatus. Mutations in the gene have
been reported to cause facial dysmorphisms, including
CPO in humans (Izumi et al., 2016). VDCA2 is a
mitochondria membrane protein that, together with
other proteins, controls apoptosis and autophagy (Zhou
et al., 2018); apoptosis is one of the processes needed for
facial development.

Considering that PLACO analysis relies on the GWAS
summary statistics, the limitations of our primary GWAS
also apply to our current findings. First, NSOFCs have
multifactorial etiology that includes several suspected
environmental exposures. The available environmental
exposure data were obtained from only one clinic, self‐
reported, and mostly qualitative (yes/no). Considering
the timing of NSOFC formation (early in the first
trimester), and the wide age range at presentation, the
obtained exposure information collected at the surgical
clinic would not be reliable. Hence, we were unable to
control for the impact of environmental exposures in our
analysis and could not evaluate the possibility of an
environment‐dependent pleiotropic effect or pleiotropy
by environmental interactions in our PLACO analysis.

Secondly, our GWAS SNV association analyses assume
an additive genetic effect for all the SNVs tested;
however, nonadditive genetic effects (e.g., dominant or
recessive effects) also contribute to complex trait
etiology, including NSOFCs. The preference for additive
genetic effect stems from the realization that, for variants
with MAF of 1%–5%, those homozygous for the minor
allele will be small and may not be informative for
genetic effect estimation (Cantor et al., 2010). Addition-
ally, from a statistical point of view, an additive genetic
model is more efficient because it requires one degree of
freedom compared to the two degrees of freedom
required for a general model, which allows for the
consideration of the different genetic effect models
(Cantor et al., 2010). Additionally, our GWAS SNV
analyses focused on common (MAF> 5%) and low‐
frequency variants (1 ≤MAF ≥ 5%) rather than rare
variants (MAF < 1%), because of the employed genotyp-
ing approach (array‐based augmented with imputation).
With this approach, rare variants imputation, particu-
larly in populations with limited reference samples in
available databases, has been shown to perform poorly
(Asimit & Zeggini, 2012).

Our findings further support the utility of PLACO for
identifying pleiotropic SNVs whose effect on either
phenotype might have been nonsignificant due to the
limited sample size of each phenotype. Although we tried
to rule out mediated and spurious pleiotropy using the
GWAS catalog database, the paucity of genetic studies in
the African population makes this challenging. Hence,
we used all populations for our search to capture all
available data. Moreover, the African population harbors
the most extensive genetic variations, and findings from a

FIGURE 6 SysFACE‐based expression analysis of genes in a 1MB region flanking rs2221169 (GRCh37/hg19). Expression of one mouse
ortholog gene in frontonasal, palate, maxillary, and mandible tissue in embryonic (E) and postnatal (P) stages. Heat map shows the extent of
expression and values represent the average fluorescence intensity for individual genes. The heat map on the right side showed the
tissue‐enriched expression of the genes in comparison to the whole embryo body. MB, megabase; SysFACE, system tool for craniofacial
expression‐based gene discovery.
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previous study suggest the presence of population‐
specific risk loci for pleiotropic signals associated with
NSOFCs (Debashree Ray et al., 2021). Furthermore, we
focused on two cleft phenotypes (NSCL/P and NSCPO) in
the current study and could not consider NSCLO
separately. Recent evidence suggests subtle differences
in the genetic etiology of NSCLO and NSCLP (Carlson
et al., 2017). However, the African GWAS data grouped
NSCLO with NSCLP as NSCL/P to maximize power
considering the small sample of NSCLO cases.

In conclusion, our study combines the power of
PLACO and the understudied nature of the African
population to identify novel pleiotropic variants
influencing the risk of both NSCL/P and NSCPO. We
leveraged mouse transcriptomics data from relevant
craniofacial structures during mouse face development
to identify potential cleft candidate genes in and
around identified SNVs. These genes were either
associated with syndromic/non‐syndromic forms of
OFCs or involved in biological processes crucial to face
formation, providing additional evidence for their
involvement in NSOFCs etiology.
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