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ABSTRACT 

Fractions are a core topic in the mathematics curriculum in the intermediate 

grades. Competence with fractions is crucial for success in more advanced 

mathematics courses, such as algebra. Yet many students struggle to learn fractions 

and are at risk for later mathematics difficulties. To help prevent such difficulties, 

effective screening tools must identify students who are likely to struggle with 

fractions before they experience failure. To address this issue, the present study 

investigated the effectiveness of three fraction measures (i.e., general fraction 

concepts, fraction number line estimation, and fraction arithmetic) for screening 

fourth-, fifth-, and sixth-graders, respectively, who will go on to have trouble with 

mathematics. In particular, the study used data from a larger longitudinal study to 

assess the accuracy of the measures for identifying students who will not meet state 

standards on the end-of-the-year high-stakes mathematics test. Receiver operating 

characteristic (ROC) curve analyses were used to assess the accuracy of fourth-grade 

fraction measures to predict mathematics achievement in the spring of fourth grade (n 

= 411), fifth grade (n = 362), and sixth grade (n = 304); the fifth-grade fraction 

measures to predict mathematics achievement in the spring of fifth grade (n = 384) 

and sixth grade (n = 318); and the sixth-grade fraction measures to predict 

mathematics achievement in the spring of sixth grade (n = 327).    

Analyses revealed that the general fraction concepts and fraction number line 

estimation measures consistently emerged as accurate screeners of risk status across 

the grades while the fractions arithmetic measure did not consistently meet accuracy 
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standards. That is, only the general fraction concepts measure and the fraction number 

line measure consistently demonstrated high diagnostic accuracy for predicting the 

outcome measure as determined by the area under the curve (AUC). In fourth and 

sixth grades, the general fraction concepts measure and fraction number line 

estimation measure did not significantly differ for the prediction of the outcome; the 

two measures were thus combined at each of these grades. In fifth grade, the general 

fraction concepts measure alone emerged as the best fifth-grade screener. To improve 

practicality for classroom use, the length of each screener was reduced using best 

subsets automatic linear modeling. Items with low predictive values for predicting the 

outcome were eliminated from the final best subset screeners.  

Screener statistics are reported for all six best subset screeners in ways that 

allow researchers and practitioners to administer the screeners with their own sample 

of students and make predictive interpretations of students’ scores. Specifically, the 

present study demonstrates a method for reporting ROC curve statistics for a single 

best subset screener that has not yet been introduced in the educational literature. First, 

a table is provided that reports ROC curve statistics for all cut scores along the 

screener, allowing researchers and practitioners to select any cut score based on their 

available resources and research goals. Second, a helpful figure called a probability 

nomogram is provided that allows readers to easily determine predictive 

interpretations of students’ screener scores. A separate method is demonstrated for 

reporting a screener that combines two best subset measures. Using logistic regression, 

a predicted probabilities matrix is provided that allows readers to make interpretations 

of a student’s later mathematics achievement based on the student’s scores on both 

measures.    



 xvii 

Addressing an important gap in the literature, the study provides 

recommendations for mathematics screening in the intermediate grades. The study 

also demonstrates how to report educational screeners in ways that allow researchers 

and practitioners to translate screener statistics into readily usable information. The 

following documents are appended: (a) the full general fraction concepts measure, (b) 

the full fraction arithmetic measure, and (c) a glossary of statistical terms. 
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Chapter 1 

INTRODUCTION 

Proficiency in mathematics is important for success in science, technology, 

engineering, and mathematics (STEM) vocations (National Mathematics Advisory Panel 

[NMAP], 2008). Fractions, in turn, are foundational for learning algebra (Booth, Newton, 

& Twiss-Garrity, 2014) and thus are an important part of the mathematics curriculum in 

the elementary and intermediate grades (National Governors Association Center for Best 

Practices & Council of Chief State School Officers [NGACBP & CCSSO], 2010; NMAP, 

2008). Fraction procedures, such as finding common denominators, are vital for 

manipulating algebraic equations, and fraction magnitude understanding can help 

students reason about answers to algebraic equations (Siegler et al., 2012). A student who 

incorrectly writes that x = 40 given that (5/4)x = 10 can use his/her fraction 

understanding to realize that this answer is not plausible: 5/4 is greater than one, so x 

needs to be less than ten. Not surprisingly elementary students’ understanding of 

fractions predicts future general mathematics achievement in high school, even after 

controlling for other types of mathematical knowledge, overall IQ, and family income 

(Siegler et al., 2012).  

Fractions have consistently proven to be a challenging topic for students. Many 

students struggle to develop even a basic understanding of fractions (e.g., Bailey, Hoard, 

Nugent, & Geary, 2012; Hansen, Jordan, & Rodrigues, in press) and show minimal 

growth in fraction knowledge in fourth through sixth grades (Resnick et al., 2016), the 

period when fractions are taught in school. Students who do not master fractions during 

the intermediate grades are ill-prepared for subsequent mathematics courses. A weak 

understanding of fractions can have serious and enduring consequences. Students who 



 2 

struggle with middle school mathematics are less likely to pursue advanced courses 

necessary for entry into STEM careers (NMAP, 2008; Sadler & Tai, 2007). Furthermore, 

college students’ success in STEM courses such as science is predicted by their high 

school mathematics grades (Tai, Sadler, & Mintzes, 2006). 

To help prevent mathematics failure, teachers need screening tools to help them 

identify students who are likely to struggle. A fourth-grader, for example, who shows 

difficulties with fraction knowledge on a screening measure can be targeted for additional 

supports, such as intervention or mentoring (Gersten et al., 2009). Previous research, 

however, has focused primarily on mathematics screeners administered in kindergarten 

through second grade for identifying students at risk for mathematics difficulties (e.g., 

Duncan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Morgan, Farkas, & 

Wu, 2009). In a review of screening measures administered in these early grades, Gersten 

and colleagues (2012) recommend that screening measures be extended to the 

intermediate grades. Even students who meet mathematics benchmarks in the early 

grades can encounter difficulties in later grades when fractions are introduced, typically 

in third or fourth grade (Gersten, Clarke, Haymond, & Jordan, 2011; Gersten et al., 2012; 

NGACBP & CCSSO, 2010).   

Specific Aims 

To address the need for mathematics screeners in the intermediate grades the 

present study uses longitudinal data to examine the predictability of fraction screening 

tools. In particular, a collection of fraction measures was administered in fourth, fifth, 

and sixth grades to determine their potential usefulness for identifying students who are 

struggling in mathematics. Fraction skills were purposefully selected for examination 

because they comprise a large and potentially unifying portion of mathematics content 

during these grades (NGACBP & CCSSO, 2010). Moreover, level of fraction knowledge 

is associated with later mathematics (e.g., Booth & Newton, 2012). Fractions stand out as 
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a particularly challenging topic for many students (e.g., Bailey et al., 2012; Ni & Zhou, 

2005), which further suggests the need to screen for difficulties in this area of 

mathematics. 

The specific aims of the present study are: (a) to assess the diagnostic accuracy of 

fraction concepts and fraction arithmetic measures in fourth through sixth grades, (b) to 

identify the measure(s) in each grade with highest diagnostic accuracy for predicting later 

mathematics achievement while also considering practicality for classroom use, and (c) to 

demonstrate an improved way for educational researchers to report results from receiver 

operating characteristic (ROC) curve analyses, which assess the predictive strength of  

potential screener measures. Each aim is discussed next. 

Assess the Diagnostic Accuracy of Different Measures of Fraction Knowledge 

Administered in Fourth through Sixth Grades 

As noted earlier, fraction knowledge is a unique and reliable predictor of later 

mathematics achievement (e.g., Resnick et al., 2016), even when controlling for the 

contributions of cognitive abilities and family income (Siegler et al., 2012). This finding, 

along with fractions being a critical component of mathematics education starting in mid-

elementary school (NGACBP & CCSSO, 2010; NMAP, 2008), suggests that fraction 

measures administered during these grades are strong candidates for screeners of later 

mathematics difficulties. 

The present study examines two different types of fraction knowledge: fraction 

concepts and fraction arithmetic. Acquisition of mathematics knowledge in any area 

requires a student to be accurate and fluent with both concepts and arithmetic procedures 

(Geary, 2004). Some studies have suggested that fraction concepts and procedures are 

relatively independent constructs (e.g., Hallett, Nunes, Bryant, & Thorpe, 2012; Hansen 

et al., in press; Ye et al., 2016).   
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To consider the fraction measures as potential screeners, analyses were conducted 

to determine each measure’s ability to predict students who fall into one of two groups: 

students who do not meet the mathematics standards on a validated end-of-the-year 

statewide achievement test versus students who do meet the mathematics standards; this 

diagnostic ability is called diagnostic accuracy (Jordan, Glutting, Ramineni, & Watkins, 

2010; Youngstrom, 2014). Diagnostic accuracy and screening potential of all measures 

administered in the fall/winter of fourth, fifth, and sixth grades for predicting later, 

general mathematics achievement on a statewide mathematics achievement test are 

reported.   

Identify the Fraction Measure(s) with Highest Diagnostic Accuracy per Grade While also 

Considering Practical Value for Teachers 

A second goal of the present study was to identify a screening measure or a 

combination of measures that not only accurately predicts mathematics difficulties by 

also has practical value for teachers. The first step was to identify the fraction predictor 

measure(s) per each grade with high predictive power, as determined by high diagnostic 

accuracy. In the scenario of multiple measures emerging as valid screeners with high 

diagnostic accuracy, the measures would be combined and tested. 

The second step was to assess if the selected screener or combination of screeners 

could be modified to improve time efficiency and usability for the classroom, without 

sacrificing the high diagnostic accuracy associated with the full screener(s) for the 

prediction of later mathematics performance. For example, a screener with 15 items is 

quicker to administer and easier to score than a measure that includes those same 15 

items plus 20 additional items. The best combinations of items for each grade (i.e., 

fourth, fifth, and sixth grade) that do not sacrifice the high diagnostic accuracy of the 

screener are tested and reported.   



 5 

Demonstrate an Improved Method of Reporting Screener Statistics in Educational Studies 

A final goal of the study was to propose a more complete set of recommendations 

for reporting screener results in ways that are understandable and usable for teachers than 

presently exists in the educational literature. The type of screener (i.e., single screener 

versus combined measure) determined the type of statistics reported in the present study.  

The primary analysis used in studies of single educational screeners is the receiver 

operating characteristic (ROC) curve analysis (e.g., Jordan, Glutting, & Ramineni, 2008; 

Wilson, Olinghouse, McCoach, Santangelo, & Andrada, 2016). ROC curve analysis is a 

statistical method cited in the literature for determining the diagnostic accuracy of a 

screener (e.g., Gersten et al., 2012). For the present study, ROC analyses evaluate the 

ability of a screener measure to identify students who are at risk for later mathematics 

difficulties (i.e., true positives) and to rule out the concern for students who are not at risk 

(i.e., true negatives; e.g., Cummings & Smolkowski, 2015). In the present study, ROC 

curve analyses are conducted to assess the diagnostic accuracy of fraction measures for 

the prediction of students at risk and for computing statistics associated with screener cut 

scores.  

Currently, there are two sets of guidelines for conducting and reporting ROC 

curve analyses; one set is reported in the educational literature (Cummings & 

Smolkowski, 2015) and the other is reported in the medical literature for clinical 

decision-making (Bossuyt et al., 2003; Youngstrom, 2014). The medical guidelines for 

conducting ROC curve analyses do not differ from the guidelines in the educational 

literature. However, the two sets of guidelines differ in recommendations for reporting 

the ROC data for use by clinicians or teachers in real-world settings. The medical 

guidelines appear more helpful for reporting ROC statistics in ways that are easy to use 

for clinicians. Even though the context of clinicians working with patients in a medical 

setting differs from working with students in a classroom setting, the ROC analysis itself 
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and the corresponding statistics remain the same across disciplines, just with different 

interpretations. 

In response, the present study conducts ROC analyses by following the general 

ROC framework that is supported by both the educational literature (Cummings & 

Smolkowski, 2015) and the medical literature (Bossuyt et al., 2003; Youngstrom, 2014). 

For the final step of reporting the ROC data in a way that translates the statistics into 

usable information for teachers, the present study follows the medical guidelines. By 

comparing the two sets of guidelines, an enhanced list of ROC recommendations is 

proposed for educational purposes. The goal is to help educational researchers report 

results in a way that is most interpretable for real-world classroom application.  

If combining one screener with discrete data and a second screener with continuous data 

(e.g., measuring students’ estimates on the fraction number line measure with percent 

absolute error), the ROC analysis cut score statistics become difficult to interpret. The 

researcher must now consider a combination of scores to make predictions of risk status. 

For this scenario, the present study presents a matrix that allows a researcher or teacher to 

easily make empirically-driven decisions of a student’s later mathematics achievement 

(Clemens, Keller-Margulis, Scholten, & Yoon, 2016). 

Educational Significance 

Screeners in the intermediate grades help teachers identify children who are at 

risk for later difficulties. Fractions are foundational to mathematics curricula in upper 

elementary school (NGACBP & CCSSO, 2010), and competence with fractions prepares 

students for succeeding in algebra and higher-level mathematics courses. Yet research on 

effective screeners of fractions, in particular, and mathematics difficulties, more 

generally, in the intermediate grades is scarce (Gersten et al., 2011; 2012). Identification 

of students who need help in fractions can lead to intervention, additional support, and 

mentoring. As such, identifying students who are at risk for mathematics is the crucial 
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step for helping struggling students (Clemens et al., 2016). Additionally, improving the 

educational guidelines for reporting results in ways that are understandable and usable for 

teachers can inform data-driven decision-making in the classroom, such as teachers 

deciding which students should receive additional supports. Without access to valid 

screening measures in the intermediate grades, students who are at risk for later 

difficulties may go unnoticed, never receiving the supports they need to prepare them for 

later success.  
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Chapter 2 

REVIEW OF THE LITERATURE 

The present literature review has several goals. First, it is argued that fractions 

play a key role in mathematical development, with understanding of fraction magnitudes 

being especially important. Second, to show that fraction knowledge is multifaceted, the 

review addresses the differences and connections between fraction concepts and fraction 

procedures. Third, the review examines studies showing fraction knowledge to be a 

unique predictor of later mathematics achievement. Fourth, the review discusses the 

importance of mathematics screeners for detecting at-risk students, identifies existing 

mathematics screeners for the intermediate grades, and summarizes a method for 

improving the efficiency of screeners for classroom use. Finally, the review addresses the 

importance of receiver operating characteristic (ROC) curve analysis for assessing 

screener measures, outlines statistical terms that are foundational to the analysis, and 

shares an improved way for educational researchers to report ROC statistics that is more 

useful for teachers.  

Numerical Development, Magnitude Knowledge, and Fractions 

Earlier theories of numerical development have focused on the development of 

whole number knowledge and depict this whole number learning as relatively 

discontinuous with learning fractions (Geary, 2006; Gelman & Williams, 1998). Geary 

(2006) posits that knowledge of fraction concepts and fraction procedures are 

biologically secondary competencies. These theories view whole number and fraction 

learning as segmented processes in numerical development. While whole number 
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knowledge is depicted as developing in a somewhat natural way, fraction knowledge is 

viewed as a challenging skill that is acquired later in development.  

Segmented theories of numerical development focus on the discontinuities 

between whole numbers and fractions, meaning the properties of whole numbers that do 

not always hold true for fraction reasoning. For example, children are familiar with each 

whole number having a unique successor, such as “four” always follows “three.” 

Children are predisposed to make the assumption that all numbers have one specific 

successor, but this principle does not apply when working with fractions, which are 

infinitely divisible (Siegler, Fazio, Bailey, & Zhou, 2013; Siegler, Thompson, & 

Schneider, 2011). Furthermore, each whole number is represented by solely one symbol, 

whereas fraction magnitudes can be represented by many different symbols (Siegler & 

Lortie-Forgues, 2014) due to fraction equivalence (e.g., 1/2 = 4/8 = 50/100). The 

struggles that many children experience with fractions have been attributed to these 

discontinuities between whole numbers and fractions. Students often incorrectly apply 

whole number knowledge to fraction tasks, such as reasoning that 1/4 is smaller than 1/10 

because four is smaller than ten, and this tendency can be seen in both children and adults 

(DeWolf & Vosniadou, 2011; Ni & Zhou, 2005).   

The integrated theory of numerical development (Siegler & Lortie-Forgues, 2014; 

Siegler et al., 2011) argues that, while the many discontinuities between whole numbers 

and fractions distort fraction understanding, the discontinuities do not offer a complete 

picture of numerical development. Siegler and colleagues propose a continuous process 

of development that is unified by one key understanding: all real numbers have 

magnitudes that can be represented on a number line. The emphasis on the continuity 

between all real numbers while still acknowledging the discontinuities that impact 

development creates a more unified depiction of the process of numerical development 

than offered by prior theories. According to the integrated theory, the one understanding 

that serves as a unifying theme for numerical development is the ongoing advancement 
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and growth of understanding numerical magnitudes (Siegler & Lortie-Forgues, 2014). 

The development of numerical knowledge is considered as a process of broadening the 

set of numbers whose magnitudes can be accurately represented.   

The importance of magnitude understanding in numerical development has been 

highlighted in many studies, even early in development. Children’s success in preschool 

on non-symbolic approximate number system (ANS) tasks to identify whether an array of 

dots on a screen shows more blue dots or more yellow dots) correlates with mathematics 

ability after controlling for age and verbal skills (Libertus, Feigenson, & Halberda, 2011). 

Mazzocco, Feigenson, and Halberda (2011) showed that precision on these non-symbolic 

ANS tasks again measured in preschool predicts mathematics achievement two years 

later.  

The importance of magnitude understanding has also been reported in studies 

using symbolic numerical tasks involving fractions (e.g., Resnick et al., 2016; Siegler et 

al., 2011; Torbeyns, Schneider, Xin, & Siegler, 2015). Fraction magnitude understanding 

is the ability to comprehend, estimate, and compare the sizes of fractions (Fazio, Bailey, 

Thompson, & Siegler, 2014). A common measure of fraction magnitude understanding is 

a number line task in which students estimate the locations of individual fractions on a 

number line (e.g., Booth et al., 2014; Siegler et al., 2011). Siegler et al. (2011) 

administered a 0-1 fraction number line task (i.e., a number line that begins with zero on 

the left endpoint and extends to one on the right endpoint) and a 0-5 fraction number line 

task to students in sixth and eighth grades. The researchers report strong correlations in 

both grades between accuracy on each fraction number line task with fraction arithmetic 

performance and overall mathematics achievement. Resnick et al. (2016) looked 

longitudinally from fourth through sixth grade at students’ accuracy when estimating 

fraction magnitudes on 0-1 and 0-2 number lines. Although students showed positive 

linear growth overall, latent class growth analyses revealed three empirically distinct 

growth trajectory classes: Students who were highly accurate on the fraction number line 
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task in fourth grade and become even more accurate by sixth grade; students who were 

inaccurate in fourth grade but improved greatly over the course of the study; and students 

who were inaccurate in fourth grade and showed minimal growth. Student membership in 

the different growth classes was highly predictive of achievement on a statewide 

standardized mathematics test in the spring of sixth grade, demonstrating the importance 

of growth in fraction magnitude understanding to mathematics achievement more 

broadly.  

Overall, magnitude understanding in particular is an important concept that is 

relevant to both whole numbers and fractions. Fraction magnitude understanding emerges 

as a key aspect of numerical development. Students who struggle on fraction number line 

tasks lack a deep understanding of fraction magnitudes and often fail to see the relation 

between the numerator and the denominator (Resnick et al., 2016). For example, 

struggling students often inaccurately place the fraction 1/19 to the far right of a 0-2 

number line. The students view the 19 in the denominator as a “big number” and estimate 

that the fraction has a large magnitude (Rodrigues, Dyson, Hansen, & Jordan, 2017). 

Students who cannot accurately place fractions on a number line are likely to continue to 

struggle in mathematics classes, at least without receiving additional supports (Resnick et 

al., 2016; Siegler et al., 2011). The next section differentiates between fraction concepts 

and fraction procedures.   

Differentiating Fraction Concepts from Fraction Procedures 

According to Geary (2004), mastery of mathematical knowledge depends on both 

concepts and procedures. As applied to fraction learning, conceptual knowledge involves 

not only an understanding of fraction magnitudes (e.g., Siegler et al., 2013), but also an 

understanding of fraction notations and the recognition that an infinite number of 

fractions exist between any two fractions (Van Hoof, Janssen, Verschaffel, & Van 

Dooren, 2015). The tasks used to measure fraction concepts, however, differ from study 
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to study. Some researchers use a broad set of items that touch on several different fraction 

concepts, such finding parts of whole and parts of a set, understanding the larger of two 

fractions, and the ability to order fractions according to their magnitudes (e.g., Fuchs et 

al., 2013; Jordan et al., 2013; Seethaler, Fuchs, Star, & Bryant, 2011; Vukovic et al., 

2014), while others use more fine-grained assessments of fraction magnitudes, such as 

the aforementioned fraction number line task (e.g., Resnick et al., 2016; Siegler et al., 

2011). On the other hand, procedural knowledge involves knowing procedures for 

adding, subtracting, multiplying, and dividing fractions as well for solving other fraction 

problems (e.g., cross multiplying; Hecht & Vagi, 2012; Siegler et al., 2013). Proficiency 

in one domain of fraction knowledge does not always imply proficiency in the other; for 

example, a student who successfully uses an algorithm for a fraction arithmetic problem 

is not always aware of why the algorithm works (Hecht & Vagi, 2012).  

Both concepts and procedures are important aspects of fraction learning. Hecht, 

Close, and Santisi (2003) conducted a study with fifth-grade students to investigate the 

relation between whole number arithmetic and fraction concepts (which tapped into many 

conceptual understandings, including fraction comparisons and area model 

representations of fractional quantities) on three different outcomes: fraction 

computation, fraction arithmetic word problems, and fraction estimation for which 

students estimated the sums of fraction computation problems. Using structural equation 

modeling, the data showed that fraction conceptual knowledge uniquely contributed to 

performance in all three fraction outcomes. In contrast, whole number arithmetic 

knowledge independently contributed only to the fraction computation outcome (Hecht et 

al., 2003). These findings suggest that while both conceptual and procedural knowledge 

are important for success with fractions, conceptual understanding may be of higher 

importance and may even influence performance in fraction procedures. For example, 

consider a fifth-grader who has a strong conceptual understanding of fractions. When 

solving the computation problem 3/4 + 1/4, the student impulsively writes down the 
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answer 4/8, incorrectly adding together the denominators. However, the student’s 

conceptual understanding of fractions helps her to realize that 4/8 is equivalent to 1/2 and 

thus not a reasonable answer to the problem. A different student who applies memorized 

procedures to a computation problem without reasoning conceptually about the problem 

is less likely to catch this error.  

In an investigation of individual differences in how children combine conceptual 

and procedural fraction knowledge, researchers Hallet, Nunes, and Bryant (2010) found 

that some children rely more on procedural knowledge, whereas other children depend 

more on conceptual knowledge; the latter appear to have an advantage on both 

conceptual and procedural problems compared to the students who rely primarily on 

procedural knowledge, again pointing to the importance of conceptual understanding. 

Hecht and Vagi (2012) showed that students who exhibited better conceptual knowledge 

than procedural knowledge demonstrated higher accuracy on a fraction computation task 

than students with low conceptual knowledge. However, the researchers also found that 

some students with relatively high procedural knowledge use this knowledge to 

compensate for their weaker conceptual knowledge (Hecht & Vagi, 2012).  

The timing of conceptual and procedural development in mathematics is also 

important to consider. There is disagreement in the literature regarding whether concepts 

or procedures are acquired first, with some studies showing that children develop 

conceptual knowledge before procedural knowledge (e.g., Peck & Jencks, 1981) and 

others documenting cases in which procedural knowledge develops within a domain 

before conceptual knowledge (e.g., Byrnes & Wasik, 1991). A more recent perspective is 

the iterative model proposed by Rittle-Johnson, Siegler, and Alibali (2001). This model 

portrays conceptual and procedural knowledge as influencing one another continuously 

throughout development in a bi-directional fashion, rather than one preceding the other. 

Growth in conceptual knowledge leads to increases in procedural knowledge and vice 

versa.   
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Bailey, Hansen, and Jordan (2017) examined whether this bi-directional 

relationship exists between fraction magnitude understanding (as measured by accuracy 

on a fraction number line task) and fraction arithmetic. Using a state-trait modeling 

approach, the researchers found evidence of transfer from fraction arithmetic skill to 

fraction magnitude understanding between two waves of measurement between fifth and 

sixth grade (i.e., the fall of fifth grade to the spring of fifth grade and the spring of fifth 

grade to the winter of sixth grade); transfer from fraction magnitude understanding to 

fraction arithmetic skill was found between the spring of fifth grade and the winter of 

sixth grade. These findings suggest a bi-directional relationship between fraction 

magnitude understanding and fraction arithmetic. In other words, children’s knowledge 

of fraction magnitudes supports their learning of fraction arithmetic and vice versa.   

A recent study examining pathways to fraction knowledge lends empirical support 

for considering fraction concepts and fraction procedures as distinct types of fraction 

knowledge (Ye et al., 2016). Sixth-grade fraction conceptual understanding was assessed 

with a measure that included various fraction concepts items, including set model items 

(e.g., “Shade 2/5 of ten circles”) and estimation (e.g., “Estimate the sum: 7/8 + 12/13”). 

Sixth-grade fraction procedural understanding was assessed with fraction addition, 

subtraction, multiplication, and division items. Researchers used separate mediation 

analyses to explore pathways to fraction concepts knowledge and fraction procedural 

knowledge via third-grade cognitive skills (e.g., attentive behavior, verbal ability, 

nonverbal ability, and working memory) and fifth-grade numerical skills (e.g., magnitude 

reasoning and calculation). Distinct pathways for fraction conceptual knowledge and 

fraction procedural knowledge emerged. Whole number magnitude reasoning ability in 

fifth grade fully mediated the relationship between third-grade cognitive processes and 

sixth-grade fraction conceptual knowledge. In contrast, whole number multiplication and 

division abilities emerged as the key intermediaries between cognitive processes and 

sixth-grade fraction procedural knowledge. 
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Overall, the literature on fraction concepts and procedures suggests that they are 

relatively separate but mutually supportive competencies, with fraction concepts seeming 

to be most important to mathematics achievement (e.g., Hallet et al., 2010; Hecht et al., 

2003).  

Fraction Knowledge and Later Mathematics Achievement 

In 2008, the National Mathematics Advisory Panel (NMAP) concluded that 

proficiency with fractions is foundational for later mathematics; in particular, NMAP 

highlighted the importance of fraction understanding for learning algebra. A few years 

later, Siegler and colleagues (2011) emphasized the importance of fraction magnitude 

understanding for overall numerical development. As described earlier, their integrated 

theory suggests that a vital part of numerical development is learning that many whole 

number properties (e.g., having one and only one successor) do not apply to all numbers. 

Importantly, the introduction of fractions is a child’s first opportunity to learn the 

inconsistencies between whole numbers and other numbers. As such, the integrated 

theory implies that the acquisition of fraction knowledge is crucial to overall mathematics 

achievement. Yet, at the time of the NMAP (2008) publication and the proposal of the 

integrated theory of numerical development (Siegler et al., 2011), empirical support 

showing a link between fraction knowledge and later mathematics achievement was 

lacking (Booth & Newton, 2012). Since then, several studies have provided strong 

empirical support for the assertion that fraction knowledge predicts both algebra skill and 

later mathematics achievement more broadly. 

Booth and Newton (2012) explored the relations between middle school students’ 

fraction and whole number magnitude knowledge on algebra readiness. Students 

completed a fraction number line task (i.e., 0-1 number line) and two whole number line 

tasks (i.e., 0-100 and 0-6257). Algebra readiness was assessed by three measures: feature 

knowledge (e.g., knowledge of the equals sign), equation solving, and word problem 
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solving. The researchers found that fraction magnitude knowledge, more so than whole 

number magnitude knowledge, predicted early algebra skill. This finding supports the 

idea that fraction understanding, in particular, is important for later algebra achievement.  

Siegler and colleagues (2012) not only explored the relation between fraction knowledge 

and algebra performance but also the relation between fraction knowledge and overall 

mathematics achievement. Using two nationally representative longitudinal data sets (one 

from the United States and the one from the United Kingdom), knowledge of fraction 

arithmetic at age ten uniquely predicted algebra and overall mathematics achievement in 

high school even after controlling for family education, family income, intellectual 

abilities, and whole number arithmetic. Furthermore, the aforementioned study conducted 

by Resnick et al. (2016) shows that growth in fraction magnitude understanding, in 

particular, predicts student performance on a statewide, standardized test of general 

mathematics achievement. Thus, there exists empirical support for the idea that fraction 

knowledge benefits students’ general mathematics achievement. 

The relation between fraction understanding and algebra achievement is not 

unique to young children. In a recent investigation, Hurst and Cordes (2017) replicated 

this finding with adults. The researchers found that fraction skills remain an important 

predictor of algebra ability years after targeted fraction instruction in the classroom. This 

finding suggests that the predictive relationship between fraction understanding and 

algebra ability is not dependent on recent classroom instruction. Rather, the relationship 

holds even years after students’ schooling in both fractions and basic algebra concepts.  

Researchers must ask why fraction knowledge emerges as a predictor of mathematics 

achievement more generally. Siegler and colleagues (2012) discuss four possible reasons 

why fraction knowledge uniquely predicts later mathematics performance. The first 

explanation is that measures of algebra knowledge and general mathematics achievement 

are essentially measuring fraction knowledge, as fractions are prevalent in later 

mathematics problems (e.g., [6/8]x = 12). A second and more speculative hypothesis is 
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that students who struggle with fractions in the intermediate grades may feel frustrated 

and hopeless in the area of mathematics; these students may give up trying in subsequent 

mathematics classes and rely on rote memorization. A third possibility is that the unique 

predictive value of fraction knowledge stems from fractions being an abstract and 

difficult topic for students, thus measuring more advanced thinking or general 

intelligence. A fourth and intriguing explanation is that fraction understanding is 

representative of an underlying structure of number that is essential for more advanced 

mathematics.  

Siegler and colleagues (2012) found support for the fourth explanation and argue 

that students’ who master fractions have a deep understanding of number that is essential 

for later mathematics more broadly. The researchers report that the predictive strength of 

students’ fraction knowledge at age ten did not differ between students with greater and 

lesser mathematics achievement in high school. In other words, early fraction knowledge 

emerged as a unique predictor of later mathematics achievement regardless of ability 

level. Thus, the researchers claim that the relation between fraction knowledge and later 

mathematics is not a result of fractions being difficult to master. Rather, the predictive 

value of fractions seems to be due to fractions being essential to more advanced 

mathematics. 

To extend the findings of Siegler et al. (2012), Bailey and colleagues (2012) 

tested whether measures of fraction knowledge are proxies for more general cognitive 

abilities, such as working memory. This explanation aligns with the hypothesis that 

fraction knowledge is essentially measuring general intelligence since fractions are a 

difficult topic. To test this possibility, Bailey and colleagues (2012) examined the extent 

to which students’ performance on a fraction comparison measure predicted both 

mathematics achievement more broadly and word reading skills. If fraction competence 

represents general intelligence, then students’ performance on the fraction comparison 

measure should be a unique predictor of later literacy skills. The researchers report that 
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sixth-graders’ fraction comparison skill predicted one year gains in mathematics 

achievement, controlling for working memory and intelligence. Fraction comparison skill 

did not, however, predict students’ word reading skills. They conclude that the findings 

are inconsistent with the hypothesis that fraction knowledge is a proxy of general 

intelligence. As such, the findings suggest that fraction competence holds unique 

importance for mathematics learning and achievement.   

Screening for Mathematics Difficulties 

Prior studies on mathematics screeners for identifying students at risk for 

mathematics difficulties have concentrated on kindergarten, first grade, and second grade 

(e.g., Bryant, Bryant, Gersten, Scammacca, & Chavez, 2008; Clarke, Baker, Smolkowski, 

& Chard, 2008; Jordan et al., 2008; Lembke & Foegen, 2009; Methe, Hintze, & Floyd, 

2008; Seethaler & Fuchs, 2010; VanDerHayden et al., 2011). This focus on early grades 

is warranted, as school personnel want to identify at-risk students as early as possible in 

hopes of circumventing later difficulties. However, there is also a need for screening 

students in the intermediate grades. The following sections discuss the following: (a) the 

importance of mathematics screeners for students beyond second grade, (b) prior studies 

on mathematics screeners for the intermediate grades and (c) different categories of 

screening measures and an approach for improving the efficiency of these measures for 

classroom use. 

Importance of Mathematics Screeners for the Intermediate Grades 

In a review of prior studies exploring mathematics screeners, Gersten and 

colleagues (2011; 2012) urge future research to explore screeners for the intermediate 

grades. The authors caution readers that their review only addresses screeners for 

kindergarten through second grade and does not elucidate which students will succeed in 

mathematics in the early grades but struggle with more “intricate and abstract topics such 
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as those involving rational number” (Gersten et al., 2011, p.14). They conclude that 

future longitudinal studies must address these questions and student learning of more 

advanced mathematics content. 

For example, imagine a student who is screened for mathematics difficulties along 

with her peers in the fall of first grade. Her performance on the screener demonstrates 

proficiency for basic number sense and as such, does not raise any concerns for her 

teacher. Now fast-forward to the fall of fifth grade. The student is experiencing new 

difficulties and is struggling to master fraction arithmetic and fraction concepts. Although 

the student’s teacher considers her a low-performer in his classroom, the teacher decides 

that her performance does not warrant intervention. The student thus progresses into 

middle school mathematics. Unfortunately, without a strong understanding of fractions, 

her mathematics performance continues to decline when algebra is introduced in the 

curriculum.  

The aforementioned example shows a student who meets mathematics 

benchmarks in the early grades but encounters difficulties in later grades when more 

abstract topics are introduced, such as fractions (Gersten et al., 2012). Without a valid 

screener measure in the intermediate grades, the teacher relied on his opinion to 

determine whether or not she needed additional supports. In educational settings, this 

occurrence is not uncommon; teachers and other educators often use opinion and intuition 

to decide which students in their classrooms should receive support services 

(Smolkowski & Cummings, 2015). However, studies of diagnostic decision-making 

suggest that judgments grounded on data and statistical models outperform judgments 

made on intuition alone (e.g., Grove, Zald, Lebow, Snitz, & Nelson, 2000). Decisions can 

be improved with the help of efficient diagnostic screeners (Smolkowski & Cummings, 

2015).  

Without valid screener measures for the intermediate grades, schools may “miss” 

students who are at risk for later difficulties and ill-prepared for more advanced 
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mathematics such as algebra. Identification of students at risk is the foundation of 

prevention, and the best method of identifying these students is with valid diagnostic 

screeners (Smolkowski & Cummings, 2015). Yet, the scarcity of research for 

intermediate grades in the area of mathematics screeners is striking. The next section 

explores the small subset of studies that have begun to address this gap in the literature.   

Prior Studies Assessing Mathematics Screeners for the Intermediate Grades 

The What Works Clearinghouse practice guide for assisting students struggling 

with mathematics cites only two studies that assess screeners beyond the second grade 

(Gersten et al., 2009). The first study mentioned in the practice guide investigated timed, 

one-minute measures of whole number facts (e.g., 6 – 1 = ?) administered in both third 

and fifth grades as predictors of performance on a statewide mathematics test at the end 

of each grade (Jiban & Deno, 2007). A limitation of the study is the type of statistical 

analysis used by the researchers. They conducted multiple regression analyses to assess 

whether the whole number facts measures predicted later mathematics achievement. 

Although regression analyses are powerful for assessing the strength of a predictor 

measure for an overall sample, they do not provide data on the accuracy of a screener for 

placing individual students into one of two populations of interest: students who are at 

risk and students who are not at risk (Jordan et al., 2010). The second study cited in the  

practice guide (Gersten et al., 2009) for providing data on mathematics screeners beyond 

second grade is a review written by Foegen, Jiban, and Deno (2007). However, similar to 

the Jiban and Deno (2007) study, the few studies mentioned in the review assess 

predictors of later mathematics achievement rather than exploring the measures as 

screeners for predicting individual student performance (e.g., Foegen & Deno, 2001). 

Beyond the studies cited by the What Works Clearinghouse practice guide, only 

two additional studies were detected that assess mathematics screeners in the 

intermediate grades. Both studies are drawn from the same project that took place during 
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the 2002-2003 school year. Data were collected from first through fifth grade in two 

school districts (Keller-Margulis, Shapiro, & Hintze, 2008; Shapiro, Keller, Lutz, 

Santoro, & Hintze, 2006). Rather than using regression analyses, the researchers used a 

statistical analysis called receiver operating characteristic (ROC) curve analyses. This 

analysis is better suited for assessing the strength of a screener, as it provides data on the 

accuracy of a screener for predicting individual student membership into the at-risk 

population or the not at-risk population (Jordan et al., 2010; Smolkowski & Cummings, 

2015).  

Both studies used ROC curve analyses to assess the accuracy of curriculum-based 

measurements (CBM) in mathematics for predicting overall mathematics performance on 

a statewide assessment measure (Keller-Margulis et al., 2008; Shapiro et al., 2006). CBM 

is intended to mirror grade-appropriate skills that students use during everyday 

instruction and to provide repeated samples of student performance over time, rather than 

a snapshot (Shapiro et al., 2006). The first CBM was the Monitoring Basic Skills 

Progress (MBSP)—Math Computation (Fuchs, Hamlett, & Fuchs, 1998), which assesses 

student progress in mathematics computation. The measure increases in complexity 

through the grades. The probe for first grade and second grade consists of addition and 

subtraction problems, and the probe for third grade includes multiplication and division 

of whole numbers. The fourth grade measure includes fractions and multi-digit 

multiplication (Fuchs et al., 1998). The second CBM probe used in both studies was the 

MBSP—Math Concepts and Applications (Fuchs, Hamlett, & Fuchs, 1999). Items assess 

concepts such as counting, names of numbers, measurement, and fractions, with items 

increasing in difficulty across the grades (Shapiro et al., 2006).  

The researchers’ examination of fourth-grade CBM performance on later fifth-

grade mathematics achievement provides an example of using ROC curve analyses to 

explore screener measures in intermediate grades. As mentioned above, ROC curve 

analyses provide data on the accuracy of a screener for predicting student membership 
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into one of two populations of interest: students who are at risk and students who are not 

at risk (Jordan et al., 2010). A ROC curve statistic called the area under the curve (AUC) 

is the recommended index of accuracy when assessing a screener (Pepe, 2003; 

Smolkowski & Cummings, 2015). The AUC is the overall diagnostic accuracy of a 

screener; for example, an AUC of .70 indicates that the screener accurately predicts 

student membership 70% of the time. In the study assessing CBM probes, Keller-

Margulis and colleagues (2008) report the AUC values of the probes administered in the 

spring of fourth grade for predicting mathematics achievement in the spring of fifth 

grade. The researchers report an AUC of .79 for the computation probe, which means that 

the measure accurately identified students as either at risk or not at risk 79% of the time. 

The concepts probe yielded a slightly lower AUC of .72, meaning that the concepts 

measure correctly identified students 72% of the time. Both AUC values hover close to 

the .75 threshold recommended in the educational literature as indicative of good 

screeners for determining risk status (Cummings & Smolkowski, 2015). However, the 

authors do not report the AUC values for the fall or winter CBM probes. This omission 

raises a concern because screener measures are typically administered in the fall or winter 

to provide information of students’ understanding at the beginning or middle of the 

academic year (Gersten et al., 2009). Without the data for the earlier administrations of 

the measures, the true value of these measures as screeners in the classroom is 

questionable.  

The earlier 2006 paper from the same data project also used ROC curve analyses 

to explore the validity of fourth- and fifth-grade CBM probes; unfortunately, this 

particular study does not report the AUC values for any of the ROC analyses (Shapiro et 

al., 2006). The researchers report other ROC curve statistics for specific cut scores (e.g., 

the rate of true positives and true negatives; see Appendix C Glossary), but they do not 

provide the AUC values that represent the diagnostic accuracy of the screeners. Thus, 
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without the AUC values reported, the overall strength of the screeners cannot be 

determined.  

Overall, the research on mathematics screeners for the intermediate grades is 

limited, and the results reported are not consistent across studies. Another important 

difference to note is the categories of mathematics screeners assessed in the studies; these 

categories are described next. 

Categories of Screener Measures  

Some of the aforementioned studies on mathematics screeners in the intermediate 

grades explored single-proficiency screeners and others assessed multiple-proficiency 

screeners. A single-proficiency screener assesses only one aspect of number competence 

(Gersten et al., 2012). An example of a single-proficiency screener is the measure of 

whole number facts (e.g., 5 – 1 = ?) assessed by Jiban and Deno (2007). Alternatively, 

the CBM probe administered by Shapiro and colleagues (2006) that assessed names of 

numbers, measurement, and fractions is an example of a multiple-proficiency screener 

(Gersten et al., 2011; 2012). Researchers have suggested that multiple-proficiency 

screeners may be more fruitful than a screener that targets only one discrete skill (e.g., 

Foegen et al., 2007). Purpura, Reid, Eiland, and Baroody (2015) argue that mathematics 

skills develop as a sequence of concepts and skills and as such, a measure that cover a 

broader range of mathematics content may serve as a stronger screener than a single-

proficiency measure.  

Another possibility for assessing multiple proficiencies is to combine screener 

measures. For example, two single- or multiple-proficiency screener measures can be 

combined and assessed within a study; an interesting question that arises is whether the 

combined measure makes more accurate predictions than either single measure alone. 

The general hypothesis is that multiple measures combined tap into more aspects of 
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students’ knowledge base and thus are likely to be more predictive of students’ later 

performance (Gersten et al., 2012).   

Jenkins, Hudson, and Johnson (2007) urged researchers to explore this option, 

proposing that combining multiple measures may improve classification accuracy. For 

example, in a study to predict students’ reading difficulties, Speece and colleagues (2011) 

used logistic regression to assess the classification accuracy of three predictor measures 

combined: the Word Identification subtest of the Woodcook-Johnson Reading Test 

(Woodcock, 1998), teachers’ rating of students’ overall reading ability, and word 

identification fluency. They found that the combination of measures had a superior 

diagnostic accuracy as compared to each measure individually. 

In a recent publication, Clemens and colleagues (2016) also recommend assessing 

combinations of measures. Although they discuss the importance of both mathematics 

and reading screeners, the example they provide is focused on screener measures for 

reading difficulties. They assessed three separate screener measures: letter-sound fluency, 

letter-naming fluency, and phoneme segmentation fluency. They also used logistic 

regression to combine the predictors and determine which were statistically significant in 

the prediction of their outcome variable, which was first-grade reading fluency. The 

researchers report that the best-fitting model included two screener measures, letter-

sound fluency and letter-naming fluency. By assessing this new combination of measures 

using both logistic regression and a ROC curve analysis, the researchers reported that the 

combination of multiple measures yielded slightly higher diagnostic accuracy than either 

measure alone (Clemens et al., 2016). The researchers provided a helpful matrix for 

making interpretations of students’ later reading achievement; the matrix shows ranges of 

scores along both screener measures and allows a teacher or researcher to make a 

prediction based on a student’s scores on each screener. 

As such, there is support for assessing a combination of multiple screener 

measures in hopes of improving diagnostic accuracy. However, even though many 
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researchers support this notion, they are simultaneously wary of its tradeoffs (e.g., 

Jenkins et al., 2007; Speece et al., 2012). For example, Jenkins and colleagues (2007) 

mention that although multiple measurements may improve screening precision, 

administering more than one measure is far less efficient than administering one single 

measure. Clemens et al. (2016) warn researchers and schools that the administration of 

multiple measures requires additional resources and time. Furthermore, the use of several 

different measures for screening can lead to confusion about how to interpret scores.  

Fortunately, Clemens et al. (2016) provide a helpful solution for the concern of 

interpreting student scores from a combination of measures. They use logistic regression 

not only to evaluate the multiple measures combined, but also to provide a multiple-

measure matrix that helps teachers interpret students’ scores. As mentioned previously, 

the researchers assessed a combination of a letter-sound fluency measure and a letter-

naming fluency measure for the prediction of meeting a first-grade reading criterion. The 

researchers report a multiple-measure matrix that provides predicted probabilities of 

meeting the first-grade reading criterion for different combinations of scores on each 

measure. A predicted probability indicates the likelihood of a student meeting the reading 

criterion and is determined by the linear combination of the two measures as computed 

within the logistic regression (Clemens et al., 2016). For example, a student who scores 

within a certain range on the letter-sound fluency measure (e.g., 20-24) and also scores 

within a certain range on the letter-naming fluency measure (e.g., 35-39) has a predicted 

probability ranging from 0.84 to 0.89. This predicted probability range indicates that the 

student has an 84%-89% chance of meeting the reading criterion. Teachers can therefore 

use the matrix to interpret any student’s scores on the two measures. 

While Clemens and colleagues (2016) provide a useful solution for interpreting 

students’ scores when using a combination of screening measures, they do not provide a 

solution for the issue of needing additional time and resources to administer more than 
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one screener measure. The researchers conclude that combining multiple measures 

necessitates extra resources and is hence less efficient and practical for classroom use.  

Improving the Efficiency of a Combination of Measures 

A possible solution to the concern of multiple screener measures being less 

efficient than single screener measures is provided by Purpura and colleagues (2015). 

The researchers propose that the efficiency and practicality of a screener measure can be 

improved by reducing the number of items on the measure. For example, they assessed 

preschool-aged children on 25 measures of early numeracy skills with a total of 143 

items. Using item response theory (IRT) analysis in Mplus (Muthen & Muthen, 2012), 

they reduced the combined measure to only 24 items while simultaneously retaining the 

strength of the full predictor measure. In other words, the researchers modified a long 

143-item assessment to a brief 24-item assessment without sacrificing the screener’s 

diagnostic accuracy. The administration of this new shorter measure would of course 

require less time to administer in the classroom and less time to score, hence saving 

valuable resources. This approach of reducing the amount of items on the screener 

measure can be applied to a single measure alone (e.g., reducing a 20-item measure to 

only 11-items) or to two measures combined (e.g., reducing the amount of items on 

Measure A and reducing the amount of items on Measure B). Importantly, Purpura and 

colleagues (2015) recommend that researchers assess the diagnostic accuracy of the 

shorter screener and compare it to the accuracy of the original measure(s); these steps can 

be achieved with logistic regression and ROC curve analyses (Wilson et al., 2016). 

Overall, researchers have begun testing new approaches for improving screening 

measures and for considering classroom practicality. The present study follows suit by 

assessing shortened versions of screeners with high diagnostic accuracy and testing 

combinations of the shortened screener measures (when deemed appropriate by statistical 

thresholds). The analysis that is foundational to these goals of the present study is 
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receiver operating characteristic (ROC) curve analysis. The next section provides a 

detailed introduction to ROC curve analyses.  

ROC Curve Analyses 

ROC curve analyses are recognized as the state-of-the-art method for describing 

the accuracy of a diagnostic test (Weinstein, Obuchowski, & Lieber, 2005). The purpose 

of a diagnostic test is to screen for the presence or the absence of a certain condition, 

event, or risk-status. ROC curve analyses are widely used in research predicting reading 

difficulties (e.g., Cummings & Smolkowski, 2015; Wilson et al., 2016) and in research 

predicting mathematics difficulties (e.g., Jordan et al., 2010; Seethaler & Fuchs, 2010). 

The ROC method of analysis is also prevalent in clinical decision-making in medicine, 

such as confirming the presence of a disease and ruling out the disease in healthy 

individuals (e.g., Jeffries et al., 2015; Youngstrom, 2014).   

Recently, two articles were published with a clear shared goal: to describe ROC 

curve analyses for the purpose of statistically evaluating diagnostic tests and to share 

recommendations for reporting ROC statistics for the purpose of applying the statistics to 

real-world situations. One of the publications is written from a medical standpoint 

(Youngstrom, 2014) and the other from an educational perspective (Cummings & 

Smolkowski, 2015). From the medical literature, Youngstrom (2014) provides 

recommendations for using ROC curve analyses in clinical situations. Youngstrom’s 

recommendations are based on and add to the Standards for Reporting of Diagnostic 

Accuracy (STARD) published over a decade earlier by different researchers in the 

medical field (Bossuyt et al., 2003). On the other hand, Cummings and Smolkowski 

(2015) provide guidelines that center on educational-decision making, meaning the 

identification of risk for reading difficulties and need of additional support. Both studies 

not only focus on how to conduct ROC analyses but also seek to help others apply the 

ROC statistics in real-world settings. The foundation of both sets of guidelines is the 
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ROC analysis itself, which is inherently the same regardless of discipline. The subsequent 

sections address the following: (a) important statistical terms that are foundational to the 

ROC curve analysis regardless of discipline, (b) how to leverage ROC statistics for the 

selection of a screener cut score in both clinical and educational settings, and (c) a 

recommendation for improving how researchers report ROC statistics in the educational 

literature. 

Important Terms associated with ROC Curve Analyses 

Several statistical concepts are foundational to ROC curve analyses and for 

assessing the power of a diagnostic measure, regardless of the discipline or the type of 

diagnostic test. Two terms associated with ROC curve analyses across disciplines are a 

positive test result and a negative test result. The most well-known and familiar example 

of these terms is likely set in a clinical context. As mentioned above, clinical diagnostic 

tests are used to screen for two possible outcomes: the presence of a disease or the 

absence of the disease. When a diagnostic test confirms the presence of a disease, the 

patient is told that he/she screened “positive.” If the test rules out the disease, the patient 

is told he/she screened “negative.” To summarize, a positive test result indicates the 

likely presence of the disease and the negative test result indicates its likely absence.  

These terms also apply to an educational context. In the educational literature, a 

diagnostic test is called a screener. The purpose of a screener is to place students into one 

of two groups: students who are at risk for later difficulties and students who are not at 

risk. Although both student groups are hence important, the primary focus of a screener is 

to identify students who are at risk (Cummings & Smolkowski, 2015). As such, a positive 

screener result means that the student is likely at risk for later difficulties and a negative 

result means that the student is likely not at risk.  

ROC curve analyses assess how accurately a screener predicts student 

membership into the two groups. Importantly, the two groups must be defined by a valid 
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criterion or outcome measure. For use in a ROC curve analysis, the outcome must be 

dichotomous (Youngstrom, 2014). The most widely-used outcome measure in education 

is an end-of-the-year state achievement test, for which each student is categorized as 

either meeting the proficiency standard for his/her grade or not meeting the standard (e.g., 

Cummings & Smolkowski, 2015; Jordan et al., 2010).  

A powerful advantage of ROC curve analyses is the ability to select a specific 

screener cut score for predicting student performance on the outcome measure. A cut 

score is a selected score on the screener that separates positive test results (i.e., likely to 

not meet the mathematics standard at the end of the year) from negative test results (i.e., 

likely to meet the standard). For example, imagine a study for which researchers are 

assessing a ten-item mathematics screener to predict risk for later mathematics 

difficulties. They define risk status by whether or not students meet a proficiency 

standard on a mathematics achievement test at the end of the school year. A cut score of 

five points on the screener means that a student score that falls at or below five points 

would be categorized as a positive screener result, and a student score that exceeds the 

cut score would be categorized as a negative screener result.  

In considering all possible students in the population, some of the predictions 

based on screener and outcome performance will be true and others will be false; no 

screener and/or cut score will have perfect predictive accuracy (Cummings & 

Smolkowski, 2015). For example, consider a student who scored below the screener cut 

score (i.e., positive screener result) but actually met the mathematics standard at the end 

of the year. This scenario indicates that the ROC analysis misidentified the student, 

placing him/her in the wrong student group. In other words, the positive screener result 

was false. Overall, since there are  two possible screener results (i.e., positive screener 

result vs. negative screener result) and two possible outcome results (i.e., positive 

outcome result vs. negative outcome result), there is a total of four potential scenarios 

(See Appendix C for the 2x2 matrix): (a) true positive (b) false positive, (c) true negative 
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and (d) false negative. The values of these statistics change with each possible screener 

cut score. That is, a cut score of five points on a screener will have a different proportion 

of true positives than a cut score of six points on the same measure. Descriptions and 

examples of all four of the statistics are described next within an educational context. 

True Positive 

The first possible scenario is a true positive, meaning that a student who is truly at 

risk is correctly identified by a positive screener result. When considering the proportion 

of true positives in the total population, the word “fraction” is often added to the term; for 

example, true positive fraction (TPF) refers to the proportion of true positives in the total 

population. Another popular term for this statistic is the sensitivity value. For ease of 

understanding, the present study primarily relies on the terms true positive and true 

positive fraction. As an example, a .90 rate of true positives means 90% of students who 

are truly at risk are identified accurately by a positive screener result. In other words, 

90% of students who failed to meet the mathematics standard scored at or below the 

screener cut score.  

False Positive 

When assessing the accuracy of a screener, a second possible scenario is a false 

positive. A false positive refers to a student who is misidentified by the ROC analysis. In 

particular, the student is not at risk but is misidentified by scoring below the screener cut 

score (i.e., a positive screener result). The proportion of false positives that occurs in a 

population is called the false positive fraction (FPF). A false positive fraction of .20 

means that 20% of students who met the mathematics standard are misidentified by a 

positive screener result. These students would be identified as needing additional 

supports even though they are not truly at risk. This scenario is not ideal because schools 

or researchers would be using time and resources to help students who do not require 
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intervention. Since no screener or cut score can have perfect accuracy, a certain 

proportion of false positives is inevitable in any student population. Ideally, researchers 

select a screener cut score that minimizes false positives.  

True Negative 

A third possible scenario is that a student who is not at risk is correctly identified 

with a negative screener result; this scenario is called a true negative. The proportion of 

true negatives in the population is the true negative fraction (TNF). This statistic is also 

popularly known as the specificity value. For consistency and ease of interpretation, the 

present study primarily uses the terms true negative and true negative fraction. As an 

example, a true negative fraction of .60 means 60% of students who are not at risk are 

identified accurately by the screener cut score. That is, 60% of students who met the 

mathematics standard received a negative screener result.  

False Negative 

Out of the four possible scenarios, a false negative is often the most undesirable. 

A false negative means that a student who is truly at risk is misidentified by the screener 

cut score. In other words, the student scored above the screener cut score (i.e., negative 

screener result) but does not meet the mathematics standards at the end of the year. As 

such, the student is mistakenly categorized as not at risk and is not identified as needing 

the additional supports that he/she needs for future success. A likely explanation for this 

misidentification is that the student scored just above the screener cut score, such as 

scoring six points when the established cut score was five points. False negatives are 

highly undesirable in education because students who actually need additional supports 

are misidentified as on track for future mathematics success. A certain proportion of false 

negatives, called the false negative fraction (FNF), is inevitable for all screener measures 

and all cut scores, as no screener will have perfect accuracy. Fortunately, a main 
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advantage of ROC curve analyses is that researchers, schools, or clinicians can select a 

cut score that minimizes or maximizes certain values based on the setting, goals, and 

resources.   

Selecting a Cut Score based on the Setting, Goals, and Resources 

A main advantage of using ROC curve analyses is that the selection of a 

diagnostic test’s cut score is based not only on true positives and false negatives, but also 

the constraints of an educational or medical situation. For example, if a school wants to 

make sure an intervention is provided to as many at-risk students in the population as 

possible, a cut score can be selected that “over-identifies” students as at risk. In other 

words, the school can cast a “wide net” for identifying students in need of intervention. 

To achieve this goal, the school selects a cut score that maximizes true positives (i.e., 

sensitivity). A second advantage of casting this wide net and maximizing the rate of true 

positives is that the likelihood of “missing” at-risk students decreases. In the educational 

literature surrounding mathematics screeners for young children, researchers often 

emphasize the importance of maximizing true positives when selecting a cut score 

because they want to identify as many at-risk students as possible and avoid 

misidentifying these students. For example, Jordan et al. (2010) suggest that a cut score 

correspond, at minimum, to an 85% rate of true positives. This value indicates that 85% 

of students who are at risk are correctly identified and only 15% of at-risk students are 

misidentified (i.e., false negatives).   

Researchers who choose to maximize the proportion of true positives must accept 

certain tradeoffs. For example, as the rate of true positives increases, the rate of false 

positives also increases. A false positive is a student who is misidentified as at risk. In the 

scenario of an educational intervention, this student will be identified as a potential 

participant for the intervention. If a screener identifies 50 cases of false positives in a 

population, these 50 students will be identified as needing additional supports even 
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though they are not actually at risk. The school will spend unnecessary money and use 

resources such as time and money to provide supports for these children who are not 

struggling in mathematics. Thus, the selection of cut scores involves a balance of 

advantages and disadvantages; by considering all the possible tradeoffs in the context of 

one’s available resources, the most advantageous cut score can be selected.    

Another real-world possibility is that a school may not have the financial 

resources or time to cast such a wide net and to provide an intervention to a large amount 

of students. In response, a lower cut score associated with a lower proportion of true 

positives can be selected, meaning that less students overall will be identified as needing 

the intervention. In other words, by choosing a lower cut score, a smaller proportion of 

students will fall below the cut score and hence be identified as at risk. This “smaller net” 

unfortunately implies that the school will be missing a greater amount of students who 

truly are in need of intervention but are misidentified by the screener cut score (i.e., false 

negatives). However, this increase in false negatives may be an acceptable or necessary 

tradeoff for the school if they have finite resources for administering the intervention. 

A diagnostic test in a clinical scenario may have much higher stakes than an 

educational screener. For example, a diagnostic test that screens for the presence of a life-

threatening condition will certainly impact how the researchers or clinicians select a cut 

score. Patients who receive a positive result on the diagnostic test are identified as likely 

having the condition and as a result, may be identified as needing further testing and/or a 

lifesaving treatment. In this scenario, clinicians are likely to cast a wide net to save as 

many lives as possible and to avoid missing patients who truly do have the condition. 

Again, the tradeoff here when casting a wide net is that the clinicians will also identify a 

high proportion of false positives. This tradeoff is seemingly minor when considering the 

alternative. However, if a clinician casts too large a net, then many healthy patients will 

receive the terrifying news of a positive test result. High false positive rates may weaken 

the reputation of the diagnostic test and discourage patients from taking the test 
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altogether. As such, there is certainly a delicate balance when making cut score decisions 

based on ROC curve statistics. Overall, whether considering a medical context or an 

educational context, ROC curve statistics have important implications for selecting cut 

scores that will be applied in real-world scenarios. 

A Limitation of the Four Primary ROC curve statistics 

The four ROC curve statistics described thus far (i.e., true positive, false positive, 

true negative, false negative) are essential for determining the accuracy of a screener and 

for considering tradeoffs when selecting a screener cut score. As such, the values of the 

four statistics are vital for research purposes. However, the statistics are not as helpful for 

teachers or clinicians as they are for researchers. The reason for this distinction is that the 

interpretation of each statistic is backward rather than predictive. On a broad level, this 

distinction means that the statistics use the outcome measure to reason backwards about 

the screener measure that was administered months or years earlier. 

For example, consider the interpretation of the true positive rate (i.e., sensitivity) 

for a mathematics screener. The true positive value is not calculated using the entire 

student population; rather, the statistic is calculated using the sub population of students 

who do not meet the mathematics standard at the end of the year. In other words, the true 

positive fraction is concerned only with the sub population of students who are truly at 

risk. Imagine a sub population of 100 students who are truly at risk. If only 80 out of the 

100 students screened positive on the screener that was administered before the outcome 

measure, then the true positive fraction equals .80 (i.e., 80/100). Following this 

calculation, the interpretation of the true positive fraction is backwards; that is, 80% of 

students who are truly at risk had previously screened positive on the screener.  

Considering only 80 out of the 100 at-risk students screened positive on the 

screener, this indicates that 20 of the at-risk students are misidentified  by a  negative 

screener result (i.e., 100 - 80 = 20). These 20 students are examples of false negatives. 
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Since 20 out of the 100 students are categorized as false negatives, the false negative 

fraction is .20 (i.e., 20/100). The amount of true positives and the amount of false 

negatives always equals the sub population of students who are truly at risk (e.g., 80 + 20 

= 100). In other words, the proportion of true positives plus the proportion of false 

negatives will always equal one (e.g., .80 + .20 = 1.00). This relationship holds true for 

all ROC curve analyses. A parallel relationship exists between the proportion of false 

positives and true negatives; adding the two values together always yields a sum of one.  

Overall, the rates of true positives, false positives, true negatives, and false 

negatives are essential for research purposes. However, the backwards interpretations are 

not as beneficial for teachers or clinicians who want to administer a diagnostic test and 

make a forward prediction based an individual’s score on the screener. Fortunately, ROC 

curve analyses do yield such predictive statistics.    

ROC Statistics for making Predictive Interpretations  

Other ROC curve statistics reported in both the educational and clinical literature 

are the positive predictive power (PPV) and negative predictive power (NPV). These 

statistics are desirable because they offer forward interpretations of an individual’s 

performance on a diagnostic test. There is a PPV associated with every cut score along a 

diagnostic test. For illustration, consider again the example in which a 10-item 

mathematics screener is predicting students’ performance on a mathematics achievement 

outcome. Imagine a .75 positive predictive power is associated with a cut score of five. 

For a student scoring below the cut score, the teacher can say that he/she has a 75% 

chance of being at risk for later mathematics difficulties. Notice that the positive 

predictive power is a forward predictive interpretation of an individual student’s 

performance on the screener.   

There is also a statistic that allows for a predictive interpretation for scores above 

the cut score. This statistic is called the negative predictive power (NPV); this statistic is 
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not as discussed in the literature as the positive predictive power because it is concerned 

only with the subpopulation of students who are not at risk. For example, a negative 

predictive power of .80 indicates that a student scoring above the cut score has an 80% 

chance of meeting the later mathematics standards. 

The predictive interpretations of a student’s screener score makes the positive 

predictive power and negative predictive power desirable statistics for both education and 

clinical decision-making. However, the statistics share a major limitation: the statistics 

are dependent on the base rate (see Appendix C for equations). In an educational context, 

the base rate is the prevalence of students in the sample who are truly at risk. Thus, these 

two values cannot be generalized to different samples with different base rates 

(Youngstrom, 2014). Fortunately, both the educational literature and the clinical literature 

provide ways for other people to compute the positive predictive power (PPV) for their 

own sample.  

Guidelines for Computing the Positive Predictive Power (PPV) for Different 

Samples 

The educational literature provides teachers with guidelines for computing the 

positive predictive power (PPV) for their own samples of students, and the clinical 

literature provides clinicians with guidelines for predicting this statistic for their patients. 

Even though both guidelines yield the same statistic, the guidelines for computing the 

statistic vary greatly. The medical literature provides a simpler and more understandable 

approach that has not yet been recommended in studies of educational screeners.  

In the educational guidelines for reporting ROC analyses, Cummings and Smolkowski 

(2015) provide teachers with intimidating formulas for computing the positive predictive 

power and the negative predictive power. The formulas are provided below, just as they 

are provided within the article: 
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PPV = ρTPF / (ρTPF + (1 − ρ)FPF) 

NPV = (1 − ρ)(TNF) / ((1 − ρ)(TNF) + ρ(FNF)) 

   Where    ρ = base rate 

TPF = true positive fraction 

                        FPF = false positive fraction 

                        TNF = true negative fraction 

                        FNF = false negative fraction  

Cummings and Smolkowski (2015) instruct teachers to first find a research article 

that reports ROC statistics for a screener measure of interest. Next, the teachers must 

identify and enter three ROC statistics reported within the journal article for a screener 

score of interest into the formula (i.e., true positive fraction, true negative fraction, and 

false positive fraction). Finally, they must then enter their own sample’s base rate (e.g., 

the proportion of students who are at risk in their school, which can be estimated by 

student performance from the previous academic year). The complex appearance of the 

formula itself may create barriers for some individuals who are not familiar with research 

study statistics and/or have mathematics anxiety.  

In the clinical guidelines, Youngstrom (2014) provides a different method for 

computing the positive predictive power for a cut score (and the negative predictive 

power). The clinical article recommends that research studies report diagnostic likelihood 

ratio (DLR) statistics that are independent of the sample’s base rate. By providing DLRs, 

readers can then determine the positive predictive power by using one simple figure 

rather than a complex, intimidating mathematical formula. The simple figure is called a 

“probability nomogram (See Figure 1). An example is provided by following the dashed 

lines on Figure 1, starting on the left and extending to the right. On the left side of the 

nomogram, the teacher locates his/her sample’s base rate (e.g., 35%) and “draws” a line 

that extends to the middle of the nomogram and matches the DLR+ from the published 

study (e.g., 3.00). The teacher continues extending the line to the right side of the 
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nomogram; the point at which the dotted line crosses the right side of the nomogram tells 

the teacher the positive predictive power for his/her own sample of students (e.g., 60%). 

DLRs and probability nomograms are praised in the clinical literature as a more 

intelligible way for clinicians to apply ROC statistics (Florkowski, 2008); yet, the 

practical benefits of DLRs and the nomograms have not been reported in the educational 

literature.    

 

Figure 1 Probability Nomogram 

 

 

 

 

 

 

 

The Present Study  

 

 

 

 

Overall, to gain predictive statistics from ROC curve analyses, the clinical literature 

provides a helpful figure for clinicians to use in practice, while the educational literature 

asks teachers to plug three different values into a complex formula that likely appears 

daunting. The study demonstrates the importance of DLR statistics, along with the 

probability nomogram, being reported in educational research assessing screener 
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measures. For use in the classroom, ROC statistics must be transformed into findings that 

are feasible and useful for teachers. The study demonstrates how bringing DLR values 

and probability nomograms into the educational literature can improve the translation of 

ROC statistics into real-world educational contexts. To date, such analyses have not been 

applied to educational contexts. 

The Present Study 

The present study uses three years of longitudinal data (i.e., fourth through sixth 

grade) from the Center for Improving Learning of Fractions, funded by the Institute of 

Education Sciences (Professor Nancy C. Jordan, Principal Investigator). The study 

assesses three predictor measures of fraction understanding that were administered to 

students in the fall or winter of each grade (i.e., two fraction concepts measures and one 

fraction arithmetic measure) as potential screener measures for predicting later 

mathematics achievement. Specifically, the study assesses the strength of each fraction 

measure for predicting students’ later performance on an end-of-the-year state 

mathematics achievement test. The following sections first provide the rationale for each 

fraction task being considered as a potential screener measure and then the rationale for 

the statistical analyses used for assessing these screener measures.  

Basis for Fraction Measures Considered 

 As discussed in the previous section in the literature review, researchers have 

demonstrated the importance of both fraction concepts and fraction procedures for 

success with fractions (e.g., Hecht et al., 2003). In light of the importance of different 

types of mathematical knowledge, the present study assesses two measures of fraction 

concepts and one measure of fraction arithmetic. One measure of fraction conceptual 

understanding is a fraction number line estimation task; this task is a single proficiency 

measure that assesses students’ accuracy when estimating fraction magnitudes on a 
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number line, from 0 to 1 and 0 to 2. The second measure of fraction conceptual 

understanding is considered a multiple-proficiency measure that assesses students on 

multiple fraction conceptual items, such as part-whole understanding, fractions as 

magnitudes, and fraction equivalency.  

Rationale for Analyses 

To assess the three fraction measures as potential screeners, the present study 

follows recommendations in the literature for conducting receiver operating characteristic 

(ROC) curve analyses. ROC curve analyses are promoted in multiple disciplines as the 

best method for determining the accuracy of a single diagnostic test in making 

predictions (Weinstein et al., 2005). For example, ROC curve analyses are employed to 

assess the accuracy of clinical diagnostic tests for confirming the presence of a disease in 

patients (e.g., Hajian-Tilaki, 2013), for assessing sensors for the detection of earthquakes 

(e.g., Faulkner et al., 2011) and for assessing educational screeners for the identification 

of students at risk for later difficulties (e.g., Cummings & Smolkowski, 2015). 

If multiple fraction measures emerge as strong screener measures in the present 

study (as identified by certain thresholds and statistical tests outlined in the Data Analysis 

section), the present study will complete the following steps: (a) determine the best subset 

of items for each measure and (b) assess a combination of the best subset measures for 

predicting later mathematics achievement using both logistic regression analyses and 

ROC curve analyses (e.g., Clemens et al., 2016; Wilson et al., 2016). 

Potential Implications for Education 

The present study addresses an important gap in the literature: the need for 

mathematics screeners for the intermediate grades (e.g., Keller-Margulis et al., 2008; 

Shapiro et al., 2006). Fractions represent a major portion of the mathematics curriculum 

in fourth through sixth grades. By assessing different components of fraction 
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understanding, the study aims to identify an efficient and easy to use fraction screener 

measure (either a single measure or a combined-proficiency measure) that will help 

teachers identify students who are at risk for not meeting proficiency standards in 

mathematics. Many students struggle with mathematics in the intermediate grades, 

especially struggle with fractions (e.g., Hansen et al., in press). A powerful screener 

measure is the first step for addressing this educational concern. By identifying students 

who are likely to experience later mathematics difficulties, schools can then provide 

additional supports.  

The fraction measure or combination of fraction measures that emerge as a 

powerful screener may also have implications for future research and for classroom 

instruction. For example, if the fraction number line estimation task emerges as most 

predictive of later performance, then future research should explore the underlying 

reasons for this strong predictive power. Also, this potential finding would imply that 

classroom instruction should support skills that help students’ understanding of fraction 

magnitudes, such as the relation between the numerator and denominator (DeWolf, 

Grounds, Bassok, & Holyoak, 2013).  

The present study also seeks to inform future research studies that assess 

mathematics screeners. In particular, the study aims to provide guidelines for educational 

research that draw from recommendations found within both the educational literature 

and the clinical literature. In particular, the present study urges educational researchers to 

report screener statistics in ways that help schools translate the findings into usable 

information. Importantly, by improving the ways in which researchers report ROC 

statistics, we may increase the likelihood of schools making educational decisions (e.g., 

recommending a student for intervention) that are driven by data rather than by intuition 

or judgement alone (Smolkowski & Cummings, 2015).  
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Research Questions 

In summary, the present study addresses the following research questions:  

1. What is the diagnostic accuracy of fraction measures (i.e., two measures of fraction 

concepts and one measure of fraction arithmetic) given in the fall/winter of fourth, 

fifth, and sixth grades for identifying students who did not meet the mathematics 

proficiency standard on a state test administered in the spring of each grade? In 

particular, which fraction measure or combination of measures holds the highest 

diagnostic power in each grade for identifying at-risk students? Based on the 

literature, it was predicted that the fraction number line estimation task in all three 

grades would emerge as the strongest predictor measure of students’ later 

mathematics achievement. The second fraction concepts measure was also expected 

to emerge as a strong screener measure since it taps into multiple aspects of fraction 

conceptual understanding. The fraction arithmetic measure was hypothesized to be 

the weakest screener measure for each grade. These three hypotheses align with the 

integrated theory of numerical development (Siegler & Lortie-Forgues, 2014) and 

prior literature demonstrating the importance of fraction conceptual understanding for 

later mathematics achievement (e.g., Hallet et al. 2010; Siegler et al., 2012). 

2. Can the measures identified in Research Question 1 be improved psychometrically by 

reducing the number of items while simultaneously retaining or improving the 

diagnostic accuracy of the measure?  

3. How can the resulting findings help educational researchers improve the ways in 

which they report results so that the information is accessible and usable for schools 

and teachers?  
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Chapter 3 

METHOD 

Students were drawn from nine elementary schools within two Delaware school 

districts serving families of diverse socioeconomic backgrounds. As a part of a larger 

longitudinal study, data collection began in third grade. All third-grade students from 

participating schools were sent an IRB approved informed consent letter requesting their 

participation in the study. A total of 517 returned consent forms to participate in the 

study, of whom 36 opted out before the first assessment. Students were then followed 

through sixth grade. By the end of third grade, 23 students dropped out of the study, by 

the end of fourth grade an additional 68 students dropped out, and by the end of sixth 

grade an additional 39 children dropped out. Attrition was due to students moving to 

another school district (67%), a lack of information regarding students’ transition into 

middle school for sixth grade (23%), and students withdrawing from the study (10%). 

The sample was replenished in fourth grade (n = 27 new children) and again in fifth grade 

(n = 28 new children). In total, the sample for the present study included 536 students. In 

fourth grade and again in fifth grade, the same informed consent letter was sent out to 

replenish the sample. Twenty-seven new children joined the study in fourth grade and 28 

new children in fifth grade, resulting in a total sample of 536 students.   

Student demographic information for the total 536 students is presented in Table 1.  

Attrition rates and missing data result in slightly different total students included in each 

of the ROC analysis; total students included in each analysis will be reported in the 

Results section. Reportedly, participating schools followed curriculum benchmarks 

aligned with the Common Core State Standards in Mathematics (NGACBP & CCSSO, 

2010) starting in fourth grade. 
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 Demographic Information for Total Longitudinal Study Table 1

 

 

 

 

 

 

 

 

 

 

Screening Measures Administered across Grades 

The screening measures included students’ performance on two measures of 

fraction concepts and one measure of fraction arithmetic. 

Fraction Concepts 

NAEP Fraction Concepts  

A paper and pencil measure of released items from the National Assessment of 

Educational Progress (NAEP; U.S. Department of Education, 1990-2009) measured 

fraction concepts. The NAEP is administered across the United States in fourth and 

eighth grades, with items ranked from easy to hard.   

NAEP items in the longitudinal study assessed part-whole understanding of area 

models (e.g., “Which shows 3/4 of the picture shaded”), set models (e.g., “What fraction 

of the group of umbrellas is closed?”), equivalence (e.g., “These three fractions are 

Characteristic   % 

Gender 
 

   Male 47.0 

   Female 53.0 

Race 
 

   White 51.8 

   Black 40.0 

   Asian/Pacific Island 5.7 

   American Indian/Alaskan Native 2.5 

Hispanic 17.7 

Low Income 60.9 

English Learner 10.6 

Special Education
 

10.6 

Learning Disability 5.8 

Mean Age in Months 105.9 

 

 
Total N 536 
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equivalent. Write two more fractions that are equivalent to these”), fraction magnitude 

(e.g., “On the number line above, what number does P represent”), estimation (e.g., 

“Which fraction has a value closest to 1/2?”), and comparison and ordering (e.g., “In 

which of the following are the three fractions arranged from least to greatest?”). The 

measure included 18 total items in fourth grade; these items were consistent across all 

time points, but additional items were included in fifth and sixth grades to align with the 

instruction students were receiving in school and to avoid ceiling effects. In fifth grade, 

one item was added to the measure for a total of 19 items. In sixth grade, 5 items were 

added, making a total 24 items. See Appendix A for a list of all NAEP items included at 

each grade. 

Items were read aloud in a group setting. Administration lasted for approximately 

35 minutes in each grade; thus, students were allotted approximately 2 minutes per item 

in fourth and fifth grades and approximately 1.5 minutes per item in sixth grade. Students 

earned one point for each correct response. The measure had high internal reliability in 

each grade (α = .78 in fourth grade; .78 in fifth grade; .84 in sixth grade) Items are 

publically available through the NAEP website (https://nces.ed.gov/nationsreportcard/). 

Fraction Number Line Estimation 

A fraction number line estimation (FNLE) task adapted from Siegler et al. (2011) 

was administered on a laptop computer using DirectRT v2012. Each number line was 

17.5cm long and presented in the middle of the laptop screen. Fractions were presented 

one at a time beneath the middle of the number line. For each item, the cursor was set at 

“0”; students used the arrow keys to slide the cursor along the number line and then 

pressed a different key to indicate their final estimation. After providing their response, a 

new blank number line and a new fraction were presented and the cursor was reset to “0”. 

Students had no time constraints to make their individual estimates, but most students 



 46 

responded with 5 seconds per trial.  The total administration time was approximately 2-3 

minutes.  

The items assessed on the number line task were the same across the three grade 

levels. Students estimated the location of nine fractions (1/5, 13/14, 2/13, 3/7, 5/8, 1/3, 

1/2, 1/19, and 5/6) on a 0-1 number line and 19 fractions and mixed numbers (1/3, 7/4, 

12/13, 1 11/12, 3/2, 5/6, 5/5, 1/2, 7/6, 1 2/4, 1, 3/8, 1 5/8, 2/3, 1 1/5, 7/9, 1/19, 1 5/6, and 

4/3) on a 0-2 number line. All estimations were combined to create a single score, which 

had high internal reliability (α = .91 in fourth grade; .98 in fifth grade; .95 in sixth grade). 

Scores were calculated as the mean percent absolute error (PAE). The mean PAE was 

calculated by dividing the absolute value of the difference between the estimated position 

and actual position by the numerical range of the number line (1 or 2), multiplying by one 

hundred for each item, and averaging across all trials). For example, if a child was asked 

to locate 3/2 on a 0 to 2 line and marked the location corresponding to 5/4, the PAE for 

this individual item would be 12.5% [|(1.5 – 1.25)|/2 x 100]. The computer program 

DirectRT provided the location of each estimation in pixels; these estimations were 

transformed into PAE using both Excel and the Statistical Package for the Social 

Sciences (SPSS). Higher percent absolute error indicates poorer performance.   

Fraction Arithmetic  

The paper and pencil fraction measure was adapted from Hecht (1998). In fourth 

grade, there were four addition (e.g., 2/5 + 1/5) and four subtraction (e.g., 3/4 - 1/4) 

computation items, all of which involved fractions with the same denominators. In fifth 

grade, two items were with unlike denominators (e.g., 5/6 + 2/3; 7/8 – 1/2) were included, 

making a total of 10 items. In the sixth grade, there was a total of 26 items. One addition 

(3/4 + 2/3), one subtraction (1 1/3 – 4/5), nine multiplication (e.g., 3 x 1/3), and five 

division (e.g., 1/6 ÷ 3) items were added. Administration in fourth and fifth grade lasted 

approximately 10 minutes; administration in sixth grade lasted approximately 30 minutes. 
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See Appendix B for a list of fraction arithmetic items at each grade. At each time point, 

the measure was reliable (α = .95 in fourth grade; .84 in fifth grade; .88 in sixth grade).  

Outcome Mathematics Achievement Measure (DCAS) 

In spring of each grade, students’ performance was assessed on the mathematics 

section of Delaware Comprehensive Assessment System (DCAS; American Institutes for 

Research, 2012), a statewide test of mathematics achievement. The DCAS requires 

students to answer multiple choice questions that assess algebraic reasoning (e.g., find a 

given term in an arithmetic sequence), numeric reasoning (e.g., using and applying 

meanings of multiplication and division), geometric reasoning (e.g., analyze and classify 

two-dimensional shapes according to their properties), and quantitative reasoning (e.g., 

construct and use data displays) (American Institutes for Research, 2012). The DCAS 

does not report further information regarding the proportion of items assessing certain 

mathematics topics on each grade of the assessment. However, the algebraic reasoning 

and numeric reasoning categories likely involve fraction items in fourth, fifth, and sixth 

grades. The Common Core State Standards point to other mathematics topics and skills 

likely assessed on the DCAS in addition to fraction items, including: (a) find factor pairs 

for a whole number in fourth grade, (b) understand operations with decimals in fifth 

grade, and (c) divide multi-digit whole numbers in sixth grade (NGACBP & CCSSO, 

2010). Published internal consistency at each time point of the DCAS was .86 (spring of 

fourth grade), .89 (spring of fifth grade), and .88 (spring of sixth grade) (American 

Institutes of Research, 2012).  

 Each student in the state is given an “accountability score” that is determined by 

his/her performance on items that measure grade level content only (American Institutes 

for Research, 2012). Accountability scores range from 0-1300. Based on these scores, 

students are classified with scores of 1 (well below standards), 2 (below standards), 3 

(meets standards), or 4 (advanced). For the ROC curve analyses in the present study, 
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students’ scores were further classified as a binary outcome, which is a requirement for 

ROC analyses: 1 (below and well below the mathematics standard) and 0 (meets the 

standard or advanced). Assessments of educational screeners using ROC curve analyses 

typically use statewide achievement tests as the binary outcome measure (e.g., Cummings 

& Smolkowski, 2015; Gersten et al., 2011), since such tests are used in school decision 

making.  

The mathematics achievement measure has high criterion validity. The measure is 

highly correlated with the Wide Range Achievement Test (WRAT; Wilkinson & 

Robertson, 2006) fourth edition in mathematics, a standardized measure of general 

mathematics achievement. Bivariate correlations between concurrent administrations of 

the mathematics achievement outcome and WRAT in the present sample range from .71 

to .76.     

Procedure 

Table 2 summarizes the assessment timeline. Students were given the NAEP 

fraction concepts measure in fall of fourth grade (Fall 2011), fall of fifth grade (Fall 

2012), and winter of sixth grade (Winter 2014). The fraction number line estimation 

measure was administered in the winter of fourth grade (Winter 2012), the fall of fifth 

grade (Fall 2012) and the winter of sixth grade (Winter 2014). The fraction arithmetic 

measure was administered in fall of fourth grade (Fall 2011), fall of fifth grade (Fall 

2012), and winter of sixth grade (Winter 2014). The DCAS mathematics achievement 

outcome measure was administered in the spring of each grade: fourth grade (2012), fifth 

grade (2013), and sixth grade (2014).   

Trained assessors on the research team administered all measures, except for the 

mathematics achievement outcome measure, which was given by the school districts. 
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 Timeline of Predictor Measures and Outcome Measure Table 2

 

 

 

 

 

 

 

Assessors administered the NAEP fraction concepts measure in a whole-class setting. All 

problems were read aloud to students. The fraction number line estimation task and the 

fraction arithmetic measure were administered individually.   

Data Analysis 

The data analysis plan of the current study involved several steps. Figure 2 is a 

diagram that provides an overview of the main steps of the data analysis plan. 

Selection of Predictor Measures for ROC Curve Analyses 

First the researcher selects and describes the predictor measures and the outcome 

measure that will be entered in the ROC curve analysis. The researcher conducts unpaired 

t-tests to assess whether the two groups of interest (e.g., children who met and did not 

meet the mathematics standards) significantly differ in their performances on the 

predictor measure (Youngstrom, 2014). If a statistically significant difference is present, 

the predictor measure may be considered a potentially useful screener and appropriate for 

the ROC analysis. The researcher reports correlations for all screening measures across 

all time points, as well as means and standard deviations for each of these measures for 

students who met and did not meet the mathematics standards in each grade. 

 

Measure 

4
th

 

F 

4
th

 

W 

4
th

 

S 

5
th

 

F 

5
th

 

S 

6
th

 

W 

6
th

 

S 

Predictor Measures        

     NAEP fraction concepts X   X  X  

     FNLE  X  X  X  

     Fraction arithmetic X   X  X  

Outcome Measure        

     Mathematics achievement   X  X  X 

Note. F = Fall, W = Winter, S = Spring. 
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Figure 2 Data Analytic Plan of the Present Study 
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ROC Curve Analyses to Assess Potential Screeners 

To assess the measures of the present study as potential screeners and to identify 

the measure(s) with high diagnostic accuracy, receiver operating characteristic (ROC) 

curve analyses were conducted using the statistical program SPSS Version 24.0 (IBM 

Corporation, 2016). Diagnostic accuracy, as applied to the present study, refers to a 

measure’s ability to accurately predict student membership into one of two groups: 

students who are likely to meet the mathematics standard versus students who are not 

likely to meet the standard (See Appendix C for a glossary of key terms related to the 

ROC analyses of the present study, including “diagnostic accuracy”). Six different ROC 

curve analyses were conducted to assess the fraction measures administered in grades 

four through six, which are outlined in Table 3. 

Overall, across the range of all possible cut scores, an accurate screener will yield 

high a high true positive fraction (i.e., more true positives and fewer false negatives) and 

a high true negative fraction (i.e., more true negatives and fewer false positives) 

(Smolkowski & Cummings, 2015). ROC curve plots are reported in the present study to 

allow for a visual interpretation of each measure’s overall diagnostic accuracy (see Figure 

3 for a sample ROC plot). If a measure accurately discriminates between students who 

meet and do not meet the end-of-the-year mathematics standard, its ROC curve will 

extend toward the upper left corner of the plot. That is, there are many cut scores along 

the measure that have both high rates of true positives and true negatives. As a ROC 

curve approaches the upper left corner, the area under the curve (AUC) increases. AUC is 

the most commonly used global index of diagnostic accuracy (Fluss, Faragii, & Reiser, 

2005) and is easy to understand. For instance, if one student is randomly selected from 

the at-risk population and another student is randomly selected from the higher-achieving 

population, the AUC is the probability of distinguishing between those two students with 

the predictor measure (McFall & Treat, 1999). Thus, an AUC of .50 means that the 

measure correctly places students 50% of the time; this measure would not be considered 
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a powerful screener since it does not provide any discrimination between students who 

are at risk and students who are not at risk (Swets, Dawes, & Monahan, 2000). 

 Six Receiver Operating Characteristic (ROC) Curve Analyses Table 3

 

Predictor Measures 

 Mathematics Achievement 

Outcome Measure  

Fourth-grade fraction measures 
 Fourth grade spring 

 Fifth grade spring 

  Sixth grade spring 

Fifth-grade fraction measures      Fifth grade spring 

  Sixth grade spring 

Sixth-grade fraction measures      Sixth grade spring 

Overall, the ROC curve plot allows for a visual interpretation of the ROC curve 

results. The researcher can immediately see which measure holds the highest diagnostic 

accuracy by viewing the curve that extends closest to the upper left corner of the plot. 

However, additional steps are recommended below for further examination of the 

predictor measures.  

Identify the Measure(s) with Highest Diagnostic Accuracy 

Beyond looking at the ROC curve plot, a researcher must also report the actual 

AUC values and confidence intervals associated with each predictor measure. An AUC 

value of .750, for example, means that the measure correctly places students 75% of the 

time. The educational literature reports that AUC values ranging from .750 to .850 

indicate good screeners for determining risk status, and AUC values ranging from .850 to 

.950 signify a very good screener (Cummings & Smolkowski, 2015). Whereas 

Cummings and Smolkowski report that an AUC value of .95 and above indicates an 

excellent screener, Youngstrom (2014) cautions about interpretations of such AUC values 

in the clinical literature; the researcher claims that AUC values greater than .90 are more 

likely to indicate design flaws of the predictor or outcome measure than exceptional 
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diagnostic accuracy. For example, such high AUC values may suggest that the predictor 

measure and the outcome measure are too correlated, such as using a state test of 

mathematics achievement in the fall of fifth grade to predict the state test in the spring of 

sixth grade. AUCs, along with corresponding 95% confidence intervals, are reported in 

the present study for all measures included in each ROC curve analysis. The present 

study uses the AUC threshold range of .750 to .850 as an indicator of a good screener 

measure; the threshold range of .850 to .950 is used as an indicator of a very good 

screener (Cummings & Smolkowski, 2015). 

 

 

 

Figure 3 Sample ROC Curve Plot 

 

 

 

 

 

 

 

 

 

 

 

 

For each ROC curve analysis, measures will be identified that hold an AUC value 

of .750 to .950. If only measure meets this requirement, this one measure will be 

recommended as the best screener measure.  
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If more than measure has an AUC value of .750 or higher, a method proposed by 

Hanley and McNeil (1983) is used for evaluating whether measures differ significantly 

from one another in terms of predictability. The method corrects for dependence in AUC 

values when both measures are assessed within the same sample. The method yields a 

critical ratio z value; when the value of z = ± 1.96, the difference between the AUC 

values is statistically significant at p < .05. If Measure A, for example, significantly 

differs from Measure B, then Measure A will be suggested as the best screener measure. 

If Measure A does not significantly differ from Measure B, then a combination of the 

measures will be assessed.  

Overall, there are two possible scenarios for each ROC curve analysis: (a) one 

single measure will emerge as a superior screener or (b) a combination of measures will 

be recommended as the best predictive screener. Subsequent sections of the data analytic 

procedure address different steps to follow for each scenario. 

Automatic Linear Modeling to Improve the Screener 

When a single measure or a combination of measures emerges as holding high 

diagnostic accuracy, automatic linear modeling (ALM) is used in the present study to 

improve the efficiency of the measure(s). ALM determines the best set of items for 

predicting students’ later mathematics achievement. The analysis is run with SPSS 

Version 24.0 (IBM SPSS, 2016) and is an application of multiple linear regression 

modeling that identifies which predictor items are most influential in predicting a target 

outcome variable (Yang, 2013). Although the analysis has been available on SPSS since 

only 2010, it has been utilized in a variety of fields, including medical research (e.g., Ban 

et al., 2014) and marketing (e.g., Kadam & Nimbalkar, 2015). Whereas the nature of a 

ROC curve analysis necessitates a binary outcome (e.g., does not meet the mathematics 

standard vs. meets the mathematics standard), ALM allows for a continuous outcome 

(e.g., students’ accountability scores on the DCAS).  
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The ALM selection method used in the present study was Best Subsets, which 

investigates all possible models for a given set of predictor items and determines the best 

set for predicting students’ later mathematics achievement (Yang, 2013). The best model 

was identified using an Information Criterion; specifically, the Akaike Information 

Criterion (AIC), with lower AIC indicating better model fit (Meyers, Gamst, & Guarino, 

2013). The model’s adjusted R
2
 was also computed, which is a measure of the proportion 

of variation in the target variable that is accounted for by the set of predictor items in the 

model. Thus, an R
2 

of .25 would indicate that 25% of the variance in mathematics 

achievement (i.e., the target outcome variable) is accounted for by the linear combination 

of the predictor items. The adjusted R
2 

includes a correction for the number of predictors 

in the model. The analysis pinpoints a combination of items that results in the best model 

fit; items that matter most in making the prediction are included in the model and 

predictors that matter least are excluded. For example, challenging items that most 

students answered incorrectly (e.g., an item that is beyond students’ grade level) hold 

little variability and thus would not make strong predictions of students’ later 

performance; this type of item is excluded from the screener. Likewise, easy items that all 

students answered correctly are eliminated, because the items do not discriminate well 

between students who are at risk for later difficulties and students who are not at risk. 

Retained items hold predictive power because some students gave the correct responses 

for the items while others missed the items (Meyers et al., 2013). The analysis provides a 

value of each item’s importance that represents the sum of squares for the residual with 

the predictor removed from the model. An item deemed as important to be in the model 

indicates that leaving it out of the model would produce a substantial increase in the 

residual sum of squares (Meyers et al., 2013). Higher importance values indicate higher 

importance in the model. The importance values are relative; that is, the sum of the 

values for all predictors in a model is 1.0. Overall, the Best Subset ALM analysis 
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determines the best combination of screening items for making a prediction of students’ 

later mathematics achievement.  

When using Best Subset ALM for a combination of measures, all items from all 

measures are tested in the model. Using the model indices described above, the analysis 

determines the best combination of items across measures for predicting later 

achievement. For example, 11 items from Measure A combined with five items from 

Measure B may emerge as the best combination of items for predicting the target 

outcome variable.  

Binary Logistic Regression to Justify the Combination of Screeners 

Binary logistic regression was conducted to provide extra statistical support for 

combining best subset measures (e.g., Measure A and Measure B). Hierarchical block 

entry was used to empirically assess whether the addition of best subset Measure B 

statistically significantly improved prediction over best subset Measure A alone (e.g., 

Wilson et al., 2016). Order of entry was determined by the AUC values associated with 

the original ROC curve analysis; for example, if the original Measure A held a higher 

AUC value than the original Measure B, then Measure A would be entered in the model 

first.  

Additional ROC Curve Analyses to Test the Best Subset Screeners 

After determining the best subset of screening items, the present study conducted 

additional ROC curve analyses to compare the best subset measure with the original 

measure(s) with all items included. This final step was performed to ensure that the best 

subset screener performed better or equally as well as the original measure(s) for 

predicting students’ later achievement. If the best subset measure was a combined best 

subset measure, then the ROC curve analysis also compared this measure to each 
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individual best subset measure. As described previously, AUC values were compared to 

assess the diagnostic accuracy of all measures.  

For a single best subset measure, this final ROC curve analysis yields the 

necessary ROC statistics associated with certain cut scores for applying the data to other 

real-world settings. These statistics include the true positive fraction (i.e., sensitivity), the 

true negative fraction (i.e., specificity), and the positive predictive power (PPV). As 

recommended in the clinical literature, the present study also reports the diagnostic 

likelihood ratio for a positive screener result and a negative screener result (i.e., DLR+ 

and DLR-). The diagnostic likelihood ratios allow a researcher or practitioner to make 

empirically-driven predictions of his/her own students’ mathematics achievement.  

For a combined best subset measure, the researcher must address additional 

considerations. If combining screeners with discrete data (e.g., students receive one point 

per correct response), the researcher can compute a new variable that is a total score for 

all items combined. By doing so, the researcher no longer considers the measures as 

separate screeners but as one single measure. The new measure can then be entered in a 

ROC curve analysis, and cut scores and all ROC curve statistics can be reported (e.g., 

true positive fraction and the positive predictive power). If combining one screener with 

discrete data and a second screener with continuous data (e.g., measuring students’ 

estimates on the fraction number line measure with percent absolute error), the researcher 

cannot as easily combine the two measures into one screener. Rather, the researcher must 

now consider a combination of scores rather than simply one score alone to make 

predictions of student performance. For this scenario, the researcher can use logistic 

regression to assess the combination of measures in a ROC curve analysis (e.g., Wilson et 

al., 2016). The regression analysis produces predicted probabilities for all students based 

on a linear combination of the measures (Clemens et al., 2016). The predicted 

probabilities can then be entered as a “measure” within the ROC curve analysis, allowing 

an AUC value to be computed for the combined best subset measure. Although the ROC 
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analysis provides the AUC of the combined measure, it does not provide helpful statistics 

associated with cut scores for the combined measure. Instead, the researcher can create a 

predicted probabilities matrix that allows a researcher or practitioner to make a prediction 

of a student’s later performance based on his/her score on Measure A along with his/her 

score on Measure B.  

Power Analysis and Consideration of Missing Data 

A power analysis was performed using MedCalc Statistical Software version 

16.4.3 (MedCalc Statistical Software, 2016) for calculating the required sample size for 

an AUC value to be significantly different from the null hypothesis. The null hypothesis 

for a ROC curve analysis is an AUC of .50, which signifies that a screener has zero 

discriminating power. The power analysis was conducted for an anticipated AUC value 

of .750, since this value is the AUC threshold recommended in the educational literature 

to assess measures as good screeners (Cummings & Smolkowski, 2015). Thus, the 

analysis was conducted with the following information: AUC of .75, null hypothesis of 

.50, power of .80, and alpha of .05. The analysis also requires a ratio representative of the 

expected amount of negative cases in the sample (students who meet the mathematics 

standard) as compared to the amount of positive cases (students who do not meet the 

standard). A ratio value of 2.5 was selected for the present study because the amount of 

negative cases across the time points of the DCAS outcome measure was approximately 

2.5 times more prevalent than the amount of positive cases in the sample. Results from 

the power analysis revealed that a sample size of 49 students (with approximately 14 

positive cases and 35 negative cases) would be sensitive to differences between an AUC 

of .75 and the null hypothesis.   

Additional power analyses were conducted to determine the required sample size 

for the comparison of two ROC curves from the same sample; specifically, analyses were 

conducted to assess the sample size required to detect a significant difference between an 
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AUC value of .75 and a second AUC of .85. The first analysis was conducted with the 

following information: AUC of .75 for one ROC curve, AUC of .85 for the second ROC 

curve, power of .80, alpha of .05, and a ratio value of 2. The total sample size required to 

compare the two ROC curves is 285 students. The second analysis was conducted for the 

same AUC values but with a ratio value of 3; the total sample size required is 356 

students. Thus, in order to compare these two AUC values that differ by no less than .10 

(e.g., AUC = .75, 85; respectively), the required sample size is between 285 - 356 

students.  

In the present study, six initial ROC curve analyses were conducted (see Table 3) 

using one large longitudinal dataset from grades four through six. As is common for 

longitudinal datasets, missing data is observed and must be considered (Martinez-

Camblor, 2013). The most frequently reported remedy for missing data in ROC curve 

analyses is to assess AUCs only from subjects who have compete information, called the 

available-case analysis (Martinez-Camblor, 2013). In the present study, the available-case 

analysis yields a total of over 300 students per each ROC curve, which is much greater 

than the sample size determined by the first power analysis (N = 72). The available cases 

in the present study also allow for AUC comparisons. Since the available-case analysis is 

the most commonly used treatment of missing data in ROC research and is expected to 

yield sample sizes that far exceed or meet the sample size determined by the power 

analyses, this treatment of missing data is used in the present study. 

 



 60 

Chapter 4 

RESULTS 

Correlations among all variables across grades are shown in Table 4, with the 

DCAS mathematics achievement outcome entered as a binary variable to align with the 

ROC curve analyses. All variables are significantly correlated.  

Fourth-Grade Measures Predicting Later Mathematics Achievement in Fourth, 

Fifth, and Sixth Grades 

Table 5 presents means and standard deviations for all fourth-grade predictor 

measures, separated for students who met the end-of-the-year mathematics standard and 

students who did not meet the standard in fourth, fifth, and sixth grades, respectively. 

Independent samples t –tests revealed that each predictor differentiated students who met 

the standard from those who did not meet the standard, regardless of the grade of the 

outcome measure (p = .001). Thus, all fourth-grade predictor measures qualified for use 

in ROC curve analyses.  

ROC Curve Analyses with Fourth-Grade Predictor Measures 

Three ROC curve analyses were conducted to assess the diagnostic accuracy of the 

fourth-grade predictor measures on later mathematics achievement. The first analysis 

assessed the measures as potential screeners for predicting the fourth-grade outcome. The 

base rate of the first ROC curve analysis was .21, meaning that 21% of the students 

received a positive outcome result. In other words, 21% of the sample did not meet the 

mathematics standard. The second ROC curve analysis assessed the ability of the same 

measures for predicting the fifth-grade outcome (base rate = .21). The third ROC curve 

analysis assessed the same measures for predicting the sixth-grade outcome 
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 Correlations Among all Predictor and Outcome Variables           Table 4

 1 2 3 4 5 6 7 8 9 10 11 12 

1. FNLE–4
th

 --            

2. FNLE–5
th
  .674 --           

3. FNLE–6
th
  .575 .697 --          

4. NAEP Concepts–4
th
  -.631 -.602 -.527 --         

5. NAEP Concepts–5
th
  -.597 -.695 -.633 .675 --        

6. NAEP Concepts–6
th
  -.566 -.679 -.735 .571 .723 --       

7. Fraction Arithmetic–4
th

  -.450 -.482 -.392 .521 .500 .423 --      

8. Fraction Arithmetic–5
th

  -.428 -.502 -.492 .507 .621 .559 .393 --     

9. Fraction Arithmetic–6
th

  -.498 -.494 -.491 .470 .538 .575 .392 .460 --    

10. DCAS Outcome–4
th
  .353 .390 .487 -.405 -.516 -.482 -.294 -.395 -.354 --   

11. DCAS Outcome–5
th
  .369 .452 .543 -.424 -.557 -.608 -.323 -.424 -.428 .596 --  

12. DCAS Outcome–6
th
  .421 .524 .613 -.457 -.627 -.662 -.283 -.460 -.491 .608 .644 -- 

Note. All correlations are significant at the .01 level. Fraction Number Line Estimation (FNLE) 

is measured in percent absolute error; higher scores indicate poorer performance. 

 

 Mean Differences for Fourth-Grade Predictor Measures between Students Table 5

Who Did and Did Not Meet the Mathematics Standard in Fourth, Fifth, and Sixth 

Grade  

4th-Grade Predictor Measure 

Met the 

Math Standard 

4th Grade: (n = 326) 

5th Grade: (n = 264) 

6th Grade: (n = 203) 

Did Not Meet 

the Math Standard 

4th Grade: (n = 85) 

5th Grade: (n = 98) 

6th Grade: (n = 101) 

  

M (SD) M (SD) t(df) p 

Predicting 4th-Grade Outcome     

   FNLE 22.82 (8.49) 30.26 (5.28) -10.04(211) .001 

   NAEP Fraction Concepts 10.70 (3.42)  7.15 (2.62) 10.39(167) .001 

   Fraction Arithmetic   3.34 (3.37)  0.95 (2.01)   8.37(224) .001 

Predicting 5th-Grade Outcome     

   FNLE 22.36 (8.67) 29.41 (5.37)  -9.26(279) .001 

   NAEP Fraction Concepts 11.02 (3.38)   7.66 (2.64)   9.92(220) .001 

   Fraction Arithmetic   3.50 (3.39)   1.11 (2.27)   7.70(259) .001 

Predicting 6th-Grade Outcome     

   FNLE 21.92 (8.64) 29.49 (5.36) -9.38(288) .001 

   NAEP Fraction Concepts 10.97 (3.33)   7.53 (2.82)  9.42(232) .001 

   Fraction Arithmetic   3.41 (3.40)   1.42 (2.55)  5.72(256) .001 

Note. FNLE = Fraction Number Line Estimation. FNLE is measured in percent absolute error 

(PAE), meaning higher scores indicate poorer performance.  List-wise deletion was utilized to 

correspond with the cases included in each ROC curve analysis per each grade. 
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(base rate = .33). Base rates for each analysis are presented in Table 6, along with the 

total count of positive outcome results and negative outcome results per grade. 

 Positive Outcomes, Negative Outcomes, and Base Rates for ROC Table 6

Analyses with Fourth-Grade Measures predicting  the Mathematics 

Achievement Outcome in Fourth, Fifth, and Sixth Grades 

Grade of Outcome Positive Negative Base Rate 

4th 85 326 21% 

5th 98 264 27% 

6th 101 203 33% 

 

 

ROC curve plots for all three analyses provide a visual interpretation of the ROC 

curve data (Figure 4). On all plots, the NAEP fraction concepts curve extended furthest to 

the top left corner. As such, the fourth-grade NAEP fraction concepts measure held the 

highest area under the curve and thus the highest diagnostic accuracy for predicting 

mathematics achievement in all three grades. 

ROC curve statistics for each analysis are presented in Table 7. The AUC values 

associated with the NAEP fraction concepts measure in each ROC analysis exceed .750, 

indicating that the measures met the minimum acceptable value to be effective for 

determining risk status (Cummings & Smolkowski, 2015).  

In all three ROC curve analyses, the fourth-grade fraction number line estimation 

measure also emerged as a powerful screener for predicting the outcome. The fraction 

number line estimation measure met the AUC threshold of .750 for predicting the fourth-

grade outcome and for predicting the sixth-grade outcome. The AUC approached the 

threshold of .750 for predicting the fifth-grade outcome (AUC = .745). However, the  
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Figure 4 ROC Curve Plots Showing Fourth-Grade Predictor Measures 
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 ROC Area Under the Curve (AUC) Statistics for Fourth-Grade Predictor Table 7

Measures Predicting the Mathematics Achievement Outcome in Fourth, 

Fifth, and Sixth Grades 

 

 

 

 

 

 

 

 

 

 

 

AUC value for the fraction number line estimation measure in each analysis does not 

exceed those associated with the NAEP fraction concepts measure.   

The fraction arithmetic measure yielded the lowest AUC values in each analysis 

(AUC = 693, .692, and .659, respectively). The AUC values do not meet the .750 AUC 

threshold for effective screeners. As such, the fourth-grade fraction arithmetic measure is 

not a powerful screener measure for predicting the mathematics achievement outcome 

measure given fourth, fifth and sixth grades. 

Fifth-Grade Measures Predicting Later Mathematics Achievement in Fifth and 

Sixth Grades 

Table 8 presents means and standard deviations for all fifth-grade predictor 

measures, separated for students who met the end-of-the-year mathematics standard and 

4th-Grade Predictor Measure 
 

AUC 

 

SE 

95% Confidence Interval 

Lower Upper 

Predicting 4th-Grade Outcome     

   NAEP Fraction Concepts .796
1
 .024 .749 .843 

   FNLE .766
1
 .026 .715 .817 

   Fraction Arithmetic .693 .028 .637 .749 

Predicting 5th-Grade Outcome     

   NAEP Fraction Concepts .789
1
 .025 .740 .838 

   FNLE  .745 .027 .693 0798 

   Fraction Arithmetic .692 .029 .636 .749 

Predicting 6th-Grade Outcome     

   NAEP Fraction Concepts .791
1
 .027 .738 .844 

   FNLE .760
1
 .028 .706 .814 

   Fraction Arithmetic .659 .032 .596 .722 
1
AUC > .750, indicating that the measure meets the minimum acceptable 

value to be effective for determining risk status (Cummings & Smolkowski, 

2015). 
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students who did not meet the standard in fifth and sixth grades. Independent samples t –

tests revealed that each predictor differentiated students who met the standard from those 

who did not meet the standard in both fifth and sixth grade (p = .001). All fifth-grade 

predictor measures thus qualified for the ROC curve analyses.  

ROC Curve Analyses with Fifth-Grade Predictor Measures 

Two separate ROC curve analyses were run to assess the diagnostic accuracy of 

the fifth-grade predictor measures. Table 9 presents the base rate for each analysis. The 

first analysis assessed the accuracy of the fifth-grade measures for predicting the fifth-

grade outcome. The second analysis assessed the ability of the same fifth-grade measures 

for predicting the sixth-grade outcome. The ROC curve plot for each analysis shows the 

NAEP fraction concepts curve extending furthest to the top left corner of the plot, 

meaning that the NAEP fraction concepts measure held the highest diagnostic accuracy 

for predicting the DCAS mathematics achievement outcome in both grades (Figure 5). 

ROC curve statistics for each analysis are presented in Table 10. The AUC values 

associated with the NAEP fraction concepts measure in each ROC analysis exceeded 

.750, the minimum acceptable AUC value to be effective for determining risk status 

Cummings & Smolkowski, 2015). Although the NAEP fraction concepts measure held 

the highest AUC for both administrations of the outcome, the other predictor measures 

also held high diagnostic accuracy. The AUC of the fraction number line estimation 

measure exceeded .750 in each analysis. The AUC of the fraction arithmetic measure 

exceeded the threshold in each analysis but was considerably lower than those associated 

with the other predictor measures. Overall, all fifth-grade measures met the minimum 

AUC threshold for determining risk status at the end of fifth grade and the end of sixth 

grade, with the NAEP fraction concepts measure still emerging as the most accurate 

screener. 
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 Mean Differences for Fifth-Grade Predictor Measures between Students Table 8

Who Did and Did Not Meet the Mathematics Standard in Fifth and Sixth 

Grades 

5th-Grade 

Predictor Measure 

Met 

the Standard 

5th Grade: (n = 279) 

6th Grade: (n = 211) 

Did not Meet 

the Standard 

5th Grade: (n = 105) 

6th Grade: (n = 107) 

  

M (SD) M (SD) t(df) p 

Predicting 5th-Grade 

Outcome 

    

   FNLE 16.15 (10.30) 26.74 (6.08) -12.37(313) .001 

   NAEP Concepts 14.51 (3.09) 9.98 (2.81)  13.11(382) .001 

   Fraction Arithmetic   6.75 (2.95) 3.47 (3.60)    8.35(159) .001 

Predicting 6th-Grade 

Outcome 

    

   FNLE 15.33 (9.92) 26.87 (6.34) -12.57(300) .001 

   NAEP Concepts 14.82 (2.85) 9.99 (2.82)  14.31(316) .001 

   Fraction Arithmetic   7.01 (2.73) 3.70 (3.62)    8.41(169) .001 

Note. List-wise deletion was utilized to correspond with the cases included in each ROC 

curve analysis per each grade. 

 

 Positive Outcomes, Negative Outcomes, and Base Rates for ROC Table 9

Analyses with Fifth-Grade Measures predicting the Mathematics 

Achievement Outcome in Fifth and Sixth Grades 

Grade of 

Outcome 
Positive Negative Base Rate 

5th 105 279 27% 

6th 107 211 34% 
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Figure 5 ROC Curve Plots Showing Fifth-Grade Predictor Measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ROC Area Under the Curve (AUC) Statistics for Fifth-Grade Predictor Table 10

Measures Predicting the Mathematics Achievement Outcome in Fifth and 

Sixth Grades 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5th-Grade Predictor Measure 

 

AUC 

 

SE 

95% Confidence Interval 

Lower Upper 

Predicting 5th-Grade Outcome     

   NAEP Fraction Concepts .856
1
 .019 .818 894 

   FNLE .784
1
 .023 .738 .829 

   Fraction Arithmetic .753
1
 .027 .699 .806 

Predicting 6th-Grade Outcome     

   NAEP Fraction Concepts .880
1
 .019 .842 .917 

   FNLE .810
1
 .024 .764 .856 

   Fraction Arithmetic .764
1
 .028 .710 .818 

1
AUC > .750, indicating that the measure meets the minimum acceptable value 

to be effective for determining risk status (Cummings & Smolkowski, 2015). 

Fifth-grade Predictor Measures 

Predicting Fifth-Grade Outcome 

Fifth-grade Predictor Measures 

Predicting Sixth-Grade Outcome 

NAEP fraction concepts 

FNLE 

Random ROC; 
zero discriminating 
power 

Fraction arithmetic 
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Sixth-Grade Measures Predicting Later Mathematics Achievement in Sixth Grade 

Table 11 presents means and standard deviations for all sixth-grade predictor 

measures, separated for students who met the end-of-the-year mathematics standard and 

students who did not meet the standard at the end of sixth grade. An independent samples 

t –test revealed that each predictor differentiated students who met the standard from 

those who did not meet the standard in sixth grade (p = .001). All three of the sixth-grade 

predictor measures thus qualified for inclusion in the ROC curve analysis. 

ROC Curve Analysis with Sixth-Grade Predictor Measures 

One ROC curve analysis assessed the diagnostic accuracy of the sixth-grade 

predictor measures for predicting the end-of-the-year sixth-grade outcome. The base rate 

was .33, meaning that 33% of the sample did not meet the sixth-grade mathematics 

standard (Table 12). Similar to the other analyses, the NAEP fraction concepts curve yet  

 Mean Differences for Sixth-Grade Predictor Measures between Students Table 11

Who Did and Did Not Meet the Mathematics Standard in Sixth Grade 

 

6th-Grade Predictor Measure 

Met the 

Math 

Standard 

(n = 220) 

Did Not Meet 

the Math 

Standard 

 (n = 107) 

  

M (SD) M (SD) t(df) p 

Predicting 6th-Grade Outcome     

   FNLE   8.92 (7.08) 21.26 (8.62) -12.84(178) .001 

   NAEP Fraction Concepts 20.34 (2.98) 14.23 (3.88)  14.36(169) .001 

   Fraction Arithmetic 13.41 (4.65)  8.30 (3.52)  11.05(269) .001 

Note. List-wise deletion was utilized to correspond with the cases included in each ROC 

curve analysis per each grade. 
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 Positive Outcomes, Negative Outcomes, and Base Rate for ROC Analysis Table 12

with Sixth-Grade Measures Predicting the Mathematics Achievement 

Outcome in Sixth Grade 

Grade of Outcome Positive Negative Base Rate 

6th 107 220 33% 

 

 

 

again extended furthest to the top left corner of the ROC curve plot. The plot indicates 

that the sixth-grade NAEP fraction concepts measure held the highest diagnostic 

accuracy for predicting the outcome at the end of sixth grade (Figure 6). 

ROC curve statistics for the sixth-grade analysis are presented in Table 13. The 

AUC value for the NAEP fraction concepts measure exceeded .750 and was the highest 

AUC across all ROC analyses in the present study (AUC = .895). The diagnostic 

accuracy of the fraction number line estimation measure (AUC = .864) and fraction 

arithmetic measure (AUC = .817) also exceeded the .750 AUC threshold. Overall, all 

sixth-grade measures met the minimum AUC threshold for determining risk status at the 

end of sixth grade, with the NAEP fraction concepts measure demonstrating the highest 

diagnostic accuracy.   

Figure 6 ROC Curve Plot showing Sixth-Grade Predictor Measures Predicting the Sixth-

Grade Mathematics Achievement Outcome
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 ROC Curve Area Under the Curve (AUC) Statistics for Sixth-Grade Table 13

Predictor Measures Predicting Sixth-Grade Mathematics Achievement 

Outcome 

 

 

 

 

 

 

 

 

 

 

Comparing AUC Values 

Table 14 shows a summary of AUC values across all six ROC curve analyses. 

Table 15 shows p values of the three AUC comparisons analyzed per ROC curve analysis 

(i.e., NAEP fraction concepts vs. FNLE, FNLE vs. fraction arithmetic, and NAEP 

fraction concepts vs. fraction arithmetic). For the present study, it was of particular 

interest to assess if the measure with the highest AUC value in each analysis (i.e., NAEP 

fraction concepts) was significantly superior to the measure with the next highest AUC 

value (i.e., fraction number line estimation). 

Comparison of Fourth-Grade Predictor Measures 

The NAEP fraction concepts measure did not significantly outperform the fraction 

number line measure as a screener for any year of the outcome measure (p > .05; see 

Table 15). The NAEP fraction concepts measure performed significantly better than the 

fraction arithmetic measure in each analysis (p < .05). The fraction number line measure 

outperformed the fraction arithmetic measure at fourth and sixth grade (p < .05). Overall, 

the results suggest that a combination of the NAEP fraction concepts items and fraction 

number line estimation items would yield an improved screener measure. 

 

6th-Grade Predictor Measure 

 

AUC 

 

SE 

95% Confidence Interval 

Lower Upper 

Predicting 6th-Grade 

Outcome 

    
   NAEP Fraction Concepts .895

1
 .017 .861 .929 

   FNLE .864
1
 .020 .826 .905 

   Fraction Arithmetic .817
1
 .024 .770 .864 

1
AUC > .750, indicating that the measure meets the minimum acceptable 

value to be effective for determining risk status (Cummings & Smolkowski, 

2015). 
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 Summary of Area under the Curve (AUC) Statistics and 95% Confidence Table 14

Intervals (CI) for Predictors Administered in Fourth, Fifth, and Sixth 

Grades 

 AUC
1
 [95% CI] for Prediction of the Outcome 

Predictor 
4

th
-Grade 

Outcome  

5th-Grade 

Outcome 

6th-Grade 

Outcome 
4th grade        

NAEP Fraction Concepts 

(18 items) 

.796
1
 

[.749, .843] 

.789
1
 

[.740, .838] 

.791
1
 

[.738, .844] 

FNLE 
.766

1
 

[.715, .817] 

.745 

[.693, .798] 

.760
1
 

[.706, .814] 

Fraction Arithmetic 

(8 items; +,-) 

.693  

[.637, .749] 

.692 

[.636, .749] 

.659 

[.596, .722] 

5th grade        

NAEP Fraction Concepts 

(19 items)  

.856
1
 

[.818, .894] 

.880
1
 

[.842, .917] 

FNLE 
 

.784
1
 

[.738, .829] 

.810
1
 

[.764, .856] 

Fraction Arithmetic 

(10 items; +,-)  

.753
1
 

[.699, .806] 

.764
1
 

[.710, .818] 

6th grade    

NAEP Fraction Concepts 

(24 items)   

.895
1
 

[.861, .929] 

FNLE 
  

.864
1
 

[.826, .905] 

Fraction Arithmetic 

(26 items; +,-,x,÷)   

.817
1
 

[.770, .864] 
1
AUC > .750 
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 Comparing the Diagnostic Accuracy of Predictor Measures Table 15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of Fifth-Grade Predictor Measures 

The AUC of the fifth-grade NAEP fraction concepts measure was significantly 

better than both fraction number line estimation (p < .05 for both grades of the outcome 

measure) and fraction arithmetic (p < .05 for both grades of the outcome measure). The 

AUC values of fraction number line estimation and fraction arithmetic were not 

significantly different (p > .05). The results indicate that the fifth-grade NAEP fraction 

concepts measure alone is the most predictive screener of later mathematics performance.  

Comparison of Sixth-Grade Predictor Measures 

The AUC of the NAEP fraction concepts measure did not significantly differ from 

the AUC of the fraction number line estimation measure (p > .05). However, the NAEP 

fraction concepts measure performed significantly better than fraction arithmetic (p < 

.05). Fraction number line estimation did not differ significantly from the fraction 

arithmetic measure (p > .05). The results are similar to the fourth-grade predictor results 

 Statistical Significance Level 

(p value) of AUC Comparisons 

Predictor Measure Comparisons 
4th-Grade 

Outcome 

5th-Grade 

Outcome 

6th-Grade 

Outcome 
4th grade        

NAEP Fraction Concepts vs. FNLE .290 .129 .334 

NAEP Concepts vs. Fraction Arithmetic  .001
*
  .003

*
  .001

*
 

FNLE vs. Fraction Arithmetic  .033
*
 .130  .007

*
 

5th grade        

NAEP Fraction Concepts vs. FNLE ---  .002
*
  .005

*
 

NAEP Concepts vs. Fraction Arithmetic ---  .001
*
  .001

*
 

FNLE vs. Fraction Arithmetic --- .304 .161 

6th grade    

NAEP Fraction Concepts vs. FNLE --- --- .129 

NAEP Concepts vs. Fraction Arithmetic --- ---  .002
*
 

FNLE vs. Fraction Arithmetic --- --- .086 
*
p < .05 
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and suggest that a combination of NAEP fraction concepts items and fraction number line 

estimation items would yield an improved screener measure.  

Summary of AUC Comparisons 

Results of the AUC comparisons differed by grade. For the fourth-grade and 

sixth-grade predictor measures, the NAEP fraction concepts measure performed equally 

well as the fraction number line estimation measure in all analyses. A combination of the 

two measures in fourth grade and sixth grade will hence be assessed. For the fifth-grade 

predictor measures, the NAEP fraction concepts measure significantly outperformed the 

fraction number line estimation in both analyses. As such, the NAEP fraction concepts 

measure alone will be assessed as the best-performing fifth-grade screener. 

Determining Best Subset Measures 

Fourth-Grade Best Subset Measure 

ROC curve results indicated that both the fourth-grade NAEP fraction concepts 

measure and the fourth-grade fraction number line estimation measure were strong 

screeners of students’ later mathematics performance at the end of fourth grade, fifth 

grade, and sixth grade. As such, items from both measures were assessed with best subset 

automatic linear modeling (ALM). The ALM analyses determined the most predictive 

combination of items from the 18-item NAEP fraction concepts measure and the 28-item 

fraction number line estimation measure. Three separate ALM analyses were run for the 

three grades of the mathematics achievement outcome variable: fourth, fifth, and sixth 

grade. ALM analyses allow for a continuous outcome measure; accountability scores on 

the DCAS mathematics achievement test served as the outcome.  

For the prediction of the fourth-grade outcome, the final model had an adjusted R
2
 

of .59. Thus, 59% of the variance in the fourth-grade mathematics achievement outcome 

was accounted for by the linear combination of the selected predictor items. Six NAEP 
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items and 10 fraction number line items were included in the model. Table 16 shows the 

specific NAEP items included in the final model, and Table 17 shows the fraction 

number line items included in the model. The tables report the importance values of each 

item included in the final model, with higher importance values indicating higher 

importance in the model and hence higher predictive power for predicting the 

mathematics achievement outcome (Meyers et al., 2013). The item with the highest 

importance value per time point is bolded. Items with low importance values that were 

excluded from the final model have blank cells. Items that were not included in any of the 

six models were excluded altogether from the tables (i.e., NAEP items 16, 20, 21, 22; 

FNLE 0-1 items 1/5, 13/14, 5/8, 1/3; and FNLE 0-2 items 111/12, 5/6, 5/5, 1 5/8, and 1 

1/5). 

The two best subset measures (i.e., the six-item NAEP fraction concepts best 

subset measure and the 10-item fraction number line best subset measure) were entered 

into binary logistic regression for two reasons: (a) to empirically assess whether both 

measures made significant improvements to the model when predicting the fourth-grade 

mathematics achievement outcome and (b) to provide extra support for combining the 

two best subset measures. Hierarchical entry was used with the NAEP fraction concepts 

best subset measure entered in the first block and the fraction number line best subset 

measure entered in the second block; the NAEP measure was entered first because the 

original measure had a slightly higher AUC value than the fraction number line 

estimation measure. Regression diagnostics were performed to evaluate whether the 

model met underlying assumptions (Meyers, Gamst, & Guarino, 2006). The analyses 

revealed no univariate or multivariate outliers. A further evaluation of assumptions was 

satisfactory for the absence of influential cases, multicollinearity, and violations 

regarding the expected frequencies per cell for a logistic regression analysis. The 

Hosmer-Lemeshow goodness-of-fit test showed good model fit with the data (p = .702). 

Table 18 presents regression coefficients (B), Wald statistics and significance levels for 



 75 

each best subset predictor measure in the model. The Wald test revealed that both best 

subset measures were statistically significant (p = .001), providing further rationale for 

combining the two measures in subsequent analyses.  

When predicting the fifth-grade mathematics outcome, the final model of fourth-

grade predictor items accounted for 47% of the variance in the outcome. The best subset 

model included five NAEP items and 11 fraction number line items (See Tables 16 and 

17). The two best subset measures were entered into a binary logistic regression to 

empirically assess whether both measures made significant improvements to the model 

for the prediction of the fifth-grade mathematics achievement outcome. The model met 

the underlying assumptions of the regression analysis. The Hosmer-Lemeshow goodness- 

of-fit test showed good model fit with the data (p = .654). Table 19 presents regression 

coefficients. Both best subset measures were statistically significant (p = .001). 

When predicting the sixth-grade mathematics outcome, the best subset final 

model accounted for 59% of the outcome variance. The model included six NAEP items 

and 10 fraction number line items (See Tables 16 and 17). Binary logistic regression with 

hierarchical entry revealed that both subset models significantly improved the model 

prediction of the sixth-grade outcome. Again the model met underlying assumptions and 

showed good model fit with the data as indicated by the Hosmer-Lemeshow goodness-of-

fit test (p = .269). Table 20 presents the regression coefficients. 
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 NAEP Fraction Concepts Items included on Best Subset Measures per Table 16

Time Point and Associated Importance Values 

   

 

4th-Grade 

Screeners 

5th-Grade 

Screeners 

6th-Grade 

Screener 

Predictor 

Item 

4th- 

Grade 

5th-

Grade 

6th-

Grade 

5th-

Grade 

6th-

Grade 

6th- 

Grade 

NAEP 1  .037     

NAEP 2  .044   .032  

NAEP 3 .031 .100  .321 .050  

NAEP 4    .039  .020 

NAEP 5   .048 .042 .071  

NAEP 6 .034  .022    

NAEP 7 .095 .073 .056  .057 .056 

NAEP 8 .054   .039 .127  

NAEP 9 .030      

NAEP 10    .040   

NAEP 11      .040 

NAEP 12 .032  .033  .062 .014 

NAEP 13   .068 .058  .076 

NAEP 14   .082 .227 .144  

NAEP 15    .049 .076 .022 

NAEP 17    .051 .215 .036 

NAEP 18    .047 .115 .056 

NAEP 19  .034  .090 .052 .035 

NAEP 23      .221 

NAEP 24      .137 
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 Fraction Number Line (FNLE) Items Included on Best Subset Measures Table 17

per Time Point and Associated Importance Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Regression Coefficients of Fourth-Grade Best Subset Measures predicting Table 18

the Fourth-Grade Mathematics Achievement Outcome 

Predictor B(SE) Wald 

Best Subset NAEP Fraction Concepts    -0.34(.09) 16.37 

Best Subset FNLE 0.09(.02) 20.84 

Constant    -2.57(.76) 11.36 

 

 

 

 

 

 

 

4
th

-Grade 

Screeners 

5
th

-Grade 

Screeners 

6
th

-Grade 

Screener 

Predictor 

Item 

4th- 

Grade 

5th- 

Grade 

6th-

Grade 

5th- 

Grade 

6th- 

Grade 

6th- 

Grade 

FNLE (0-1): 2/13 .022 .024 .029 x x  

FNLE (0-1): 3/7    x x .035 

FNLE (0-1): 1/3 .222 .159 .103 x x  

FNLE (0-1): 1/19 .034 .034  x x  

FNLE (0-1): 5/6 .133 .065 .048 x x  

FNLE (0-2): 1/3   .030 x x .021 

FNLE (0-2): 7/4 .036   x x .230 
FNLE (0-2): 12/13  .025 .031 x x  

FNLE (0-2): 3/2  .092  x x  

FNLE (0-2): 1/2 .039  .047 x x  

FNLE (0-2): 7/6  .109  x x  

FNLE (0-2): 1 2/4  .037  x x  

FNLE (0-2): 1 .051 .069 .296 x x  

FNLE (0-2): 3/8 .083 .061 .041 x x  

FNLE (0-2): 2/3    x x  

FNLE (0-2): 7/9  .038  x x  

FNLE (0-2): 1/19 .042   x x  

FNLE (0-2): 1 5/6 .062  .031 x x  

FNLE (0-2): 4/3   .034 x x  
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 Regression Coefficients of Fourth-Grade Best Subset Measures Predicting Table 19

the Fifth-Grade Mathematics Achievement Outcome 

Predictor B(SE) Wald 

Best Subset NAEP Fraction Concepts   -0.52(.12) 18.58 

Best Subset FNLE 0.10(.02) 22.63 

Constant   -2.45(.77) 10.26 

 Regression Coefficients of Fourth-Grade Best Subset Measures Predicting Table 20

the Sixth-Grade Mathematics Achievement Outcome 

 

 

 

 

 

 

 

Overall, the total items included in each best subset model differed by the grade 

of the outcome measure. One NAEP item (multiple-choice NAEP item 7; “Luis had two 

apples and he cut each apple into fifths. How many pieces of apple did he have?”) and 

five fraction number line items (2/13, 1/3, and 5/6 on the 0-1 number line; 3/8 and the 

whole number 1 on the 0-2 number line) were included in all three models. Each fourth-

grade combined best subset measure included a total of 16 items, which is fewer total 

items than the original 18-item NAEP and the original 28-item fraction number line 

estimation measure.  

Fifth-Grade Best Subset Measure 

ROC curve analyses assessing fifth-grade predictor measures indicated that the 

NAEP fraction concepts measure alone was the strongest screener measure for the 

prediction of the fifth-grade and sixth-grade outcome. The 19 items of the fifth-grade 

NAEP fraction concepts measure were entered into best subset ALM analyses to assess 

Predictor B(SE) Wald 

Best Subset NAEP Fraction Concepts -0.36(.10) 12.09 

Best Subset FNLE 0.15(.03) 30.80 

Constant -3.92(.84) 21.85 
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the best subset of items for predicting later mathematics achievement. Separate ALM 

analyses were run for the two grades of the mathematics achievement outcome variable: 

fifth and sixth grade.   

For the prediction of the fifth-grade outcome, the final model of predictor items 

accounted for 37% of the variation in the outcome variable. This amount of explained 

variance is noticeably lower than the variance explained in the models with fourth-grade 

predictor measures. A subsequent section of the Results section (i.e., ROC Curve 

Analyses to Test the Best Subset Measure) provides further analysis of this best subset 

measure and compares its diagnostic accuracy with the diagnostic accuracy of the full 19-

item NAEP measure. The best subset model included 11 items from the full 19-item 

measure (See Tables 16 and 17). 

For the prediction of the sixth-grade outcome, the best subset final model 

accounted for 59% of the variance in the outcome measure. The final model included 11 

items, eight of which were also included in the final model predicting the fifth-grade 

outcome (NAEP items 3, 5, 8, 14, 15, 17, 18, and 19; See Tables 16 and 17). 

Sixth-Grade Best Subset Measure 

ROC curve results indicated that both the sixth-grade NAEP fraction concepts 

measure and the sixth-grade fraction number line estimation measure were strong 

predictor measures of students’ later mathematics achievement. Items from both 

measures were assessed in a best subset automatic linear modeling (ALM) analysis to 

predict the sixth-grade mathematics achievement outcome. The ALM analysis 

determined the most predictive combination of items from the 24-item NAEP fraction 

concepts measure and the 28-item fraction number line estimation measure.  

The final best subset model yielded an adjusted R
2
 of .69, meaning that the subset 

of predictor items accounted for 69% of the variance in the outcome. The model included 

11 NAEP items and three fraction number line items (See Tables 16 and 17). The 14-item 
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combined best subset measure had 10 fewer items than the original 24-item measure and 

14 fewer items than the original 28-item fraction number line measure. Binary logistic 

regression with hierarchical entry revealed that combining the two best subset measures 

significantly improved the model prediction of the sixth-grade outcome. Again the model 

met underlying assumptions and showed good model fit with the data as indicated by the 

Hosmer-Lemeshow goodness-of-fit test (p = 454). Table 21 presents the regression 

coefficients. 

 Regression Coefficients of Sixth-Grade Best Subset Measures Predicting Table 21

the Sixth-Grade Mathematics Achievement Outcome 

Predictor B(SE) Wald 

Best Subset NAEP Fraction Concepts    -0.74(.10) 55.52 

Best Subset FNLE 0.06(.02) 15.17 

Constant 2.78(.75) 13.75 

 

 

 ROC Curve Analyses to Test the Best Subset Measures 

Additional ROC curve analyses were conducted to assess the diagnostic accuracy 

of the best subset measures. For example, the diagnostic accuracy of the fourth-grade 

combined best subset measure was included in a ROC curve analysis to examine whether 

it performed better or equally as well as the original measures (i.e., measures with all 

items included) and the individual best subset measures (i.e., the best subset NAEP 

fraction concepts measure and the best subset fraction number line estimation measure) 

for predicting the fourth-grade mathematics achievement outcome. For each ROC curve 

analysis, the AUC values of the original NAEP measure and original fraction number line 

measure match the AUC values reported previously; the values were reported again for 

ease of comparison to the best subset measures.  
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Fourth-Grade Measures Predicting Mathematics Achievement in Fourth, Fifth, and Sixth 

Grades 

The following five predictor measures were included in ROC curve analyses of 

fourth-grade measures predicting each grade of the outcome: (a) the original fourth-grade 

NAEP fraction concepts measure with all 18 items included, (b) the best subset NAEP 

fraction concepts measure, (c) the original fraction number line estimation measure with 

all 28 items included, (d) the best subset fraction number line estimation measure, and (e) 

the combination of the best subset NAEP fraction concepts measure and the best subset 

fraction number line estimation measure. In each analysis with the fourth-grade predictor 

measures, the combined best subset measure included 16 total items. Three separate ROC 

curve analyses were conducted for each grade of the outcome: fourth, fifth, and sixth 

grade.  

Table 22 presents a summary of AUC values associated with the fourth-grade 

predictor measures in each ROC curve analysis. The combined best subset measure met 

the .750 AUC threshold for being a good screener for each grade of the outcome 

(Cummings & Smolkowski, 2015). AUC comparisons between the combined best subset 

measures and original measures in each analysis yielded consistent results across 

analyses: The combined best subset measure with 16 items performed just as well as the 

original NAEP fraction concepts measure with 18 items and the original fraction number 

line estimation measure with 28 items. In other words, the fourth-grade combined best 

subset measure in each analysis did not perform significantly better or significantly worse 

than the highest-performing original measure (p > .05). As such, the combined best 

subset measure performed equally as well but with fewer items. 

The AUC of the combined best subset measure was also compared to the AUC of 

each individual best subset measure. The results of these comparisons were consistent 

across the ROC analyses of fourth-grade measures predicting later mathematics 
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achievement in fourth, fifth, and sixth grades. The fourth-grade combined best subset 

measure did not perform significantly better or significantly worse than the individual 

best subset NAEP fraction concepts measure or the individual best subset fraction 

number line estimation measure (p > .05). These results indicate that the combined best 

subset measure performed just as well as each individual best subset measure. The results 

further suggest that the combined best subset measure or either individual best subset 

measure as the preferred fourth-grade screener could be identified. However, the present 

study considers four reasons for recommending the combined best subset measure over 

the individual best subset measures for predicting later achievement. First, the results of 

the AUC comparisons contradict the results of the binary logistic regression analyses 

reported in the previous section. The regression analyses indicated that including both 

best subset measures significantly improved model fit when predicting all grades of the 

outcome measure. Second, although the AUC comparisons were not significantly 

different, the AUC value of the combined best subset measure in each analysis was 

consistently slightly higher than the AUC value of each individual best subset measure 

(see Table 22). Third, combining the best subset measures consistently yielded a 

reasonable total number of items (i.e., 16 total items) that would not require extensive 

time to administer to students. Fourth, the small amount of additional items on the 

combined best subset measure means that teachers would gain additional information of 

their students’ strengths and/or misconceptions by looking at performance on an item-

level without requiring too much extra time to administer the screener during class time. 

The fourth-grade combined best subset measures per each grade of the outcome are hence 
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recommended as the preferred screening measures over the original measures and the 

individual best subset measures. 

Fifth-Grade Measures Predicting Mathematics Achievement in Fifth and Sixth Grades 

The ROC analyses of the fifth-grade measures predicting the fifth- and sixth-

grade outcome included the best subset of the NAEP fraction concepts measure rather 

than a combination measure. As such, the analysis of fifth-grade measures included the 

following: (a) the original fifth-grade NAEP fraction concepts measure with 19 items, (b) 

the original fraction number line measure with 28 items, and (c) the best subset NAEP 

fraction concepts measure with only 11 items. Table 22 reports the AUC values for all 

predictor measures. The best subset NAEP measure in fifth and sixth grades met the .850 

AUC threshold for being a very good screener of risk status (Cummings & Smolkowski, 

2015). AUC comparisons revealed that the best subset measure did not perform 

significantly better or significantly worse than the original measures (p > .05). The best 

subset NAEP measures performed just as well as the other measures but with fewer 

items. Thus, the present study recommends the best subset NAEP measures as the 

preferred fifth-grade screening measures for predicting the mathematics achievement 

outcome in both fifth and sixth grades.  

Sixth-Grade Measures Predicting Mathematics Achievement in Sixth Grade 

The following five measures were included in the ROC analysis of the sixth-grade 

measures predicting the sixth-grade mathematics achievement outcome: (a) the original 

sixth-grade NAEP fraction concepts measure with all 24 items included, (b) the best 

subset NAEP fraction concepts measure with 11 items, (c) the original fraction number 

line estimation measure with all 28 items included, (d) the best subset fraction number 

line estimation measure with three items, and (e) the combination of the best subset 

NAEP fraction concepts measure and the best subset fraction number line estimation 
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measure with 14 items. Since the sixth-grade measures predict out to only one grade of 

the outcome in the present study (i.e., sixth grade), only one ROC analysis was conducted 

for the sixth-grade measures. Again, the AUC values of the original NAEP fraction 

concepts measure and fraction number line measure match the values reported earlier in 

the present study. 

Table 22 reports the AUC values for all sixth-grade predictor measures. The AUC 

of the combined best subset measure met the .85 threshold for being considered a very 

good screener (Cummings & Smolkowski, 2015). AUC comparisons revealed that the 

combined best subset measure with 14 items performed just as well as the original NAEP 

fraction concepts measure with 24 items and the original fraction number line estimation 

measure with 28 items. In other words, the sixth-grade combined best subset measure in 

each analysis did not perform significantly better or significantly worse than the highest-

performing original measure (p > .05). As such, the combined best subset measure 

performed equally as well but with fewer items. 

The AUC of the combined best subset measure in sixth grade was also compared 

to the AUC of each individual sixth-grade best subset measure. The combined best subset 

measure performed significantly better than the sixth-grade best subset fraction number 

line estimation measure (p < .05) but did not perform significantly better than the sixth-

grade best subset NAEP fraction concepts measure (p  > .05). These results suggest that 

the present study could recommend the combined best subset measure or the best subset 

NAEP fraction concepts measure alone as the preferred sixth-grade screener. The present 

study uses the same four reasons described previously to recommend the combined best 

subset measure in sixth grade instead of the best subset NAEP fraction concepts measure. 

Furthermore, combining the sixth-grade best subset fraction number line measure with 

the best subset NAEP fraction concepts measure is an addition of only three fraction 

number line items (see Table 17).  
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 Area Under the Curve (AUC) Statistics and 95% Confidence Intervals Table 22

(CI) for Best Subset and Original Predictor Measures with All Items 

Included 

 

 

 

 

 

 

 

 

 

 

 

 

Summary of ROC Curve Analyses Testing the Best Subset Measures 

The present study identified fraction screening measures for fourth, fifth, and 

sixth grades that are supported by empirical data for predicting later mathematics 

achievement with high diagnostic accuracy. A combination best subset screener measure 

 AUC
1
 [95% CI]  

Predictor Measure 

4th-Grade 

Outcome 

5th-Grade 

Outcome 

6th-Grade 

Outcome 

4th grade        

All items NAEP Concepts 
.796

1
 

[.749, .843] 

.789
1
  

[.740, .838] 

.791
1
  

[.738, .844] 

Best Subset NAEP Concepts 
.749 

[.701, .796] 

.757
1
  

[.703, .811] 

.771
1
  

[.717, .826] 

All items FNLE  
.766

1
 

[.715, .817] 

.745   

[.693, .798] 

.760
1
  

[.706, .814] 

Best Subset FNLE 
.779

1
  

[.728, .828] 

.732  

[.679, .784] 

.800
1
  

[.750, .850] 

Combined Best Subset Measure 
.780

1
  

[.729, .828] 

.785
1
  

[.736, .834] 

.808
1
  

[.762, .854] 

5th grade        

All items NAEP Concepts   
.856

1
  

[.818, .894] 

.880
1
  

[.842, .917] 

All items FNLE   
.784

1
  

[.738, .829] 

.810
1
  

[.764, .856] 

Best Subset NAEP Concepts  
.850

1
  

[.810, .890] 

.879
1
  

[.842, .915] 

6th grade    

All items NAEP Concepts 
  .895

1
  

[.861, .929] 

Best Subset NAEP Concepts 
  .881

1
  

[.844, .917] 

All items FNLE  
  .864

1
  

[.826, .905] 

Best Subset FNLE 
  .800

1
  

[.751, .849] 

Combined Best Subset Measure 
  .899

1
  

[.866, .933] 
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is recommended for fourth and sixth grades; a best subset NAEP fraction concepts 

measure is recommended for fifth grade. As shown previously in Tables 16 and 17, the 

items selected for each grade of the best subset measures differed by grade of the 

outcome. Thus, a total of six separate screeners were identified: (a) a fourth-grade 

combined best subset screener for predicting the fourth-grade outcome, (b) a fourth-grade 

combined best subset screener for predicting the fifth-grade outcome, (c) a fourth-grade 

combined best subset screener for predicting the sixth-grade outcome, (d) a fifth-grade 

best subset NAEP fraction concepts screener for predicting the fifth-grade outcome, (e) a 

fifth-grade best subset NAEP fraction concepts screener for predicting the sixth-grade 

outcome, and (f) a sixth-grade combined best subset screener for predicting the sixth-

grade outcome. Next, each screener is explored further for use in real-world settings.  

Translating Screener Statistics into Usable Information for Researchers and 

Practitioners 

Different statistics are computed and reported depending on whether the screener 

is a single best subset measure or a combined best subset measure. For a single best 

subset screener, the typical ROC curve statistics were reported (e.g., true positive fraction 

and true negative fraction; Cummings & Smolkowski, 2015), along with the statistics 

necessary for using a probability nomogram (Youngstrom, 2014). A different method 

was used in the present study for combining a measure with continuous data (i.e., the 

fraction number line estimation measure) with a measure with discrete data (i.e., the 

NAEP fraction concepts measure); a predicted probabilities matrix was designed that 

allows a researcher or teacher to make predictions of a student’s performance by using 

his/her scores on both best subset measures (Clemens et al., 2016).  

Fourth-Grade Combined Best Subset Screener for Predicting Fourth-Grade Achievement 

Earlier analyses in the previous section indicated that a combined best subset 

measure was the preferred screener for predicting fourth-grade mathematics achievement. 
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Table 23 presents the predicted probabilities matrix of not meeting the fourth-grade 

mathematics standard associated with the best subset six-item NAEP fraction concepts 

scores and the best subset fraction number line estimation scores. Due to the continuous 

nature of the fraction number line task measured in percent absolute error (PAE), the 

number line scores were grouped into six categories based on percentiles (see Clemens et 

al., 2016). The categories were determined by the following percentiles: (a) less than or 

equal to the 10
th 

percentile, (b) greater than the 10
th

 percentile and less than or equal to 

the 25
th

, (c) greater than the 25
th

 and less than or equal to the 50
th

, (d) greater than the 50
th

 

and less than or equal to the 75
th

, and (e) greater than the 75
th

 and less than the 90
th

, and 

(f) greater than or equal to the 90
th

 percentile. The percent absolute error (PAE) scores 

were recoded (i.e., 100 – PAE) for the matrix so that lower scores indicate poorer 

performance, just as lower scores on the NAEP measure indicate poorer performance. 

The recoded number line scores can be thought of as “percent absolute accuracy” rather 

than percent absolute error. In contrast, the matrix presents all values of the six-item best 

subset NAEP measure. 

The matrix allows for interpretation of any combination of scores. The matrix was 

designed so that poorer performance scores fall into cells at the top left corner of the 

matrix; these cells are expected to have high predicted probabilities for not meeting the 

mathematics standard at the end of the year. For example, a student with a score of zero 

on the best subset NAEP fraction concepts measure and a percent absolute accuracy 

equal to or less than 63.40% has a predicted probability range of .71-.80. This range 

indicates that the student has a high probability between 71%-80% of not meeting the 

fourth-grade mathematics standard at the end of the year.   

In contrast, higher performance scores fall into cells at the lower right corner; 

these cells are expected to have lower predicted probabilities for not meeting the 

mathematics standard. For example, a student with a score of six on the six-item best 
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subset NAEP measure and a fraction number line score equal to or greater than 91.90% 

has a probability of only 1% of not meeting the mathematics standard.  

 Combination Matrix Summarizing Predicted Probabilities of Fourth-Grade Table 23

Screeners Associated with Not Meeting the Fourth-Grade Mathematics 

Standard 

Best Subset 

FNLE  

 

Best Subset NAEP Fraction Concepts 

 0 1 2 3 4 5 6 

≤ 63.40 .71-.80 .61-.85 .57-.83 .52-.73 .49-.75 .38-.61 .33-.44 

63.41-68.33 .62-.65 .48-.60 .41-.53 .35-.48 .29-.41 .25-.35 .26-.27 

68.34-74.24 -- -- .27-.40 .21-.31 .17-.28 .13-.21 .12-.18 

74.25-81.44 -- -- .14-.22 .11-.19 .10-.16 .07-.13 .04-.09 

81.45-91.89 -- -- .07-.11 .04-.10 .02-.07 .02-.06 .01-.03 

≥ 91.90 -- -- -- -- -- .01-.02 .01 

Note. Empty cells indicate that too few students achieved that combination of 

scores to generate a probability value 

FNLE = Fraction number line estimation (measured in percent absolute 

accuracy) 

Fourth-Grade Combined Best Subset Screener for Predicting Fifth-Grade Achievement 

A combined best subset screener in fourth grade was recommended for predicting 

fifth-grade mathematics achievement. Table 24 shows the predicted probabilities matrix 

for the combination screener for the prediction of the fifth-grade outcome. The matrix 

presents fraction number line scores grouped into the same six categories described above 

based on percentiles and all possible scores on the five-item NAEP best subset measure. 

The lowest performing students (i.e., score of zero on the NAEP and percent absolute 

accuracy less than or equal to 66.25% on the fraction number line measure) have a 

predicted probability of 77%-84%. This range of predicted probabilities indicates that a 

student has a probability of 77% to 84% of not meeting the fifth-grade mathematics 

standard. 
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 Combination Matrix Summarizing Predicted Probabilities of Fourth-Grade Table 24

Screeners Associated with Not Meeting the Fifth-Grade Mathematics 

Standard 

Best Subset 

FNLE  Best Subset NAEP Fraction Concepts 

 

 0 1 2 3 4 5  

≤ 66.25 .77-.84 .65-.73 .51-.58 .37-.44 .26-.32 --  

66.26-75.74 .68-.73 .58-.61 .40-.50 .28-.37 .19-.26 .13-.17  

70.32-75.75 .63-.64 .39-.52 .28-.39 .18-.29 .12-.18 --  

75.76-81.48 .40-.49 .27-.31 .25-.26 .17-.18 .11-.12 .05-.07  

81.49-90.17 -- -- .16-.17 .07-.10 .05-.07 .03-.04  

≥ 90.18 -- -- -- .04 .02-.03 .01-.02  

Note. Empty cells indicate that too few students achieved that combination of 

scores to generate a probability value 

 

 

Fourth-Grade Combined Best Subset Screener for Predicting Sixth-Grade Achievement 

For the prediction of sixth-grade mathematics achievement, a combination of the 

NAEP fraction concepts screener and the fraction number line screener emerged once 

again as the superior option. Table 25 shows the predicted probabilities matrix for the 

combination screener for the prediction of the sixth-grade outcome. The matrix presents 

fraction number line scores grouped into the six percentile categories and all possible 

scores on the six-item NAEP best subset measure. The lowest performing students (i.e., 

score of zero on the NAEP and fraction number line score less than or equal to 66.23%) 

have a predicted probability of 68%. This predicted probability indicates that a student 

has a probability of 68% of not meeting the mathematics standard at the end of sixth 

grade. 
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 Combination Matrix Summarizing Predicted Probabilities of Fourth-Grade Table 25

Screeners Associated with Not Meeting the Sixth-Grade Mathematics 

Standard 

Best Subset 

FNLE  Best Subset NAEP Fraction Concepts 

 0 1 2 3 4 5 6 

≤ 66.23 .68 .60-.80 .51-.78 .46-.65 .34-.54 .38-.43 .19-24 

66.24-71.69 .60-.68 .48-.59 .38-.44 .31-.37 .23-.38 .19-.25 .17-.24 

71.70-75.80 .50-.55 .33-.39 .26-.30 .20-.22 .15-.17 .12-.14 .10-.12 

75.81-81.00 -- .18-.30 .15-.25 .11-.14 .07-.10 .05-.07 .04-.07 

81.01-89.29 -- .07-.16 .07-.12 .04-.09 .02-.04 .02-.03 .01-.02 

≥ 89.30 -- -- -- .02-.03 .01-.02 .01-.02 .00-.01 

Note. Empty cells indicate that too few students achieved that combination of 

scores to generate a probability value 

FNLE = Fraction number line estimation (measured in percent absolute accuracy) 

 

Fifth-Grade Best Subset NAEP Fraction Concepts Screener for Predicting Fifth-Grade 

Achievement 

Analyses of the present study assessing fifth-grade measures indicated that the 

best subset NAEP fraction concepts screener was the most predictive and practical 

screener option, rather than a combination of measures. Table 26 presents all possible cut 

scores and associated ROC statistics (i.e., true positive fraction, true negative fraction, 

diagnostic likelihood ratios, positive predictive power, and negative predictive power) for 

the best subset 11-item NAEP fraction concepts screener.  

The diagnostic likelihood ratio for a positive screener result (DLR+) allows a 

researcher or teacher to translate the results for his/her own sample of students by using 

the probability nomogram. To minimize “missing” at-risk students, teachers may desire a 

cut score with an 85% true positive threshold (Jordan et al., 2010); this value indicates 

that 85% of truly at-risk students were accurately identified by the cut score. A teacher 

can identify the cut score associated with an 85% true positive fraction, find the DLR+ 

associated with the cut score, and finally use the probability nomogram to reveal the 

positive predictive power (PPV). The positive predictive power indicates the likelihood 
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of a student not meeting the mathematics standard at the end of the year. In other words, 

the positive predictive power allows a teacher to make a forward prediction of a student’s 

later mathematics achievement. 

 ROC Curve Statistics Associated with all Possible Cut Scores on the Fifth-Table 26

Grade NAEP Best Subset Screener for Predicting the Fifth-Grade 

Outcome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 presents an example for using the probability nomogram to translate the 

ROC statistics. A dot is placed on the left line of the nomogram that corresponds to the 

base rate (e.g., 27%). Next, a line is extended from the dot to the location on the middle 

line that corresponds to the DLR+ reported in the present study (i.e., 2.21). Last, the line 

is further extended to the right side of the nomogram, revealing the positive predictive 

power (PPV) that is specific to the sample base rate (i.e., 45%). The interpretation would 

 

Independent of 

Base Rate 

Dependent on 

Base Rate of 27% 

Cut 

Score 

True 

Positive 

Fraction 

True 

Negative 

Fraction DLR+ DLR- PPV NPV 

≤ 1 .00      1.00 -- 1.00 -- .73 

≤ 2 .03 .99 3.00 .98 .53 .73 

≤ 3 .15 .98 7.50 .87 .72 .75 

≤ 4 .28 .96 7.08 .75 .73 .78 

≤ 5 .47 .91 5.19 .59 .66 .82 

≤ 6 .68 .84 4.20 .39 .61 .87 

≤ 7 .83 .75 3.30 .23 .55 .92 

≤ 8 .92 .58 2.21 .13 .45 .95 

≤ 9 .97 .48 1.88 .06 .41 .98 

≤ 10 .98 .34 1.49 .06 .36 .98 

≤ 11 1.00 .00 1.00 -- .27 -- 

Note. The cell highlighted in gray indicates the cut score associated 

with the 85%-true positive fraction threshold. 

DLR = diagnostic likelihood ratio 

PPV = positive predictive power 

NPV = negative predictive power 
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be as follows: 45% of students who fall below the cut score are at risk for not meeting the 

fifth-grade mathematics standard. If a higher probability was desired, the researcher or 

teacher could select a lower cut score associated with higher positive predictive power.  

Figure 7 Probability Nomogram Example of Fifth-Grade Screener Predicting the Fifth-Grade 

Outcome 
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Fifth-Grade Best Subset NAEP Fraction Concepts Screener for Predicting Sixth-Grade 

Achievement 

 The present study identified the best subset NAEP fraction concepts screener as 

the most predictive and practical screener option in fifth grade for the prediction of the 

sixth-grade outcome. Table 27 presents all possible cut scores and associated ROC curve 

statistics for the best subset 11-item NAEP fraction concepts screener.  

 ROC Curve Statistics Associated with all Possible Cut Scores on the Fifth-Table 27

Grade NAEP Best Subset Screener for Predicting the Sixth-Grade 

Outcome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 presents an example for using the probability nomogram to translate the 

ROC statistics into usable information for any sample of students. First, a dot is placed on 

the left line of the nomogram that corresponds to the base rate (e.g., 34%). Second, a line 

is extended from the dot to the location on the middle line that corresponds to the DLR+ 

reported in the present study for a specific screener cut score (i.e., 3.66). Last, the line is 

 

Independent of 

Base Rate 

Dependent on 

Base Rate of 34% 

Cut 

Score 

True 

Positive 

Fraction 

True 

Negative 

Fraction DLR+ DLR- PPV NPV 

≤ 1 .00     1.00 --  1.00 -- .66 

≤ 2 .01     1.00 -- .99 -- .67 

≤ 3 .08     1.00 -- .93 -- .68 

≤ 4 .26 .99 18.71 .75 .90 .72 

≤ 5 .46 .97 13.88 .56 .88 .78 

≤ 6 .63 .86 4.41 .44 .69 .82 

≤ 7 .85 .77 3.66 .20 .65 .91 

≤ 8 .94 .59 2.29 .10 .54 .95 

≤ 9 .99 .45 1.79 .02 .48 .99 

≤ 10    1.00 .28 1.40 .00 .41   1.00 

≤ 11    1.00 .00 1.00 -- .34 -- 

Note. The cell highlighted in gray indicates the cut score associated 

with the 85%-true positive fraction threshold. 
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further extended to the right side of the nomogram, revealing the positive predictive 

power (PPV) that is specific to the sample base rate (i.e., 65%). A researcher or teacher 

would make the following interpretation of the PPV: 65% of students who fall below the 

cut score are at risk for not meeting the sixth-grade mathematics standard. 

 

Figure 8 Probability Nomogram Example of Fifth-Grade Screener Predicting the Sixth-

Grade Outcome 
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Sixth-Grade Combination Screener for Predicting Sixth-Grade Achievement 

Earlier analyses of the present study indicated that a combination of screeners was 

the superior sixth-grade screener option when predicting sixth-grade mathematics 

achievement. Table 28 presents the predicted probabilities matrix of not meeting the 

sixth-grade mathematics standard associated with all possible scores on the best subset 

11-item NAEP fraction concepts scores and the best subset 3-item fraction number line 

estimation scores. At this time point, the lowest score received on the best subset NAEP 

screener was a score of one point. A student with a score of one on the best subset NAEP 

screener and a fraction number line score less than or equal to 63.38% has a predicted 

probability of .98. This value means that the student has a 98% chance of not meeting 

 Combination Matrix Summarizing Predicted Probabilities of Sixth-Grade Table 28

Screeners Associated with Not Meeting the Sixth-Grade Mathematics 

Standard 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Best 

Subset 

FNLE  Best Subset NAEP Fraction Concepts 

 0 1 2 3 4 5 6 7 8 9 10 11 

≤ 63.38 
-- .98 

.97-

.98 

.95-

.96 

.88-

.90 

.78-

.82 

.62-

.71 

.45-

.57 

.28-

.35 
-- -- -- 

63.39- 

70.03 
-- -- -- 

.91-

.93 

.84-

.88 

.71-

.75 

.53-

.61 

.36-

.42 

.21-

.25 

.11-

.14 
-- -- 

70.04- 

82.15 
-- 

.96-

.98 

.91-

.94 

.83-

.90 

.72-

.83 

.55-

.63 

.37-

.43 

.23-

.34 

.11-

.20 

.06-

.10 

.03-

.05 
-- 

82.16- 

91.00 
-- -- -- 

.82-

.83` 

.61-

.69 

.42-

.52 

.25-

.35 

.14-

.20 

.07-

.09 

.03-

.05 

.02-

.03 
.01 

91.01- 

96.41 
-- -- -- -- -- 

.33-

.39 

.19-

.24 

.11-

.12 

.05-

.06 
.03 

.01-

.02 
.01 

≥ 96.42 -- -- -- -- -- -- -- -- -- 
.02-

.03 
.01 .01 

Note. Empty cells indicate that too few students achieved that combination of scores to 

generate a probability value 

FNLE = Fraction number line estimation (measured in percent absolute accuracy) 
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the sixth-grade standard at the end of the school year. In contrast, a higher-achieving 

student with a score of 11 on the best subset NAEP screener and a fraction number line 

score equal to or greater than 96.42% has only a 1% chance of not meeting the 

mathematics standard. 

Summary of Results 

Different screeners emerged for each time point of the present study as the 

preferred screener for predicting later risk status. The selected fourth-grade screener for 

the prediction of fourth-grade mathematics achievement was a combined best subset 

measure with 16 total items (i.e., six NAEP fraction concepts items and 10 fraction 

number line items). The selected fourth-grade screener for the prediction of fifth-grade 

mathematics achievement was also a combined best subset measure with 16 total items 

(i.e., five NAEP fraction concepts items and 11 fraction number line items). Similarly, 

the selected fourth-grade screener for the prediction of the sixth-grade outcome was a 

combined best subset measure with 16 items (i.e., six NAEP fraction concepts items and 

10 fraction number line items). All three of the combined best subset screeners met the 

AUC threshold for determining students’ risk status for later mathematics difficulties. 

The present study reported a matrix that allows researchers or teachers to make 

interpretations of students’ scores. For example, a teacher can administer the two best 

subset measures to his/her class and make the following interpretation: Student A 

received a score of two points on the NAEP fraction concepts screener and a score of 

64% on the fraction number line measure. Student A has a 41%-53% chance of not 

meeting the mathematics standard at the end of the year.  

The best fifth-grade screener for predicting the fifth-grade outcome was a best 

subset NAEP fraction concepts measure with 11 items. Similarly, the best fifth-grade 

screener for predicting the sixth-grade outcome was a best subset NAEP fraction 

concepts measure also with 11 items that differed slightly from the items included in the 
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other best subset NAEP measure. The two screeners met the thresholds for being very 

good screeners of risk status. A table of ROC curve statistics and a probability nomogram 

were reported to help researchers and teachers translate the ROC results into usable 

information. For example, a teacher can administer the screener to his/her own students 

and leverage the statistics reported in the present study to make interpretations of a 

student’s later achievement. For example, a teacher could make the following 

interpretation: Student A received a score of two points on the screener and thus has a 

75% chance of not meeting the mathematics standard at the end of the year. 

The selected sixth-grade screener for the prediction of the sixth-grade outcome 

was a combined best subset measure of 14 items (i.e., 11 NAEP fraction concepts items 

and three fraction number line items). The screener meets the threshold for being a very 

good screener of students’ later achievement. The present study again reported a matrix 

that allows researchers or teachers to make interpretations based on both best subset 

measures. For example, a teacher could make the following interpretation: Student A 

received a score of three points on the NAEP fraction concepts screener and a score of 

70% on the fraction number line measure. Student A thus has a 91%-93% chance of not 

meeting the mathematics standard at the end of the year.  
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Chapter 5 

 DISCUSSION 

The development of mathematics screeners for the intermediate grades is a 

priority. Students who are at risk for later mathematics difficulties may not receive the 

additional mathematics help they need in the absence of valid screening measures. 

Previous research has focused on mathematics screeners for younger children, neglecting 

the importance of screeners for third grade and beyond (Gersten et al., 2012). Students 

who are not identified as at risk in the early grades (i.e., kindergarten through second 

grade) may start to encounter difficulties in later grades when abstract topics are 

introduced in the curriculum, such as fractions. Fractions are a challenging topic for 

many elementary and middle school students (e.g., Hansen et al., in press; Ni & Zhou, 

2005). As such, the present study assessed fraction measures as potential screeners for 

fourth, fifth, and sixth grades for the prediction of later mathematics achievement. More 

specifically, the study assessed three different measures at each grade: (a) NAEP fraction 

concepts, (b) fraction number line estimation, and (c) fraction arithmetic. The outcome 

variable was the end-of-the-year state mathematics achievement test (i.e., DCAS). The 

test was assessed as a binary outcome: (a) those who did not meet the established state 

mathematics standard versus (b) those who met the standard. The present study used data 

from a larger longitudinal project that followed students from fourth through sixth grade 

on a variety of fraction measures. 

Screeners with High Diagnostic Accuracy 

The three fraction measures were assessed in fourth, fifth and sixth grades, 

respectively. Separate analyses were run for each grade of the mathematics achievement 
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outcome measure. The fourth-grade measures predicted out to all three grades of 

mathematics achievement (i.e., the spring of fourth, fifth and sixth grades), the fifth-grade 

measures predicted out to two grades of the outcome measure (i.e., the spring of fifth and 

sixth grades), and the sixth-grade measures predicted out to the spring of sixth grade. The 

present study sought to identify one “best” screener for each of the six ROC curve 

analyses.   

Fourth-Grade and Sixth-Grade Screeners 

Analyses of the fourth-grade measures predicting out to all grades of the outcome 

(i.e., fourth, fifth, and sixth grades) and analyses of the sixth-grade measures predicting 

out to the end of sixth grade yielded similar results. As hypothesized, the two fraction 

concepts measures in fourth and sixth grades emerged as accurate screeners of students’ 

performance on the mathematics achievement outcome. The NAEP fraction concepts 

screener consistently held higher (but not significantly better) predictive power than the 

fraction number line screener, which contradicts the hypothesis that the number line 

measure would be the most predictive fraction measure. However, researchers have 

suggested that multiple-proficiency screeners may be more powerful and accurate than a 

screener that targets only one discrete skill (e.g., Foegen et al., 2007; Purpura et al., 

2015). This line of thinking supports the result of the present study, as the NAEP fraction 

concepts measure includes multiple types of fraction concepts items (e.g., part-whole 

items, fraction comparisons items, and number line items) and is hence categorized as a 

multiple-proficiency screener.  

The fraction arithmetic measure in fourth grade did not meet the statistical 

threshold for being a good screener of students’ later performance. Thus, further analyses 

of fourth-grade screeners excluded the fraction arithmetic measure and combined the two 

fraction concepts measures. In sixth grade, the fraction arithmetic measure did show high 

diagnostic accuracy for predicting the outcome. Fraction arithmetic may be more 
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important to mathematics achievement in sixth grade than in earlier grades since sixth-

graders have had more instruction with different fraction operations. However, the 

fraction arithmetic measure performed significantly worse than the NAEP fractions 

concepts measure. Subsequent analyses of sixth-grade screeners thus excluded the 

fraction arithmetic measure and combined the two fraction concepts screeners.     

Fifth-Grade Screeners 

Fifth-grade screeners for NAEP fraction concepts and number line estimation 

both met the threshold for being good screeners for each grade of the outcome. However, 

the multiple-proficiency NAEP fraction concepts measure emerged as the most predictive 

screener, this time significantly outperforming fraction number line measure as well as 

fraction arithmetic. These findings also contradict the hypothesis that the number line 

measure would be the most predictive measure. Once again, the results of the present 

study provide support of multiple-proficiency screeners (e.g., the NAEP measure) 

outperforming single-proficiency screeners (e.g., the fraction number line measure; 

Foegen et al., 2007; Purpura et al., 2015). As such, subsequent explorations of the fifth-

grade screeners focused on the NAEP fraction concepts measure. 

Summary of Screener Results 

Overall, the two fraction concepts screeners emerged as accurate screeners of 

students’ mathematics achievement, with fraction arithmetic being less predictive. These 

findings support previous research suggesting that conceptual understanding of key 

concepts (e.g., fraction magnitude) may be more important than arithmetic skill for 

mathematics achievement (e.g., Hecht et al., 2003). Although both mathematics concepts 

and procedures are recognized in the literature as important competencies (e.g., Hallet et 

al., 2010; Hecht et al., 2003), fraction concepts seem to have a stronger relation to overall 

mathematics achievement. Conceptual knowledge allows students to make sense of 
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procedures and to notice procedural errors in their own work (Hecht, 1998). For example, 

students who understand fraction concepts may realize they cannot add across 

denominators for a fraction addition problem with unlike denominators (2/3 + 2/6 = 4/9) 

(a common mistake; Newton, Willard, & Teufel, 2014) because thirds and sixths are 

different sizes and the fractions cannot be added without first identifying like 

denominators. Moreover, numerical magnitude knowledge, including knowledge of 

fraction magnitudes, provides a supporting structure for learning different mathematical 

concepts (Siegler et al., 2011). 

The finding that NAEP fraction concepts significantly outperformed fraction 

number line estimation in fifth grade is of interest, since this result did not occur in the 

analyses of the fourth-grade and sixth-grade screeners. The finding is likely affected by 

procedural issues. That is, in fifth grade the number line measure was administered in the 

fall rather than the winter as in fourth and sixth grades. Thus, students completed the 

number line measure earlier in the school year, before completing the fraction curriculum 

in fifth grade. Less time between administrations often increases or inflates the predictive 

value of a screener (Cummings & Smolkowski, 2015). That is, a screener is likely to 

appear more accurate when administered one month before the outcome measure instead 

of five months before an outcome measure. Thus, it is important to consider whether the 

fraction number line measure would perform similarly to the NAEP measure if 

administered in the fall of fourth grade and the fall of sixth grade instead of the winter 

(which is in closer proximity to the outcome).  

Best Subset Screeners 

Teachers frequently lament the amount of instructional time lost in the classroom 

due to testing (Cobb, 2003). Researchers Clemens and colleagues (2016) also discuss the 

concerns of testing time, especially when using more than one screener. Multiple-

measure screening batteries can waste both precious resources and instructional time. In 
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response, the present study sought to limit the amount of items on each screener by 

identifying the most predictive subset of items and removing the least predictive items 

while ensuring that the best subset of items maintained the high diagnostic accuracy of 

the original measures with all items included. Excluding items that did not discriminate 

well between students who are at risk for later difficulties and students who are not at risk 

minimizes the amount of time required for administration and for scoring, making the 

screener much more practical for classroom use. Furthermore, examining retained items 

on each best subset screener provided information about the type of items and/or 

concepts that are most important for predicting students’ later success.  

Fourth-Grade Combined Best Subset Screeners Predicting Mathematics Achievement in 

Fourth, Fifth, and Sixth Grades 

At fourth grade, the NAEP fraction concepts screener was combined with the 

fraction number line screener. Without identifying the best subset of items on each 

measure, the combined screener would have a total of 46 items (i.e., 18 items on the 

NAEP screener and 28 items on the fraction number line screener). Instead, the combined 

best subset screeners each resulted in 16 predictive items for the different grades of the 

overall mathematics achievement outcome. Importantly, the estimated time required to 

administer these shortened screeners is 11-13 minutes (i.e., an estimated 2 minutes per 

NAEP item and an estimated 5 seconds per number line item) as compared to 

approximately 38 minutes for the longer screener. Analyses demonstrated that the shorter 

16-item best subset screeners in fourth grade all performed just as well in predicting 

overall mathematics achievement at the end of fourth, fifth, and sixth grades as the 

original measures for the prediction of later mathematics achievement.   

The number of fraction number line items retained on each fourth-grade 

combined screener always exceeded the number of NAEP items. Thus, although the full 

NAEP measure was slightly more predictive than the full number line measure, the best 
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subset number line screener actually outperformed the best subset NAEP measure. This 

finding indicates that a small subset of number line items in fourth grade held especially 

high predictive power. Specifically, proper fractions emerged as most consistently 

predictive over most NAEP items, mixed numbers, and improper fractions. This finding 

is not surprising since mixed numbers and improper fractions are hard for students at this 

level. Students’ estimates of three proper fractions on the 0-1 number line (i.e., 2/13, 1/3 

and 5/6) and one proper fraction on the 0-2 number line (i.e., 3/8) emerged as highly 

predictive on all fourth-grade screeners. The whole number 1 as estimated on the 0-2 

number line also emerged on all three screeners. 

The importance of students’ estimations of proper fractions early is in keeping 

with previous research showing that students have greater understanding of proper 

fractions than improper fractions (Resnick et al., 2016), most likely because early 

instruction in mathematics classrooms typically emphasizes proper fractions (i.e., 

fractions less than one) rather than improper fractions (i.e., fractions equal to or greater 

than one; Vosniadou, Vamvakoussi, & Skopeliti, 2008).  It is important to consider that 

the fourth-grade predictor measures were administered before students typically receive 

targeted fraction instruction in the classroom (NGACBP & CCSSO, 2010). As such, the 

majority of fourth-grade students likely struggled with the improper fractions; in other 

words, the improper fraction items likely were not predictive because they were 

challenging for most students. 

Fifth-Grade NAEP Best Subset Screeners Predicting Mathematics Achievement in Fifth 

and Sixth Grades 

The best subset of NAEP fraction concepts items was identified for the prediction 

of each grade of the mathematics achievement outcome. Both fifth-grade NAEP best 

subset screeners retained 11 of the original 19 items, eight of which were consistent 

across the two screeners. Importantly, the shorter best subset NAEP screener performed 
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just as well as the original 19-item measure. Whereas the administration of the original 

19-item NAEP measure required approximately 35 minutes, the 11 items would require 

approximately 22 minutes. A look at the eight consistent items shows a variety of fraction 

concepts: (a) NAEP items 3 and 15 assess part-whole understanding, (b) item 5 asks 

students to identify a fraction that is equivalent to one-half, (c) item 8 is a fraction 

computation question with common denominators, (d) item 14 targets fraction estimation, 

(e) item 17 asks students to compare the sizes of two fractions, (f) item 18 requires 

students to order three fractions from least to greatest, and (g) item 19 shows students 

three different measuring cups and asks them to identify how to use the cups to measure 

one and one-third cups of sugar. (See Appendix A for a list of all NAEP items.)  

The finding that five fourth-grade level NAEP items discriminated well between 

fifth-grade students at risk for later difficulties and students not at risk suggests that the 

lower-achieving fifth-graders were still struggling with certain fraction concepts below 

their grade level. For example, NAEP item three shows students a rectangle with two of 

five parts shaded. Students are asked to identify the fraction of the figure that is shaded 

(i.e., 2/5). NAEP categorizes this item as an easy fourth-grade item (U.S. Department of 

Education, 1990-2009). As such, the majority of fifth-grade students would be expected 

to answer this item correctly. However, its emergence on both best subset screeners 

indicates that the item is a strong fifth-grade predictor of students who do not meet the 

end-of-the-year mathematics standard, most likely because it reflects weak conceptual 

knowledge in general. 

Sixth-Grade Combined Best Subset Screener Predicting Mathematics Achievement in 

Sixth Grade 

A combination of the NAEP fraction concepts and fraction number line items was 

assessed for the sixth-grade prediction of the sixth-grade outcome. The original NAEP 

measure in sixth grade included 24 items; the best subset NAEP retained 11 of these 
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items. The original fraction number line measure with 28 items was reduced to only three 

items. Thus, the combined best subset screener for sixth grade included a total of 14 

items and was just as powerful as the original, longer measures for the prediction of the 

sixth-grade outcome. The estimated administration time of the 14-item screener is 17 

minutes (i.e., an estimated 1.5 minutes per NAEP item and an estimated 5 seconds per 

number line item) as compared to the 38 minutes required of the full measures. The 

subset of NAEP items held more predictive power than the best subset number line items; 

this finding is inconsistent with the fourth-grade results that showed higher predictive 

power among the number line items.   

A look at the retained NAEP items provides insight into the type of concepts that 

are predictive in sixth grade of students’ end-of-the-year mathematics achievement. The 

retained NAEP items point to a variety of fraction concepts, with three particular 

concepts emerging more than once throughout the screener: (a) items 4 and 24 assess 

fraction equivalency; (b) items 11, 15, and 23 target part-whole understanding; and (c) 

items 13 and 17 ask students to compare fraction magnitudes. (Appendix A presents a list 

all NAEP items.)    

Fewer items were retained from the fraction number line measure. Placing the 

fraction 3/7 on the 0-1 number line emerged as a predictive item, indicating that lower-

achieving students struggled with this particular item and higher-achieving students made 

more accurate estimates. One possible explanation for lower-achieving students 

struggling to locate 3/7 on the number line is the uncommon denominator of seven. 

Typical mathematics curriculum focuses on halves, fourths, eighths, thirds, and sixths 

(e.g., Wittenberg et al., 2012); some students may struggle when confronted with a less 

familiar denominator. The other two retained number line items were on the 0-2 number 

line: 1/3 and 7/4. The predictive power of the proper fraction 1/3 on a 0-2 number line is 

especially interesting, because students also estimated 1/3 on the 0-1 number line. 

However, only the estimate on the 0-2 number line was retained on the final screener, 
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suggesting that the 0-1 item was simple for most sixth-grade students and the 0-2 item 

was more challenging. As discussed previously, typical classroom instruction focuses on 

proper fractions on 0-1 number lines (Vosniadou et al., 2008). The 0-2 number line is not 

only less familiar to many students but also presents new conceptual challenges, 

requiring students to first recognize the location of one whole in the middle of the 0-2 

line. The other retained item was the improper fraction 7/4 on the 0-2 number line. 

Previous research has suggested that a major limitation of focusing fraction instruction on 

proper fractions is that students often view all fractions as “small” numbers between zero 

and one (Resnick et al., 2016; Vosniadou et al., 2008). Whereas higher-achieving 

students may immediately recognize that 7/4 is greater than one whole because the 

numerator (i.e., 7) is greater than the denominator (i.e., 4), struggling students may hold 

the misconception that all fractions are less than one whole and incorrectly place the 

fraction close to zero on the number line (Rodrigues et al., 2017).  

Reporting Usable Screener Information for Researchers and Practitioners 

Although the identification of powerful and predictive screeners is informative for 

research purposes, it is not sufficient for classroom application. Educational researchers 

must also report the screening information in ways that translate the statistics into 

accessible and usable information for real-world contexts. The present study 

demonstrates two ways of reporting screener information that translates statistics into 

understandable information for researchers and practitioners. The end goal is for teachers 

to use the screeners with their own sample of students and make predictive interpretations 

of student performance. For example, a practitioner should be able to administer the 

screener and make the following interpretation: Student A scored 14 points on the 

screener and thus has an 80% risk of not meeting the mathematics standard at the end of 

the year.  
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Next, the two methods for reporting screener statistics are discussed and examples 

from the present study are provided. The first method discussed is specific for single 

screeners and is demonstrated through the fifth-grade NAEP best subset screeners. The 

second method is specific for combined screeners that bring together two different types 

of data: discrete and continuous; this particular method is demonstrated through the 

fourth-grade and sixth-grade combined screeners of the present study. This method may 

also have been applicable for fifth grade had the number line screener been administered 

in the fall rather than the winter.   

Reporting ROC Curve Statistics for Single Screeners 

 The present study provided one table and one nomogram for each single screener 

(i.e., the fifth-grade best subset NAEP screeners) that are essential for translating the 

screener results into usable information for researchers and practitioners. Importantly, the 

table and nomogram provide readers with the power to leverage the ROC statistics into 

understandable information that is specific to their own sample of students. In 

comparison, the current educational literature often reports a table with ROC statistics for 

only one specific cut score and hence limited information for readers (e.g., Seethaler & 

Fuchs, 2010) and requires readers to use a complicated formula to translate the ROC 

statistics into usable information (Cummings and Smolkowski, 2015).    

Table of ROC Statistics for all Cut Scores 

First, educational researchers must report a table that presents important ROC 

statistics: (a) true positive fraction, (b) true negative fraction, (c) diagnostic likelihood 

ratio for a positive screener result, (d) diagnostic likelihood ratio for a negative screener 

result, (e) positive predictive power, and (f) negative predictive power. Educational 

research of mathematics screeners for younger ages often report these ROC statistics but 

only for certain cut scores along the screener that are associated with high true positive 

fractions (e.g., Jordan et al., 2010; Seethaler & Fuchs, 2010). In other words, researchers 
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typically report only one cut score that is associated with a certain statistical threshold. 

For example, Seethaler and Fuchs (2010) report cut scores that are associated with true 

positive fractions of 90%; this value means that 90% of students who did not meet 

proficiency on the outcome were accurately identified by the cut score. The rationale for 

reporting a cut score with a high true positive fraction is to avoid "missing” at-risk 

students. When researchers prioritize a high true positive fraction, they cast a wide net for 

identifying students. However, readers may not have the available resources for casting 

such a wide net. Thus, the one cut score reported in the Seethaler and Fuchs (2010) study 

may not be practical for all researchers and practitioners. This possible scenario is a huge 

educational concern; researchers are conducting excellent research but are not reporting 

the research in ways that are most helpful to their readers. 

The present study presents a solution to this educational concern by providing a 

table that reports ROC curve statistics for all possible cut scores on the fifth-grade NAEP 

screeners. By doing so, the present study does not pick and choose certain cut scores 

based on the present sample. Rather, all cut scores and associated ROC statistics are 

reported, allowing a researcher or practitioner to select a cut score based on available 

resources and goals.  

Probability Nomogram 

Second, educational researchers can include a probability nomogram that helps 

consumers translate the ROC statistics into usable information for their sample of 

students. Probability nomograms are suggested in the medical literature as an 

understandable way for clinicians to apply ROC statistics and to interpret patients’ results 

on diagnostic tests (Florkowski, 2008; Youngstrom, 2014). However, the probability 

nomogram has not yet been proposed in the educational literature for interpreting 

students’ screener scores. The present study urges educational researchers to include a 
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probability nomogram when reporting ROC curve statistics. The nomogram allows 

researchers and practitioners to make predictive interpretations of students’ performance.  

To demonstrate the power of the probability nomogram, imagine a teacher who 

administers the best subset 11-item NAEP screener to his fifth-grade students. The 

teacher is interested in identifying all students in his classroom who are at risk of not 

meeting the fifth-grade mathematics standard at the end of the school year. First, he refers 

to the ROC statistics table reported in the present study to select the cut score associated 

with an 85% true positive fraction; he also identifies the diagnostic likelihood ratio for a 

positive screener that is reported in table for his selected cut score. Next, he determines 

the base rate of students who did not meet the mathematics standard in the previous 

school year. He now has the two values necessary for using the probability nomogram: 

(a) base rate for his sample and (b) the diagnostic likelihood ratio for a positive screener 

result (DLR+). He draws a straight diagonal line on the probability nomogram, matching 

the base rate on the left side of the nomogram to the DLR+ on the middle line. He then 

extends the line to the right side of the nomogram, revealing the positive predictive 

power that is unique to his sample of students. A positive predictive power (PPV) of .87, 

for example, means that a student scoring below the cut score has an 87% chance of not 

meeting the fifth-grade mathematics standard at the end of the year. Importantly, once an 

individual is familiar with the probability nomogram, the simple process of identifying 

the PPV value requires less than one minute.  

In summary, the following information should be provide when reporting ROC 

statistics: (a) a helpful table that presents ROC statistics associated with all possible 

screener cut scores and (b) a probability nomogram for translating the reported ROC 

statistics into predictive interpretations of students’ mathematics performance. The fifth-

grade NAEP best subset screeners reported in the present study provide demonstrations 

for researchers.  
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Reporting a Combination Matrix for Combined Screeners 

Combined screeners for fourth grade and sixth grade are proposed in the present 

study; the method for reporting statistics associated with the combined screeners was 

modeled after a method used in a recent publication by Clemens and colleagues (2016). 

Using logistic regression, the researchers reported a predicted probabilities matrix that 

allows a researcher or practitioner to use a student’s scores on both measures for 

predicting later mathematics achievement. For measures with continuous data, the matrix 

groups student scores into ranges. The present study grouped all scores on the fraction 

number line screener and presented the ranges vertically on the left side of the matrix. All 

scores on the NAEP screener were presented horizontally on the top row of the matrix. A 

practitioner can locate a students’ fraction number line score on the left and match it with 

the student’s NAEP score on the top of the matrix, revealing the range of predicted 

probabilities associated with the combination of these two scores. For example, a 

predicted probabilities range of 30%-35% indicates that the student has a 30%-35% 

chance of not meeting the mathematics standard at the end of the year. While this process 

requires fewer steps than the method for translating ROC statistics described previously, 

it also has disadvantages. Next, advantages and disadvantages of the two methods are 

discussed. 

Comparing the Methods for Reporting Screener Statistics: Advantages and 

Disadvantages 

Each method of reporting screener statistics and translating the statistics into 

usable information has one major disadvantage. The disadvantage of the combined matrix 

is that the predicted probabilities are specific to the current sample of students and do not 

allow for a practitioner to compute the probabilities for his/her own base rate. In contrast, 

the probability nomogram using ROC statistics allows a practitioner to compute statistics 

based on his/her own sample. Thus, the ROC statistics table and probability nomogram 

allow readers to make more accurate predictions of their own students’ mathematics 
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achievement. Unfortunately, this method does not provide interpretable statistics when 

assessing a combination of two measures with different types of data (i.e., discrete and 

continuous data). When combining two measures, the probabilities matrix is the best 

available method for providing researchers and practitioners with empirically supported 

interpretations of students’ scores (Clemens et al., 2016).  

The disadvantage of the ROC statistics and probability nomogram is the 

dichotomous nature of the ROC curve analysis. ROC statistics provide information about 

cut scores that split students into two groups: students who score below the cut score and 

students who score above the cut score. Thus, for a cut score of five points, a student who 

scores one point will receive that same predictive interpretation as a student who scores 

four points (Clemens et al., 2016). In contrast, the probabilities matrix for combined 

screeners offers interpretations of scores that are more specific to each individual student.  

Overall, data from the present study favor ROC curve statistics over the predicted 

probabilities matrix. The ROC curve analysis is considered the best method for assessing 

the diagnostic accuracy of a test (Weinstein et al., 2005) and even allows readers to 

compute ROC statistics that are specific to their samples (Cummings & Smolkowski, 

2015; Youngstrom, 2014). However, ROC curve statistics are not interpretable for 

combined measures with different types of data; for combined measures, the present 

study recommends a probability matrix. In the present study, specific methods along with 

examples using screeners proposed in the study are provided. Educational researchers can 

follow the guidelines to help bridge the gap between research and classroom practice.  

Limitations of the Present Study 

Several limitations must be kept in mind when interpreting the results of the 

present study. First, there are limitations regarding the student sample. First, the 

generalizability of the results may be limited because students were recruited from two 

school districts in only one geographic location. Second, each initial ROC curve analysis 
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included a slightly different set of students from the total sample which may have 

impacted the results.  

Another limitation is the small scope of measures assessed as potential screeners. 

Although the assessment of three fraction measures yielded informative findings about 

screening measures for the intermediate grades, there are several other potential measures 

that may also be predictive of mathematics achievement during these grades. For 

example, screeners that assess students’ understanding of other mathematics topics might 

also emerge as strong predictors of later achievement. Furthermore, some of the measures 

(i.e., number line estimation in fourth and sixth grades) were administered in the winter 

of the school year rather than in the fall, which may have increased their accuracy for the 

prediction of the state mathematics test administered in the spring of each grade.  

The continuous nature of the fraction number line estimation measure poses 

certain obstacles for practitioners. Computing percent absolute error (PAE) for every 

estimate on the number line is more challenging than scoring a multiple-choice NAEP 

item as correct or incorrect. In the present study, the number line measure was 

administered on the computer. PAE was calculated by dividing the absolute difference 

between the estimated and actual magnitudes by the numerical range of the number line 

(1 or 2), and then multiplying by 100 for each estimate. This method of scoring is far less 

practical for classroom application than a simple paper and pencil measure. Potential 

solutions to this limitation are discussed below in the Future Directions section.  

Another concern of the present study is that certain fraction arithmetic items may 

have emerged as predictive items if assessed in the best subset analyses. Even though the 

original fraction arithmetic measures with all items included were outperformed by the 

fraction concepts measures, it is possible that one or two fraction arithmetic items may 

have been retained on the final best subset screener. Additionally, the fraction arithmetic 

items may have been more predictive if they had been better matched to the curriculum at 

each grade level assessed. Better calibration of a fraction arithmetic measure is needed. 
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The state mathematics test as the outcome variable may also raise some concerns 

when interpreting the results. The test was administered by the school district and the 

specific items included on the test at each grade are unknown. The proportion of fraction 

items on each test is also unknown. However, districts and teachers rely on these state 

standardized tests for making decisions in the classroom and for assessing students’ 

understanding. Furthermore, previous research also relies on these state tests for 

predicting student achievement (e.g., Siegler et al., 2011). Future research should test the 

screeners with other state or national assessments as the outcome measure. For example, 

15 states currently administer the Smarter Balanced assessments, and seven states 

administer the Partnership for Assessment of Readiness for College and Careers 

(PARCC) exams. Another possibility is using student performance on the NAEP 

mathematics assessment as the outcome measure. The NAEP is administered to students 

across the nation and thus is preferable to a state-administered exam. The NAEP 

assessment is administered in fourth, eighth, and twelfth grades.  

Insufficient information regarding the specific type of instruction that students 

received in the classroom during the span of the study is another potential limitation. 

Reportedly, participating schools followed curriculum benchmarks aligned with the 

Common Core State Standards in Mathematics (NGACBP & CCSSO, 2010). However, 

the specific type of instruction that students received in the classroom that targeted 

fraction concepts and procedures is not known.   

Educational Implications 

The present study fills a gap in the literature by assessing fraction screeners for 

the intermediate grades. Measures of fractions concepts consistently emerged as highly 

predictive screening tools and can help practitioners identify students who are at risk for 

later mathematics difficulties. Using predictive screeners to identify at-risk students 

allows schools to make data-driven decisions, such as providing interventions to lower-
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achieving students. Without valid mathematics screeners in the intermediate grades, 

struggling students may never receive the supports they need to reach their full 

mathematics potential. Such screeners may help identify students who otherwise may 

have fallen through the cracks in the educational system. 

The findings address broader impacts for quality of life. Students who struggle 

with fractions may progress through the educational system and enter the workforce 

without foundational mathematics knowledge. Lack of basic mathematics skills impedes 

workplace success (McNamara, 2009). According to the recent Skills, Technology, and 

Management Practices (STAMP) survey, 94% of workers in the U.S. use basic 

mathematics skills on the job (Handel, 2016). Approximately two-thirds of the workers 

reported using fractions in their day-to-day workplace activities (Handel, 2016).  

The importance of mathematics skills for success in today’s workforce 

emphasizes the necessity of screening for mathematics difficulties in the intermediate 

grades. Students identified with fraction difficulties in fourth grade or later can be 

targeted for additional mathematics supports to bolster their mathematics understanding. 

Overall, improving mathematics screening tools for the identification of students at risk 

has both short-term impacts (e.g., increasing the likelihood of data-driven decisions in the 

classroom) and potential long-term, broader impacts (e.g., increasing students’ 

preparedness for the workforce).  

A promising finding of the present study is that fraction screeners have the power 

to predict students’ mathematics achievement years later. In general, the goal of 

educational screeners is to identify children who are at risk as early as possible (Gersten 

et al., 2012); schools can then provide supports for these struggling students. Thus, the 

finding of the present study that screeners administered in fourth grade can predict sixth-

grade performance has particular importance. Fourth grade may be a crucial grade for 

administering mathematics screeners and for identifying students who are likely to 

struggle with abstract topics such as fractions.  
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The results of the present study have potential implications for classroom 

instruction. The measures of fractions concepts were consistently more predictive of risk 

status than the current fraction arithmetic measure, which suggests that classroom 

instruction might give additional attention to students’ conceptual understanding of 

fractions (although fraction arithmetic should not be ignored). For example, students 

would benefit from instruction that highlights learning about the relation between the 

numerator and denominator in multiple contexts (e.g., DeWolf et al., 2013). Importantly, 

previous research suggests that fraction conceptual knowledge can actually support 

students’ arithmetic skill and vice versa (e.g., Hecht et al., 2003).   

The present study also provides detailed recommendations and demonstrations for 

reporting mathematics screeners in the literature. In particular, educational researchers 

are urged to report screener statistics in ways that help researchers and practitioners 

translate the findings into usable information. By refining the ways in which researchers 

report screener statistics, the likelihood of helping practitioners make data-driven 

educational decisions increases (Smolkowski & Cummings, 2015).  

Future Directions 

Future research should continue to evaluate potential mathematics screeners for 

the intermediate grades. Although the present study emphasizes the importance of 

fraction concepts to other areas of the mathematics curriculum, further investigation is 

warranted. In particular, research should examine the predictability of other mathematics 

topics besides fractions and perhaps examine whether different topics could be combined 

to create an even more accurate screening tool. A related avenue for future research is the 

possibility of leveraging mathematics screeners and measures of domain general 

processes (e.g., working memory) for the prediction of later mathematics difficulties. For 

example, working memory is a predictor of general mathematics (e.g., Geary, 2011) and 

of fraction knowledge (Jordan et al., 2013). Thus, future research might explore the 
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predictive power of combination screeners that assess both mathematical competencies 

and domain general processes. 

A modified version of the fraction number line measure might be explored in 

future research that improves its feasibility for use in the classroom. One possible 

solution is a computerized program or application that automatically computes students’ 

percent absolute error for each item and mean percent absolute error for the total 

measure. A second option is a paper and pencil measure that requires students to answer 

multiple-choice number line items. If future research creates a valid and reliable fraction 

number line measure with multiple-choice items, the new measure would combine more 

easily with other multiple-choice measures.  

Another related goal should be the design of applications for tablets and 

smartphones that help researchers or practitioners quickly and easily translate screener 

statistics. For example, a simple “app” could replace the probability nomogram for 

translating ROC statistics. A practitioner could enter values of the base rate and the 

diagnostic likelihood ratio into the app, and the technology could immediately provide 

the positive predictive power. Although using the probability nomogram is not a complex 

process, an app or computer program would be even less intimidating for new users. A 

major advantage of such an app or program is that it could be used for any single screener 

measure, regardless of the concepts being assessed or the grade level of the students. As 

long as the research provides the diagnostic likelihood ratios associated with all possible 

cut scores, then any reader could translate the statistics for his/her own sample.  

Summary and Conclusions 

The present study investigated three fraction measures (i.e., NAEP fraction 

concepts, fraction number line estimation, and fraction arithmetic) administered in fourth, 

fifth, and sixth grades for the prediction of later mathematics achievement at the end of 

each school year. The study revealed that the two fraction concepts measures (i.e., NAEP 
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fraction concepts and fraction number line estimation) were good screeners of risk status 

across the grades. In fourth and sixth grades, a combination of the two measures was 

assessed. In fifth grade, the NAEP measure emerged as especially predictive and was 

hence assessed alone as the best screener in that specific grade. To improve practicality 

for classroom use, the length of each screener was reduced by eliminating least predictive 

items; the final screeners are called “best subset” screeners.  

Screener statistics were provided for each screener that allow researchers or 

practitioners to interpret students’ scores. Readers of the present study can use the 

reported statistics to determine a student’s chances of not meeting the end-of-the-year 

mathematics standard. Importantly, a probability nomogram is recommended for 

reporting ROC curve screener statistics; this nomogram is recommended in the medical 

literature but has not yet been introduced in the educational literature.  

Overall, the present study fills an important gap in the literature by identifying 

and validating useful mathematics screeners in the intermediate grades. While the present 

study highlights the importance of fraction understanding for at-risk students, it 

simultaneously points to the importance of fraction knowledge for all children. The study 

also demonstrates methods for reporting screener statistics that allow researchers and 

practitioners to make accurate predictions of students’ later mathematics achievement. 

The work represents a major step toward translating key research findings in ways that 

are interpretable to diverse audiences.  

 

 

 



 118 

REFERENCES 

American Institutes for Research (2012). DCAS 2011-2012 Technical Report. Retrieved 

from http://www.doe.k12.de.us/cms/lib09/DE01922744/Centricity/Domain/111/V

ol1_Annual_TechRep.pdf 

 

Bailey, D. H., Hansen, N., & Jordan, N. C. (2017). The codevelopment of children’s 

fraction arithmetic skill and fraction magnitude understanding. Journal of 

Educational Psychology, 109(4), 509. doi:10.1037/edu0000152 

 

Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with 

fractions predicts gains in mathematics achievement. Journal of Experimental 

Child Psychology, 113, 447-455. doi:10.1016/j.jecp.2012.06.004 

 

Ban, D., Tanabe, M., Ito, H., Otsuka, Y., Nitta, H., Abe, Y., ... & Kaneko, H. (2014). A 

novel difficulty scoring system for laparoscopic liver resection. Journal of 

hepato-biliary-pancreatic sciences, 21(10), 745-753. doi:10.1002/jhbp.166 

 

Booth, J. L., & Newton, C. J. (2012). Fractions: could they really be the gatekeeper’s 

doorman? Contemporary Educational Psychology, 37, 247-253.  

doi:10.1016/j.cedpsych.2012.07.001 

 

Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction 

magnitude knowledge on algebra performance and learning. Journal of 

experimental child psychology, 118, 110-118. doi:10.1016/j.jecp.2013.09.001 

 

Bossuyt, P. M., Reitsma, J. B., Bruns, D. E.,Gatsonis, C. A., Glasziou, P. P., Irwig, L. M., 

… de Vet, H. C. W. (2003). Towards complete and accurate reporting of studies 

of diagnostic accuracy: The STARD initiative. British Medical Journal, 326, 41–

44. 

 

Bryant, D. P., Bryant, B. R., Gersten, R., Scammacca, N., & Chavez, M. M. (2008). 

Mathematics intervention for first-and second-grade students with mathematics 

difficulties: The effects of tier 2 intervention delivered as booster lessons. 

Remedial and special education, 29(1), 20-32. doi:10.1177/0741932507309712 

 

Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical and  

procedural learning. Developmental Psychology, 27, 777-786.  

doi:10.1037/0012-1649.27.5.777 

 

Clarke, B., Baker, S., Smolkowski, K., & Chard, D. J. (2008). An analysis of early 

numeracy curriculum-based measurement: Examining the role of growth in 

student outcomes. Remedial and Special Education, 29(1), 46-57. 

doi:10.1177/0741932507309694 

 



 119 

Cobb, C. (2003). Effective instruction begins with purposeful assessments. The Reading 

Teacher, 57(4), 386. 

 

Cummings, K. D., & Smolkowski, K. (2015). Bridging the gap: Selecting students at risk 

of academic difficulties. Assessment for Effective Intervention, 41(1). 

doi:10.1177/1534508415590396 

 

DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2013). Magnitude 

comparison with different types of rational numbers. Journal of Experimental 

Psychology: Human Perception and Performance, 40, 53-72. 

doi:10.1037/a0032916 

 

DeWolf, M., & Vosniadou, S. (2011). The whole number bias in fraction magnitude 

comparisons with adults. In Proceedings of the 33rd annual conference of the 

cognitive science society (pp. 1751-1756). Cognitive Science Society Austin, TX. 

 

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., 

... & Sexton, H. (2007). School readiness and later achievement. Developmental 

psychology, 43(6), 1428. doi:10.1037/0012-1649.43.6.1428 

 

Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K. M., & Krause, A. (2011, 

April). The next big one: Detecting earthquakes and other rare events from 

community-based sensors. In Information Processing in Sensor Networks (IPSN), 

2011 10th International Conference. IEEE. 

 

Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of 

different types of numerical magnitude representations to each other and to 

mathematics achievement. Journal of Experimental Child Psychology, 123, 53-

72. doi:10.1016/j.jecp.2014.01.013 

 

Florkowski, C. M. (2008). Sensitivity, specificity, receiver-operating characteristic 

(ROC) curves and likelihood ratios: communicating the performance of 

diagnostic tests. Clinical Biochemist Reviews, 29(1), S83-S87. 

 

Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the Youden Index and its 

associated cutoff point. Biometrical Journal, 47(4), 458-472. 

 

Foegen, A., & Deno, S. L. (2001). Identifying growth indicators for low-achieving 

students in middle school mathematics. The Journal of Special Education, 35(1), 

4-16. doi:10.1177/002246690103500102 

 

Foegen, A., Jiban, C., & Deno, S. (2007). Progress monitoring measures in mathematics: 

A review of the literature. The Journal of Special Education, 41(2), 121-139. 

doi:10.1177/00224669070410020101 

 

Fuchs, L. S., Hamlett, C. L., & Fuchs, D. (1998). Monitoring Basic Skills Progress—

Basic math computation (2nd
 
ed., Blackline Masters). Austin, TX: Pro-Ed. 

 

Fuchs, L. S., Hamlett, C. L., & Fuchs, D. (1999). Monitoring Basic Skills Progress—

Basic math concepts and applications (2nd ed., Blackline Masters). Austin, TX: 

Pro-Ed. 



 120 

 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., ... 

& Changas, P. (2013). Improving at-risk learners’ understanding of fractions. 

Journal of Educational Psychology, 105(3), 683. doi:10.1037/a0032446  

 

Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning 

Disabilities, 37, 4-15. doi:10.1177/00222194040370010201 

 

Geary, D. C. (2006). Development of mathematical understanding. In W. Damon & R. 

M. Lerner (Series Eds.) & D. Kuhn & R. S. Siegler (Vol. Eds.), Handbook of 

child psychology: Vol 2. Cognition, perception, and language (6th ed., pp. 777 – 

810). New York: Wiley. 

 

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: a 5-

year longitudinal study. Developmental Psychology, 47(6), 1539. 

doi:10.1037/a0025510 

 

Gelman, R., & Williams, E. (1998). Constraints on cognitive development and learning. 

In W. Damon (Series Ed.), D. Kuhn, & R. Siegler (Vol. Eds.), Handbook of child 

psychology: Vol. 2. Cognition, language, and perception (5th ed., pp. 575-630). 

New York: Wiley. 

 

Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. 

(2009). Assisting students struggling with mathematics: Response to Intervention 

(RtI) for elementary and middle schools. NCEE 2009-4060. What Works 

Clearinghouse. Retrieved from http://files.eric.ed.gov/fulltext/ED504995.pdf 

 

Gersten, R., Clarke, B. S., Haymond, K., & Jordan, N. C. (2011). Screening for 

mathematics difficulties in K-3 students. Center on Instruction. Retrieved from 

http://files.eric.ed.gov/fulltext/ED524577.pdf 

 

Gersten, R., Clarke, B., Jordan, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, 

C. (2012). Universal screening in mathematics for the primary grades: Beginnings 

of a research base. Exceptional Children, 78(4), 423-445. 

doi:10.1177/001440291207800403 

 

Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C. (2000). Clinical 

versus mechanical prediction: a meta-analysis. Psychological assessment, 12(1), 

19. doi:10.1037//1040-3590.12.1.19 

 

Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for 

medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 

627. 

 

Hallett, D., Nunes, T., & Bryant, P. (2010). Individual differences in conceptual and 

procedural knowledge when learning fractions. Journal Of Educational 

Psychology, 102(2), 395-406. doi:10.1037/a0017486  

 

Hallett, D., Nunes, T., Bryant, P., & Thorpe, C. M. (2012). Individual differences in 

conceptual and procedural fraction understanding: The role of abilities and school 



 121 

experience. Journal of Experimental Child Psychology, 113(4), 469-486. 

doi:10.1016/j.jecp.2012.07.009 

 

Handel, M. J. (2016). What do people do at work?. Journal for Labour Market Research, 

49(2), 177-197. doi:10.1007/s12651-016-0213-1 

 

Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver 

operating characteristic curves derived from the same cases. Radiology, 148(3), 

839-843. doi:10.1148/radiology.148.3.6878708 

 

Hansen, N., Jordan, N. C., & Rodrigues, J. (in press). Identifying persistent learning 

difficulties in fractions: A longitudinal study of student growth from third 

through sixth grade. Contemporary Educational Psychology. 

doi:10.1016/j.cedpsych.2015.11.002 

 

Hecht, S. (1998). Toward an information-processing account of individual differences in 

fraction skills. Journal of Educational Psychology, 90, 545-59. 

doi:10.1037//0022-0663.90.3.545 

 

Hecht, S., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction 

skills. Journal of Experimental Child Psychology, 86, 277-302. 

doi:10.1016/j.jecp.2003.08.003 

 

Hecht, S. A., & Vagi, K. J. (2012). Patterns of strengths and weaknesses in children’s 

knowledge about fractions. Journal of Experimental Child Psychology, 111, 212–

29. doi:10.1016/j.jecp.2011.08.012 

 

Hurst, M., & Cordes, S. (2017). A systematic investigation of the link between rational 

number processing and algebra ability. British Journal of Psychology. 

doi:10.1111/bjop.12244 

 

IBM Corporation (2016). IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: 

IBM Corp. 

 

Jeffries, H. E., Soto-Campos, G., Katch, A., Gall, C., Rice, T. B., & Wetzel, R. (2015). 

Pediatric index of cardiac surgical intensive care mortality risk score for pediatric 

cardiac critical care. Pediatric Critical Care Medicine, 16(9), 846-852. 

doi:10.1097/PCC.0000000000000489 

 

Jenkins, J. R., Hudson, R. F., & Johnson, E. S. (2007). Screening for at-risk readers in a 

response to intervention framework. School Psychology Review, 36(4), 582. 

 

Jiban, C. L., & Deno, S. L. (2007). Using math and reading curriculum-based 

measurements to predict state mathematics test performance: Are simple one-

minute measures technically adequate?. Assessment for Effective Intervention, 

32(2), 78-89. doi:10.1177/15345084070320020501 

 

Jordan, N. C., Glutting, J., & Ramineni, C. (2008). A number sense assessment tool for 

identifying children at risk for mathematical difficulties. In A. Dowker (Ed.), 

Mathematical difficulties: Psychology and intervention (pp.45–58). San Diego, 

CA: Academic Press. 



 122 

 

Jordan, N. C., Glutting, J., Ramineni, C., & Watkins, M. W. (2010). Validating a number 

sense screening tool for use in kindergarten and first grade: Prediction of 

mathematics proficiency in third grade. School Psychology Review, 39(2), 181-

195. 

 

Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). 

Developmental predictors of fraction concepts and procedures. Journal of 

Experimental Child Psychology, 116(1), 45-58. doi:10.1016/j.jecp.2013.02.001 

 

Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: 

Kindergarten number competence and later mathematics outcomes. 

Developmental Psychology, 45(3), 850. doi:10.1037/a0014939 

 

Kadam, A. V., & Nimbalkar, U. M. (2015). Automatic assembly modeling for product 

variants using parametric modeling concept. International Journal of Engineering 

Research and Technology, 4(4), 79-89. 

 

Keller-Margulis, M. A., Shapiro, E. S., & Hintze, J. M. (2008). Long-term diagnostic 

accuracy of curriculum-based measures in reading and mathematics. School 

Psychology Review, 37(3), 374. 

 

Lembke, E., & Foegen, A. (2009). Identifying early numeracy indicators for kindergarten 

and first‐grade students. Learning Disabilities Research & Practice, 24(1), 12-20. 

doi:10.1111/j.1540-5826.2008.01273.x 

 

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the 

approximate number system correlates with school math ability. Developmental 

Science, 14(6), 1292-1300. doi:10.1111/j.1467-7687.2011.01080.x 

 

Martínez-Camblor, P. (2013). Area under the ROC curve comparison in the presence of 

missing data. Journal of the Korean Statistical Society, 42(4), 431-442. 

doi:10.1016/j.jkss.2013.01.004 

 

Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the 

approximate number system underlies mathematical learning disability 

(dyscalculia). Child Development, 82(4), 1224-1237. doi:10.1111/j.1467-

8624.2011.01608.x 

 

McFall, R. M., & Treat, T. A. (1999). Quantifying the information value of clinical 

assessments with signal detection theory. Annual Review of Psychology, 50, 215–

241. doi:10.1146/annurev.psych.50.1.215 

 

McNamara, B. R. (2009). The skill gap: will the future workplace become an abyss. 

Techniques: Connecting Education and Careers, 84(5), 24-27. 

 

Medcalc Statistical Software (2016). MedCalc Statistical Software version 16.4.3. 

Ostend, Belgium. Retrieved from https://www.medcalc.org 

 

Methe, S. A., Hintze, J. M., & Floyd, R. G. (2008). Validation and decision accuracy of 

early numeracy skill indicators. School Psychology Review, 37(3), 359. 



 123 

 

Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design 

and interpretation. NY: Sage. 

 

Meyers, L. S., Gamst, G. C., & Guarino, A. J. (2013). Performing data analysis using 

IBM SPSS. NY: John Wiley & Sons. 

 

Morgan, P. L., Farkas, G., & Wu, Q. (2009). Five-year growth trajectories of 

kindergarten children with learning difficulties in mathematics. Journal of 

Learning Disabilities, 42(4), 306-321. doi:10.1177/0022219408331037 

 

Muthén, L. K., & Muthén, B. O. (2012). Mplus User’s Guide. Los Angeles, CA: Muthén 

& Muthén.  

 

National Governors Association Center for Best Practices & Council of Chief State 

School Officers. (2010). Common Core State Standards for Mathematics. 

Washington DC: Author. 

 

National Mathematics Advisory Panel (NMAP) (2008). Foundations for success: The 

final report of the National Mathematics Advisory Panel. Washington, DC: U.S. 

Department of Education. 

 

Newton, K. J., Willard, C., & Teufel, C. (2014). An examination of the ways that 

students with learning disabilities solve fraction computation problems. The 

Elementary School Journal, 115, 1-21. doi:10.1086/676949 

 

Ni, Y., & Zhou, Y. D. (2005). Teaching and learning fraction and rational numbers: The 

origins and implications of whole number bias. Educational Psychologist, 40, 27–

52. doi:10.1207/s15326985ep4001_3 

 

Peck, D. M., & Jencks, S. M. (1981). Conceptual issues in the teaching and learning of 

fractions. Journal for Research in Mathematics Education, 339-348. 

doi:10.2307/748834 

 

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and 

prediction. Oxford University Press, USA. 

 

Purpura, D. J., Reid, E. E., Eiland, M. D., & Baroody, A. J. (2015). Using a brief 

preschool early numeracy skills screener to identify young children with 

mathematics difficulties. School Psychology Review, 44(1), 41-59. 

doi:10.17105/SPR44-1.41-59 

 

Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, 

L. S. (2016). Developmental growth trajectories in understanding of fraction 

magnitude from fourth through sixth grade. Developmental Psychology, 52(5), 

746-757. doi:10.1037/dev0000102 

 

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual  

understanding and procedural skill in mathematics: an iterative process. Journal 

of Educational Psychology, 93, 346–362. doi:10.1037/0022-0663.93.2.346 

 

http://dx.doi.org/10.1037%2F0022-0663.93.2.346


 124 

Rodrigues, J., Dyson, N., Hansen, N., & Jordan, N. C. (2016). Preparing for algebra by 

building fraction sense. Teaching Exceptional Children, 49(2), 134-141. 

 

Sadler, P. M., & Tai, R. H. (2007). The two high-school pillars supporting college 

science. Science. 317, 457-458. doi:10.1126/science.1144214 

 

Seethaler, P. M., & Fuchs, L. S. (2010). The predictive utility of kindergarten screening 

for math difficulty. Exceptional Children, 77(1), 37-59. 

doi:10.1177/001440291007700102 

 

Seethaler, P. M., Fuchs, L. S., Star, J. R., & Bryant, J. (2011). The cognitive predictors of 

computational skill with whole versus rational numbers: An exploratory study. 

Learning and Individual Differences, 21(5), 536-542. 

doi:10.1016/j.lindif.2011.05.002 

 

Shapiro, E. S., Keller, M. A., Lutz, J. G., Santoro, L. E., & Hintze, J. M. (2006). 

Curriculum-based measures and performance on state assessment and 

standardized tests: Reading and math performance in Pennsylvania. Journal of 

Psychoeducational Assessment, 24(1), 19-35. doi:10.1177/0734282905285237 

 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, 

M., Susperreguy, M. I., & Chen, M. (2012). Early predictors of high school 

mathematics achievement. Psychological Science, 23(7), 691-697. 

doi:10.1177/0956797612440101 

 

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier 

for theories of numerical development. Trends in Cognitive Science, 17, 13-19. 

doi:10.1016/j.tics.2012.11.004 

 

Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical 

development. Child Development Perspectives, 8(3), 144-150. 

doi:10.1111/cdep.12077 

 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole 

number and fractions development. Cognitive Psychology, 62, 273-296. 

doi:10.1016/j.cogpsych.2011.03.001 

 

Smolkowski, K., & Cummings, K. D. (2015). Evaluation of diagnostic systems: The 

selection of students at risk of academic difficulties. Assessment for Effective 

Intervention, 41(1), 41-54. doi:10.1177/1534508415590386 

 

Speece, D. L., Schatschneider, C., Silverman, R., Case, L. P., Cooper, D. H., & Jacobs, 

D. M. (2011). Identification of reading problems in first grade within a response-

to-intervention framework. The Elementary School Journal, 111(4), 585-607. 

doi:10.1086/659032 

 

Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Psychological science can improve 

diagnostic decisions. Psychological Science in the Public Interest, 1, 1–26. 

 

Tai, R. H., Sadler, P. M., & Mintzes, J. J. (2006). Factors influencing college science 

success. Journal of College Science Teaching, 36(1), 52. 

http://www.psy.cmu.edu/~siegler/Siegler-etal-2012.pdf


 125 

 

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction 

understanding is central to mathematics achievement in students from three 

different continents. Learning and Instruction, 37, 5-13. 

doi:10.1016/j.learninstruc.2014.03.002 

 

U.S. Department of Education, Institute of Education Sciences, National Center for 

Education Statistics, National Assessment of Educational Progress (NAEP). 

(1990-2009). Mathematics assessment. Retrieved from 

http://nces.ed.gov/nationsreportcard 

 

VanDerHeyden, A. M., Broussard, C., Snyder, P., George, J., Lafleur, S. M., & Williams, 

C. (2011). Measurement of kindergartners' understanding of early mathematical 

concepts. School Psychology Review, 40(2), 296. 

 

Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural 

knowledge in fourth graders: towards a comprehensive test instrument. ZDM, 

47(5), 849-857. doi:10.1007/s11858-014-0650-7 

 

Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach 

to the problem of conceptual change. In S. Vosniadou (Ed.), International 

handbook of research on conceptual change (pp. 3–34). New York, NY: 

Routledge. 

 

Vukovich, R. K., Fuchs, L. S., Geary, D. S., Jordan, N. C., Gersten, R., & Siegler, R. S. 

(2014). Sources of individual differences in children’s understanding of fractions. 

Child Development, 85(4), 1461-1476. doi:10.1111/cdev.12218 

 

Weinstein, S., Obuchowski, N. A., & Lieber, M. L. (2005). Clinical evaluation of 

diagnostic tests. American Journal of Roentgenology, 184, 14–19. 

doi:10.2214/ajr.184.1.01840014 

 

Wilkinson, G. S., & Robertson, G. J. (2006). Wide Range Achievement Test 4 

professional manual. Lutz, FL: Psychological Assessment Resources. 

 

Wilson, J., Olinghouse, N. G., McCoach, D. B., Santangelo, T., & Andrada, G. N. (2016). 

Comparing the accuracy of different scoring methods for identifying sixth graders 

at risk of failing a state writing assessment. Assessing Writing, 27, 11-23. 

  doi:10.1016/j.asw.2015.06.003 

 

Wittenberg, L., Economopoulos, L., Bastable, V., Bloomfield, K. H., Cochran,K., Earnet, 

D., Hollister, A., Horowitz, N., Leidl, E., Murrayr, M., Oh, Y., Perrfy, B. W., 

Russell, S. J., Schifter, D., & Sillman, K. (2012). Investigations in Number, Data, 

and Space (Grade 3). Illinois: Pearson Education. 

 

Woodcock, R. W. (1988). Woodcock Reading Mastery Tests—Revised. Circle Pines, MN: 

American Guidance Service. 

 

Yang, H. (2013). The case for being automatic: Introducing the automatic linear 

modeling (LINEAR) procedure in SPSS statistics. Multiple Linear Regression 

Viewpoints, 39(2), 27-37. 

http://dx.doi.org/10.1016/j.learninstruc.2014.03.002


 126 

 

Ye, A., Hansen, N., Resnick, I., Rodrigues, J., Rinne, L., & Jordan, N. C. (2016). 

Pathways to fraction learning: numerical abilities mediate the relation 

between early cognitive competencies and later fraction knowledge. Journal 

of Experimental Child Psychology, 152, 242-263. 

doi:10.1016/j.jecp.2016.08.001 

 

Youngstrom, E. A. (2014). A primer on receiver operating characteristic analysis and 

diagnostic efficiency statistics for pediatric psychology: We are ready to ROC. 

Journal of Pediatric Psychology, 39(2), 204-221. doi:10.1093/jpepsy/jst062 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 127 

 Appendix A

NAEP FRACTION CONCEPTS MEASURE 

 

 

                                                                      

   Item    Grade(s) 

 

1. Which shows 
3

4
  of the picture shaded?                                                                 4, 5, 6                               

                   

 

 

 

 
 

2. What fraction of the group of umbrellas is closed?                                                   4, 5, 6 

                         

 

 

 

 

 

 

 

A. 

 
B. 

 
     
C. 

 
D.  

                                              
  

A. 1

3
 

B. 3

7
 

C. 4

7
 

D.  3

4
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3. What fraction of the figure above is shaded?                                                4, 5, 6                   

Answer: __________ 
 

 
                                                                                                        

4-5. These three fractions are equivalent. Write two more fractions that are equivalent 

to these.          4, 5, 6 

  

Answer: ________ ,  ________  
 

6. Which picture shows that  
3

4
  is the same as  

6

8
 ?                     

 4, 5, 6 
 

 
 
7. Luis had two apples and he cut each apple into fifths. How many pieces of apple did 
he have?               4, 5, 6 
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8.  
4

6
−

1

6
=                                                        4, 5, 6 

A. 3 

B. 
3

6
 

C. 
3

0
 

D.  
5

6
 

 
 
 
 
9. How many fourths make a whole?                                                                       4, 5, 6                                        

 

 
Answer: _______________ 

 

 

10. On the number line above, what number does P represent?               4, 5, 6                                      

A. 
 
2

3
 

B. 3

4
 

C. 
 

             1
2

3
 

D.  
            1

3

4
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11. The figure above shows that part of a pizza has been eaten. What part of the pizza is 
still there?                                                                   4, 5, 6 

 

A. 3

8
 

B. 3

5
 

C. 5

8
 

D.  5

3
 

 
                    

                                                                                                                                4, 5, 6    
 

 
 
 
12. On the portion of the number line above, a dot shows where 1/2 is. Use another dot 

to show where 3/4 is.   

 

 
            4, 5, 6 

13. Students in Mrs. Johnson's class were asked to tell why  
4

5
  is greater than 

2

3
. Whose 

reason is best?           

 

A. Kelly said, "Because 4 is greater than 2." 

B. Keri said, "Because 5 is larger than 3." 

C. Kim said, "Because  
4

5
  is closer than 

2

3
  to 1." 

D. Kevin said, "Because 4 + 5 is more than 2 + 3." 
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14. Which fraction has a value closest to 
1

2
 ?                                                       4, 5, 6                         

                           

A. 5

8
 

B. 1

6
 

C. 2

2
 

D.  1

5
 

            
 
 
15.                                    4, 5, 6                            

 
 
 
 

Shade  
1

3
  of the rectangle above.   

 
 
 

                 
                     4, 5, 6 

 
 

 
16. What fraction of the figure above is shaded?    

 

A. 
 
1

4
 

B. 3

10
 

C.  1

 3
 

D.   3

 7
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Mark says  
1

4
  of his candy bar is smaller than  

1

5
  of the same candy bar. Is Mark right?    

            4, 5, 6 
17.  

A. Yes, Mark is right. 

B. No, Mark is NOT right. 
 
 
Draw a picture or use words to explain why you think Mark is right or wrong.  
  

 

 
 
 

 
 
 
18. In which of the following are the three fractions arranged from least to greatest?           

         4, 5, 6 

A.   
2

7
 , 

1

2
 , 

5

9
   

B. 
1

2
 , 

2

7
 , 

5

9
   

C. 
5

9
 , 

1

2
 , 

2

7
   

D.  
5

9
 , 

2

7
 , 

1

2
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                                      5, 6 

 
 
19. A recipe requires 1

1

3
 cups of sugar. Which of the following ways describes how the 

measuring cups shown can be used to measure 1
1

3
 cups of sugar accurately? 

 
A. Use the  cup three times.  

B. Use the  cup three times.  

C. Use the  cup twice and the  cup once.  

D. Use the  cup twice and the  cup once.  

E. Use the  cup once, the  cup once, and the  cup once.  

 

 

                       

                 6 

 

 

 

20-22. Jorge left some numbers off the number line above. Fill in the numbers that 

should go in A, B, and C.  
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            6 

 

 

 

 

23. In the figure above, what fraction of rectangle ABCD is shaded? 

 

                               

            6 

24.     If 2

25

 = 𝑛

500

, then n = 

 
A. 10 

B. 20 

C. 30 

D. 40 

E. 50 

 

B     C 

 
    

 

A 

    

D 
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  Appendix B

FRACTION ARITHMETIC ITEMS 

 

 
4

th
 

F 

5
th

 

F 

6
th

 

W 

3/6 + 1/6 = X X X 

2/5 + 1/5 = X X X 

3/4 + 2/4 = X X X 

3 3/8 + 1 2/8 = X X X 

3/4 - 1/4 = X X X 

5/6 - 2/6 = X X X 

1 3/4 - 1/4 = X X X 

2 2/3 - 1 1/3 = X X X 

5/6 + 2/3 =  X X 

7/8 -1/2 =  X X 

1 1/3 – 4/5 =   X 

3/4 + 2/3 =   X 

3 x 1/3 =   X 

40 x 1/2 =   X 

4 x 4/5 =   X 

6 x 3/4 =   X 

7/8 x 2/5 =   X 

5/6 x 3/4 =   X 

2 2/3 x 1/2 =   X 

1 3/8 x 2/3 =   X 

2 1/3 x 3 3/8 =   X 

1/3 ÷ 4 =   X 

1/6 ÷ 3 =   X 

2 ÷ 3/4 =   X 

7 ÷ 1/2 =   X 

3/4 ÷ 1/8 =   X 

Note. F = Fall, W = Winter. 

 

 

 

 

 

  

 

 



 136 

 Appendix C

 

GLOSSARY OF KEY TERMS 

 
Base Rate (ρ), also known as prevalence rate and prior probability: The proportion of 

students in the sample who did not meet the standards; calculated by dividing the amount 

of students who did not meet the standards by the total amount of students included in the 

analysis.  

Area under the curve (AUC): The most commonly used global index of diagnostic 

accuracy (Fluss et al., 2005). The AUC represents the probability of a certain predictor 

measure distinguishing between students who are likely to meet the state mathematics 

standards versus students who are not likely to meet the standards. 

Diagnostic accuracy, as determined by the AUC: A predictor measure’s ability to 

accurately predict student membership into one of two groups: students who are likely to 

meet the state mathematics standards versus students who are not likely to meet the 

standards.  
 

True Positive Fraction (TPF; also known as sensitivity): Among the students who did not 

meet the mathematics standards, the proportion who scored below the predictor measure 

cut score.  TPF signifies the accuracy of the predictor measure among the students who 

did not meet the standards. TPF is not dependent on base rate.  
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TPF = TP / (TP + FN) 

True Negative Fraction (TNF; also known as the specificity): Among the students who 

met the mathematics standards, the proportion who scored above the predictor measure 

cut score. TNF signifies the accuracy of the predictor measure among the students who 

did meet the standards. TNF is not dependent on base rate. 

TNF = TN / (TN + FP) 

 

False positive fraction (FPF): Rate of students who meet the standards but are incorrectly 

identified by a positive result on the predictor measure. A more colloquial term for FPF is 

the “false alarm rate.” 

FPF = 1 – TNF 

 

False negative fraction (FNF): Rate of students who do not meet the standards but are 

incorrectly identified by a negative result on the predictor measure.  

FNF = 1 – TPF 

 

Positive Predictive Power (PPV): The percentage of students who fall below a certain 

predictor cut score who do not meet the standards. The PPV is influenced by the base 

rate/the prior probability and thus does not easily transfer to other samples. The PPV 

signifies the posttest probability of not meeting the standards. That is, the PPV offers the 

following interpretation for a student who scores below the cut score: “The student has a 

__% chance of not meeting the mathematics standards at the end of the year.” 

PPV = ρTPF / (ρTPF + (1 − ρ)FPF) 

 

Negative Predictive Power (NPV): The percentage of students who fall above a certain 

NAEP cut score who truly do meet the standards. The NPV is influenced by the base 

rate/the prior probability and thus does not easily transfer to other samples. The NPV 

offers the following interpretation for a student who scores above the cut score: “The 

student has a __% chance of meeting the mathematics standards at the end of the year.” 

NPV = (1 − ρ)(TNF) / ((1 − ρ)(TNF) + ρ(1 − TPF)) 

 

Diagnostic likelihood ratio for a positive predictor measure result (DLR+): The odds that 

a predictor measure score less than a cut score will correctly identify a student who does 

not meet the standards. The DLR+ is independent of a sample’s base rate and therefore 

can generalize to other samples of students (Pepe, 2003).  

DLR+ = TPF / FPF 

 

Diagnostic likelihood ratio for a negative predictor measure result (DLR-): The odds that 

a predictor measure score greater than a cut score will correctly identify a student who 

meets the standards. The DLR- is independent of a sample’s base rate and therefore can 

generalize to other samples of students (Pepe, 2003). 

DLR- = FNF / TNF 
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  Appendix D

 

IRB APPROVAL 

 



 

 


