# NICKEL-CATALYZED SUZUKI-MIYAURA CROSS-COUPLINGS TO SET BENZYLIC, DIARYL AND TRIARYL ALL-CARBON QUATERNARY STEREOCENTERS IN HIGH ENANTIOPURITY 

by
Tianyu Tan

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Chemistry and Biochemistry

Spring 2017
© 2017 Tianyu Tan
All Rights Reserved

# NICKEL-CATALYZED SUZUKI-MIYAURA CROSS-COUPLINGS TO SET BENZYLIC, DIARYL AND TRIARYL ALL-CARBON QUATERNARY STEREOCENTERS IN HIGH ENANTIOPURITY 

by

Tianyu Tan

Approved:
Mary P. Watson, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Murray V. Johnston, Ph.D.
Chair of the Department of Chemistry and Biochemistry

Approved:
George H. Watson, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

## ACKNOWLEDGMENTS

It's always my sincere privilege to study and work with my academic advisor, Prof. Mary P. Watson. I learned a lot under your mentorship, not only the knowledge from books, but also ideas and experience working in the lab. I have trained my scientific thinking abilities and developed problem-solving skills within the three-year period. I feel blessed to have you as my mentor.

I would also like to thank all the M.P.Watson group members. You all feel like family members to me. My special thanks go to Dr. Qi Zhou and Dr. Bibaswan Biswas for your guidance on my research. I also thank Dr. Jixin Liu for your kindness and selflessness. I benefit a lot from you in all aspects. I will always remember those days studying and working together with Jennie Liao and Javon Rabb-Lynch. It's my pleasure to be with you guys.

I also send my sincere gratitude to Prof. Donald Watson, Prof. Neal Zondlo, Prof. Joseph Fox, Prof. Joel Rosenthal, Prof. Catherine Grimes, and Prof. Klaus Theopold. I am grateful for what I have learned from you both in and out of the classes. Dr. Geoffery Sametz, thank you for being my teaching assistant advisor. I enjoy working with you to help students learn both knowledge and skills in the lab.

Then I would like to thank Dr. Shi Bai for his NMR service, Dr. Stephan Chan and Dr. PapaNii Asare-Okai for the help with Mass Spectroscopy, and Dr. Glenn Yap for his help with X-ray crystallography. I am grateful to the chemistry department staff, Susan Cheadle, Sue James, Pat McMahon, John Famiglietti, Douglas Nixon, Brandon Calitree and Gary Lance. I feel so warm whenever I need help from you.

Last but never the least, I wish I can acknowledge my gratitude to my parents for their endless love and selfless support. With your care and love, I don't feel lonely when I am studying abroad. Finally, I would also like to thank Tingting Luo for her accompany in the first two years, and my dear friends Long Chen, Rujin Cheng, Weijun Gui, Siqi Shen and Jingjing Li.

## TABLE OF CONTENTS

LIST OF TABLES ..... vii
LIST OF SCHEMES ..... ix
LIST OF FIGURES ..... xii
ABSTRACT ..... xiii
Chapter
1 PRIOR ART IN THE SYNTHESIS OF ALL-CARBON QUATERNARY STEROCENTERS ..... 1
1.1 Introduction ..... 1
1.2 Non-Catalytic Methods ..... 2
1.3 Catalytic Methods ..... 4
1.3.1 Enantioselective Allylic Substitution ..... 4
1.3.2 Enantioselective Conjugate Addition ..... 10
1.3.3 Enantioselective Arylation ..... 12
1.3.4 Enantioselective Aldol Reaction ..... 13
1.3.5 Heck Reaction ..... 14
1.3.5.1 Intramolecular Heck Reaction ..... 14
1.3.5.2 Intermolecular Heck Reaction ..... 15
1.3.6 Asymmetric Diels-Alder Reaction ..... 16
1.4 Conclusion ..... 18
REFERENCES ..... 19
2 STEREOSPECIFIC NICKEL-CATALYZED SUZUKI-MIYAURA ARYLATION OF BENZYLIC ACETATES TO SET DIARYL AND TRIARYL ALKANES ..... 22
2.1 Introduction ..... 22
2.2 Results and Discussion ..... 25
2.3 Conclusion ..... 40
2.4 Experimental Section ..... 41
2.4.1 General Information ..... 41
2.4.2 Stereospecific Arylation to Prepare Diaryl and Triaryl Alkanes. ..... 43
2.4.2.1 General Procedure A: Stereospecific Arylation of Tertiary Benzylic Acetates ..... 43
2.4.2.2 General Procedure B: Preparation of (S)-2- (Naphthalen-2-yl)butan-2-yl Acetate (2.19) ..... 60
2.4.2.3 Preparation of ( $S, E$ )-2-(Naphthalen-2-yl)-5-( $o$ - Tolyl)pent-4-en-2-yl Acetate ( $(\boldsymbol{S}) \mathbf{- 2 . 1 9 f})$ ..... 68
2.4.2.4 Preparation of Tertiary Benzyl Alcohols ..... 70
2.4.2.4.1 Preparation of 2.18, 2.18a-2.18c ..... 70
2.4.2.4.2 Preparation of $\mathbf{2 . 1 8 d}$ ..... 73
2.4.2.4.3 Preparation of 2.18e and $\mathbf{2 . 1 8 g}$. ..... 74
2.4.2.4.4 Preparation of $\mathbf{2 . 1 8 h} \mathbf{- 2 . 1 8 j}$ ..... 77
2.4.3 Evidence for Stereoretention ..... 79
2.4.3.1 Crystal Structure Data for $(\boldsymbol{R}) \mathbf{- 2 . 2 9}$ ..... 80
2.4.3.2 Crystal Structure Data for (S)-2.19 ..... 87
2.4.3.3 Crystal Structure Data for (S)-2.18c ..... 92
REFERENCES ..... 97
Appendix
A NMR AND HPLC SPECTRA ..... 99
B PERMISSION LETTER ..... 232

## LIST OF TABLES

Table 2.1: Optimization of Reaction Parameters ${ }^{\text {a }}$ ..... 27
Table 2.2: Further Optimization Between Nickel Catalysts and Phosphine Ligands in Less Conjugated $\pi$-System ${ }^{\text {a }}$ ..... 39
Table 2.3: Systematic Screening of Nickel Catalyst to Phosphine Ligand Ratio in theStereospecific Suzuki-Miyaura Arylation of Less Conjugated $\pi$ - System ${ }^{\text {a }}$ ..... 40
Table 2.4: Sample and crystal data for $(\boldsymbol{R}) \mathbf{- 2 . 2 9}$. ..... 80
Table 2.5: Data collection and structure refinement for $(\boldsymbol{R})-\mathbf{2} .29$. ..... 81
Table 2.6: Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{R}) \mathbf{- 2 . 2 9}$ ..... 81
Table 2.7: Bond lengths $(\AA)$ for $(\boldsymbol{R})-\mathbf{2} .29$ ..... 82
Table 2.8: Bond angles $\left({ }^{\circ}\right)$ for $(\boldsymbol{R})-\mathbf{2 . 2 9}$. ..... 83
Table 2.9: Torsion angles $\left({ }^{\circ}\right)$ for $(\boldsymbol{R})-\mathbf{2} .29$ ..... 84
Table 2.10: Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{R})$-2.29. ..... 85
Table 2.11: Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{R})-\mathbf{2 . 2 9}$. ..... 86
Table 2.12: Sample and crystal data for (S)-2.19 ..... 87
Table 2.13: Data collection and structure refinement for ( $\boldsymbol{S}$ )-2.19 ..... 88
Table 2.14: Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(S)-\mathbf{2 . 1 9}$. ..... 88
Table 2.15: Bond lengths ( $\AA$ ) for ( $\boldsymbol{S}$ )-2.19. ..... 89
Table 2.16: Bond angles $\left({ }^{\circ}\right)$ for $(\boldsymbol{S}) \mathbf{- 2 . 1 9}$ ..... 89
Table 2.17: Torsion angles $\left({ }^{\circ}\right)$ for ( $\boldsymbol{S}$ )-2.19 ..... 90
Table 2.18: Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S}) \mathbf{- 2 . 1 9}$. ..... 90
Table 2.19: Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for ( $\boldsymbol{S}$ )-2.19. ..... 91
Table 2.20: Sample and crystal data for (S)-2.18c ..... 92
Table 2.21: Data collection and structure refinement for $(\boldsymbol{S}) \mathbf{- 2 . 1 8 c}$ ..... 92
Table 2.22: Atomic coordinates and equivalent isotropic atomic displacement parameters ( $\AA^{2}$ ) for (S)-2.18c ..... 93
Table 2.23: Bond lengths ( $\AA$ ) for ( $\boldsymbol{S}$ )-2.18c ..... 93
Table 2.24: Bond angles $\left({ }^{\circ}\right)$ for $(\boldsymbol{S})-\mathbf{2 . 1 8 c}$ ..... 94
Table 2.25: Torsion angles $\left({ }^{\circ}\right)$ for (S)-2.18c. ..... 95
Table 2.26: Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for (S)-2.18c ..... 95
Table 2.27: Hydrogen atomic coordinates and isotropic atomic displacementparameters $\left(\AA^{2}\right)$ for (S)-2.18c96

## LIST OF SCHEMES

Scheme 1.1: Stereospecific Lithiation/Borylation to Set All-Carbon Quaternary Centers (Aggarwal) ..... 3
Scheme 1.2: Stereospecific Lithiation/Borylation to Set Hetereoatom-Contained All-Carbon Quaternary Centers (Aggarwal) ..... 3
Scheme 1.3: General Enantioselective Allylic Substitution ..... 4
Scheme 1.4: Cu (I)-NHC Ligand Catalyzed Allylic Substitution Using Phosphate as Leaving Group (Hoveyda) ..... 5
Scheme 1.5: Copper-Free Allylic Substitution Using Bromide as Leaving Group (Alexakis) ..... 5
Scheme 1.6: Ir-Catalyzed Enantioselective Allylation Using Carboxylic Ester as Leaving Group (Stoltz) ..... 6
Scheme 1.7: Pd-Catalyzed Asymmetric Allylic Alkylation (Trost) ..... 6
Scheme 1.8: Dual-Catalysis: $\alpha$-Allylation of Branched Aldehydes (Carreira) ..... 7
Scheme 1.9: Ir-Catalyzed Insertion of Diene to Methanol (Krische). ..... 7
Scheme 1.10: Asymmetric Alkylation Using Chiral Counter-Cation $\left(\mathrm{Y}^{*}\right)^{+}$. ..... 8
Scheme 1.11: Enantioselective Robinson Annulation via Phase-Transfer Catalysis (Weinstock) ..... 8
Scheme 1.12: Umpolung Approach to the Asymmetric Construction of Quaternary All-Carbon Stereocenters (Morken) ..... 9
Scheme 1.13: $\mathrm{ZnI}_{2}$-Promoted Regio- and Stereoselective Substitution of $\gamma, \gamma^{\prime}$ - Disubstituted Secondary Allylic Picolinates to Construct Quaternary All- Carbon Centers (Kobayashi) ..... 10
Scheme 1.14: General Enantioselective Conjugate Addition ..... 10
Scheme 1.15: Asymmetric Michael Addition with Chiral Catalyst Generated In-Situ (Christoffers) ..... 11
Scheme 1.16: Enantioselective Conjugate Addition Using Chiral Salen-Al Complex (Jacobsen) ..... 11
Scheme 1.17: Pd-Catalyzed Michael Addition of Aryl Boronic Acids to $\beta$-substituted Cyclic Enones (Stoltz) ..... 11
Scheme 1.18: Enantioselective Ni(0)-Catalyzed Arylation of $\alpha$-Substituted Lactones (Buchwald) ..... 12
Scheme 1.19: Diastereoselectivity Issues in Aldol Reaction to Set Quaternary Centers ..... 13
Scheme 1.20: Blocking One Fase with Benzyl Group to Achieve Enantioselectivity. 14
Scheme 1.21: Intramolecular Heck Reaction Used in the Total Synthesis of Furaquinocin E (Trost) ..... 15
Scheme 1.22: Pd-Catalyzed Enantioselective Intermolecular Heck Reaction (Sigman) ..... 16
Scheme 1.23: Asymmetric Diels-Alder Reaction Using Prochiral Dienophile ..... 16
Scheme 1.24: Enantioselective Diels-Alder Reaction Using Prochiral Dienophile (Rawal) ..... 17
Scheme 1.25: Asymmetric Diels-Alder Reaction Using Prochiral Diene ..... 17
Scheme 1.26: Catalytic, Enantioselective Inverse Electron-Demand Diels-Alder (IEDDA) Reaction Using Prochiral Diene (Evans) ..... 18
Scheme 2.1: Stereospecific Cross-Coupling Using Allylic Electrophiles and Grignard Reagents (Kobayashi) ..... 22
Scheme 2.2: Ni-Catalyzed Non-Asymmetric Cross-Coupling to Set Benzylic Quaternary Centers ..... 23
Scheme 2.3: Ni-Catalyzed Suzuki Arylation of Secondary Benzylic Electrophiles (Watson) ..... 24
Scheme 2.4: Proposed Ni-Catalyzed Suzuki-Coupling to Set Diaryl and Triaryl All- Carbon Quaternary Centers ..... 25
Scheme 2.5: Synthesis of the Chiral Bis(sulfonamide) Diol Ligand 2.16 (Walsh) ..... 26
Scheme 2.6: Preparation of the Tertiary Benzylic Alcohol 2.18 and Acetylation ..... 26
Scheme 2.7: Scope of Aryl Boronate Esters ${ }^{\text {a }}$ ..... 30
Scheme 2.8: Scope of Tertiary Acetates ${ }^{\text {a }}$ ..... 32
Scheme 2.9: Putative Catalytic Cycle ..... 34
Scheme 2.10: Ligand Screening Using Racemic Acetate 2.46 Catalyzed by $\mathrm{NiCl}_{2} \cdot$ DME $^{\mathrm{a}}$. ..... 36
Scheme 2.11: Ligand Screening Using Racemic Acetate 2.19i Catalyzed by Ni(cod) $2^{a}$ ..... 37
Scheme 2.12: New Catalytic System Used in the Stereospecific Suzuki-Miyaura Arylation to Set Triaryl Quaternary Centers ${ }^{\text {a }}$ ..... 38

## LIST OF FIGURES

## Figure 1.1: Bioactive Molecules Containing All-Carbon Quaternary Centers <br> 2

Figure 2.1: Unsuccessful Aryl Boronate Esters ..... 29

Figure 2.2: Evidence of Net Retention in the Ni(II)-Catalyzed Suzuki-Miyaura Arylation of Tertiary Benzylic Carboxylates33

Figure 2.3: Molecular Diagram of (R)-2.29 with Ellipsoids at 50\% Probability, Hatoms Omitted for Clarity. (CCDC 1424635)49

Figure 2.4: Molecular Diagram of (S)-2.19 with Ellipsoids at 50\% Probability, Hatoms Omitted for Clarity. (CCDC 1502353)62

Figure 2.5: Molecular Diagram of (S)-2.18c with Ellipsoids at 50\% Probability, All Non-Oxygen Bound H-atoms Omitted for Clarity. (CCDC 1424634) ... 73


#### Abstract

Over the decades, chemists have been dedicated to building quaternary carbon centers via various methods. Transition metal-catalyzed asymmetric cross-couplings have been proven to be highly efficient in synthesizing the targeted structure in high enantiomeric purity. In particular, the use of allylic electrophiles is conspicuous in this kind of reaction; however, the lack of such chemistry for non-allylic electrophiles limits the scope.

In the first chapter, prior work in the preparation of all-carbon quaternary centers via catalytic reactions is discussed. Methods like enantioselective alkylation, arylation, allylation, aldol reaction, conjugate addition, and cycloaddition are introduced.

The second chapter tells the contribution of our group in synthesizing all-carbon quaternary stereogenic centers in both high yields and excellent levels of stereochemical fidelity. This stereospecific, nickel-catalyzed Suzuki-Miyaura arylation of tertiary benzylic acetates with organoboron nucleophiles has been developed to deliver diaryland triarylalkanes with an economically and environmentally friendly catalytic system. Great tolerance of a variety of functional groups also stressed the mildness of the reaction conditions.

Overall, this thesis describes the first example of synthesizing diaryl and triaryl benzylic all-carbon quaternary stereocenters in a stereospecific fashion, which is a very significant finding and provides a highly attractive entry to enantioriched benzylic quaternary centers.


## Chapter 1

## PRIOR ART IN THE SYNTHESIS OF ALL-CARBON QUATERNARY STEREOCENTERS

### 1.1 Introduction

Many bioactive, natural and pharmaceutical products contain all-carbon quaternary centers (Figure 1.1). ${ }^{1}$ This importance attracts the great interest of synthetic chemists to synthesize these structures accordingly. However, over the past few decades, it has proven great challenging to synthesize chiral quaternary centers in good enantiomeric purity due to steric repulsion between the carbon substituents. ${ }^{2}$ Many methods have been applied to complete all-carbon quaternary center constructions with high enantiomeric excess, and these can be divided into two groups, catalytic and noncatalytic reactions.



(-)-Aphanorphine

Physostigmine


Enokipodin A

(-)-Mesenbrine

(+)-Cuparene


Hamigeran B

Figure 1.1: Bioactive Molecules Containing All-Carbon Quaternary Centers

### 1.2 Non-Catalytic Methods

Aggarwal has contributed a great deal in the field of synthesis of all-carbon quaternary centers. He and his co-workers reported a method to construct the quaternary stereogenic centers in high enantiospecificity (Scheme 1.1). They first built tertiary boronic ester 1.1 by lithiation/borylation of a secondary carbamate, ${ }^{3}$ and then transformed boronate $\mathbf{1 . 1}$ into a variety of products with all-carbon quaternary stereogenic centers. High enantiospecificity is observed for all these reactions. ${ }^{4}$

Scheme 1.1: Stereospecific Lithiation/Borylation to Set All-Carbon Quaternary Centers (Aggarwal)



Similar enantiospecific couplings have been reported to reach heteroaromatic compounds with all-carbon quaternary centers from secondary or tertiary pinacol boronic esters (Scheme 1.2). ${ }^{5}$ However, a limitation of these reactions is that the functional groups of the substrates cannot be basic due to the use of organolithium reagents.

Scheme 1.2: Stereospecific Lithiation/Borylation to Set Hetereoatom-Contained All-Carbon Quaternary Centers (Aggarwal)


### 1.3 Catalytic Methods

Among all the methods that have been applied to complete asymmetric synthesis of all-carbon quaternary centers, asymmetric catalysis proves to be a great solution. ${ }^{6}$ Such methods have been demonstrated for cyclic substrates, as well as more difficult acyclic substrates, which have an increased number of degrees of freedom. ${ }^{7}$ Different methods including enantioselective conjugate additions, allylic substitutions, arylations, aldol reactions, Diels-Alder reactions, intra- and intermolecular Heck reactions will be briefly discussed.

### 1.3.1 Enantioselective Allylic Substitution

Enantioselective allylic substitution reactions have obtained significant attention recently for accessing optically active building blocks in total synthesis, however this field remains to be further developed to obtain all-carbon quaternary stereocenters in an enantioselective fashion. A prochiral allylic electrophile is cross-coupled with nucleophile to deliver the desired structure (Scheme 1.3).

Scheme 1.3: General Enantioselective Allylic Substitution


The Hoveyda group reported an asymmetric allylic substitution reaction to form an allene-bearing all-carbon quaternary center catalyzed by a chiral copper(I)- N Heterocyclic Carbene (NHC) system (Scheme 1.4). ${ }^{8}$ Enantioselectivity of this reaction could be as high as $98 \%$ with high yields as well. An $\mathrm{S}_{\mathrm{N}} 2$ ' mechanism to form the allenyl addition product was preferred to the propargyl addition one.

Scheme 1.4: $\mathrm{Cu}(\mathrm{I})-\mathrm{NHC}$ Ligand Catalyzed Allylic Substitution Using Phosphate as Leaving Group (Hoveyda)


Reported by Alexakis group, the NHC ligand can also be applied in a copperfree reaction, where bromide acts as the leaving group instead of phosphoric or carboxylic ester (Scheme 1.5). ${ }^{9}$

Scheme 1.5: Copper-Free Allylic Substitution Using Bromide as Leaving Group
(Alexakis)


Stoltz and co-workers reported the first enantioselective allylation of a $\beta$ ketoester catalyzed by the Ir- $N$-aryl-phosphoramidite catalyst to set a quaternary center as well as an adjacent tertiary one (Scheme 1.6). ${ }^{10}$ High yields and ee's have been achieved, as well as good to excellent regio- and diastereoselectivity. A variety of allyl electrophiles and $\beta$-ketoesters were well tolerated. Leaving Group (Stoltz)


Trost developed his asymmetric Tsuji-Trost reaction, which is also known as asymmetric allylic alkylation (AAA) during the total synthesis of (+)-allocyathin $\mathrm{B}_{2}$ (Scheme 1.7). ${ }^{11}$ By protecting one side of the ketone, the other $\alpha$-position can be allylated to construct the quaternary stereocenter in good yield and excellent enantiopurity using a chiral palladium catalyst.

Scheme 1.7: Pd-Catalyzed Asymmetric Allylic Alkylation (Trost)


Recently the Carreira group reported an enantio- and diastereodivergent dual catalysis to set two quaternary stereocenters in one product (Scheme 1.8). ${ }^{12}$ Starting with allylic alcohol 1.14 and the $\alpha$-branched aldehyde 1.15 , they can control the diastereoselectivity by selective pairing of a chiral iridium catalyst and an amine catalyst. These catalysts work together to form the carbon-carbon bond with the formation of two quaternary stereocenters. Excellent enantioselectivity can be achieved. In this case, all possible diastereoisomers can be accessed in enantiomerically pure forms.

Scheme 1.8: Dual-Catalysis: $\alpha$-Allylation of Branched Aldehydes (Carreira)


The Krische group reported the first catalytic enantioselective C-C couplings of methanol to set the all-carbon quaternary centers (Scheme 1.9). 2-Substituted dienes have been inserted into the $\mathrm{C}-\mathrm{H}$ bond of methanol regioselectively. ${ }^{13}$ High enantioselectivity has been achieved by the using of the chiral Ir-PhanePhos catalyst.

Scheme 1.9: Ir-Catalyzed Insertion of Diene to Methanol (Krische)


When the nucleophile is activated as either a carbanion or organometallic intermediate, carbon-carbon bond formation can be achieved by cross-coupling with a
carbon electrophile (Scheme 1.10). By using chiral counter-cations, people have developed catalytic asymmetric phase-transfer alkylation reactions. Quaternary ammonium salts or metals can be used as the chiral counter-cations $\left(\mathrm{Y}^{*}\right)^{+} .{ }^{14}$

Scheme 1.10: Asymmetric Alkylation Using Chiral Counter-Cation $\left(\mathrm{Y}^{*}\right)^{+}$

$$
\begin{aligned}
& \xrightarrow[\substack{ \\
R^{2}-\mathrm{C}^{-} \\
\mathrm{R}^{3}}]{\mathrm{R}^{1}}\left(\mathrm{Y}^{*}\right)^{+}+\mathrm{E}^{+} \longrightarrow \mathrm{R}^{1} \underbrace{\underbrace{\prime \prime \prime} \mathrm{R}^{3}}_{\mathrm{R}^{2}} \\
& \left(\mathrm{Y}^{*}\right)^{+}=\mathrm{R}_{4} \mathrm{~N}, \mathrm{Al}, \mathrm{Co}, \mathrm{Cu}, \mathrm{~K}, \mathrm{Li}, \mathrm{Na} / \mathrm{La}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Rh}, \mathrm{Cl}_{3} \mathrm{Si}^{*}
\end{aligned}
$$

For example, Weinstock and co-workers reported an enantioselective Robinson annulation via phase-transfer catalysis using a quaternary ammonium catalyst (Scheme 1.11). In their proposed tight ion pairs, ${ }^{15}$ a $\pi-\pi$ interaction, $\pi$-allyl/alkyl interaction, and hydrogen bond between the enolate and the $N$-benzylcinchonidinium help to reach the desired enantioselectivity.

Scheme 1.11: Enantioselective Robinson Annulation via Phase-Transfer Catalysis (Weinstock)


The Morken group has recently reported sequential Suzuki-Miyaura crosscoupling reactions to construct quaternary all-carbon stereocenters (Scheme 1.12). ${ }^{16}$ Simple starting materials of geminal bis(boronates), alkenyl halides and $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ electrophiles were used. A $\gamma, \gamma^{\prime}$-disubstituted allylboronate $\mathbf{1 . 2 2}$ was obtained in the first
step using a palladium-bidentate phosphine ligand catalytic system, which acted as an allylic nucleophile in the following step. Then a stereospecific $\mathrm{S}_{\mathrm{E}} 2$ ' transmetalation with the palladium- $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ specie followed by a rapid reductive elimination delivered the allylic all-carbon quaternary center $\mathbf{1 . 2 3}$ at the $\gamma$-position in high yield and both excellent enantiospecificity and regioselectivity.

Scheme 1.12: Umpolung Approach to the Asymmetric Construction of Quaternary All-Carbon Stereocenters (Morken)


Another example to construct the quaternary stereocenters using substitution of $\gamma, \gamma$ '-disubstituted secondary allylic picolinates $\mathbf{1 . 2 4}$ with stoichiometric alkylcopper reagents was reported by Kobayashi (Scheme 1.13). ${ }^{17}$ In their work, a 1:1 ratio of stoichiometric alkylcopper reagent to $\mathrm{ZnX}_{2}$ was used and high levels of regioselectivity (rs), yield and chirality transfer (CT) were achieved. The absolute configuration of the chiral quaternary carbon could be controlled by the geometry of the olefin in the picolinates.

Scheme 1.13: $\mathrm{ZnI}_{2}$-Promoted Regio- and Stereoselective Substitution of $\gamma, \gamma^{\prime}$ Disubstituted Secondary Allylic Picolinates to Construct Quaternary All-Carbon Centers (Kobayashi)


### 1.3.2 Enantioselective Conjugate Addition

Conjugate addition plays an important role in building new carbon-carbon bonds. And as for the construction of all-carbon quaternary stereocenters, enantioselective conjugate addition involving carbon nucleophiles can be widely developed in the field of chemical synthesis.

## Scheme 1.14: General Enantioselective Conjugate Addition



The Christoffers group constructed the quaternary stereocenters via a nickelcatalyzed asymmetric Michael addition (Scheme 1.15). ${ }^{18}$ They generated the chiral catalyst in situ. Although low in yields and only one entry exceeded $90 \%$ ee, their reactions conditions were easily operated in lab.

Scheme 1.15: Asymmetric Michael Addition with Chiral Catalyst Generated In-Situ (Christoffers)


The Jacobsen group reported an enantioselective conjugate additions of electron-deficient nitriles to the $\alpha, \beta$-unsaturated imides catalyzed by a chiral salen- Al complex to generate all-carbon $\mathbf{1 . 2 9}$ or heteroatom-substituted $\mathbf{1 . 3 0}$ quaternary centers (Scheme 1.16). ${ }^{19}$

Scheme 1.16: Enantioselective Conjugate Addition Using Chiral Salen-Al Complex (Jacobsen)


The Stoltz group reported the first Pd-catalyzed Michael addition of commercially available aryl boronic acids to $\beta$-substituted cyclic enones $\mathbf{1 . 3 1}$ to set allcarbon quaternary centers (Scheme 1.17). ${ }^{20}$ Reaction conditions are friendly to air and moisture, which makes this reaction easy to operate in lab.

Scheme 1.17: Pd-Catalyzed Michael Addition of Aryl Boronic Acids to $\beta$-substituted Cyclic Enones (Stoltz)


### 1.3.3 Enantioselective Arylation

$\alpha$-Arylation of ketones and related compounds can also be used to construct quaternary stereocenters. The Buchwald group described the use of a nickel(0)-BINAP catalytic system to set quaternary stereocenters in synthetic useful yields and good ee's from $\alpha$-substituted lactones $\mathbf{1 . 3 3}$ (Scheme 1.18). ${ }^{21}$ In their case, zinc(II) salts have been found to have accelerating effects on the $\alpha$-quaternization.

Scheme 1.18: Enantioselective Ni(0)-Catalyzed Arylation of $\alpha$-Substituted Lactones (Buchwald)


### 1.3.4 Enantioselective Aldol Reaction

Scheme 1.19: Diastereoselectivity Issues in Aldol Reaction to Set Quaternary Centers


The aldol reaction is widely used and very convenient in forming carbon-carbon bonds. In order to construct quaternary centers, it requires $\alpha, \alpha$-disubstituted carbonyl compounds. However, due to difficulties in selective enolization of $\alpha, \alpha$-disubstituted carbonyl compounds, both E- and Z-enolates can be generated, resulting in two diastereomers of aldol products (Scheme 1.19). ${ }^{22}$ The issue can be solved by using an oxazolidinone chiral auxiliary (Scheme 1.20). ${ }^{23}$ The benzyl group blocks one face to control the aldol-type reaction enantioselectively. The stereochemistry of this major product can be well-explained by the Zimmerman-Traxler transition state.

Scheme 1.20: Blocking One Fase with Benzyl Group to Achieve Enantioselectivity


### 1.3.5 Heck Reaction

### 1.3.5.1 Intramolecular Heck Reaction

This type of reaction has been commonly applied in the synthesis of natural products. During their total synthesis of furaquinocin E, Trost and co-workers applied an intramolecular reductive Heck cyclization and subsequent acetylation to obtain the acetate in good regio-, enantio-, and diastereoselectivity, as well as good yield (Scheme 1.21). ${ }^{24}$

Scheme 1.21: Intramolecular Heck Reaction Used in the Total Synthesis of Furaquinocin E (Trost)


Other similiar examples can also be seen in the total syntheses of xestiqyunone and quadrigemine $\mathrm{C} .{ }^{25}$

### 1.3.5.2 Intermolecular Heck Reaction

The Sigman group recently published a palladium-catalyzed enantioselective intermolecular Heck-type reaction to construct quaternary stereocenters from trisubstituted alkenyl alcohols and aryl boronic acids (Scheme 1.22). ${ }^{26}$ The absolute configuration and enantioselectivity of the stereocenter are determined by the geometry of the starting alkenyl alcohol, or to be more specific, the orientation of the alkene when the palladium-ligand complex has been bound to it. The proposed chain-walking mechanism of this Heck-type reaction has been supported by an isotope labeling experiment.

Scheme 1.22: Pd-Catalyzed Enantioselective Intermolecular Heck Reaction (Sigman)


### 1.3.6 Asymmetric Diels-Alder Reaction

Scheme 1.23: Asymmetric Diels-Alder Reaction Using Prochiral Dienophile


Two approaches to set quaternary centers via a Diels-Alder reaction have been provided. The first one uses prochiral dienophiles, in which chiral Lewis acids can be $\mathrm{B}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ru}, \mathrm{Sm}$, or Gd possessing chiral ligands (Scheme 1.23). ${ }^{27}$ For example, Rawal and his co-workers optimized the following enantioselective DielsAlder reaction using prochiral dienophile $\mathbf{1 . 3 9}$ on a multigram-scale to obtain both good yields and high ee's (Scheme 1.24). ${ }^{28}$

Scheme 1.24: Enantioselective Diels-Alder Reaction Using Prochiral Dienophile (Rawal)


Scheme 1.25: Asymmetric Diels-Alder Reaction Using Prochiral Diene


The other type is a less developed strategy, where people use prochiral dienes in inverse electron-demand Diels-Alder reactions (Scheme 1.25). In 1994, the Evans group reported a catalytic, enantioselective, inverse electron-demand Diels-Alder (IEDDA) reaction. High ee was achieved in the cycloaddition of 3-carboxylmethyl-2-pyrone with thiophenylethylene which was catalyzed by a $2,2^{\prime}$-dihydroxyl-1,1'-binaphthyl- Yb complex (Scheme 1.26). ${ }^{29}$

Scheme 1.26: Catalytic, Enantioselective Inverse Electron-Demand Diels-Alder (IEDDA) Reaction Using Prochiral Diene (Evans)


### 1.4 Conclusion

Other methods to synthesize all-carbon quaternary stereogenic centers that were not discussed in the context include Mannich reaction, ${ }^{30}$ catalytic C-H insertion with metal carbenoid species, ${ }^{31}$ rearrangement reactions. ${ }^{32}$ Most of the methods to create all-carbon quaternary stereogenic centers were developed over the past decade. However even for those most developed methods that are discussed in this chapter, limitations exist in their substrate scope. In addition, only a few transition metals other than palladium have been applied in the catalytic asymmetric reactions. Thus, there are still more aspects to be discovered and further developed in this field of research, which inspire the direction of our research described in Chapter 2.

## REFERENCES

(1) (a) Zhang, Y.; Trost, B. M. J. Am. Chem. Soc. 2006, 128, 4590. (b) Mermerian, A. H.; Fu, G. C. Angew. Chem. Int. Ed. 2005, 44, 949. (c) Bartoli, G. Angew. Chem. Int. Ed. 2006, 45, 4966. (d) Hawner, C.; Alexakis, A. Chem. Commun. 2010, 46, 7295. (e) Burtoloso, A. C. B. Synlett. 2009, 2009, 320. (f) Wang. J.; Clive, D. L. J. J. Org. Chem. 2004, 69, 2773.
(2) (a) Douglas C. J.; Overman, L. E. Proc. Natl. Acad. Sci. 2004, 101, 5363. (b) Carreira, E. M.; Kvaerno, L. Classics in Stereoselective Synthesis; WileyVCH: Weinheim, 2009. (c) Guzman-Perez, A.; Corey, E. J. Angew. Chem., Int. Ed. 1998, 37, 388. (d) Mann, A.; Christoffers, J. Angew. Chem., Int. Ed. 2001, 40, 4591.
(3) (a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature, 2008, 456, 778. (b) Bagutski, V.; French, R. M.; Aggarwal, V. K. Angew. Chem. 2010, 122, 5268. (c) Bagutski, V.; Ros, A.; Aggarwal, V. K. Tetrahedron 2009, 65, 9956.
(4) Sonawane, R. P.; Jheengut, V.; Rabalakos, C.; Larouche-Gauthier, R.; Scott, H. K.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2011, 50, 3760.
(5) (a) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584. (b) Llaveria, J.; Leonori, D.; Aggarwal, V. K. J. Am. Chem. Soc. 2015, 137, 10958.
(6) (a) Comprehensive Asymmetric Catalysis, Vols. 1-3; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer: Berlin, 1999. (b) Catalytic Asymmetric Synthesis; Ojima, I., Ed; Wiley-VCH: Weinheim, 2004. (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley-VCH: Weinheim, 1994. (d) Fundamental of Asymmetric Catalysis; Walsh, P. J.; Kozlowski, M. C., Eds.; University Science Books: Sausalito, CA, 2009.
(7) (a) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593. (b) Marek, I.; Sklute, G. Chem. Commun. 2007, 43, 1683.
(8) Jung, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 1490.
(9) Jackowski, O.; Alexakis, A. Angew. Chem. Int. Ed. 2010, 49, 3346.
(10) Liu, W.-B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 17298.
(11) (a) Schroeder, G. M.; Trost, B. M. J. Am. Chem. Soc. 1999, 121, 6759. (b) Pissot-Soldermann, C.; Chen, I.; Schroeder, G. M.; Trost, B. M. J. Am. Chem. Soc. 2004, 126, 4480. (c) Dong, L.; Schroeder, G. M.; Trost, B. M. J. Am. Chem. Soc. 2005, 127, 2844.
(12) Krautwald, S.; Sarlah, D.; Scharfroth, M.; Carreira, E. M. Science, 2013, 340, 1065.
(13) Nguyen, K. D.; Herkommer. D.; Krische, M. J. J. Am. Soc. Chem. 2016, 138, 14210.
(14) (a) Catalytic Asymmetric Synthesis. O’Donnell, M. J., Ojima, I., Eds.; Wiley-VCH: New York, 2000. (b) Nelson, A. Angew. Chem. Int. Ed. 1999, 38, 1583.
(15) Bhattacharya, A.; Dolling, U.-H.; Grabowski, E. J. J.; Karady, S.; Ryan, K.M.; Weinstock, L. Angew. Chem. Int. Ed. 1986, 25, 476.
(16) Potter, B.; Edelstein, E. K.; Morken, J. P. Organic Letters. 2016, 18, 3286.
(17) Feng, C.; Kaneko, Y.; Kobayashi, Y. Tetrahedron Lett., 2013, 54, 4629.
(18) Robler, U.; Werner, T.; Christoffers, J. Eur. J. Org. Chem. 2000, 701.
(19) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204.
(20) Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc. 2011, 13, 6902.
(21) Spielvogel, D. J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 3500.
(22) Minko, Y.; Pasco, M.; Mejuch, T.; Gilboa, N.; Chechik, H.; Das, J. P.; Marek, I. J. Am. Chem. Soc. 2014, 136, 2682.
(23) Das, J. P.; Chechik, H.; Marek, I. Nature Chem, 2009, $1,128$.
(24) Thiel, O. R.; Tsui, H.-C.; Trost, B. M. J. Am. Chem. Soc. 2003, 125, 13155.
(25) (a) Maddaford, S. P.; Andersen, N. G.; Cristofoli, W. A.; Keay, B. A. J. Am. Chem. Soc. 1996, 118, 10766. (b) Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. A. J. Am. Chem. Soc. 2002, 124, 9008.
(26) Mei, T.-S.; Patel, H. H.;Sigman, M. S. Nature, 2014, 508, 340.
(27) Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650.
(28) Wang, K.; Bungard, C. J.; Nelson, S. G. Org. Lett. 2007, 9, 2325.
(29) Marko, I. E.; Evans, G. R. Tetrahedron Lett. 1994, 35, 2771.
(30) (a) Tiong E. A.; Gleason, J. L. Org. Lett., 2009, 11, 1725. (b) Mase, N.; Tanaka, F.; Barbas III, C. F. Org. Lett., 2003, 5, 4369. (c) Mase, N.; Tanaka, F.; Barbas III, C. F. Angew. Chem. Int. Ed., 2004, 43, 2420. (d) Chowdari, N. S.; Suri, J. T.; Barbas III, C. F. Org. Lett., 2004, 6, 2507.
(31) (a) Davies, H.M.L.; Manning, J.R. Nature, 2008, 451, 417. (b) Davies, H.M.L.; Dick, A.R. Top. Curr. Chem. 2010, 292, 303. (c) Davies H.M.L. Angew. Chem. Int. Ed. 2006, 45, 6422. (d) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (e) Kalinin, A. V.; Ene, D. G.; Doyle, M. P. J. Am. Chem. Soc. 1996, 118, 8837. (f) Wu, C.; Ye, F.; Wang, C.; Zhao, Y.; Wang, J. J, Org. Chem. 2015, 80, 8748.
(32) (a) Ziegler, F. E. Chem. Rev., 1988, 88, 1423. (b) Martin-Castro, A. M. Chem. Rev., 2004, 104, 2939.

## Chapter 2

## STEREOSPECIFIC NICKEL-CATALYZED SUZUKI-MIYAURA ARYLATION OF BENZYLIC ACETATES TO SET DIARYL AND TRIARYL ALKANES

Portions of this chapter have been published in [J. Am. Chem. Soc. 2016, 138, 12057] and are reproduced with permission.

### 2.1 Introduction

As discussed in Chapter 1, all-carbon quaternary stereocenters are important. However, they are hard to make when they are isolated from functional groups. Transition metal-catalyzed cross-couplings should be possible, but has not yet been developed for non-allylic electrophiles with high ee. Stereospecific cross-couplings of allylic electrophiles have been developed to deliver all-carbon quaternary centers in high ee. Specifically, Kobayashi reported using allylic electrophiles with Grignard or zinc reagents (Scheme 2.1). ${ }^{\text {1a, 1b }}$ However, these nucleophiles limit the substrate scope. The umpolung approach has also been demonstrated by the Morken group where an allylic electrophile has been transferred to an allylic boronate as the nucleophile in the subsequent Suzuki-Miyaura cross-coupling reaction (Scheme 1.12). ${ }^{\text {1c }}$

Scheme 2.1: Stereospecific Cross-Coupling Using Allylic Electrophiles and Grignard Reagents (Kobayashi)


With respect to non-allylic substrates, benzylic all-carbon quaternary centers can be obtained in non-asymmetric fashion, like Biscoe's nickel-catalyzed Kumada cross-
coupling reactions, Fu's nickel-catalyzed Suzuki alkylations and Doyle's nickelcatalyzed Negishi cross-couplings (Scheme 2.2). ${ }^{2}$ Notably, in a single example in Doyle's work, a promising $27 \%$ ee was given to form the enantioenriched quaternary stereocenter. ${ }^{2 \mathrm{c}}$

Scheme 2.2: Ni-Catalyzed Non-Asymmetric Cross-Coupling to Set Benzylic Quaternary Centers

Biscoe
$F u$


Insipired by the previous work on building tertiary stereocenters in our group (Scheme 2.3), the stereospecific nickel-catalyzed arylation of benzylic pivalates and ammonium salts, ${ }^{3}$ my colleague Dr. Qi Zhou came up with the idea to apply this method to form all-carbon benzylic quaternary stereocenters. He proposed a stereospecific Suzuki-Miyaura arylation of tertiary benzylic carboxylates to deliver diaryl and triaryl all-carbon quaternary stereocenters (Scheme 2.4).

Scheme 2.3: Ni-Catalyzed Suzuki Arylation of Secondary Benzylic Electrophiles (Watson)

C-O Activation


## C-N Activation



In considering this reaction, we anticipated several potential challenges. Due to the increased steric hindrance of the tertiary electrophiles, the oxidative addition step in the catalytic process may be deaccelerated. $\beta$-Hydride elimination can be much more competitive due to the existance of the $\beta$-hydrogen on the alkyl groups. High stereochemical fidelity could also be a challenge. All these challenges and concerns will be discussed and solved with optimization of the reaction.

Scheme 2.4: Proposed Ni-Catalyzed Suzuki-Coupling to Set Diaryl and Triaryl AllCarbon Quaternary Centers


### 2.2 Results and Discussion

To start with, we need to have the enantiomeric excess (ee) of the starting material as high as possible. Following the enantioselective strategy to deliver tertiary benzylic alcohols reported by Walsh's group, ${ }^{4}$ a solvent-free ethyl addition to 2acetonaphthone under the catalysis of titanium tetraisoproxide and a chiral bis(sulfonamide) diol ligand gave the tertiary benzylic alcohol in $75 \%$ yield and $97 \%$ ee (Scheme 2.6). This chiral ligand can be synthesized easily by the coupling of $(R, R)$ cyclohexyldiamine and camphorsulfonyl chloride and the reduction of the ketone to the corresponding alcohol (Scheme 2.5). ${ }^{5}$ Subsequent acylation then gives acetate 2.19.

Scheme 2.5: Synthesis of the Chiral Bis(sulfonamide) Diol Ligand 2.16 (Walsh)


Scheme 2.6: Preparation of the Tertiary Benzylic Alcohol 2.18 and Acetylation


With the enantioriched model substrate $\mathbf{2 . 1 9}$ in hand, Dr. Zhou optimized the reaction. Under the best conditions for arylation of secondary benzylic pivalates, he was delighted to notice that the target diarylalkane was formed in high yield (74\%), but low stereochemical fidelity ( $20 \%$ ee) as well as trace amount of olefins $\mathbf{2 . 2 3}$ (entry 1, Table 2.1). The olefin byproducts likely come from $\beta$-hydride elimination, but E2 elimination is also possible.

Table 2.1: Optimization of Reaction Parameters ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: 2.19 ( 0.10 mmol ), 2.20 ( 1.0 equiv.), $\mathrm{Ni}(\operatorname{cod})_{2}(5 \mathrm{~mol} \%)$, ligand, $\mathrm{NaOMe}(2.0$ equiv.) and solvent $(0.4 \mathrm{M}, 0.25 \mathrm{~mL})$ in a one-drum vial, unless otherwise noted. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard. Total yields over $100 \%$ reflect the error of ${ }^{1} \mathrm{H}$ NMR yields, particularly for minor products. ${ }^{\mathrm{c}}$ Determined by HPLC using a chiral stationary phase. ${ }^{\mathrm{d}} \mathrm{es}=$ enantiospecificity $=\left(\mathrm{ee}_{\text {product }}\right) /\left(\mathrm{ee}_{\text {starting material }}\right) .{ }^{\mathrm{e}} \mathrm{NiCl}_{2} \cdot \mathrm{DME}$ in place of $\mathrm{Ni}(\operatorname{cod})_{2} .{ }^{\mathrm{f}} \mathbf{2 . 2 1}$ in place of 2.20.

Starting at this point, Dr. Zhou optimized the reaction by adjusting the reaction parameters. The presence of dicyclohexylphenyl phosphine ligand ( $\mathrm{PCy}{ }_{2} \mathrm{Ph}$ ) increased the ee from $20 \%$ to $87 \%$ (entry 2, Table 2.1). The ee can be increased all the way to $90 \%$ by lowering the temperature from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, extending the time from 2 to 5 hours (entry 3, Table 2.1), and switching to a polar solvent, THF instead of toluene (entry 4, Table 2.1). However the yield of the byproduct alkene increased as well, from trace amount (2\%) all the way to $24 \%$ (entry 4, Table 2.1 ). Dr. Zhou successfully controlled
the formation of these alkenes by using Buchwald ligands, which were efficient in decreasing the $\beta$-hydride elimination likely due to blocking the open coordination site needed for $\beta$-hydride elimination. ${ }^{6}$ Finally by screening a set of Buchwald-type biphenyl phosphine ligands at a lower temperature of $40^{\circ} \mathrm{C}$ for 22 hours, he was glad to find that the use of (2-biphenyl)dicyclohexylphosphine (CyJohnPhos) resulted in $<10 \%$ yield of the olefin byproducts and $96 \%$ ee of the desired product, although with a slightly low yield of $57 \%$ (entry 5, Table 2.1). With a $1: 1$ ratio of $\mathrm{Ni}(\operatorname{cod})_{2}$ : CyJohnPhos, $81 \%$ yield of the desired product was achieved with good ee of $96 \%$ (entry 6, Table 2.1). Finally the best condition was found when an air-stable $\mathrm{Ni}(\mathrm{II})$ pre-catalyst was used instead of $\mathrm{Ni}(\operatorname{cod})_{2}$ and a 'greener' solvent, 2-methyltetrahydrofuran (2-Me-THF), was used. Further improvement was realized by replacing the aryl boroxine with the aryl boronic acid neopentylglycol esters (entry 8, Table 2.1). All these added up to deliver desired diarylalkane 2.22 with nearly quantitative yield (99\%) and high stereochemical fidelity ( $97 \%$ ee). The formation of $\beta$-hydride elimination product has been well contolled with less than $3 \%$ yield.

At this point, I joined this project, together with another collegue, Dr. Kelsey Cobb, to help Dr. Zhou with the substrate scope by trying a series of organoboron reagents to see how well this methodology can be applied. To our delight, good yields and high levels of stereochemical fidelity can be achieved under these optimized conditions (entry 10, Table 2.1) with a variety of aryl boronate esters to deliver diarylalkanes. Different kinds of functional groups on the aryl ring of the boronate esters are well tolerated, including electron-rich substituents like dimethylamine (2.25) and methoxyl groups (2.22, 2.26), electron-poor ones such as amide (2.29), ester (2.28), trifluoromethyl (2.30), fluoride (2.31) and chloride (2.27). An increasingly steric allyl
hindered 2,4-dimethylphenyl boronic acid neopentylglycol ester can also be successsfully cross-coupled (2.32) to give good yield and excellent ee (95\%) which indicates how powerful our catalytic system is. However there are some limitations in this reaction. When arenes with heteroatoms (2.34-2.38) or vinyl groups (2.39) are involved, the reaction did not succeed in giving the desired final products probably due to the nickel catalysts being poisoned by coordination of heteroatoms or double bonds.

Figure 2.1: Unsuccessful Aryl Boronate Esters

2.34

2.37

2.35

2.38

2.36

2.39

Scheme 2.7: Scope of Aryl Boronate Esters ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: 2.19 ( 0.40 mmol ), aryl boronate ester ( 2.0 equiv.), $\mathrm{NiCl}_{2} \cdot$ DME ( $5 \mathrm{~mol} \%$ ), CyJohnPhos ( $5 \mathrm{~mol} \%$ ), $\mathrm{NaOMe}\left(2.0\right.$ equiv.), $2-\mathrm{Me}-\mathrm{THF}\left(0.4 \mathrm{M}, 1 \mathrm{~mL}\right.$ ), $40^{\circ} \mathrm{C}, 22 \mathrm{~h}$, unless noted. Average isolated yield ( $\pm 9 \%$ ) and ee's ( $\pm 1 \%$, determined by HPLC or SFC using a chiral stationary phase) or duplicate reactions, unless otherwise noted. ${ }^{\text {b }}$ Single experiment. ${ }^{\mathrm{c}} 60^{\circ} \mathrm{C}$, $12 \mathrm{~h} .{ }^{\mathrm{d}} 3.0$ equiv. of aryl boronate esters.

Meanwhile Dr. Zhou developed the substrate scope of the tertiary acetate side successfully by changing the aryl and alkyl substituents. As for the aryl substituent, electron-rich 6-methoxyl-naphthyl group (2.34), increasingly steric hindered 1-naphthyl group (2.35), and a heteroaryl one which is 3-quinolinyl group (2.36) are used to give the final products in good to excellent yields with also terrific more than $98 \%$ enantiospecificities. Many choices are available for the alkyl substituent $\mathrm{R}^{1}$, such as silyl ether (2.37), phenethyl (2.38) and allyl (2.39) groups. When switching from methyl to ethyl group at $R^{2}$ position (2.40), the product can also be formed with $77 \%$ yield and $98 \%$ es. More importantly, all-carbon triarylmethanes can also be formed with this strategy in good yield and excellent ee $(\mathbf{2} .41, \mathbf{2} .42)$, which can be further developed to broaden the application of this cataytic cross-coupling. I will discuss this in detail later.

## Scheme 2.8: Scope of Tertiary Acetates ${ }^{\text {a }}$


${ }^{\text {a }}$ Conditions: see Scheme 2.7. Average isolated yields ( $\pm 7 \%$ ) and ee's ( $\pm 1 \%$ ). ${ }^{\text {b }}$ A second run gave $\mathbf{2 . 3 5}$ in $78 \%$ yield, $83 \%$ ee, $99 \%$ es using $84 \%$ ee of $\mathrm{SM}^{{ }^{\mathrm{c}}}{ }^{\mathrm{c}} 60^{\circ} \mathrm{C}, 24 \mathrm{~h}$. ${ }^{\mathrm{d}}$ Single experiment. ${ }^{\mathrm{e}} \mathbf{2 . 2 0}$ ( 0.83 equiv.) in place of $\mathbf{2 . 2 1}$. ${ }^{\mathrm{f}} \mathrm{A}$ second run gave $\mathbf{2 . 4 0}$ in $\mathbf{6 3 \%}$ yield, $86 \%$ ee, $99 \%$ es using $87 \%$ ee of acetate. ${ }^{\text {g }}$ Opposite enantiomer of starting material used. ${ }^{\text {h }} 10 \mathrm{~mol} \% \mathrm{NiCl}_{2}$.DME, $10 \mathrm{~mol} \%$ CyJohnPhos, $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$.

I also helped in confirmation of the absolute configuration of the starting materials to support our hypothesis on the reaction mechanism. Enantioriched starting
material acetate $\mathbf{2 . 1 9}$ is an oil after column chromotography. After extensive experimentation, such as making an over-saturated solution, diffusion, adding a seed crystal, the acetate still remained an oil without crystallization. However, I was able to grow a crystal by putting the pure acetate in the freezer, which helped its solidification. The absolute configuration of the acetate was proved to be $S$ by X-ray crystallography. With the absolute configuration of product 2.29 confirmed to be $R$ via X-Ray crystallography using $\mathrm{Cu} \mathrm{K} \alpha$ radiation, ${ }^{7}$ we are confident that this reaction proceeds with overall retention of absolute configuration. In this case, the mechanism is consistent with the one proposed for the stereoretentive cross couplings of secondary benzylic and allylic pivalates, a directed $\mathrm{S}_{\mathrm{N}} 2$ ' oxidative addition directed by the leaving group, in which the nickel catalyst is bound by the acetate to add in an $\mathrm{S}_{\mathrm{N}} 2$ ' fashion (A, Scheme 2.9). This mode of oxidative addition results in the net retention of stereochemistry.

Figure 2.2: Evidence of Net Retention in the $\mathrm{Ni}($ II)-Catalyzed Suzuki-Miyaura Arylation of Tertiary Benzylic Carboxylates


Scheme 2.9: Putative Catalytic Cycle


As shown in Scheme 2.7, triaryl alkanes with quaternary stereocenters can be formed using this strategy. This method represents the only stereoselective or stereospecific route to these products. In addition, the substitution of dibenzylic acetates did not require a naphthyl substituent, biphenyl product $\mathbf{2 . 3 3}$ was formed in good yield under only slightly modified reaction conditions. To further develop this catalytic system to the delivery of triaryl benzylic all-carbon quaternary centers, I continued to optimize the reaction condition based on the result of $\mathbf{2 . 4 2}$ by Dr. Zhou. First a group of Buchwald ligands have been tested, which did not work as well as the earlier best ligand CyJohnPhos. Then I did a systematically screening of increasing the aromacity of the phosphine ligands and was happy to find out that the ligand
dicyclohexylphenylphosphine $\left(\mathrm{PCy}_{2} \mathrm{Ph}\right)$ worked out better than others with a yield of $42 \%$. Adding only one methyl substituent on the phosphine ligand phenyl group increased and the yield by $30 \%$. With this in hand, the best ligand so far would be $\mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ which delivered a higher yield of $69 \%$ than the preliminary result reported in the paper.

Scheme 2.10: Ligand Screening Using Racemic Acetate 2.46 Catalyzed by $\mathrm{NiCl}_{2} \cdot \mathrm{DME}^{\mathrm{a}}$

${ }^{\text {a }}$ Conditions: ( $\boldsymbol{r a c}$ )-2.19i ( 0.10 mmol ), $\mathbf{2 . 2 1}$ (3.0 equiv.), $\mathrm{NiCl}_{2} \cdot \mathrm{DME}(10 \mathrm{~mol} \%)$, Ligand ( $10 \mathrm{~mol} \%$ ), $\mathrm{NaOMe}\left(2.0\right.$ equiv.), 2-Me-THF ( $0.4 \mathrm{M}, 0.25 \mathrm{~mL}$ ), $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$, unless noted. Yields determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard.

Meanwhile, my colleague Dr. Bibaswan Biswas noticed that when using $\mathrm{Ni}(\operatorname{cod})_{2}$ and $\mathrm{PCy}_{2} \mathrm{Ph}$, the yield was increased to $69 \%$. Then I conducted another ligand investigation using $\mathrm{Ni}(\operatorname{cod})_{2}$ as the nickel source. The use of $\mathrm{Ni}(\operatorname{cod})_{2}$ turned out to
increase the yield with the ligand $\mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ still as the best one. The yield of the reaction increased to $78 \%$ with no starting material left. However, $13 \%$ elimination and $15 \%$ hydrolysis byproducts did exist. To our delight, the stereospecificity of this new catalytic system was still outstanding. The product $\mathbf{2 . 4 2}$ was obtained in $94 \%$ ee and $99 \%$ es (Scheme 2.12).

Scheme 2.11: Ligand Screening Using Racemic Acetate 2.19i Catalyzed by $\mathrm{Ni}(\operatorname{cod}))_{2}{ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: ( $\boldsymbol{r a c}$ )-2.19i ( 0.10 mmol ), 2.21 ( 3.0 equiv.), $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%)$, Ligand ( $10 \mathrm{~mol} \%$ ), NaOMe ( 2.0 equiv.), 2-Me-THF ( $0.4 \mathrm{M}, 0.25 \mathrm{~mL}$ ), $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$, unless noted. Yields determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard.

## Scheme 2.12: New Catalytic System Used in the Stereospecific Suzuki-Miyaura Arylation to Set Triaryl Quaternary Centers ${ }^{\text {a }}$



Conditions: ${ }^{\text {a }} \mathbf{2 . 1 9 i}$ ( 0.10 mmol$), 2.21$ ( 3.0 equiv.), $\mathrm{Ni}(\operatorname{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)(10$ $\mathrm{mol} \%$ ), NaOMe ( 2.0 equiv.), 2-Me-THF ( $0.4 \mathrm{M}, 0.25 \mathrm{~mL}$ ), $60^{\circ} \mathrm{C}, 48 \mathrm{~h} .{ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard. ${ }^{\mathrm{c}}$ Determined by HPLC using a chiral stationary phase. ${ }^{\mathrm{d}}$ es $=$ enantiospecificity $=\left(\mathrm{ee}_{\text {product }}\right) /\left(\mathrm{ee}_{\text {starting material }}\right)$.

Having shown increased yield for diphenyl-substituted 2-19i, I wanted to investigate an acetate with an even simpler aryl substituent. In this case, a less conjugated tertiary alcohol has been synthesized using Walsh's procedure with a high yield of $\mathbf{9 5 \%}$ and a high ee of $\mathbf{9 0 \%}$. The corresponding acetate $\mathbf{2 . 1 9 j}$ was generated in $\mathbf{8 6 \%}$ yield, while maintaining the same ee. First I used racemic acetate $\mathbf{2 . 1 9 j}$ with both $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Ni}(0)$ catalysts and the three best ligands, CyJohnPhos, $\mathrm{PCy}_{2} \mathrm{Ph}$ and $\mathrm{PCy}_{2}$ (o$\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ to see the yields. $\mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ turned out to be the best among these three ligands. Notably when I doubled the amount of nickel catalyst and ligand (entry 7, Table 2.2 , the yield increased significantly to $69 \%$, with neither starting material nor hydrolysis byproduct observed. Only $24 \% \beta$-hydride elimination byproduct was found. This result gave me the idea that the amount of ligand matters in this reaction, which led me to systematic screening of the ratio of nickel to ligand.

Table 2.2: Further Optimization Between Nickel Catalysts and Phosphine Ligands in Less Conjugated $\pi$-System ${ }^{\text {a }}$

${ }^{\text {a }}$ Conditions: ( $\boldsymbol{r a c}$ )-2.19j ( 0.10 mmol ), $\mathbf{2 . 2 1}$ ( 3.0 equiv.), [Ni] catalyst ( $10 \mathrm{~mol} \%$ ), Ligand ( $10 \mathrm{~mol} \%$ ), NaOMe ( 2.0 equiv.), 2-Me-THF ( $0.4 \mathrm{M}, 0.25 \mathrm{~mL}$ ), $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$, unless noted. Yields determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard.

Given the fact that $\mathrm{Ni}(\operatorname{cod})_{2}$ is less stable to air and moisture, I performed the following investigation with $\mathrm{Ni}(\mathrm{II})$ pre-catalyst and the best ligand $\mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$. Enantioenriched 2.19j was used, so that stereospecificity could also be evaluated. Lower loading of the catalyst resulted in low yield (entries 1 and 2, Table 2.3) and did not help in achieving high ee's. The best ratio of nickel to ligand is $1: 2.5$ (entry 4 ) to give the best yield of $73 \%$ with an enantiospecifity of $87 \%$. After that, increasing the catalyst loading does not help to improve the yield or ee.

Table 2.3: Systematic Screening of Nickel Catalyst to Phosphine Ligand Ratio in the Stereospecific Suzuki-Miyaura Arylation of Less Conjugated $\pi$-System ${ }^{\text {a }}$

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| entry | $\begin{gathered} \mathrm{NiCl}_{2} \cdot \mathrm{DME} \\ (\mathrm{~mol} \%) \end{gathered}$ | $\begin{gathered} \mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \\ (\mathrm{mol} \%) \end{gathered}$ | $\begin{gathered} \text { yield }^{\mathrm{b}} \\ (\%) \end{gathered}$ | $\begin{aligned} & \mathrm{ee}^{\mathrm{c}} \\ & (\%) \end{aligned}$ | es ${ }^{\text {d }}$ (\%) |
| 1 | 3 | 6 | 9 | - | - |
| 2 | 5 | 10 | 18 | 73 | 81 |
| 3 | 10 | 20 | 54 | 78 | 87 |
| 4 | 10 | 25 | 73 | 78 | 87 |
| 5 | 10 | 30 | 61 | 76 | 84 |
| 6 | 10 | 40 | 57 | 78 | 87 |
| 7 | 10 | 50 | 60 | 77 | 86 |

${ }^{a}$ Conditions: 2.19j ( 0.10 mmol ), 2.21 ( 3.0 equiv.), $\mathrm{NiCl}_{2} \cdot$ DME, $\mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$, NaOMe ( 2.0 equiv.), 2-Me-THF ( $0.4 \mathrm{M}, 0.25 \mathrm{~mL}$ ), $60^{\circ} \mathrm{C}, 48 \mathrm{~h}$, unless noted. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR using an internal standard. ${ }^{\mathrm{c}}$ Determined by HPLC using a chiral stationary phase. ${ }^{\mathrm{d}} \mathrm{es}=$ enantiospecificity $=$ ( $\mathrm{e}_{\text {product }}$ )/(ee $\mathrm{e}_{\text {starting material }}$ ).

### 2.3 Conclusion

To sum up, we have developed a nickel-catalyzed Suzuki-Miyaura arylation of tertiary benzylic acetates to set diaryl and triaryl all-carbon quaternary centers in high yield and excellent stereochemical fidelity, which was also the first example of such reactions to our knowledge. ${ }^{8}$ In our reaction, cheap, air-stable $\mathrm{NiCl}_{2}$. DME has been used with commercially available phosphine ligand, as well as easily synthesized neopentylglycol boronic esters and highly enantioenriched tertiary acetates as the starting materials. For acetates with naphthyl-like subsituents, the enantiospecifity of
the product can be as high as $\geq 99 \%$. And I also modified this catalytic system to apply it to acetates with a less conjugated $\pi$-substituent where synthetically useful yield and good enantiospecifity can be obtained. An $\mathrm{S}_{\mathrm{N}} 2$ ' mechanism has been proposed to support on our observation of net retention of configuration from starting material to final product.

### 2.4 Experimental Section

### 2.4.1 General Information

Reactions were performed in oven-dried vials with Teflon-lined caps or in ovendried round-bottomed flasks unless otherwise noted. On occasions when a viscous mixture formed in the reaction vials, a higher speed of stirring or shaking was performed to guarantee sufficient mixing. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of $\mathrm{N}_{2}$. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel $60(40-63 \mu \mathrm{~m}$, or $5-20 \mu \mathrm{~m} 60 \AA)$ unless otherwise noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, TCI, Combi Blocks, Alfa Aesar, or Cambridge Isotopes Laboratories and used as received with the following exceptions: sodium methoxide, anhydrous 2-methyltetrahydrofuran, diethyl zinc, dimethyl zinc ( 1.0 M in PhMe) were purchased from vendors and immediately placed in a $\mathrm{N}_{2}$-atmosphere glovebox for storage. Acetic anhydride and $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}$ were distilled before use and stored under $\mathrm{N}_{2}$. Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and THF were dried by passing through drying columns and stored over activated $4 \AA$ MS in a $\mathrm{N}_{2}$-atmosphere glovebox. ${ }^{9}(R, R)$-Bis(sulfonamide) diol ligand 2.16 was prepared according to reported literature procedure. ${ }^{10} \operatorname{Bis}(4-(($ tert -
butyldimethylsilyl)oxy)butyl)zinc was prepared according to reported literature procedure and used immediately. ${ }^{11}$ Oven-dried potassium carbonate was added into $\mathrm{CDCl}_{3}$ to remove trace amount of acid. Proton nuclear magnetic resonance ( ${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance ( ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.26\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.2\right)$. Data are represented as follows: chemical shift, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{h}=$ heptet $)$, coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral and X-ray crystallography data were obtained at the University of Delaware facilities. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length. Melting points were taken on a Stuart SMP10 instrument. Enantiomeric excess (ee) was determined using chiral HPLC analysis at the University of Delaware or chiral SFC analysis at Lotus Separations, Inc.

bis(4-((tert-butyldimethylsilyl)oxy)butyl)zinc

### 2.4.2 Stereospecific Arylation to Prepare Diaryl and Triaryl Alkanes

### 2.4.2.1 General Procedure A: Streospecific Arylation of Tertiary Benzylic Acetates


(S)-2-(2-(3-Methoxyphenyl)butan-2-yl)naphthalene ((S)-2.22). In a $\mathrm{N}_{2}-$ atmosphere glovebox, $\mathrm{NiCl}_{2}$-DME ( $4.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ), CyJohnPhos ( 7.0 $\mathrm{mg}, 0.020 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) and $\mathrm{NaOMe}(44 \mathrm{mg}, 0.80 \mathrm{mmol}, 2.0$ equiv) were weighed into a 1-dram vial fitted with a magnetic stir bar. 2-(3-Methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane ( $\mathbf{2 . 2 1}, 176 \mathrm{mg}, 0.800 \mathrm{mmol}, 2.0$ equiv) and ( $S$ )-2-(naphthalen-2-yl)butan-2-yl acetate ( $\mathbf{2 . 1 9}$, prepared in $95 \%$ ee, $97 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.0$ equiv) were added, followed by 2-Me-THF ( $1.0 \mathrm{~mL}, 0.4 \mathrm{M}$ ). The vial was capped with a Teflonlined cap and removed from the glovebox. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and filtered through a plug of silica gel and Celite ${ }^{\circledR}$, which was then rinsed with $\mathrm{Et}_{2} \mathrm{O}(\sim 15 \mathrm{~mL})$. The filtrate was concentrated and then purified by silica gel chromatography ( $0-2 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes ) to give the compound 2.22 (run 1: $100.3 \mathrm{mg}, 86 \%$; run 2: $105.7 \mathrm{mg}, 91 \%$ ) as a colorless sticky oil. The enantiomeric excess was determined to be $93 \%$ (run 1: $93 \%$ ee; run 2 : $92 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.6 \mathrm{~mL} / \mathrm{min}, 0.1 \% ~ i-\mathrm{PrOH} / \mathrm{hexane}$, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=12.058 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.930 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-10.2^{\circ}(\mathrm{c} 4.25$, $\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.69$
$(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.76$ $-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 159.4,151.5,146.9,133.3,131.9,128.9,128.1,127.6$, $127.5,127.2,125.9,125.5,124.9,120.4,114.3,110.3,55.3,46.8,33.9,26.9,9.4 ;$ FTIR ( $\mathrm{NaCl} /$ thin film) 3054, 2967, 2934, 2877, 1599, 1582, 1485, 1457, 1430, 1290, 1254, 1053, 819, 749, 703, $477 \mathrm{~cm}^{-1}$; HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}: 291.1749$, found: 291.1773.

(R)-2-(2-Phenylbutan-2-yl)naphthalene ((R)-2.24). Prepared via General Procedure A using 2.19 (prepared in $96 \%$ ee) as a colorless oil (run 1: $100 \mathrm{mg}, 96 \%$; run 2: $96.8 \mathrm{mg}, 93 \%$ ). The enantiomeric excess was determined to be $95 \%$ (run 1: 95\% ee; run 2: $95 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46 \mathrm{~cm}$ ), 3.0 $\mathrm{mL} / \mathrm{min}, 15 \% \mathrm{EtOH}(0.1 \%$ diethylamine $\left.) / \mathrm{CO}_{2}(100 \mathrm{bar}), \lambda=220 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}($ major $)=6.25$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=7.32 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+13.3^{\circ}\left(\mathrm{c} 1.02, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.88-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.18(\mathrm{~m}$, $6 \mathrm{H}), 2.36-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.7,147.0,133.2,131.8,128.10,128.07,127.63,127.61,127.5,127.3$, 126.0, 125.7, 125.6, 124.9, 46.8, 33.8, 26.9, 9.4; FTIR (NaCl/thin film) 3055, 2968, 2934, 2876, 1599, 1494, 1444, 1380, 1273, 1131, 1029, 948, 897, $770 \mathrm{~cm}^{-1}$; HRMS (EI+) $[M]+$ calculated for $\mathrm{C}_{20} \mathrm{H}_{20}$ : 260.1565, found: 260.1558 .

( $R$ )-N,N-Dimethyl-4-(2-(naphthalen-2-yl)butan-2-yl)aniline
( $(\boldsymbol{R})$-2.25).
Prepared via General Procedure A using 2.19 (prepared in $96 \%$ ee) as a white solid (mp $64-66{ }^{\circ} \mathrm{C} ; 99 \mathrm{mg}, 82 \%$ ). The enantiomeric excess was determined to be $96 \%$ by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46 \mathrm{~cm}$ ), $3.5 \mathrm{~mL} / \mathrm{min}, 55 \% \mathrm{MeOH}(0.1 \%$ diethylamine $) / \mathrm{CO}_{2}(100$ bar $\left.), \lambda=220 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}($ major $)=11.68 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.76 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=+22.6^{\circ}\left(\mathrm{c} 3.8, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}$, 1H), $7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.67$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=$ 8.7, 1.9 Hz, 1H), 7.11-7.05 (m, 2H), 6.68-6.63(m, 2H), 2.91 (s, 6H), 2.28-2.15 (m, $2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.6,147.6$, $137.8,133.3,131.8,128.2,128.1,127.50,127.46,127.4,125.8,125.4,124.8,112.3$, 45.9, 40.8, 34.0, 27.0, 9.4; FTIR (NaCl/thin film) 3431, 3054, 2966, 2934, 2876, 1613, 1519, 1444, 1348, 1201, 1166, 948, 818, 746, 569, $476 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}: 303.1987$, found: 303.1966 .

(R)-2-(2-(4-Methoxyphenyl)butan-2-yl)naphthalene ((R)-2.26). Prepared via General Procedure A using 2.19 (prepared in $96 \%$ ee) as a colorless oil (run 1: 110 mg , $95 \%$; run 2: $105.7 \mathrm{mg}, 91 \%$ ). The enantiomeric excess was determined to be $96 \%$ (run 1: $96 \%$ ee; run 2: $96 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46 \mathrm{~cm}$ ),
$3.0 \mathrm{~mL} / \mathrm{min}, 25 \% i-\operatorname{PrOH}(0.1 \%$ diethylamine $\left.) / \mathrm{CO}_{2}(100 \mathrm{bar}), \lambda=220 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $4.89 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=6.27 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+12.4^{\circ}\left(\mathrm{c} 0.98, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.89-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.43$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.16(\mathrm{~m}, 2 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.5,147.2,141.8$, $133.2,131.8,128.6,128.1,127.6,127.5,127.3,125.9,125.5,124.8,113.3,55.3,46.1$, 34.0, 27.1, 9.4; FTIR (NaCl/thin film) 3055, 2967, 2932, 2876, 1511, 1463, 1441, 1298, 1248, 1182, 1034, 852, $745 \mathrm{~cm}^{-1}$; HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}$ : 291.1749, found: 291.1768.

(R)-2-(2-(4-Chlorophenyl)butan-2-yl)naphthalene ((R)-2.27). Prepared via General Procedure A using 2.19 (prepared in $95 \%$ ee) as a colorless oil (run 1: 62.1 mg , $53 \%$; run 2: $70.4 \mathrm{mg}, 60 \%$ ). The enantiomeric excess was determined to be $92 \%$ (run 1: $92 \%$ ee; run 2: $92 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46 \mathrm{~cm}$ ), 3.0 $\mathrm{mL} / \mathrm{min}, 15 \% \mathrm{EtOH}(0.1 \%$ diethylamine $\left.) / \mathrm{CO}_{2}(100 \mathrm{bar}), \lambda=220 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}($ major $)=6.18$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=6.97 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+10.8^{\circ}\left(\mathrm{c} 1.66, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 2.35-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.80$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.3,146.4,133.3,131.9,131.6$, 129.1, 128.2, 128.1, 127.8, 127.5, 127.0, 126.1, 125.7, 125.0, 46.6, 33.9, 26.9, 9.3; FTIR ( $\mathrm{NaCl} /$ /hin film) $3055,2969,2934,2887,1599,1489,1092,1012,817,746,477 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}$ 294.1775, found: 294.1189.

(R)-Methyl-4-(2-(naphthalen-2-yl)butan-2-yl)benzoate ((R)-2.28). Prepared via General Procedure A using $\mathbf{2 . 1 9}$ (prepared in $96 \%$ ee) except that 3.0 equiv of $\mathbf{2 . 2 1}$ were used and the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 12 h . Compound $\mathbf{2 . 2 8}$ was obtained as a colorless oil (run 1: $114.5 \mathrm{mg}, 90 \%$; run 2: $105.6 \mathrm{mg}, 83 \%$ ). The enantiomeric excess was determined to be $96 \%$ (run $1: 96 \%$ ee, run $2: 96 \%$ ee) by chiral HPLC analysis (CHIRALPAK IC, $0.6 \mathrm{~mL} / \mathrm{min}, 1 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}($ major $)=30.604 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=33.299 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+8.1^{\circ}\left(\mathrm{c} 1.23, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.76$ (m, 2H), 7.69 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=$ 8.6, 1.9 Hz, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 167.2,155.1,146.2,133.3,131.9,129.4,128.1,127.84$, $127.75,127.7,127.6,127.0,126.1,125.8,125.0,52.1,47.2,33.8,26.8,9.3 ;$ FTIR ( $\mathrm{NaCl} /$ /hin film) $3055,2969,2878,1718,1608,1435,1279,1188,1115,1018,854,819$, 747, $477 \mathrm{~cm}^{-1}$; HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2}$ : 319.1698, found: 319.1708.

( $R$ )- $N, N$-Diethyl-4-(2-(naphthalen-2-yl)butan-2-yl)benzamide ( $\boldsymbol{R}$ )-2.29). Prepared via General Procedure A using 2.21 (prepared in $96 \%$ ee) except that the reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 12 h . Compound 2.29 was obtained as white solid (mp 96-100 ${ }^{\circ} \mathrm{C}$; run 1: $125 \mathrm{mg}, 87 \%$; run 2: $122 \mathrm{mg}, 85 \%$ ). The enantiomeric excess was determined to be $94 \%$ (run 1: $94 \%$ ee, run 2: $94 \%$ ee) by chiral HPLC analysis $($ CHIRALPAK IA, $0.8 \mathrm{~mL} / \mathrm{min}, 8 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $11.038 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.179 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+18.9^{\circ}\left(\mathrm{c} 1.16, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.54(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.33-2.18(\mathrm{~m}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}$, 3 H ), 1.23 (br s, 3H), 1.12 (br s, 3H), 0.77 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,150.9,146.5,134.6,133.2,131.9,128.1,127.7,127.6,127.5,127.2$, 126.3, 126.0, 125.7, 125.1, 46.9, 43.4, 39.3, 33.8, 26.9, 14.4, 13.0, 9.3; FTIR ( $\mathrm{NaCl} /$ thin film) 3053, 2970, 2934, 2876, 1630, 1457, 1424, 1288, 1098, 1019, 819, 748, $478 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (CI+) [M+H $]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}: 360.2327$, found: 360.2347 .

X-ray quality crystals were obtained from slow evaporation of $\mathbf{2 . 2 9}$ in EtOAc. The crystal structure demonstrates that the absolute configuration is $R$ (Figure S 1 ). The enantiomeric excess of the crystal was determined to be $96 \%$ ee by chiral HPLC analysis, with the major enantiomer matching that of the bulk material isolated as described above.

Figure 2.3. Molecular Diagram of $(R) \mathbf{- 2 . 2 9}$ with Ellipsoids at $50 \%$ Probability. Hatoms Omitted for Clarity. (CCDC 1424635)


(R)-2-(2-(4-(Trifluoromethyl)phenyl)butan-2-yl)naphthalene ((R)-2.30).

Prepared via General Procedure A using $\mathbf{2 . 1 9}$ (prepared in $96 \%$ ee) as a colorless oil ( $117 \mathrm{mg}, 89 \%$ ). The enantiomeric excess was determined to be $96 \%$ by chiral HPLC analysis $($ CHIRALPAK IB, $0.2 \mathrm{~mL} / \mathrm{min}, 0 \% i-\mathrm{PrOH} /$ hexane, $\lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $39.173 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=35.980 \mathrm{~min}$. A second run using 2.19 (prepared in $95 \%$ ee) gave $2.30(95 \mathrm{mg}, 72 \%)$ in $95 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{24}=+9.9^{\circ}\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.91-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.45(\mathrm{~m}$, 4H), 7.35 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.13 (dd, $J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (s, 3H), $0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.9,145.9,133.2$, $131.9,128.1,128.02\left(\mathrm{q}, J_{C-F}=32.9 \mathrm{~Hz}\right), 128.0,127.9,127.6,126.9,126.2,125.8,125.1$,
$125.0\left(\mathrm{q}, J_{C-F}=3.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{C-F}=272.9 \mathrm{~Hz}\right), 47.0,33.8,26.8,9.25 ;{ }^{19} \mathrm{~F}$ NMR (377 MHz, $\mathrm{CDCl}_{3}$ ) $\delta$-62.2; FTIR (NaCl/thin film) 3057, 2971, 2937, 2880, 1921, 1617, 1504, 1409, 1325, 1273, 1122, 1068, 1016, 948, 841, $748 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3}: 328.1439$, found: 328.1447 .

(S)-2-(2-(3-Fluorophenyl)butan-2-yl)naphthalene ((S)-2.31). Prepared via General Procedure A using 2.19 (prepared in $96 \%$ ee) as a colorless oil (run 1: 103.5 $\mathrm{mg}, 93 \%$; run 2: $106.4 \mathrm{mg}, 96 \%$ ). The enantiomeric excess was determined to be $94 \%$ (run 1: $94 \%$ ee; run 2: $94 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46$ $\mathrm{cm}), 3.0 \mathrm{~mL} / \mathrm{min}, 8 \% \mathrm{EtOH}(0.1 \%$ diethylamine $) / \mathrm{CO}_{2}$ (100 bar), $\lambda=220 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}$ (major) $=5.22 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=5.57 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+7.5^{\circ}\left(\mathrm{c} 1.19, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=8.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=$ 8.0, 1.2 Hz, 1H), $6.95(\mathrm{dt}, J=11.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{td}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.9\left(\mathrm{~d}, J_{C-F}=245 \mathrm{~Hz}\right), 152.6\left(\mathrm{~d}, J_{C-F}=6.4 \mathrm{~Hz}\right), 146.3,133.3,131.9,129.4\left(\mathrm{~d}, J_{C-F}=\right.$ $8.2 \mathrm{~Hz}), 128.1,127.8,127.5,127.0,126.1,125.7,125.0,123.4\left(\mathrm{~d}, J_{C-F}=2.7 \mathrm{~Hz}\right), 114.7$ $\left(\mathrm{d}, J_{C-F}=21.7 \mathrm{~Hz}\right), 112.7\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 46.8\left(\mathrm{~d}, J_{C-F}=1.5 \mathrm{~Hz}\right), 33.8,26.8,9.3$; ${ }^{19}$ F NMR ( $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-113.6; FTIR (NaCl/thin film) 3056, 2970, 2878, 1612, 1585, 1485, 1433, 1243, 1163, 917, 818, 783, $477 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}$ : 278.1471 , found: 278.1479 .

(S)-2-(2-(2,4-Dimethylphenyl)butan-2-yl)naphthalene ((S)-2.32). Prepared via General Procedure A using 2.19 (prepared in $96 \%$ ee) as a colorless oil (run 1: 103.8 $\mathrm{mg}, 90 \%$; run 2: $100.4 \mathrm{mg}, 87 \%$ ). The enantiomeric excess was determined to be $95 \%$ (run 1: $95 \%$ ee; run 2: $95 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H ( $25 \times 0.46$ $\mathrm{cm}), 3.0 \mathrm{~mL} / \mathrm{min}, 8 \% \mathrm{EtOH}(0.1 \%$ diethylamine $) / \mathrm{CO}_{2}$ (100 bar), $\lambda=220 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}$ (major) $=7.83 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.59 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=-16.3^{\circ}\left(\mathrm{c} 1.02, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dtd, $J=14.9,7.5,7.0,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H})$, $6.91-6.85(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $0.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.2,142.8,137.2,135.7$, $133.5,133.4,131.7,128.0,127.7,127.6,127.5,126.3,126.1,125.8,125.3,124.2,46.9$, 32.8, 28.0, 21.9, 20.9, 9.5; FTIR (NaCl/thin film) 3054, 2969, 2934, 2876 1630, 1598, 1502, 1455, 1376, 1265, 1130, 1040, 948, 894, 769, $476 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{22} \mathrm{H}_{24}: 288.1878$, found: 288.1896 .

(S)-5-(2-(Naphthalen-2-yl)butan-2-yl)benzo-[1,3]-dioxole
((S)-2.33).
Prepared via General Procedure A using $\mathbf{2 . 1 9}$ (prepared in $95 \%$ ee) as a colorless oil (run 1: $110 \mathrm{mg}, 90 \%$; run $2: 100 \mathrm{mg}, 82 \%$ ). The enantiomeric excess was determined to
be $92 \%$ (run 1: $92 \%$ ee; run 2: $92 \%$ ee) by chiral SFC analysis (CHIRALCEL OJ-H (25 x 0.46 cm ), $3.0 \mathrm{~mL} / \mathrm{min}, 30 \% \mathrm{EtOH}(0.1 \%$ diethylamine $) / \mathrm{CO}_{2}$ ( 100 bar ), $\lambda=220 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}($ major $)=4.19 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=4.93 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+3.9^{\circ}\left(\mathrm{c} 4.57, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 2.31-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 147.6, 147.1, 145.4, 143.8, 133.3, 131.9, 128.1, 127.7, 127.5, 127.1, 126.0, 125.6, 124.8, 120.4, 108.7, 107.6, 100.9, 46.6, 34.1, 27.1, 9.4; FTIR (NaCl/thin film) 3055, 2968, 2933, 2877, 1631, 1599, 1485, 1430, 1235, 1039, 938, 817, $746 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}: 304.1463$ found: 304.1482 .

(S)-2-Methoxy-6-(2-(3-methoxyphenyl)butan-2-yl)naphthalene ((S)-2.34). Prepared via General Procedure A using 2.19a (prepared in $92 \%$ ee) as a colorless sticky oil (run 1: $120 \mathrm{mg}, 94 \%$; run 2: $124.9 \mathrm{mg}, 98 \%$ ). The enantiomeric excess was determined to be $90 \%$ (run 1: $90 \%$ ee; run $2: 89 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.6 \mathrm{~mL} / \mathrm{min}, 0.1 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=16.688$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=18.948 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+7.7^{\circ}\left(\mathrm{c} 4.28, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.30$ - $2.18(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,157.6,151.7,144.6,132.9,129.6,128.9,128.7,127.7,126.6,124.8,120.4,118.6$,
114.3, 110.2, 105.7, 55.5, 55.2, 46.7, 33.9, 26.9, 9.4; FTIR (NaCl/thin film) 3057, 2967, 2936, 2834, 1609, 1488, 1456, 1388, 1264, 1198, 1032, 852, $779 \mathrm{~cm}^{-1}$; HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}: 321.1855$, found: 321.1859.

(R)-1-(2-(3-Methoxyphenyl)butan-2-yl)naphthalene ((R)-2.35). Prepared via General Procedure A using 2.19b (prepared in $90 \%$ ee), except on a 0.30 mmol scale. Product 2.35 was isolated as a colorless sticky oil ( $58.6 \mathrm{mg}, 67 \%$ ). The enantiomeric excess was determined to be $88 \%$ by chiral HPLC analysis (CHIRALPAK IB, 0.6 $\mathrm{mL} / \mathrm{min}, 0.1 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=11.227 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.389$ min. A duplicate run was performed via General Procedure A using 2.19b (prepared in $84 \%$ ee), except on a 0.3 mmol scale, to give 2.35 as a colorless oil ( $70.1 \mathrm{mg}, 80 \%$ ) in $83 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{24}=+17.1^{\circ}\left(\mathrm{c} 3.09, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.75$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.0,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.84$ $-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{dq}, J=$ $14.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dq}, J=13.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 0.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.7,153.1,143.3,135.0,131.6,129.3,129.0,127.9$, $127.3,125.3,124.9,124.8,124.7,119.4,113.1,110.0,55.2,47.5,33.6,29.4,9.4 ;$ FTIR ( $\mathrm{NaCl} /$ /hin film) 3048, 2969, 2936, 2833, 1604, 1580, 1485, 1289, 1043, 877, 777, 705 $\mathrm{cm}^{-1} ; \mathrm{HRMS}(\mathrm{CI}+)[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}: 291.1749$, found: 291.1747 .

(S)-6-(2-(3-Methoxyphenyl)butan-2-yl)-2-methylquinoline
((S)-2.36).
Prepared via General Procedure A using 2.19c (prepared in $99 \%$ ee), except that $\mathbf{2 . 2 0}$ ( $133 \mathrm{mg}, 0.332 \mathrm{mmol}, 0.83$ equiv.) was used in place of 2.21 and the reaction mixture was heated at $60^{\circ} \mathrm{C}$. Product $\mathbf{2 . 3 6}$ was isolated as a pale yellow oil (run 1: $91 \mathrm{mg}, 74 \%$; run 2: $102.9 \mathrm{mg}, 84 \%$ ). The enantiomeric excess was determined to be $97 \%$ (run 1:97\% ee; run 2: $97 \%$ ee) by chiral HPLC analysis (CHIRALPAK IA, $1.0 \mathrm{~mL} / \mathrm{min}, 5 \% ~ i-$ $\mathrm{PrOH} / \mathrm{hexane}, \lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=8.758 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.969 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+5.7^{\circ}$ (c $\left.3.68, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $2.73(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.5,158.6,151.1,146.9,146.6,136.4,130.7,129.0,128.3,126.1$, 124.5, 122.0, 120.3, 114.3, 110.4, 55.2, 46.8, 33.9, 26.9, 25.4, 9.3; FTIR (NaCl/thin film) 3053, 2968, 2936, 2833, 1599, 1488, 1431, 1291, 1254, 1173, 1052, 837, $703 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}: 305.1780$, found: 305.1759.

(S)-tert-Butyl((5-(3-methoxyphenyl)-5-(naphthalen-2-
yl)hexyl)oxy)dimethylsilane ((S)-2.37). Prepared via General Procedure A using 2.19d
(prepared in $99 \%$ ee) as a colorless sticky oil ( $159.8 \mathrm{mg}, 89 \%$ ). The enantiomeric excess was determined to be $99 \%$ by chiral HPLC analysis (CHIRALPAK IB, $0.4 \mathrm{~mL} / \mathrm{min}$, $100 \%$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=33.672 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.337 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=$ $-11.0^{\circ}\left(\mathrm{c} 5.22, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-$ $7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dddd, $J=19.3,8.1,6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.09(\mathrm{~m}, 2 \mathrm{H})$, $0.84(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,151.6,147.0,133.3$, $131.9,129.0,128.1,127.7,127.5,127.1,125.9,125.5,124.7,120.3,114.2,110.3,63.2$, 55.2, 46.6, 41.4, 33.7, 27.6, 26.1, 21.3, 18.4, -5.1; FTIR (NaCl/thin film) 3055, 2934, 2856, 1606, 1470, 1255, 1099, 1046, 836, 775, 705, $476 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Si}: 448.2798$, found: 448.2790.

(S)-2-(2-(3-Methoxyphenyl)-4-phenylbutan-2-yl)naphthalene ((S)-2.38).

Prepared via General Procedure A using 2.19e (prepared in $94 \%$ ee), except that the reaction was run for 48 h . Product $\mathbf{2 . 3 8}$ was obtained as a colorless oil (run 1: 171.5 mg , $90 \%$; run 2: $137.8 \mathrm{mg}, 94 \%$ ). The enantiomeric excess was determined to be $94 \%$ (run1: $94 \%$ ee; run 2: $94 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.8 \mathrm{~mL} / \mathrm{min}, 100 \%$ hexane, $\lambda=210 \mathrm{~nm})$; $\mathrm{t}_{\mathrm{R}}($ major $)=34.901 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.785 \mathrm{~min} .[\quad]_{\mathrm{D}}^{24}=-25.9^{\circ}$ (c 4.54, $\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87-7.83$ (m, 2H), 7.81 (dd, $J=7.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{ddd}, J=8.3,2.4,1.0$
$\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.6,151.1,146.6,143.0,133.3,132.0,129.1,128.51,128.50$, $128.2,127.9,127.5,127.0,126.1,125.9,125.7,124.8,120.2,114.2,110.5,55.3,46.7$, $43.9,31.5,27.5$; FTIR ( $\mathrm{NaCl} /$ thin film) 3056, 3024, 2946, 2867, 1600, 1283, 1494, 1291, 1047, 908, 818, $760 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{O}: 366.1984$, found: 366.1967.

Please note: The absolute configuration of $\mathbf{2 . 3 8}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor $\mathbf{S}-\mathbf{2 . 1 9 e}$ has not been reported in the literature. Please see the experimental for S-2.19e below.

(E)-2-(2-(3-Methoxyphenyl)-5-(o-tolyl)pent-4-en-2-yl)naphthalene (2.39).

Prepared via General Procedure A using 2.19f (prepared in $96 \%$ ee), except that $\mathbf{2 . 2 0}$ ( $133 \mathrm{mg}, 0.332 \mathrm{mmol}, 0.83$ equiv.) was used in place of $\mathbf{2 . 2 1}$. Product $\mathbf{2 . 3 9}$ was isolated as a colorless sticky oil (run 1: $125.6 \mathrm{mg}, 80 \%$; run $2: 119.7 \mathrm{mg}, 76 \%$ ). The enantiomeric excess was determined to be $95 \%$ (run 1: $95 \%$ ee; run 2: $94 \%$ ee) by chiral HPLC analysis (CHIRALPAK IC, $0.6 \mathrm{~mL} / \mathrm{min}, 0.1 \%$ hexane, $\lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=13.480$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=15.096 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+3.7^{\circ}\left(\mathrm{c} 4.84, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42$ (m, 2H), 7.24 (dd, $J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$,
$1.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 159.5,151.0,146.5,137.1,135.1,133.3$, $132.0,131.1,130.1,129.1,128.5,128.2,127.8,127.5,127.1,127.0,126.04,126.02$, 125.9, 125.7, 124.8, 120.3, 114.2, 110.6, 55.3, 46.8, 45.6, 27.7, 19.8; FTIR (NaCl/thin film) $3054,2965,2933,1599,1485,1431,1258,1047,967,818,754 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}: 392.2140$, found: 392.2137 .

Please note: The absolute configuration of $\mathbf{2 . 3 9}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its acetate precursor 2.19f has not been reported in the literature. Please see the experimental for 2.19 f below.

(S)-2-(1,3-Bis(3-methoxyphenyl)pentan-3-yl)naphthalene ((S)-2.40).

Prepared via General Procedure A using 2.19g (prepared in $89 \%$ ee), except that $\mathbf{2 . 2 0}$ ( $133 \mathrm{mg}, 0.332 \mathrm{mmol}, 0.83$ equiv.) was used in place of $\mathbf{2 . 2 1}$. Product $\mathbf{2 . 4 0}$ was isolated as a colorless sticky oil ( $127 \mathrm{mg}, 77 \%$ ). The enantiomeric excess was determined to be $87 \%$ by chiral SFC analysis (CHIRALCEL OJ-H(25 x 0.46 cm ), $3.0 \mathrm{~mL} / \mathrm{min}, 20 \%$ $\mathrm{MeOH}(0.1 \%$ diethylamine $) / \mathrm{CO}_{2}(100$ bar $\left.), \lambda=220 \mathrm{~nm}\right) ; \mathrm{t}_{\mathrm{R}}$ (major) $=9.10 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=7.81 \mathrm{~min}$. A duplicate experiment was conducted with $\mathbf{2 . 1 9 g}$ (prepared in $87 \%$ ee) to give 22 ( $103 \mathrm{mg}, 63 \%$ ) in $86 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{24}=-30.5^{\circ}\left(\mathrm{c} 3.04, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.87-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ 7.41 (m, 2H), 7.19 (td, $J=7.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (dd, $J=8.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.81$ $(\mathrm{m}, 2 \mathrm{H}), 6.77-6.67(\mathrm{~m}, 3 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.50-$ $2.44(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.22(\mathrm{~m}, 4 \mathrm{H}), 0.75(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
$\delta 159.8,159.4,150.1,145.7,144.8,133.2,131.9,129.5,128.9,128.2,127.7,127.51$, $127.48,126.0,125.6,125.5,120.93,120.92,114.9,114.4,111.0,110.4,55.29,55.28$, 50.0, 38.9, 30.9, 29.5, 8.6; FTIR (NaCl/thin film) 3054, 2955, 2833, 1600, 1487, 1257, 1153, 1050, 908, 813, $782 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{2}$ : 410.2246, found: 410.2238 .

Please note: The absolute configuration of $\mathbf{2 . 4 0}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor $\mathbf{S - 2 . 1 9 g}$ has not been reported in the literature. Please see the experimental for S-2.19g below.

(R)-2-(1-(3-Methoxyphenyl)-1-phenylethyl)naphthalene ((R)-2.41).

Prepared via General Procedure A using 2.19h (prepared in $96 \%$ ee) as a colorless oil (run 1: $95 \mathrm{mg}, 70 \%$; run $2: 101 \mathrm{mg}, 75 \%$ ). The enantiomeric excess was determined to be $94 \%$ (run 1: $94 \%$; run 2: $94 \%$ ) by chiral HPLC analysis (CHIRALPAK IB, 0.2 $\mathrm{mL} / \mathrm{min}, 0.1 \%$ hexane, $\lambda=210 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=49.084 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=52.102 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=+15.0^{\circ}\left(\mathrm{c} 0.86, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.74$ $(\mathrm{m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.4,150.6,148.8,146.5,133.2,132.0,130.6,128.94,128.91,128.3,128.1,127.8$, $127.5,127.0,126.2,126.0,125.9,121.7,115.6,110.9,55.3,52.9,30.6$; FTIR (NaCl/thin
film) $3055,2978,2934,2833,1597,1487,1256,1044,820,745,701 \mathrm{~cm}^{-1}$; HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}: 339.1749$, found: 339.1742.

(R)-4-(1-(3-Methoxyphenyl)-1-phenylethyl)-1,1'-biphenyl
( $(R)$-2.42).
Prepared via General Procedure A using 2.19i (prepared as $91 \%$ ee), except with 10 $\mathrm{mol} \% \mathrm{NiCl}_{2}$. DME, $10 \mathrm{~mol} \%$ CyJohnPhos, $60^{\circ} \mathrm{C}$, 48 h . Product $\mathbf{2 . 4 2}$ was isolated as a colorless oil (run 1: $84.4 \mathrm{mg}, 58 \%$; run 2: $96.2 \mathrm{mg}, 66 \%$ ). The enantiomeric excess was determined to be $91 \%$ (run 1: $91 \%$ ee; run $2: 91 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.6 \mathrm{~mL} / \mathrm{min}, 0.1 \%$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=18.913 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}$ (minor) $=18.288 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+31.5^{\circ}\left(\mathrm{c} 1.68, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.60(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=7.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.14$ $(\mathrm{m}, 4 \mathrm{H}), 6.80-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 159.4,150.8,149.0,148.2,140.9,138.8,129.3,128.90$, $128.86,128.85,128.0,127.3,127.1,126.6,126.2,121.6,115.6,110.8,55.3,52.5,30.6$; FTIR (NaCl/thin film) 3055, 3028, 2979, 2833, 1598, 1486, 1290, 1254, 1040, 845, 735, $699 \mathrm{~cm}^{-1}$; HRMS (CI+) [M+H] calculated for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}: 365.1905$, found: 365.1907.

(R)-1-(1-(4-Fluorophenyl)-1-phenylethyl)-3-methoxybenzene ( $(\boldsymbol{R})$-2.46).

Prepared via General Procedure A using 2.19j (prepared as $90 \%$ ee), except with 10 $\mathrm{mol} \% \mathrm{NiCl}_{2} \cdot \mathrm{DME}, 25 \mathrm{~mol} \% \mathrm{PCy}_{2}\left(\mathrm{o}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right), 60^{\circ} \mathrm{C}, 48 \mathrm{~h}$. Product $\mathbf{2 . 4 6}$ was isolated as a colorless oil (run 1: $89.4 \mathrm{mg}, 73 \%$; run 2: $84.6 \mathrm{mg}, 69 \%$ ). The enantiomeric excess was determined to be $76 \%$ (run 1: $77 \%$ ee; run 2: $74 \%$ ee) by chiral HPLC analysis (CHIRALPAK IB, $0.6 \mathrm{~mL} / \mathrm{min}, 0.1 \%$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=13.431 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}$ (minor) $=14.101 \mathrm{~min} \cdot[\alpha]_{\mathrm{D}}{ }^{24}=+2.61^{\circ}\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.32-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{ddd}, J=8.2$, $2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{ddd}, \mathrm{J}=7.8,1.7,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, 3 H ), 2.17 ( $\mathrm{s}, 3 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 161.67,159.23,158.56,149.94$, $148.06,144.06\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 144.01\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 129.67\left(\mathrm{~d}, J_{C-F}=7.9 \mathrm{~Hz}\right)$, $129.55\left(\mathrm{~d}, J_{C-F}=7.9 \mathrm{~Hz}\right), 128.19,127.94,127.30,125.49120 .65,114.71\left(\mathrm{~d}, J_{C-F}=21.0\right.$ $\mathrm{Hz}), 114.0\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 113.79,109.99,54.47,51.42,29.96 ;{ }^{19} \mathrm{~F}$ NMR $(377 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta$-117.44; FTIR (NaCl/thin film) 3057, 3029, 2980, 2937, 2834, 1895, 1598, $1507,1315,1291,1164,1047,917,838,806,701,674,575 \mathrm{~cm}^{-1} ;$ HRMS (CI+) $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{OF}$ : 307.1420, found: 307.1493.

### 2.4.2.2 General Procedure B: Preparation of (S)-2-(Naphthalen-2-yl)butan-2-yl Acetate (2.19)



In an oven-dried $100-\mathrm{mL}$ round-bottomed flask, was placed 2-(naphthalen-2-yl)butan-2-ol (2.18, prepared in $96 \%$ ee, $1.5 \mathrm{~g}, 7.5 \mathrm{mmol}, 1.0$ equiv.), 4pyrrolidinopyridine (PPY, $168 \mathrm{mg}, 1.13 \mathrm{mmol}, 0.150$ equiv.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}, 0.3$
M). Then flask was placed in an ice/water bath. $\mathrm{Et}_{3} \mathrm{~N}$ ( $3.1 \mathrm{~mL}, 23 \mathrm{mmol}, 3.0$ equiv.) was added, followed by acetic anhydride ( $1.4 \mathrm{~mL}, 15 \mathrm{mmol}, 2.0$ equiv.). The solution was then stirred at room temperature for 14 h. Sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added, and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with sat. NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude mixture was purified by silica gel chromatography ( $0-20 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to give $\mathbf{2 . 1 9}$ as a viscous oil ( $1.45 \mathrm{~g}, 80 \%$ ). The enantiomeric excess was determined to be $96 \%$ by chiral HPLC analysis (CHIRALPAK IB, $1 \mathrm{~mL} / \mathrm{min}, 1 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}$ (major) $=8.234 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=6.313 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+5.0^{\circ}\left(\mathrm{c} 3.59, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.86-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.08(\mathrm{~m}$, $5 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,142.4$, $133.2,132.5,128.3,128.1,127.6,126.2,125.9,123.6,123.2,84.6,35.1,24.5,22.4,8.3$; FTIR (NaCl/thin film) 3057, 2977, 2938, 2880, 1734, 1458, 1366, 1246, 1128, 1017, 817, 747, $477 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ : 242.1307, found: 242.1309 .

This type of compound decomposed to olefins quickly in pure form at room temperature, but is relatively stable in cold solution. Our suggestion is to immediately dissolve in anhydrous 2-Me-THF and store in fridge under $\mathrm{N}_{2}$.

A crystal suitable for X-ray diffraction analysis was obtained upon cooling the viscous oil isolated above neat at $-35^{\circ} \mathrm{C}$. The crystal structure demonstrates that the absolute configuration is $S$. (Figure 2.4)

Figure 2.4. Molecular Diagram of (S)-2.19 with Ellipsoids at 50\% Probability, Hatoms Omitted for Clarity. (CCDC 1502353)


(S)-2-(6-Methoxynaphthalen-2-yl)butan-2-yl acetate ((S)-2.19a). Prepared via General Procedure B using 2.18a (prepared as $92 \%$ ee) as a colorless oil ( $75 \%$ ). The enantiomeric excess was assumed to be $92 \%$ based on the starting material (2.18a). $[\alpha]_{\mathrm{D}}{ }^{24}=+42^{\circ}\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.40$ (dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ $(\mathrm{s}, 3 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 5 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,157.8,140.1,133.6,129.8,128.7,126.9,123.8,123.5,119.0,105.7$, 84.7, 55.5, 35.1, 24.5, 22.4, 8.3; FTIR (NaCl/thin film) 2975, 2937, 1734, 1608, 1367, 1247, 1204, 1164, 1031, $850 \mathrm{~cm}^{-1}$; HRMS (CI+) [M]+H calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3}$ : 273.1491, found: 273.1501 .

(S)-2-(Naphthalen-1-yl)butan-2-yl acetate ((S)-2.19b). Prepared via General Procedure B using 2.18b ( $90 \%$ ee) as a colorless oil (58\%). The enantiomeric excess was determined to be $90 \%$ by chiral HPLC analysis (CHIRALPAK IB, $0.7 \mathrm{~mL} / \mathrm{min}$, $2.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=9.214 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.322 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}$ $=+10.2^{\circ}\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}^{\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)} \delta 8.55(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.87(\mathrm{dd}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{dq}, J=14.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dq}, J=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5$, $139.9,134.9,130.4,129.7,128.7,125.6,125.5,125.1,125.0,124.3,85.6,34.0,24.6$, 21.8, 8.7; FTIR (NaCl/thin film) 2979, 2940, 1734, 1653, 1558, 1507, 1364, 1242, 1107, 1015, 804, $776 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}: 242.1307$, found: 242.1316.

(S)-2-(2-Methylquinolin-6-yl)butan-2-yl acetate ((S)-2.19c). Prepared via General Procedure B using 2.18c (99\% ee) as a yellow oil ( $87 \%$ ). The enantiomeric excess was determined to be $99 \%$ by chiral HPLC analysis (CHIRLPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}$, $6.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=13.331 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.787 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=+7.8^{\circ}\left(\mathrm{c} 1.51, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ $(\mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 5 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,159.0,147.1,142.2,136.5,128.7,126.7,126.1,123.2,122.3$,
84.3, 35.1, 25.4, 24.4, 22.3, 8.3; FTIR (NaCl/thin film) 2977, 2938, 1739, 1601, 1368, 1247, 1136, 1078, $834 \mathrm{~cm}^{-1} ;$ HRMS (CI+) [M]+H calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}$ : 258.1494, found: 258.1488 .

(S)-6-((tert-Butyldimethylsilyl)oxy)-2-(naphthalen-2-yl)hexan-2-yl acetate ((S)-2.19d). Prepared via General Procedure B using 2.18d (99\% ee) as a colorless oil (75\%). The enantiomeric excess was determined to be $99 \%$ by chiral HPLC analysis (CHIRLCEL OD-H, $1.0 \mathrm{~mL} / \mathrm{min}, 0.5 \% ~ i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $21.535 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.469 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+15.4^{\circ}\left(\mathrm{c} 4.73, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=11.1,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}$, $3 \mathrm{H}), 3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 5 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.9$, $142.5,133.2,132.5,128.3,128.1,127.6,126.1,125.9,123.5,123.1,84.2,63.0,42.4$, 33.0, 26.0, 24.8, 22.4, 20.3, 18.4, -5.2; FTIR (NaCl/thin film) 3058, 2952, 2929, 2857, $1739,1366,1248,1101,836,775 \mathrm{~cm}^{-1} ;$ HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$ : 400.2434, found: 400.2435 .

(S)-2-(Naphthalen-2-yl)-4-phenylbutan-2-yl acetate ((S)-2.19e). Prepared via General Procedure B as a colorless oil ( $96 \%$ ). The enantiomeric excess was determined to be $94 \%$ by chiral HPLC analysis (CHIRALPAK IA, $1.0 \mathrm{~mL} / \mathrm{min}, 0.5 \% ~ i-$ $\operatorname{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=11.227 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=12.577 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=$ $-74.8^{\circ}\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.89-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.43$
(m, 3H), $7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.34$ ( $\mathrm{m}, 4 \mathrm{H}$ ), $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,142.2,141.8$, $133.2,132.5,128.49,128.46,128.4,128.3,127.6,126.3,126.01,126.00,123.6,123.0$, 84.0, 44.1, 30.4, 25.3, 22.4; FTIR (NaCl/thin film) 3059,3 025, 2937, 1734, 1717, 1652, 1558, 1506, 1244, $747 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}$ : 318.1620, found: 318.1648.

Please note: The absolute configuration of 2.19e is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor 2.18e has not been reported in the literature. Please see the experimental for 2.18e below.

(S)-1-(3-Methoxyphenyl)-3-(naphthalen-2-yl)pentan-3-yl acetate ((S)2.19g). Prepared via General Procedure B using 2.18g (89\% ee) as a colorless oil (80\%). The enantiomeric excess was assumed to be $89 \%$ based on the starting material. $[\alpha]_{D}{ }^{24}$ $=+30.5^{\circ}\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.55-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{ddd}, J=13.7,7.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.61$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dq}, J=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.41$ $(\mathrm{m}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 4 \mathrm{H}), 0.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.7,159.7,143.6,140.6,133.2,132.5,129.4,128.4,128.2,127.6$, $126.3,126.0,124.5,123.2,120.9,114.2,111.3,87.8,55.2,39.4,30.9,30.1,22.2,7.8$; FTIR (NaCl/thin film) 3056, 2970, 2937, 1733, 1600, 1489, 1455, 1366, 1242, 1046, 1021, 819, $748 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}: 362.1882$, found: 362.1906.

Please note: The absolute configuration of $\mathbf{2 . 1 9 g}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor $\mathbf{2 . 1 8 g}$ has not been reported in the literature. Please see the experimental for 2.18g below.

(R)-1-(Naphthalen-2-yl)-1-phenylethyl acetate $(\boldsymbol{( R )}$-2.19h). Prepared via General Procedure B using 2.18h ( $96 \%$ ee) as a colorless sticky oil (54\%). The enantiomeric excess was determined to be $96 \%$ by chiral HPLC analysis (CHIRLPAK $\mathrm{IB}, 1.0 \mathrm{~mL} / \mathrm{min}, 1.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm})$; $\mathrm{t}_{\mathrm{R}}($ major $)=8.923 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $7.511 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+15.3^{\circ}\left(\mathrm{c} 4.1, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.87$ $(\mathrm{m}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.16 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 169.4,145.6,142.9,133.0,132.6,128.5$, 128.3, 128.1, 127.7, 127.3, 126.3, 126.2, 126.1, 124.6, 124.5, 84.8, 27.0, 22.6; FTIR ( $\mathrm{NaCl} /$ /hin film) 3056, 3024, 2981, 1739, 1368, 1241, 1188, 749, $699 \mathrm{~cm}^{-1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}: 290.1307$, found: 290.1328.

(R)-1-([1,1'-Biphenyl]-4-yl)-1-phenylethyl acetate ( $(\boldsymbol{R})$-2.19i). Prepared via General Procedure B using 2.18i (91\% ee) as a colorless oil (61\%). The enantiomeric excess was assumed to be $91 \%$ based on the starting material. $[\alpha]_{D}{ }^{24}=-17.8^{\circ}$ (c 0.84 , $\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.44$
(t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 7 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 169.4,145.7,144.8,140.8,140.1,128.9,128.3,127.4$, 127.3, 127.2, 127.0, 126.5, 126.0, 84.6, 27.0, 22.6; FTIR (NaCl/thin film) 3057, 3029, 2939, 1739, 1600, 1582, 1487, 1446, 1368, 1238, 1057, 875, $761 \mathrm{~cm}^{-1}$; HRMS (LIFDI) $[M]+$ calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2}: 316.1463$, found: 316.1485.

(R)-1-(4-Fluorophenyl)-1-phenylethyl acetate $(\boldsymbol{( R )} \mathbf{( 2 . 1 9 j})$. Prepared via General Procedure B using 2.18j ( $90 \%$ ee) as a colorless oil ( $95 \%$ ). The enantiomeric excess was assumed to be $93 \%$ based on the starting material. $[\alpha]_{D}{ }^{24}=-12.4^{\circ}$ (c 0.84 , $\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (s, 3H), $2.12(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.37,163.08,160.64,145.61$, $141.54\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 141.51\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 128.31,127.95\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right)$, $127.87\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right), 127.37,125.89,115.16\left(\mathrm{~d}, J_{C-F}=21.4 \mathrm{~Hz}\right), 114.95\left(\mathrm{~d}, J_{C-F}=\right.$ $21.4 \mathrm{~Hz}), 84.25,27.15,22.54 ;{ }^{19} \mathrm{~F}$ NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-115.58$; FTIR ( $\mathrm{NaCl} /$ thin film) $3463,3061,2983,2939,1740,1602,1509,1447,1370,1237,1115,947,699,560$ $\mathrm{cm}^{-1} ;$ HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{2}: 258.1132$, found: 258.1358.

Please note: The absolute configuration of $\mathbf{2 . 1 9} \mathbf{j}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor 2.18j has not been reported in the literature. Please see the experimental for 2.18j below.

### 2.4.2.3 Preparation of (S,E)-2-(Naphthalen-2-yl)-5-(o-tolyl)pent-4-en-2-yl acetate ( $(S)$-2.19f)



2-(Naphthalen-2-yl)pent-4-en-2-ol (2.18f). This procedure was adapted from that reported in the literature. ${ }^{12}$ In an oven-dried, $50-\mathrm{mL}$, round-bottomed flask was placed ( $R$ )-BINOL ( $312 \mathrm{mg}, 1.09 \mathrm{mmol}, 0.300$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL}) . \mathrm{Ti}(\mathrm{O}-\mathrm{iPr})_{4}$ ( $0.33 \mathrm{~mL}, 1.1 \mathrm{mmol}, 0.30$ equiv.) was added at room temperature. The mixture was stirred for 10 min . Then $i \operatorname{PrOH}(5.6 \mathrm{~mL}, 73 \mathrm{mmol}, 20$ equiv.) was added, followed by a solution of 2-acetonaphthone ( $618 \mathrm{mg}, 3.63 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}$ ), and then tetraallyltin ( $0.96 \mathrm{~mL}, 4.0 \mathrm{mmol}, 1.1$ equiv.). The orange solution was stirred at room temperature for 22 h and quenched with sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. To remove solids, the mixture was filtered through Celite ${ }^{\circledR}$, which was then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the organic layer was washed with sat. NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude mixture was purified on silica gel chromatography ( $0-20 \% \mathrm{EtOAc} /$ hexanes ) to give a 2 -(naphthalen-2-yl)pent-4-en-2-ol as a clear oil ( $634.2 \mathrm{mg}, 82 \%$ ). The enantiomeric excess was determined to be $96 \%$ by chiral HPLC analysis (CHIRALPAK IC, $1 \mathrm{~mL} / \mathrm{min}, 3 \% \mathrm{i}-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}$ ); $\mathrm{t}_{\mathrm{R}}($ major $)=12.164 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=10.175 \mathrm{~min}$. The spectral data of this compound matches of that reported in the literature. ${ }^{13}$

Please note: The absolute configuration of 2-(naphthalene-2-yl)pent-4-en-2-ol is tentatively assigned. The absolute configuration resulting from this allylation procedure has not been reported in the literature. [REF: Walsh ACIE 2002]

2-(Naphthalen-2-yl)pent-4-en-2-yl acetate (2.19f'). Using General Procedure B, 2-(naphthalen-2-yl)pent-4-en-2-yl acetate was obtained as a colorless oil ( 632.5 mg , 86\%) from 2-(naphthalen-2-yl)pent-4-en-2-ol ( $611 \mathrm{mg}, 2.88 \mathrm{mmol}, 96 \%$ ee): ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.90-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dtd}, J=9.2,6.9$, $5.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.63(\mathrm{ddt}, J=17.3,10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-4.95(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{dd}, J=$ $14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,142.2,133.2,133.0,132.6,128.4,128.2,127.6,126.2,126.0$, 123.6, 123.1, 118.8, 83.4, 46.4, 25.1, 22.4.
(S,E)-2-(Naphthalen-2-yl)-5-(o-tolyl)pent-4-en-2-yl acetate ((S)-2.19f). The procedure was adapted from reported literature. ${ }^{14}$ In $25-\mathrm{mL}$, round-bottomed flask was placed 2-(naphthalen-2-yl)pent-4-en-2-yl acetate ( $632 \mathrm{mg}, 2.49 \mathrm{mmol}, 1.00$ equiv.), 2methylphenyl boronic acid ( $677 \mathrm{mg}, 5.00 \mathrm{mmol}, 2.00$ equiv.), $N$-methylmorpholine ( $0.55 \mathrm{~mL}, 5.0 \mathrm{mmol}, 2.0$ equiv.), and $\mathrm{MeCN}(10 \mathrm{~mL})$. The flask was exposed to open air. $\mathrm{Pd}(\mathrm{OAc})_{2}(335 \mathrm{mg}, 0.498 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and neocuproine ( $125 \mathrm{mg}, 0.598 \mathrm{mmol}$, $24 \mathrm{~mol} \%$ ) were added. The mixture was heated at $80^{\circ} \mathrm{C}$ for 22 h . The mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The solid was removed by filtration through a pad of Celite ${ }^{\circledR}$, and the organic layer was concentrated. The crude mixture was purified via silica gel chromatography (0-15\% EtOAc/hexanes) to give 2.19f as a colorless oil ( $351 \mathrm{mg}, 41 \%$ ). The enantiomeric excess was determined to be $96 \%$ by chiral HPLC analysis (CHIRALPAK IA, $0.8 \mathrm{~mL} / \mathrm{min}, 1 \% i-\mathrm{PrOH} /$ hexane, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=15.924 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=21.866 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+10.7^{\circ}(\mathrm{c} 1.12$,
$\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.85-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.28$ (dd, $J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.62-6.56(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{dt}, J=15.3$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 169.8,142.2,136.8,135.3,133.2,132.6,132.1,130.2,128.4,128.2$, $127.6,127.3,126.3,126.1,126.05,126.03,125.9,123.6,123.2,83.8,45.9,25.3,22.4$, 19.8; FTIR (NaCl/thin film) 2955, 2921, 2850, 1713, 1464, 1364, 1232, 1076, $748 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}: 344.1776$, found: 344.1769.
Please note: The absolute configuration of $\mathbf{2 . 1 9 f}$ is tentatively assigned. The absolute configuration resulting from the method used in the preparation of its alcohol precursor has not been reported in the literature, as discussed above.

### 2.4.2.4 Preparation of Tertiary Benzyl Alcohols

### 2.4.2.4.1 Preparation of $2.18,2.18 a-2.18 \mathrm{c}$.


(S)-2-(Naphthalen-2-yl)butan-2-ol ((S)-2.18). This procedure was adapted from that reported in the literature. ${ }^{15}$ In an oven-dried, $100-\mathrm{mL}$, round-bottomed flask was placed 2.16 ( $33 \mathrm{mg}, 0.060 \mathrm{mmol}, 0.010$ equiv.) and $\mathrm{Et}_{2} \mathrm{Zn}(0.73 \mathrm{~mL}, 7.2 \mathrm{mmol}, 1.2$ equiv.). $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(2.1 \mathrm{~mL}, 7.2 \mathrm{mmol}, 1.2$ equiv.) was added. The resulting greenish solution was stirred at room temperature for 5 min . 2-Acetonaphthalone ( $1.02 \mathrm{~g}, 6.00$ mmol, 1.00 equiv.) was added into the flask in one portion. The mixture was stirred at room temperature for 17 h . The resulting brown sticky oil was diluted with EtOAc (50
$\mathrm{mL})$ and quenched with $\mathrm{HCl}(1 \mathrm{~N})$. The product was extracted from the aqueous layer with EtOAc ( $25 \mathrm{~mL} \times 2$ ). The combined organic layers were washed with sat. NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified via silica gel chromatography (5-10\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give ( $\boldsymbol{S}$ )-2.18 ( $470 \mathrm{mg}, 39 \%$ ) as a colorless oil. The enantiomeric excess was determined to be $97 \%$ by chiral HPLC analysis (CHIRLPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 3.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=10.269$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=11.370 \mathrm{~min}$. Based on the optical rotation, $[\alpha]_{\mathrm{D}}{ }^{24}=-9.5^{\circ}(\mathrm{c} 1.0, \mathrm{MeOH})$ (Literature data: $[\alpha]_{\mathrm{D}}{ }^{24}=+16.3^{\circ}(\mathrm{c} 1.0, \mathrm{MeOH})$ for $R$ configuration), ${ }^{14 \mathrm{~b}}$ the absolute configuration of $\mathbf{2 . 1 8}$ was assigned as $S$. The spectral data of this compound matched that reported in the literature. ${ }^{15}$

(S)-2-(6-Methoxynaphthalen-2-yl)butan-2-ol ((S)-2.18a). Prepared via the procedure described above for preparation of $(\boldsymbol{S}) \mathbf{- 2 . 1 8}$ as a colorless oil ( $32 \%$ ). The enantiomeric excess was determined to be $92 \%$ by chiral HPLC analysis (CHIRLPAK IC, $1.0 \mathrm{~mL} / \mathrm{min}, 3.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=21.219 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)$ $=16.516 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+5.1^{\circ}\left(\mathrm{c} 3.02, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}, J=12.2,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$, $0.82(\operatorname{td}, J=7.4,1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7,143.0,133.4,129.7$, $128.8,126.8,124.4,123.3,118.9,105.7,75.2,55.5,36.7,29.9,8.5$; FTIR ( $\mathrm{NaCl} /$ thin film) 3447 (br s), 3059, 2969, 2935, 1634, 4606, 1504, 1485, 1462, 1388, 1265, 1199, 1033, 852, $810 \mathrm{~cm}^{-1}$; HRMS (CI+) [M]+H calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}: 231.1385$, found: 231.1400.

(S)-2-(Naphthalen-1-yl)butan-2-ol ((S)-2.18b). Prepared via the procedure described above for preparation of (S)-2.18 as a colorless oil (9\%). The enantiomeric excess was determined as $90 \%$ by chiral HPLC analysis (CHIRLPAK IB, $0.7 \mathrm{~mL} / \mathrm{min}$, $2.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=15.085 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.287 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{24}=+33.7^{\circ}\left(\mathrm{c} 1.91, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79-8.75(\mathrm{~m}, 1 \mathrm{H})$, $7.87(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.48(\mathrm{pd}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}$, $1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 142.4,135.0$, 131.1, 129.3, 128.6, 127.1, 125.3, 125.2, 124.9, 124.0, 76.9, 35.4, 29.5, 9.0; FTIR ( $\mathrm{NaCl} /$ thin film) 3420 (brs), 3048, 2971, 2936, 2877, 1653, 1508, 1456, 1374, 1117, 804, $777 \mathrm{~cm}^{-1} ;$ HRMS (EI + ) [M]+H calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: 200.1201$, found: 200.1205 .

(S)-2-(2-Methylquinolin-6-yl)butan-2-ol ((S)-2.18c). Prepared via the procedure described above for preparation of $\mathbf{( S )} \mathbf{- 2 . 1 8}$ as a pale yellow solid ( mp 86 $89^{\circ}, 41 \%$ ). The enantiomeric excess was determined as $99 \%$ by chiral HPLC analysis (CHIRLPAK IC, $1 \mathrm{~mL} / \mathrm{min}, 8.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=230 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=23.228 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}($ minor $)=19.313 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+33^{\circ}\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J$ $=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{ddt}, J=27.2,14.1,7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 158.9$, $147.0,145.1,136.5,128.6,127.4,126.2,123.1,122.3,75.1,36.7,30.0,25.5,8.4 ;$ FTIR
( $\mathrm{NaCl} /$ thin film) 3355 (brs), 2969, 2933, 2878, 1601, 1497, 1457, 1374, 1165, 1126, 837, $755 \mathrm{~cm}^{-1}$; HRMS (CI+) [M]+H calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}: 216.1388$, found: 216.1398.

A crystal suitable for X-ray diffraction analysis was obtained via diffusion of hexanes into a solution of $\mathbf{2 . 1 8 c}$ in EtOAc at $-18{ }^{\circ} \mathrm{C}$. The crystal structure demonstrates that the absolute configuration is $S$ (Figure 2.5).

Figure 2.5. Molecular Diagram of (S)-2.18c with Ellipsoids at 50\% Probability, All Non-Oxygen Bound H-atoms Omitted for Clarity. (CCDC 1424634)


### 2.4.2.4.2 Preparation of 2.18d


(S)-6-((tert-Butyldimethylsilyl)oxy)-2-(4-nitrophenyl)hexan-2-ol ((S)-2.18d).

Prepared via the procedure described above for preparation of $\boldsymbol{( S )} \mathbf{- 2 . 1 8 d}$, except that bis(4-((tert-butyldimethylsilyl)oxy)butyl)zinc was used instead of $\mathrm{Et}_{2} \mathrm{Zn}$, as a colorless oil (30\%). The enantiomeric excess was determined to be $99 \%$ by chiral HPLC analysis (CHIRLPAK IA, $0.6 \mathrm{~mL} / \mathrm{min}, 3.0 \% ~ i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=14.468$
$\min , \mathrm{t}_{\mathrm{R}}($ minor $)=13.695 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+10.2^{\circ}\left(\mathrm{c} 2.63, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50$ $-7.42(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 145.5, 133.3, 132.4, 128.3, 128.0, 127.6, 126.1, $125.8,123.8,123.3,75.1,63.1,43.8,33.1,30.4,26.1,20.6,18.4,-5.16,-5.17$; FTIR ( $\mathrm{NaCl} /$ /hin film) 3432 (brs), 3056, 2952, 2929, 2857, 1471, 1254, 1101, 836, 775, 476 $\mathrm{cm}^{-1} ;$ HRMS (LIFDI) [M]+ calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}: 358.2328$, found: 358.2343.

### 2.4.2.4.3 Preparation of 2.18e and $\mathbf{2 . 1 8 g}$


(S)-2-(naphthalen-2-yl)-4-phenylbutan-2-ol (S)-2.18e. The procedure for formation of the allylic alcohol was adapted from a reported procedure. ${ }^{16}$ For preparation the vinylzinc reagent, in an oven-dried, round-bottomed flask was placed $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ ( $346 \mathrm{mg}, 1.20 \mathrm{mmol}, 1.20$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}$ ). At room temperature, phenylacetylene ( $0.13 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv.) was added into the flask and stirred for 10 min . The solvent was removed, and the orange solid was dissolved in PhMe (4.0 $\mathrm{mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$, before $\mathrm{Me}_{2} \mathrm{Zn}(1.0 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv., 1.2 M in PhMe ) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . The resulting solution was assumed to be the vinylzinc in PhMe solution. In a separate flask was
placed 2.16 ( $54.5 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.10$ equiv.), $\mathrm{Me}_{2} \mathrm{Zn}(0.33 \mathrm{~mL}, 0.40 \mathrm{mmol}, 0.40$ equiv., 1.2 M in PhMe ), and $\mathrm{PhMe}(2.0 \mathrm{~mL})$. To this mixture was added $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(0.36 \mathrm{~mL}$, $1.2 \mathrm{mmol}, 1.2$ equiv.) at room temperature. The mixture was stirred at room temperature for 15 min , then the solution was added into the pre-formed vinylzinc solution at $-78^{\circ} \mathrm{C}$ via cannula. The combined solution was warmed to $0{ }^{\circ} \mathrm{C}$, and treated with a solution of 2-acetylnaphthalone ( $170 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{PhMe}(1.0 \mathrm{~mL})$. The resulting reddish solution was stirred at room temperature for 16 h and then quenched with sat. $\mathrm{NaHCO}_{3}$ aq. $(20 \mathrm{~mL})$. The solid was removed via filtration through a pad of Celite ${ }^{\circledR}$. The product was extracted with EtOAc. The combined organic layers were washed with sat. NaCl , dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The residue was purified via silica gel chromatography ( $0-10 \% \mathrm{EtOAc} /$ hexanes ) to give $(E)$-2-(naphthalen-2-yl)-4-phenylbut-3-en-2-ol as a colorless oil ( $202 \mathrm{mg}, 77 \%$ ), which was used directly in next step.

Please note: We assume the same absolute configuration using these homemade vinylzinc reagents as when $\mathrm{Et}_{2} \mathrm{Zn}$ is used. However, the absolute configuration obtained for this procedure has not been reported in the literature. ${ }^{16}$
(E)-2-(Naphthalen-2-yl)-4-phenylbut-3-en-2-ol (202 mg, 0.736 mmol ) was dissolved in THF ( 7 mL ) at room temperature. $\mathrm{Pd} / \mathrm{C}(39 \mathrm{mg}, 0.037 \mathrm{mmol}, 10 \% \mathrm{w})$ was added. The headspace of the flask was evacuated and refilled with $\mathrm{H}_{2}$ three times. The mixture was then stirred at room temperature for 12 h under $\mathrm{H}_{2}$ ( 1 atm ). The solid was removed via filtration through a tight-packed pad of Celite ${ }^{\circledR}$. The filtrate was concentrated and purified via silica gel chromatography ( $0-10 \% \mathrm{EtOAc} / \mathrm{hexanes}$ ) to give (S)-2.18e (189 mg, 93\%) as a white solid (mp 76-79 $)$. $[\alpha]_{\mathrm{D}}{ }^{24}=+43.6^{\circ}$ (c 2.2, $\left.\mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.60$
(dd, $J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{pd}, J=6.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-$ $7.16(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{ddd}, J=13.7,11.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (ddd, $J$ $=13.6,11.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.0,142.3,133.4,132.4,128.51,128.46,128.3,128.2,127.6,126.3$, $125.90,125.89,123.7,123.4,75.1,45.9,30.8,30.7$; FTIR (NaCl/thin film) 3446 (brs), 3057, 3024, 2972, 2932, 1601, 1496, 1455, 819, 747, 700, $487 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}: 276.1514$, found: 276.1514 .

(S)-1-(3-methoxyphenyl)-3-(naphthalen-2-yl)pentan-3-ol
((S)-2.18g).
Following a similar procedure as for the preparation of $(\boldsymbol{S}) \mathbf{- 2 . 1 8 e}$ above, $(\boldsymbol{S}) \mathbf{- 2 . 1 8 g}$ was prepared as a colorless oil (40\% overall yield from 1-(naphthalene-2-yl)propan-1-one). The enantiomeric excess was determined to be $89 \%$ ee by chiral HPLC analysis (CHIRLPAK IC, $1.0 \mathrm{~mL} / \mathrm{min}, 5.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=9.989 \mathrm{~min}$, $\mathrm{t}_{\mathrm{R}}$ (minor) $=10.700 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+41.3^{\circ}\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.98-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dtd}, J=9.4,7.0,5.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.17(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 2.66 (ddd, $J=13.6,11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=13.6,11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-$ $2.17(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{dq}, J=14.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dq}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}$, $1 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 159.8,144.2,143.0,133.3$, $132.3,129.5,128.3,128.1,127.6,126.2,125.8,124.4,123.9,120.8,114.2,111.2,77.6$, 55.2, 44.5, 35.9, 30.3, 7.9; FTIR (NaCl/thin film) 3486 (brs), 3054, 2964, 2936, 1680, 1489, 1455, 1258, 1152, 1048, 819, 748, 698, $477 \mathrm{~cm}^{-1}$; HRMS (EI+) [M]+ calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}: 320.1776$, found: 320.1753 .

Please note: We assume the same absolute configuration using these homemade vinylzinc reagents as when $\mathrm{Et}_{2} \mathrm{Zn}$ is used. However, the absolute configuration obtained for this procedure has not been reported in the literature. ${ }^{16}$

### 2.4.2.4.4 Preparation of $\mathbf{2 . 1 8 h} \mathbf{- 2 . 1 8 j}$



$$
\begin{array}{rlr}
\mathrm{Ar}= & 2-\mathrm{Np}, & 2.18 \mathrm{~h} \\
& \text { 4-PhenyIC }{ }_{6} \mathrm{H}_{4}, 2.18 \mathrm{i} \\
& \text { 4-FuoroC }{ }_{6} \mathrm{H}_{4}, \quad 2.18 \mathrm{j}
\end{array}
$$


( $\boldsymbol{R}$ )-1-(naphthalen-2-yl)-1-phenylethan-1-ol $((\boldsymbol{R}) \mathbf{- 2 . 1 8 h})$. The procedure was adapted from that reported in the literature. ${ }^{17}$ In an oven-dried, $50-\mathrm{mL}$, round-bottomed flask was placed 2.16 ( $54.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.100$ equiv.), $\mathrm{Ph}_{2} \mathrm{Zn}$ ( $351 \mathrm{~mL}, 1.60 \mathrm{mmol}$, 1.60 equiv.), and $\mathrm{PhMe}(10 \mathrm{~mL})$ at room temperature. $\mathrm{Ti}(\mathrm{O}-i \operatorname{Pr})_{4}(0.1 \mathrm{~mL}, 0.60 \mathrm{mmol}$, 0.60 equiv.) was added. The mixture was stirred at room temperature for 15 min . A solution of 2-acetonaphthalone ( $170 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PhMe}(5 \mathrm{~mL})$ was added into the flask. The mixture was stirred at room temperature for 17 h . The reaction was then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq. $(20 \mathrm{~mL})$. The solids were removed via filtration through a pad of Celite ${ }^{\circledR}$. The mixture was extracted with EtOAc ( $25 \mathrm{~mL} \times 2$ ). The combined organic layers were washed with sat. NaCl , dried ( $\mathrm{NaSO}_{4}$ ), filtered, and concentrated. The residue was purified via silica gel chromatography (5-15\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ to give (R)-2. $18 \mathrm{~h}(203.7 \mathrm{mg}, 82 \%)$ as a colorless oil. The enantiomeric excess was determined to be $95 \%$ by chiral HPLC analysis (CHIRLPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}$, $4.0 \% i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=13.183 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.119 \mathrm{~min}$.
$[\alpha]_{\mathrm{D}}{ }^{24}=+10.7^{\circ}\left(\mathrm{c} 0.82, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.95(\mathrm{~m}, 1 \mathrm{H})$, $7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.44$ $(\mathrm{m}, 4 \mathrm{H}), 7.42(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 147.9,145.4,133.1$, $132.5,128.40,128.38,128.1,127.6,127.2,126.3,126.10,126.09,125.1,123.9,76.5$, 30.9; FTIR (NaCl/thin film) 3560 (brs), 3056, 2978, 2931, 1599, 1505, 1493, 14461, 1372, 1126, 1065, 909, $858 \mathrm{~cm}^{-1} ;$ HRMS (EI+) [M]+ calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BO}: 248.1201$, found: 248.1193.

(R)-1-([1,1'-biphenyl]-4-yl)-1-phenylethan-1-ol ( $(\boldsymbol{R})$-2.18i). Following a similar procedure as described for $(\boldsymbol{R}) \mathbf{- 2 . 1 8 h}$ above, compound $(\boldsymbol{R}) \mathbf{- 2 . 1 8 i}$ was prepared as a white solid (mp 108-111 ${ }^{\circ} \mathrm{C}, 72 \%$ ). The enantiomeric excess was determined to be $91 \%$ by chiral HPLC analysis (CHIRLPAK IB, $1.0 \mathrm{~mL} / \mathrm{min}, 2.0 \% ~ i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=34.792 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=18.929 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=+9.0^{\circ}(\mathrm{c} 1.0$, $\mathrm{CHCl}_{3}$ ): ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51$ $-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H})$, $2.22(\mathrm{~s}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 148.0, 147.2, 140.9, 140.0, 128.9, 128.4, 127.4, 127.21, 127.17, 127.1, 126.4, 126.0, 76.3, 31.0; FTIR (NaCl/thin film) 3458 (brs), 3056, 3028, 2978, 1599, 1486, 1449, 1401, 1266, 1171, 1068, 907, 845 $\mathrm{cm}^{-1} ;$ HRMS (CI+) [M]+H calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}: 275.1436$, found: 275.1444.

(R)-1-(4-fluorophenyl)-1-phenylethan-1-ol ((R)-2.18i). Following a similar procedure as described for $(\boldsymbol{R}) \mathbf{- 2 . 1 8 h}$ above, compound ( $\boldsymbol{R}) \mathbf{- 2 . 1 8 i}$ was prepared as a colorless oil ( $95 \%$ overall yield from 4-fluoroacetophenone). The enantiomeric excess was determined to be $90 \%$ by chiral HPLC analysis (CHIRLPAK IB, $0.4 \mathrm{~mL} / \mathrm{min}, 1.0 \%$ $i-\mathrm{PrOH} /$ hexanes, $\lambda=254 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{R}}($ major $)=52.679 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=49.042 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{24}=$ $+8.5^{\circ}\left(\mathrm{c} 1.2, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{dd}, J=$ 8.5, $6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, ~ J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H})$, $1.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 162.71,161.08,147.92,144.01\left(\mathrm{~d}, J_{C-F}=\right.$ $3.2 \mathrm{~Hz}), 144.00\left(\mathrm{~d}, J_{C-F}=3.2 \mathrm{~Hz}\right), 128.40,127.75\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 127.73\left(\mathrm{~d}, J_{C-F}=\right.$ $8.0 \mathrm{~Hz}), 127.26,125.90,115.07\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 114.99\left(\mathrm{~d}, J_{C-F}=21.2 \mathrm{~Hz}\right), 76.03$, 31.18; ${ }^{19}$ F NMR ( $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$-116.17; FTIR (NaCl/thin film) 3410 (brs), 2977, 1652, 1601, 1507, 1384, 1226, 1159, 1070, 835, 701, $567 \mathrm{~cm}^{-1} ;$ EI-MS (m/z) [M] ${ }^{+}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{OF}$ : 216.26 , found: 216.13.

### 2.4.3 Evidence for Stereoretention

As discussed above, the absolute configurations of 2.18c, (S)-2.19, and (R)-2.29 were determined by X-ray crystallography. The arylation of $(\boldsymbol{S}) \mathbf{- 2 . 1 9}$ produced $(\boldsymbol{R})-\mathbf{2 . 2 9}$, demonstrating that this arylation proceeds with overall retention of absolute
stereochemistry.


### 2.4.3.1 Crystal Structure Data for ( $\boldsymbol{R}$ )-2.29



Table 2.4. Sample and crystal data for $(\boldsymbol{R}) \mathbf{- 2 . 2 9}$.

Identification code
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size
Crystal system
Space group
mary029
$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}$
359.49

200(2) K
1.54178 Å
$0.248 \times 0.378 \times 0.487 \mathrm{~mm}$
orthorhombic
P 212121

| Unit cell dimensions | $\mathrm{a}=8.1727(3) \AA$ | $\alpha=90^{\circ}$ |
| :--- | :--- | :--- |
|  | $\mathrm{b}=12.9877(5) \AA$ | $\beta=90^{\circ}$ |
|  | $\mathrm{c}=19.1341(7) \AA$ | $\gamma=90^{\circ}$ |
| Volume | $2030.98(13) \AA^{3}$ |  |
| $\mathbf{Z}$ | 4 |  |
| Density (calculated) | $1.176 \mathrm{~g} / \mathrm{cm}^{3}$ |  |
| Absorption coefficient | $0.540 \mathrm{~mm}^{-1}$ |  |
| $\mathbf{F}(\mathbf{0 0 0})$ | 776 |  |

Table 2.5. Data collection and structure refinement for $(\boldsymbol{R})-\mathbf{2 . 2 9}$.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$
Final R indices

Weighting scheme
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
R.M.S. deviation from mean
4.11 to $59.90^{\circ}$
$-8<=\mathrm{h}<=9,-14<=\mathrm{k}<=13,-21<=1<=19$

## 6276

$2630[\mathrm{R}(\mathrm{int})=0.0365]$
95.1\%
multi-scan
0.8780 and 0.7080

Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2014/7 (Sheldrick, 2014)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
2630/0/249
0.860

2423 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0373, \mathrm{wR} 2=0.1046$
all data $\quad \mathrm{R} 1=0.0407, \mathrm{wR} 2=0.1084$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.1000 \mathrm{P})^{2}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.0(3)
0.0058(9)
0.135 and $-0.151 \mathrm{e}^{-3}$
$0.037 \mathrm{e}^{\mathrm{e}}{ }^{-3}$

Table 2.6. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{R})$. 2.29.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}_{\mathrm{ij}}$ tensor.

$$
\mathbf{x} / \mathbf{a} \quad \mathbf{y} / \mathbf{b} \quad \mathbf{z} / \mathbf{c} \quad \mathbf{U}(\mathbf{e q})
$$

| O1 | $0.4981(3)$ | $0.50887(17)$ | $0.01225(10)$ | $0.0528(6)$ |
| :--- | :--- | :--- | :--- | :--- |
| N1 | $0.5202(3)$ | $0.39117(18)$ | $0.09868(13)$ | $0.0412(6)$ |
| C1 | $0.6431(3)$ | $0.61242(19)$ | $0.24991(13)$ | $0.0288(6)$ |
| C2 | $0.5755(3)$ | $0.5641(2)$ | $0.30982(14)$ | $0.0311(7)$ |
| C3 | $0.4047(4)$ | $0.5453(2)$ | $0.31633(15)$ | $0.0364(7)$ |
| C4 | $0.3434(4)$ | $0.4997(2)$ | $0.37492(16)$ | $0.0445(8)$ |
| C5 | $0.4486(4)$ | $0.4689(2)$ | $0.42913(16)$ | $0.0455(8)$ |
| C6 | $0.6129(4)$ | $0.4850(2)$ | $0.42429(15)$ | $0.0403(7)$ |
| C7 | $0.6800(3)$ | $0.5343(2)$ | $0.36502(14)$ | $0.0334(7)$ |
| C8 | $0.8496(3)$ | $0.5562(2)$ | $0.35893(14)$ | $0.0377(7)$ |
| C9 | $0.9094(3)$ | $0.6044(2)$ | $0.30127(14)$ | $0.0376(8)$ |
| C10 | $0.8070(3)$ | $0.6340(2)$ | $0.24435(13)$ | $0.0305(6)$ |
| C11 | $0.8828(3)$ | $0.6918(2)$ | $0.18274(13)$ | $0.0298(6)$ |
| C12 | $0.9236(4)$ | $0.8013(2)$ | $0.20884(16)$ | $0.0396(7)$ |
| C13 | $0.7628(3)$ | $0.6988(2)$ | $0.12036(13)$ | $0.0354(7)$ |
| C14 | $0.8307(4)$ | $0.7444(2)$ | $0.05339(14)$ | $0.0435(8)$ |
| C15 | $0.0316(3)$ | $0.5282(2)$ | $0.14805(14)$ | $0.0342(7)$ |
| C16 | $0.1636(3)$ | $0.4742(2)$ | $0.12206(14)$ | $0.0355(7)$ |
| C17 | $0.3068(3)$ | $0.5257(2)$ | $0.10319(12)$ | $0.0295(6)$ |
| C18 | $0.3106(3)$ | $0.6315(2)$ | $0.11035(13)$ | $0.0305(6)$ |
| C19 | $0.1794(3)$ | $0.6850(2)$ | $0.13789(13)$ | $0.0303(6)$ |
| C20 | $0.0364(3)$ | $0.6345(2)$ | $0.15721(13)$ | $0.0290(6)$ |
| C21 | $0.4492(4)$ | $0.4735(2)$ | $0.06862(14)$ | $0.0354(7)$ |
| C22 | $0.6428(4)$ | $0.3346(3)$ | $0.05765(18)$ | $0.0536(9)$ |
| C23 | $0.5677(6)$ | $0.2525(3)$ | $0.0140(3)$ | $0.0894(15)$ |
| C24 | $0.4761(4)$ | $0.3501(2)$ | $0.16769(16)$ | $0.0459(8)$ |
| C25 | $0.6199(4)$ | $0.3331(3)$ | $0.21548(18)$ | $0.0530(9)$ |

Table 2.7. Bond lengths $(\AA)$ for $(\boldsymbol{R})-\mathbf{2 . 2 9}$.

| O1-C21 | $1.239(3)$ | N1-C21 | $1.345(4)$ |
| :--- | :--- | :--- | :--- |
| N1-C24 | $1.469(4)$ | N1-C22 | $1.470(4)$ |
| C1-C10 | $1.373(4)$ | C1-C2 | $1.419(4)$ |
| C1-H1 | 0.95 | C2-C7 | $1.413(4)$ |
| C2-C3 | $1.422(4)$ | C3-C4 | $1.363(4)$ |
| C3-H3 | 0.95 | C4-C5 | $1.406(4)$ |
| C4-H4 | 0.95 | C5-C6 | $1.361(5)$ |
| C5-H5 | 0.95 | C6-C7 | $1.414(4)$ |
| C6-H6 | 0.95 | C7-C8 | $1.419(4)$ |
| C8-C9 | $1.359(4)$ | C8-H8 | 0.95 |
| C9-C10 | $1.426(4)$ | C9-H9 | 0.95 |
| C10-C11 | $1.529(4)$ | C11-C20 | $1.539(4)$ |


| C11-C12 | $1.543(4)$ | $\mathrm{C} 11-\mathrm{C} 13$ | $1.548(4)$ |
| :--- | :--- | :--- | :--- |
| C12-H12A | 0.98 | C12-H12B | 0.98 |
| C12-H12C | 0.98 | C13-C14 | $1.517(4)$ |
| C13-H13A | 0.99 | C13-H13B | 0.99 |
| C14-H14A | 0.98 | C14-H14B | 0.98 |
| C14-H14C | 0.98 | C15-C16 | $1.379(4)$ |
| C15-C20 | $1.393(4)$ | C15-H15 | 0.95 |
| C16-C17 | $1.396(4)$ | C16-H16 | 0.95 |
| C17-C18 | $1.381(4)$ | C17-C21 | $1.501(4)$ |
| C18-C19 | $1.382(4)$ | C18-H18 | 0.95 |
| C19-C20 | $1.390(4)$ | C19-H19 | 0.95 |
| C22-C23 | $1.487(5)$ | C22-H22A | 0.99 |
| C22-H22B | 0.99 | C23-H23A | 0.98 |
| C23-H23B | 0.98 | C23-H23C | 0.98 |
| C24-C25 | $1.506(5)$ | C24-H24A | 0.99 |
| C24-H24B | 0.99 | C25-H25A | 0.98 |
| C25-H25B | 0.98 | C25-H25C | 0.98 |

Table 2.8. Bond angles $\left({ }^{\circ}\right)$ for ( $\boldsymbol{R}$ )-2.29.

| C21-N1-C24 | $124.5(2)$ | C21-N1-C22 | $117.6(2)$ |
| :--- | :--- | :--- | :--- |
| C24-N1-C22 | $117.8(2)$ | C10-C1-C2 | $122.2(2)$ |
| C10-C1-H1 | 118.9 | C2-C1-H1 | 118.9 |
| C7-C2-C1 | $119.3(2)$ | C7-C2-C3 | $118.8(3)$ |
| C1-C2-C3 | $121.9(3)$ | C4-C3-C2 | $120.5(3)$ |
| C4-C3-H3 | 119.8 | C2-C3-H3 | 119.8 |
| C3-C4-C5 | $120.4(3)$ | C3-C4-H4 | 119.8 |
| C5-C4-H4 | 119.8 | C6-C5-C4 | $120.6(3)$ |
| C6-C5-H5 | 119.7 | C4-C5-H5 | 119.7 |
| C5-C6-C7 | $120.5(3)$ | C5-C6-H6 | 119.8 |
| C7-C6-H6 | 119.8 | C2-C7-C6 | $119.3(3)$ |
| C2-C7-C8 | $118.3(2)$ | C6-C7-C8 | $122.4(3)$ |
| C9-C8-C7 | $120.7(3)$ | C9-C8-H8 | 119.7 |
| C7-C8-H8 | 119.7 | C8-C9-C10 | $122.2(3)$ |
| C8-C9-H9 | 118.9 | C10-C9-H9 | 118.9 |
| C1-C10-C9 | $117.3(2)$ | C1-C10-C11 | $123.7(2)$ |
| C9-C10-C11 | $118.9(2)$ | C10-C11-C20 | $109.7(2)$ |
| C10-C11-C12 | $106.9(2)$ | C20-C11-C12 | $111.8(2)$ |
| C10-C11-C13 | $111.5(2)$ | C20-C11-C13 | $107.5(2)$ |
| C12-C11-C13 | $109.4(2)$ | C11-C12-H12A | 109.5 |
| C11-C12-H12B | 109.5 | H12A-C12-H12B | 109.5 |
| C11-C12-H12C | 109.5 | H12A-C12-H12C | 109.5 |


| H12B-C12-H12C | 109.5 | C14-C13-C11 | $116.3(2)$ |
| :--- | :--- | :--- | :--- |
| C14-C13-H13A | 108.2 | C11-C13-H13A | 108.2 |
| C14-C13-H13B | 108.2 | C11-C13-H13B | 108.2 |
| H13A-C13-H13B | 107.4 | C13-C14-H14A | 109.5 |
| C13-C14-H14B | 109.5 | H14A-C14-H14B | 109.5 |
| C13-C14-H14C | 109.5 | H14A-C14-H14C | 109.5 |
| H14B-C14-H14C | 109.5 | C16-C15-C20 | $121.8(3)$ |
| C16-C15-H15 | 119.1 | C20-C15-H15 | 119.1 |
| C15-C16-C17 | $120.4(3)$ | C15-C16-H16 | 119.8 |
| C17-C16-H16 | 119.8 | C18-C17-C16 | $118.1(2)$ |
| C18-C17-C21 | $118.4(2)$ | C16-C17-C21 | $123.2(2)$ |
| C17-C18-C19 | $121.4(3)$ | C17-C18-H18 | 119.3 |
| C19-C18-H18 | 119.3 | C18-C19-C20 | $121.1(2)$ |
| C18-C19-H19 | 119.5 | C20-C19-H19 | 119.5 |
| C19-C20-C15 | $117.3(2)$ | C19-C20-C11 | $122.8(2)$ |
| C15-C20-C11 | $119.8(2)$ | O1-C21-N1 | $121.9(3)$ |
| O1-C21-C17 | $117.8(3)$ | N1-C21-C17 | $120.4(2)$ |
| N1-C22-C23 | $112.1(3)$ | N1-C22-H22A | 109.2 |
| C23-C22-H22A | 109.2 | N1-C22-H22B | 109.2 |
| C23-C22-H22B | 109.2 | H22A-C22-H22B | 107.9 |
| C22-C23-H23A | 109.5 | C22-C23-H23B | 109.5 |
| H23A-C23-H23B | 109.5 | C22-C23-H23C | 109.5 |
| H23A-C23-H23C | 109.5 | H23B-C23-H23C | 109.5 |
| N1-C24-C25 | $114.1(3)$ | N1-C24-H24A | 108.7 |
| C25-C24-H24A | 108.7 | N1-C24-H24B | 108.7 |
| C25-C24-H24B | 108.7 | H24A-C24-H24B | 107.6 |
| C24-C25-H25A | 109.5 | C24-C25-H25B | 109.5 |
| H25A-C25-H25B | 109.5 | C24-C25-H25C | 109.5 |
| H25A-C25-H25C | 109.5 | H25B-C25-H25C | 109.5 |

Table 2.9. Torsion angles $\left({ }^{\circ}\right)$ for ( $\boldsymbol{R}$ )-2.29.

| C10-C1-C2-C7 | $-1.8(4)$ | C10-C1-C2-C3 | $177.7(3)$ |
| :--- | :--- | :--- | :--- |
| C7-C2-C3-C4 | $0.3(4)$ | C1-C2-C3-C4 | $-179.2(3)$ |
| C2-C3-C4-C5 | $-1.3(4)$ | C3-C4-C5-C6 | $0.7(5)$ |
| C4-C5-C6-C7 | $0.9(5)$ | C1-C2-C7-C6 | $-179.2(2)$ |
| C3-C2-C7-C6 | $1.3(4)$ | C1-C2-C7-C8 | $1.4(4)$ |
| C3-C2-C7-C8 | $-178.2(3)$ | C5-C6-C7-C2 | $-1.9(4)$ |
| C5-C6-C7-C8 | $177.5(3)$ | C2-C7-C8-C9 | $-0.2(4)$ |
| C6-C7-C8-C9 | $-179.6(3)$ | C7-C8-C9-C10 | $-0.7(5)$ |
| C2-C1-C10-C9 | $1.0(4)$ | C2-C1-C10-C11 | $-176.1(2)$ |


| C8-C9-C10-C1 | $0.3(4)$ | C8-C9-C10-C11 | $177.5(3)$ |
| :--- | :--- | :--- | :--- |
| C1-C10-C11-C20 | $-133.0(3)$ | C9-C10-C11-C20 | $50.0(3)$ |
| C1-C10-C11-C12 | $105.5(3)$ | C9-C10-C11-C12 | $-71.5(3)$ |
| C1-C10-C11-C13 | $-14.1(4)$ | C9-C10-C11-C13 | $168.9(2)$ |
| C10-C11-C13-C14 | $-173.7(2)$ | C20-C11-C13-C14 | $-53.4(3)$ |
| C12-C11-C13-C14 | $68.3(3)$ | C20-C15-C16-C17 | $-0.8(4)$ |
| C15-C16-C17-C18 | $-1.0(4)$ | C15-C16-C17-C21 | $-174.3(2)$ |
| C16-C17-C18-C19 | $2.5(4)$ | C21-C17-C18-C19 | $176.1(2)$ |
| C17-C18-C19-C20 | $-2.2(4)$ | C18-C19-C20-C15 | $0.4(4)$ |
| C18-C19-C20-C11 | $-175.2(2)$ | C16-C15-C20-C19 | $1.1(4)$ |
| C16-C15-C20-C11 | $176.8(2)$ | C10-C11-C20-C19 | $-138.7(3)$ |
| C12-C11-C20-C19 | $-20.3(4)$ | C13-C11-C20-C19 | $99.9(3)$ |
| C10-C11-C20-C15 | $45.9(3)$ | C12-C11-C20-C15 | $164.3(2)$ |
| C13-C11-C20-C15 | $-75.6(3)$ | C24-N1-C21-O1 | $175.3(3)$ |
| C22-N1-C21-O1 | $-8.8(4)$ | C24-N1-C21-C17 | $-4.5(4)$ |
| C22-N1-C21-C17 | $171.3(3)$ | C18-C17-C21-O1 | $-48.9(4)$ |
| C16-C17-C21-O1 | $124.4(3)$ | C18-C17-C21-N1 | $131.0(3)$ |
| C16-C17-C21-N1 | $-55.7(4)$ | C21-N1-C22-C23 | $-88.4(4)$ |
| C24-N1-C22-C23 | $87.7(4)$ | C21-N1-C24-C25 | $-129.8(3)$ |
| C22-N1-C24-C25 | $54.3(4)$ |  |  |

Table 2.10. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for (R)-2.29.
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 \mathrm{hk} \mathrm{a}\right.$ b $\mathrm{U}_{12}$ ]

|  | $\mathbf{U}_{11}$ | $\mathbf{U}_{22}$ | $\mathbf{\mathbf { U } _ { 3 3 }}$ | $\mathbf{U}_{23}$ | $\mathbf{U}_{13}$ | $\mathbf{U}_{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0573(14)$ | $0.0621(14)$ | $0.0391(12)$ | $0.0079(11)$ | $0.0201(12)$ | $0.0140(12)$ |
| N1 | $0.0358(14)$ | $0.0424(14)$ | $0.0453(14)$ | $0.0030(12)$ | $0.0100(12)$ | $0.0097(12)$ |
| C1 | $0.0289(14)$ | $0.0312(14)$ | $0.0262(14)$ | $0.0003(12)$ | $-0.0029(12)$ | $0.0033(11)$ |
| C2 | $0.0331(15)$ | $0.0278(15)$ | $0.0323(16)$ | $-0.0029(12)$ | $0.0014(13)$ | $-0.0010(12)$ |
| C3 | $0.0313(15)$ | $0.0395(17)$ | $0.0384(17)$ | $0.0019(14)$ | $0.0009(14)$ | $-0.0025(13)$ |
| C4 | $0.0386(17)$ | $0.0449(18)$ | $0.0499(19)$ | $0.0010(16)$ | $0.0045(15)$ | $-0.0121(14)$ |
| C5 | $0.0537(19)$ | $0.0443(18)$ | $0.0385(18)$ | $0.0054(14)$ | $0.0095(15)$ | $-0.0116(15)$ |
| C6 | $0.0464(18)$ | $0.0413(17)$ | $0.0332(16)$ | $0.0040(13)$ | $0.0004(15)$ | $-0.0025(14)$ |
| C7 | $0.0356(15)$ | $0.0325(15)$ | $0.0319(15)$ | $-0.0034(13)$ | $-0.0005(13)$ | $0.0001(12)$ |
| C8 | $0.0315(15)$ | $0.0515(18)$ | $0.0301(15)$ | $0.0065(14)$ | $-0.0023(14)$ | $0.0056(13)$ |
| C9 | $0.0252(15)$ | $0.0516(19)$ | $0.0360(17)$ | $0.0004(14)$ | $-0.0015(13)$ | $0.0014(13)$ |
| C10 | $0.0276(13)$ | $0.0337(15)$ | $0.0302(14)$ | $0.0024(12)$ | $0.0000(13)$ | $0.0047(12)$ |
| C11 | $0.0230(13)$ | $0.0367(15)$ | $0.0295(14)$ | $0.0017(12)$ | $0.0004(12)$ | $0.0030(11)$ |
| C12 | $0.0370(16)$ | $0.0366(16)$ | $0.0453(17)$ | $-0.0011(14)$ | $0.0076(14)$ | $0.0029(13)$ |
| C13 | $0.0297(15)$ | $0.0412(16)$ | $0.0353(16)$ | $0.0038(13)$ | $0.0005(12)$ | $0.0052(13)$ |


| C14 | $0.0436(19)$ | $0.0510(17)$ | $0.0359(15)$ | $0.0077(15)$ | $0.0006(15)$ | $0.0077(15)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C15 | $0.0274(14)$ | $0.0372(17)$ | $0.0379(15)$ | $0.0044(13)$ | $0.0035(13)$ | $-0.0020(12)$ |
| C16 | $0.0367(16)$ | $0.0305(15)$ | $0.0392(16)$ | $-0.0013(13)$ | $0.0041(13)$ | $0.0014(13)$ |
| C17 | $0.0300(14)$ | $0.0378(16)$ | $0.0207(13)$ | $0.0026(12)$ | $0.0005(12)$ | $0.0046(13)$ |
| C18 | $0.0255(13)$ | $0.0392(16)$ | $0.0269(13)$ | $0.0054(12)$ | $-0.0017(12)$ | $-0.0016(12)$ |
| C19 | $0.0290(15)$ | $0.0312(14)$ | $0.0309(14)$ | $0.0011(12)$ | $0.0013(13)$ | $0.0009(12)$ |
| C20 | $0.0278(14)$ | $0.0329(16)$ | $0.0262(14)$ | $0.0039(12)$ | $-0.0015(12)$ | $0.0009(11)$ |
| C21 | $0.0330(15)$ | $0.0413(17)$ | $0.0319(16)$ | $-0.0020(13)$ | $0.0045(13)$ | $0.0039(13)$ |
| C22 | $0.0482(19)$ | $0.0486(19)$ | $0.064(2)$ | $-0.0055(18)$ | $0.0122(18)$ | $0.0142(16)$ |
| C23 | $0.092(3)$ | $0.063(2)$ | $0.113(4)$ | $-0.035(3)$ | $0.027(3)$ | $-0.003(2)$ |
| C24 | $0.0411(17)$ | $0.0452(18)$ | $0.0513(18)$ | $0.0145(15)$ | $0.0062(16)$ | $0.0087(14)$ |
| C25 | $0.051(2)$ | $0.0470(19)$ | $0.061(2)$ | $0.0045(16)$ | $-0.0059(18)$ | $0.0073(16)$ |

Table 2.11. Hydrogen atomic coordinates and isotropic atomic displacement parameters ( $\AA^{2}$ ) for $(\boldsymbol{R})$. 2.29 .

|  | $\mathbf{x} / \mathbf{a}$ | $\mathbf{y} / \mathbf{b}$ | $\mathbf{z} / \mathbf{c}$ | $\mathbf{U ( e q )}$ |
| :--- | :--- | :--- | :--- | :--- |
| H1 | -0.4274 | 0.6304 | 0.2124 | 0.035 |
| H3 | -0.6672 | 0.5646 | 0.2796 | 0.044 |
| H4 | -0.7711 | 0.4887 | 0.3792 | 0.053 |
| H5 | -0.5952 | 0.4366 | 0.4695 | 0.055 |
| H6 | -0.3172 | 0.4629 | 0.4610 | 0.048 |
| H8 | -0.0780 | 0.5370 | 0.3955 | 0.045 |
| H9 | 0.0232 | 0.6188 | 0.2988 | 0.045 |
| H12A | -0.1767 | 0.8350 | 0.2251 | 0.059 |
| H12B | -0.0286 | 0.8413 | 0.1705 | 0.059 |
| H12C | 0.0021 | 0.7970 | 0.2475 | 0.059 |
| H13A | -0.2777 | 0.6285 | 0.1100 | 0.042 |
| H13B | -0.3326 | 0.7405 | 0.1350 | 0.042 |
| H14A | -0.1280 | 0.8139 | 0.0626 | 0.065 |
| H14B | -0.2562 | 0.7477 | 0.0182 | 0.065 |
| H14C | -0.0799 | 0.7010 | 0.0361 | 0.065 |
| H15 | -0.0653 | 0.4918 | 0.1600 | 0.041 |
| H16 | 0.1570 | 0.4016 | 0.1170 | 0.043 |
| H18 | 0.4054 | 0.6682 | 0.0960 | 0.037 |
| H19 | 0.1871 | 0.7575 | 0.1437 | 0.036 |
| H22A | 0.7236 | 0.3032 | 0.0898 | 0.064 |
| H22B | 0.7019 | 0.3834 | 0.0270 | 0.064 |
| H23A | 0.5062 | 0.2051 | 0.0440 | 0.134 |
| H23B | 0.6538 | 0.2145 | -0.0105 | 0.134 |
| H23C | 0.4934 | 0.2837 | -0.0201 | 0.134 |
| H24A | 0.4182 | 0.2838 | 0.1613 | 0.055 |


| H24B | 0.3992 | 0.3985 | 0.1905 | 0.055 |
| :--- | :--- | :--- | :--- | :--- |
| H25A | 0.6849 | 0.2750 | 0.1984 | 0.079 |
| H25B | 0.5805 | 0.3181 | 0.2628 | 0.079 |
| H25C | 0.6879 | 0.3953 | 0.2164 | 0.079 |

### 2.4.3.2 Crystal Structure Data for (S)-2.19



Table 2.12. Sample and crystal data for (S)-2.19.
Identification
code
Chemical
formula $\quad \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$
Formula weight $\quad 242.30 \mathrm{~g} / \mathrm{mol}$
Temperature $\quad 200$ (2) K
Wavelength $\quad 1.54178 \AA$
Crystal size $\quad 0.144 \times 0.196 \times 0.269 \mathrm{~mm}$
Crystal system monoclinic
Space group C 121
$\begin{array}{lll}\begin{array}{lll}\text { Unit } & \text { cell } \\ \text { dimensions }\end{array} & \begin{array}{ll}\mathrm{a}=21.7695(7) \AA & \alpha=90^{\circ} \\ & \mathrm{b}=5.8807(2) \AA \\ \mathrm{c}=10.4637(3) \AA & \beta=97.282(2)^{\circ} \\ \text { Volume } & 1328.76(7) \AA^{3}\end{array} & \gamma=90^{\circ} \\ \mathbf{Z} & 4 & \\ \begin{array}{l}\text { Density } \\ \text { (calculated) }\end{array} & 1.211 \mathrm{~g} / \mathrm{cm}^{3} & \\ \begin{array}{l}\text { Absorption } \\ \text { coefficient }\end{array} & 0.620 \mathrm{~mm}^{-1} & \end{array}$

Table 2.13. Data collection and structure refinement for $(\boldsymbol{S})$-2.19.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on $\mathbf{F}^{2}$
Final R indices

Weighting scheme
Absolute structure parameter
Largest diff. peak and hole
R.M.S. deviation from mean
4.09 to $75.07^{\circ}$
$-27<=\mathrm{h}<=26,-7<=\mathrm{k}<=7,-13<=1<=12$
13728
$2708[\mathrm{R}($ int $)=0.0319]$
99.4\%
multi-scan
0.7539 and 0.6441
direct methods
SHELXS-97 (Sheldrick 2008)
Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2014/7 (Sheldrick, 2014)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
2708/1/166
1.035

2626 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0349$, wR2 $=0.0937$
all data $\quad \mathrm{R} 1=0.0359, \mathrm{wR} 2=0.0948$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0638 \mathrm{P})^{2}+0.1971 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
-0.1(1)
0.193 and $-0.164 \mathrm{e}^{-3}$
$0.034 \mathrm{e}^{-3}$

Table 2.14. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S})$.
2.19.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}_{\mathrm{ij}}$ tensor.

|  | $\mathbf{x} / \mathbf{a}$ | $\mathbf{y} / \mathbf{b}$ | $\mathbf{z} / \mathbf{c}$ | $\mathbf{U ( e q )}$ |
| :--- | :--- | :--- | :--- | :--- |
| O1 | $0.40605(5)$ | $0.6779(2)$ | $0.16441(11)$ | $0.0352(3)$ |
| O2 | $0.32500(7)$ | $0.4448(3)$ | $0.10507(15)$ | $0.0560(4)$ |
| C1 | $0.44069(7)$ | $0.5057(3)$ | $0.24545(16)$ | $0.0324(4)$ |
| C2 | $0.45441(10)$ | $0.3005(3)$ | $0.1639(2)$ | $0.0452(4)$ |
| C3 | $0.50055(7)$ | $0.6315(3)$ | $0.29722(16)$ | $0.0353(4)$ |
| C4 | $0.54151(8)$ | $0.6990(4)$ | $0.19539(19)$ | $0.0444(4)$ |
| C5 | $0.35048(8)$ | $0.6252(4)$ | $0.09814(17)$ | $0.0407(4)$ |
| C6 | $0.32655(9)$ | $0.8226(5)$ | $0.0164(2)$ | $0.0528(5)$ |
| C7 | $0.40667(7)$ | $0.4437(3)$ | $0.35920(16)$ | $0.0324(4)$ |
| C8 | $0.42021(8)$ | $0.2325(3)$ | $0.42318(19)$ | $0.0378(4)$ |
| C9 | $0.39467(8)$ | $0.1768(3)$ | $0.53140(18)$ | $0.0398(4)$ |
| C10 | $0.35368(8)$ | $0.3262(3)$ | $0.58396(18)$ | $0.0358(4)$ |


| C11 | $0.32657(9)$ | $0.2747(4)$ | $0.69691(19)$ | $0.0445(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| C12 | $0.28692(9)$ | $0.4252(4)$ | $0.74387(19)$ | $0.0481(5)$ |
| C13 | $0.27174(9)$ | $0.6322(4)$ | $0.67982(19)$ | $0.0453(5)$ |
| C14 | $0.29716(8)$ | $0.6866(3)$ | $0.57105(18)$ | $0.0381(4)$ |
| C15 | $0.33914(7)$ | $0.5370(3)$ | $0.52055(17)$ | $0.0325(4)$ |
| C16 | $0.36692(7)$ | $0.5906(3)$ | $0.40857(16)$ | $0.0327(3)$ |

Table 2.15. Bond lengths ( $\AA$ ) for ( $\mathbf{S}$ )-2.19.

| O1-C5 | $1.352(2)$ | O1-C1 | $1.466(2)$ |
| :--- | :--- | :--- | :--- |
| O2-C5 | $1.204(3)$ | C1-C7 | $1.524(2)$ |
| C1-C2 | $1.529(2)$ | C1-C3 | $1.536(2)$ |
| C2-H2A | 0.98 | C2-H2B | 0.98 |
| C2-H2C | 0.98 | C3-C4 | $1.526(2)$ |
| C3-H3A | 0.99 | C3-H3B | 0.99 |
| C4-H4A | 0.98 | C4-H4B | 0.98 |
| C4-H4C | 0.98 | C5-C6 | $1.496(3)$ |
| C6-H6A | 0.98 | C6-H6B | 0.98 |
| C6-H6C | 0.98 | C7-C16 | $1.369(2)$ |
| C7-C8 | $1.424(2)$ | C8-C9 | $1.363(3)$ |
| C8-H8 | 0.95 | C9-C10 | $1.413(3)$ |
| C9-H9 | 0.95 | C10-C11 | $1.419(3)$ |
| C10-C15 | $1.423(2)$ | C11-C12 | $1.370(3)$ |
| C11-H11 | 0.95 | C12-C13 | $1.409(3)$ |
| C12-H12 | 0.95 | C13-C14 | $1.365(3)$ |
| C13-H13 | 0.95 | C14-C15 | $1.418(2)$ |
| C14-H14 | 0.95 | C15-C16 | $1.420(2)$ |
| C16-H16 | 0.95 |  |  |

Table 2.16. Bond angles $\left({ }^{\circ}\right)$ for (S)-2.19.

| C5-O1-C1 | $119.98(14)$ | O1-C1-C7 | $110.59(12)$ |
| :--- | :--- | :--- | :--- |
| O1-C1-C2 | $110.15(14)$ | C7-C1-C2 | $113.31(15)$ |
| O1-C1-C3 | $102.86(13)$ | C7-C1-C3 | $108.33(13)$ |
| C2-C1-C3 | $111.09(14)$ | C1-C2-H2A | 109.5 |
| C1-C2-H2B | 109.5 | H2A-C2-H2B | 109.5 |
| C1-C2-H2C | 109.5 | H2A-C2-H2C | 109.5 |
| H2B-C2-H2C | 109.5 | C4-C3-C1 | $115.06(14)$ |
| C4-C3-H3A | 108.5 | C1-C3-H3A | 108.5 |
| C4-C3-H3B | 108.5 | C1-C3-H3B | 108.5 |
| H3A-C3-H3B | 107.5 | C3-C4-H4A | 109.5 |
| C3-C4-H4B | 109.5 | H4A-C4-H4B | 109.5 |
| C3-C4-H4C | 109.5 | H4A-C4-H4C | 109.5 |


| H4B-C4-H4C | 109.5 | O2-C5-O1 | $124.07(19)$ |
| :--- | :--- | :--- | :--- |
| O2-C5-C6 | $126.06(18)$ | O1-C5-C6 | $109.87(17)$ |
| C5-C6-H6A | 109.5 | C5-C6-H6B | 109.5 |
| H6A-C6-H6B | 109.5 | C5-C6-H6C | 109.5 |
| H6A-C6-H6C | 109.5 | H6B-C6-H6C | 109.5 |
| C16-C7-C8 | $118.41(16)$ | C16-C7-C1 | $122.46(15)$ |
| C8-C7-C1 | $118.95(15)$ | C9-C8-C7 | $121.23(17)$ |
| C9-C8-H8 | 119.4 | C7-C8-H8 | 119.4 |
| C8-C9-C10 | $121.20(17)$ | C8-C9-H9 | 119.4 |
| C10-C9-H9 | 119.4 | C9-C10-C11 | $122.78(17)$ |
| C9-C10-C15 | $118.34(16)$ | C11-C10-C15 | $118.88(16)$ |
| C12-C11-C10 | $120.54(19)$ | C12-C11-H11 | 119.7 |
| C10-C11-H11 | 119.7 | C11-C12-C13 | $120.54(18)$ |
| C11-C12-H12 | 119.7 | C13-C12-H12 | 119.7 |
| C14-C13-C12 | $120.26(19)$ | C14-C13-H13 | 119.9 |
| C12-C13-H13 | 119.9 | C13-C14-C15 | $120.91(18)$ |
| C13-C14-H14 | 119.5 | C15-C14-H14 | 119.5 |
| C14-C15-C16 | $122.12(16)$ | C14-C15-C10 | $118.86(16)$ |
| C16-C15-C10 | $119.02(15)$ | C7-C16-C15 | $121.79(16)$ |
| C7-C16-H16 | 119.1 | C15-C16-H16 | 119.1 |

Table 2.17. Torsion angles $\left({ }^{\circ}\right)$ for (S)-2.19.

| C5-O1-C1-C7 | $-66.62(18)$ | C5-O1-C1-C2 | $59.41(19)$ |
| :--- | :--- | :--- | :--- |
| C5-O1-C1-C3 | $177.89(14)$ | O1-C1-C3-C4 | $-64.92(17)$ |
| C7-C1-C3-C4 | $177.97(16)$ | C2-C1-C3-C4 | $52.9(2)$ |
| C1-O1-C5-O2 | $3.6(3)$ | C1-O1-C5-C6 | $-176.21(14)$ |
| O1-C1-C7-C16 | $-26.1(2)$ | C2-C1-C7-C16 | $-150.35(16)$ |
| C3-C1-C7-C16 | $85.91(18)$ | O1-C1-C7-C8 | $158.93(14)$ |
| C2-C1-C7-C8 | $34.7(2)$ | C3-C1-C7-C8 | $-89.05(18)$ |
| C16-C7-C8-C9 | $-0.3(3)$ | C1-C7-C8-C9 | $174.88(16)$ |
| C7-C8-C9-C10 | $0.2(3)$ | C8-C9-C10-C11 | $-179.53(18)$ |
| C8-C9-C10-C15 | $0.5(3)$ | C9-C10-C11-C12 | $-179.82(18)$ |
| C15-C10-C11-C12 | $0.2(3)$ | C10-C11-C12-C13 | $0.9(3)$ |
| C11-C12-C13-C14 | $-1.0(3)$ | C12-C13-C14-C15 | $0.0(3)$ |
| C13-C14-C15-C16 | $-179.14(16)$ | C13-C14-C15-C10 | $1.1(3)$ |
| C9-C10-C15-C14 | $178.85(16)$ | C11-C10-C15-C14 | $-1.2(2)$ |
| C9-C10-C15-C16 | $-0.9(2)$ | C11-C10-C15-C16 | $179.06(16)$ |
| C8-C7-C16-C15 | $-0.2(2)$ | C1-C7-C16-C15 | $-175.20(14)$ |
| C14-C15-C16-C7 | $-178.95(15)$ | C10-C15-C16-C7 | $0.8(2)$ |

Table 2.18. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for (S)-2.19.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b\right.$ $\mathrm{U}_{12}$ ]

|  | $\mathbf{U}_{\mathbf{1 1}}$ | $\mathbf{U}_{\mathbf{2 2}}$ | $\mathbf{U}_{\mathbf{3 3}}$ | $\mathbf{U}_{\mathbf{2 3}}$ | $\mathbf{\mathbf { U } _ { 1 3 }}$ | $\mathbf{U}_{\mathbf{1 2}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| O1 | $0.0306(6)$ | $0.0377(6)$ | $0.0366(6)$ | $0.0034(5)$ | $0.0016(4)$ | $-0.0007(5)$ |
| O2 | $0.0427(7)$ | $0.0672(10)$ | $0.0555(8)$ | $-0.0023(8)$ | $-0.0033(6)$ | $-0.0155(8)$ |
| C1 | $0.0318(7)$ | $0.0301(8)$ | $0.0353(8)$ | $-0.0008(7)$ | $0.0035(6)$ | $0.0007(6)$ |
| C2 | $0.0510(11)$ | $0.0386(10)$ | $0.0478(10)$ | $-0.0099(8)$ | $0.0134(8)$ | $-0.0023(8)$ |
| C3 | $0.0299(8)$ | $0.0387(9)$ | $0.0368(8)$ | $-0.0010(7)$ | $0.0029(6)$ | $-0.0005(7)$ |
| C4 | $0.0357(9)$ | $0.0512(11)$ | $0.0472(10)$ | $-0.0004(9)$ | $0.0085(7)$ | $-0.0061(8)$ |
| C5 | $0.0320(8)$ | $0.0560(12)$ | $0.0341(8)$ | $-0.0024(8)$ | $0.0037(6)$ | $-0.0019(8)$ |
| C6 | $0.0387(9)$ | $0.0745(15)$ | $0.0443(10)$ | $0.0088(10)$ | $0.0016(8)$ | $0.0103(10)$ |
| C7 | $0.0308(7)$ | $0.0296(8)$ | $0.0363(8)$ | $-0.0022(7)$ | $0.0025(6)$ | $-0.0018(6)$ |
| C8 | $0.0376(8)$ | $0.0283(8)$ | $0.0479(10)$ | $-0.0003(7)$ | $0.0071(7)$ | $0.0030(7)$ |
| C9 | $0.0420(9)$ | $0.0291(8)$ | $0.0478(10)$ | $0.0037(8)$ | $0.0036(7)$ | $0.0002(7)$ |
| C10 | $0.0334(8)$ | $0.0342(8)$ | $0.0391(8)$ | $0.0004(7)$ | $0.0025(6)$ | $-0.0048(7)$ |
| C11 | $0.0469(10)$ | $0.0434(10)$ | $0.0432(10)$ | $0.0055(8)$ | $0.0059(8)$ | $-0.0062(8)$ |
| C12 | $0.0482(10)$ | $0.0577(12)$ | $0.0407(9)$ | $-0.0002(9)$ | $0.0146(8)$ | $-0.0094(9)$ |
| C13 | $0.0395(9)$ | $0.0528(12)$ | $0.0448(10)$ | $-0.0086(8)$ | $0.0100(7)$ | $-0.0004(8)$ |
| C14 | $0.0337(8)$ | $0.0379(9)$ | $0.0425(9)$ | $-0.0033(8)$ | $0.0036(6)$ | $0.0010(7)$ |
| C15 | $0.0287(7)$ | $0.0307(8)$ | $0.0374(8)$ | $-0.0006(6)$ | $0.0013(6)$ | $-0.0029(6)$ |
| C16 | $0.0320(7)$ | $0.0282(8)$ | $0.0374(8)$ | $0.0006(6)$ | $0.0024(6)$ | $-0.0005(6)$ |

Table 2.19. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S})$. 2.19 .

|  | $\mathbf{x} / \mathbf{a}$ | $\mathbf{y / b}$ | $\mathbf{z} / \mathbf{c}$ | $\mathbf{U ( e q )}$ |
| :--- | :--- | :--- | :--- | :--- |
| H2A | 0.4184 | 0.1992 | 0.1532 | 0.068 |
| H2B | 0.4904 | 0.2184 | 0.2070 | 0.068 |
| H2C | 0.4633 | 0.3526 | 0.0791 | 0.068 |
| H3A | 0.4894 | 0.7708 | 0.3422 | 0.042 |
| H3B | 0.5249 | 0.5333 | 0.3617 | 0.042 |
| H4A | 0.5574 | 0.5617 | 0.1577 | 0.067 |
| H4B | 0.5763 | 0.7908 | 0.2354 | 0.067 |
| H4C | 0.5172 | 0.7877 | 0.1276 | 0.067 |
| H6A | 0.3521 | 0.8435 | -0.0533 | 0.079 |
| H6B | 0.3282 | 0.9605 | 0.0693 | 0.079 |
| H6C | 0.2836 | 0.7932 | -0.0204 | 0.079 |
| H8 | 0.4476 | 0.1286 | 0.3898 | 0.045 |
| H9 | 0.4046 | 0.0348 | 0.5722 | 0.048 |
| H11 | 0.3360 | 0.1347 | 0.7403 | 0.053 |
| H12 | 0.2695 | 0.3896 | 0.8202 | 0.058 |
| H13 | 0.2437 | 0.7343 | 0.7124 | 0.054 |
| H14 | 0.2866 | 0.8267 | 0.5286 | 0.046 |

### 2.4.3.3 Crystal Structure Data for (S)-2.18c



Table 2.20. Sample and crystal data for (S)-2.18c.

| Identification code | mary 026 |  |
| :--- | :--- | :--- |
| Chemical formula | $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}$ |  |
| Formula weight | 215.28 |  |
| Temperature | $200(2) \mathrm{K}$ |  |
| Wavelength | $1.54178 \AA$ |  |
| Crystal size | $0.216 \times 0.425 \times 0.545 \mathrm{~mm}$ |  |
| Crystal system | orthorhombic | $\alpha=90^{\circ}$ |
| Space group | P 212121 | $\beta=90^{\circ}$ |
| Unit cell dimensions | $\mathrm{a}=5.9000(2) \AA$ | $\gamma=90^{\circ}$ |
|  | $\mathrm{b}=8.4404(3) \AA$ |  |
|  | $\mathrm{c}=23.7442(10) \AA$ |  |
| Volume | $1182.42(8) \AA^{3}$ |  |
| Z | 4 |  |
| Density (calculated) | $1.209 \mathrm{~g}^{3} \mathrm{~cm}^{3}$ |  |
| Absorption coefficient | $0.591 \mathrm{~mm}^{-1}$ |  |
| F(000) | 464 |  |
|  |  |  |

Table 2.21. Data collection and structure refinement for $(\boldsymbol{S}) \mathbf{- 2 . 1 8 c}$.

Theta range for data collection
Index ranges
Reflections collected Independent reflections
Max. and min. transmission
Refinement method
Refinement program
3.72 to $74.70^{\circ}$
$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=10,-29<=1<=29$
19673
$2415[\mathrm{R}($ int $)=0.0388]$
0.8830 and 0.7390
Full-matrix least-squares on $\mathrm{F}^{2}$
SHELXL-2014/7 (Sheldrick, 2014)

| Function minimized | $\sum \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$ |
| :--- | :--- |
| Data / restraints $/$ parameters | $2415 / 0 / 150$ |
| Goodness-of-fit on $\mathbf{F}^{2}$ | 1.020 |
| $\Delta / \sigma_{\text {max }}$ | 0.001 |
| Final R indices | 2389 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0333, \mathrm{wR} 2=0.0953$ |
|  | all data $\quad \mathrm{R} 1=0.0337, \mathrm{wR} 2=0.0976$ |
|  | $\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0716 \mathrm{P})^{2}+0.1296 \mathrm{P}\right]$ |
| Weighting scheme | $\mathrm{where} \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$ |
| Absolute structure parameter | $-0.1(1)$ |
| Extinction coefficient | $0.0143(18)$ |
| Largest diff. peak and hole | 0.213 and $-0.198 \mathrm{e} \AA^{-3}$ |
| R.M.S. deviation from mean | $0.044 \mathrm{e}^{-3}$ |

Table 2.22. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S})$. 2.18 c .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}_{\mathrm{ij}}$ tensor.

|  | $\mathbf{x} / \mathbf{a}$ | $\mathbf{y} / \mathbf{b}$ | $\mathbf{z} / \mathbf{c}$ | $\mathbf{U ( e q )}$ |
| :--- | :--- | :--- | :--- | :--- |
| N1 | $0.7994(2)$ | $0.02782(15)$ | $0.06577(6)$ | $0.0283(3)$ |
| O1 | $0.37311(19)$ | $0.72139(14)$ | $0.84869(5)$ | $0.0341(3)$ |
| C1 | $0.7123(4)$ | $0.1740(2)$ | $0.15036(7)$ | $0.0426(4)$ |
| C2 | $0.6518(3)$ | $0.12030(18)$ | $0.09177(6)$ | $0.0297(3)$ |
| C3 | $0.4435(3)$ | $0.16671(18)$ | $0.06700(7)$ | $0.0309(4)$ |
| C4 | $0.3886(3)$ | $0.11487(18)$ | $0.01428(6)$ | $0.0275(3)$ |
| C5 | $0.5437(3)$ | $0.01707(16)$ | $0.98464(6)$ | $0.0244(3)$ |
| C6 | $0.5001(2)$ | $0.95546(17)$ | $0.93022(6)$ | $0.0256(3)$ |
| C7 | $0.6555(3)$ | $0.86111(17)$ | $0.90266(6)$ | $0.0254(3)$ |
| C8 | $0.8641(3)$ | $0.82844(17)$ | $0.92987(6)$ | $0.0275(3)$ |
| C9 | $0.9091(2)$ | $0.88311(18)$ | $0.98318(6)$ | $0.0275(3)$ |
| C10 | $0.7501(3)$ | $0.97764(16)$ | $0.01203(6)$ | $0.0243(3)$ |
| C11 | $0.5951(3)$ | $0.79050(17)$ | $0.84508(6)$ | $0.0273(3)$ |
| C12 | $0.7606(3)$ | $0.6636(2)$ | $0.82559(7)$ | $0.0408(4)$ |
| C13 | $0.5692(3)$ | $0.9218(2)$ | $0.80068(7)$ | $0.0376(4)$ |
| C14 | $0.7760(5)$ | $0.0252(3)$ | $0.79252(8)$ | $0.0610(7)$ |

Table 2.23. Bond lengths $(\AA)$ for (S)-2.18c.
N1-C2
O1-C11
1.322(2)
N1-C10
1.376(2)
$1.4365(19)$
O1-H1
0.84

| C1-C2 | $1.506(2)$ | $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 0.98 |
| :--- | :--- | :--- | :--- |
| C1-H1B | 0.98 | $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$ | 0.98 |
| C2-C3 | $1.418(2)$ | C3-C4 | $1.365(2)$ |
| C3-H3 | 0.95 | C4-C5 | $1.419(2)$ |
| C4-H4 | 0.95 | C5-C6 | $1.416(2)$ |
| C5-C10 | $1.420(2)$ | C6-C7 | $1.379(2)$ |
| C6-H6 | 0.95 | C7-C8 | $1.417(2)$ |
| C7-C11 | $1.5335(19)$ | C8-C9 | $1.373(2)$ |
| C8-H8 | 0.95 | C9-C10 | $1.409(2)$ |
| C9-H9 | 0.95 | C11-C12 | $1.522(2)$ |
| C11-C13 | $1.537(2)$ | C12-H12A | 0.98 |
| C12-H12B | 0.98 | C12-H12C | 0.98 |
| C13-C14 | $1.512(3)$ | C13-H13A | 0.99 |
| C13-H13B | 0.99 | C14-H14A | 0.98 |
| C14-H14B | 0.98 | C14-H14C | 0.98 |
|  |  |  |  |

Table 2.24. Bond angles $\left({ }^{\circ}\right)$ for (S)-2.18c.

| C2-N1-C10 | $118.39(14)$ | C11-O1-H1 | 109.5 |
| :--- | :--- | :--- | :--- |
| C2-C1-H1A | 109.5 | C2-C1-H1B | 109.5 |
| H1A-C1-H1B | 109.5 | C2-C1-H1C | 109.5 |
| H1A-C1-H1C | 109.5 | H1B-C1-H1C | 109.5 |
| N1-C2-C3 | $122.71(14)$ | N1-C2-C1 | $116.91(15)$ |
| C3-C2-C1 | $120.37(15)$ | C4-C3-C2 | $119.84(14)$ |
| C4-C3-H3 | 120.1 | C2-C3-H3 | 120.1 |
| C3-C4-C5 | $119.22(14)$ | C3-C4-H4 | 120.4 |
| C5-C4-H4 | 120.4 | C6-C5-C4 | $123.29(14)$ |
| C6-C5-C10 | $119.17(13)$ | C4-C5-C10 | $117.53(13)$ |
| C7-C6-C5 | $121.61(13)$ | C7-C6-H6 | 119.2 |
| C5-C6-H6 | 119.2 | C6-C7-C8 | $118.24(13)$ |
| C6-C7-C11 | $119.53(13)$ | C8-C7-C11 | $122.19(13)$ |
| C9-C8-C7 | $121.53(14)$ | C9-C8-H8 | 119.2 |
| C7-C8-H8 | 119.2 | C8-C9-C10 | $120.62(14)$ |
| C8-C9-H9 | 119.7 | C10-C9-H9 | 119.7 |
| N1-C10-C9 | $118.97(14)$ | N1-C10-C5 | $122.28(14)$ |
| C9-C10-C5 | $118.75(13)$ | O1-C11-C12 | $108.50(13)$ |
| O1-C11-C7 | $108.45(11)$ | C12-C11-C7 | $113.30(13)$ |
| O1-C11-C13 | $104.08(12)$ | C12-C11-C13 | $111.28(14)$ |
| C7-C11-C13 | $110.75(12)$ | C11-C12-H12A | 109.5 |
| C11-C12-H12B | 109.5 | H12A-C12-H12B | 109.5 |
| C11-C12-H12C | 109.5 | H12A-C12-H12C | 109.5 |


| H12B-C12-H12C | 109.5 | C14-C13-C11 | $115.07(16)$ |
| :--- | :--- | :--- | :--- |
| C14-C13-H13A | 108.5 | C11-C13-H13A | 108.5 |
| C14-C13-H13B | 108.5 | C11-C13-H13B | 108.5 |
| H13A-C13-H13B | 107.5 | C13-C14-H14A | 109.5 |
| C13-C14-H14B | 109.5 | H14A-C14-H14B | 109.5 |
| C13-C14-H14C | 109.5 | H14A-C14-H14C | 109.5 |
| H14B-C14-H14C | 109.5 |  |  |

Table 2.25. Torsion angles $\left({ }^{\circ}\right)$ for (S)-2.18c.

| C10-N1-C2-C3 | $1.4(2)$ | C10-N1-C2-C1 | $-179.53(14)$ |
| :--- | :--- | :--- | :--- |
| N1-C2-C3-C4 | $0.3(2)$ | C1-C2-C3-C4 | $-178.76(15)$ |
| C2-C3-C4-C5 | $-1.1(2)$ | C3-C4-C5-C6 | $178.91(13)$ |
| C3-C4-C5-C10 | $0.2(2)$ | C4-C5-C6-C7 | $179.80(14)$ |
| C10-C5-C6-C7 | $-1.5(2)$ | C5-C6-C7-C8 | $-0.9(2)$ |
| C5-C6-C7-C11 | $176.90(12)$ | C6-C7-C8-C9 | $2.6(2)$ |
| C11-C7-C8-C9 | $-175.20(13)$ | C7-C8-C9-C10 | $-1.7(2)$ |
| C2-N1-C10-C9 | $178.04(13)$ | C2-N1-C10-C5 | $-2.3(2)$ |
| C8-C9-C10-N1 | $178.83(13)$ | C8-C9-C10-C5 | $-0.8(2)$ |
| C6-C5-C10-N1 | $-177.24(13)$ | C4-C5-C10-N1 | $1.5(2)$ |
| C6-C5-C10-C9 | $2.4(2)$ | C4-C5-C10-C9 | $-178.84(13)$ |
| C6-C7-C11-O1 | $-47.66(18)$ | C8-C7-C11-O1 | $130.09(14)$ |
| C6-C7-C11-C12 | $-168.19(14)$ | C8-C7-C11-C12 | $9.6(2)$ |
| C6-C7-C11-C13 | $65.96(18)$ | C8-C7-C11-C13 | $-116.29(16)$ |
| O1-C11-C13-C14 | $174.47(15)$ | C12-C11-C13-C14 | $-68.9(2)$ |
| C7-C11-C13-C14 | $58.1(2)$ |  |  |

Table 2.26. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S}) \mathbf{- 2 . 1 8 c}$.
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{* 2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}\right.$ b $\mathrm{U}_{12}$ ]

|  | $\mathbf{U}_{11}$ | $\mathbf{U}_{22}$ | $\mathbf{\mathbf { U } _ { 3 3 }}$ | $\mathbf{\mathbf { U } _ { 2 3 }}$ | $\mathbf{\mathbf { U } _ { 1 3 }}$ | $\mathbf{\mathbf { U } _ { 1 2 }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N1 | $0.0306(7)$ | $0.0276(6)$ | $0.0268(6)$ | $-0.0002(5)$ | $-0.0030(5)$ | $0.0005(5)$ |
| O1 | $0.0311(6)$ | $0.0391(6)$ | $0.0321(6)$ | $-0.0004(4)$ | $-0.0023(4)$ | $-0.0084(5)$ |
| C1 | $0.0553(11)$ | $0.0413(9)$ | $0.0311(8)$ | $-0.0072(7)$ | $-0.0055(8)$ | $0.0079(8)$ |
| C2 | $0.0365(8)$ | $0.0247(6)$ | $0.0279(7)$ | $0.0000(6)$ | $-0.0006(6)$ | $-0.0004(6)$ |
| C3 | $0.0348(8)$ | $0.0276(7)$ | $0.0301(7)$ | $-0.0007(6)$ | $0.0041(6)$ | $0.0036(6)$ |
| C4 | $0.0253(7)$ | $0.0265(6)$ | $0.0308(7)$ | $0.0018(6)$ | $-0.0003(6)$ | $0.0023(6)$ |
| C5 | $0.0242(7)$ | $0.0225(6)$ | $0.0264(7)$ | $0.0033(5)$ | $0.0005(5)$ | $-0.0006(6)$ |
| C6 | $0.0230(7)$ | $0.0270(7)$ | $0.0268(7)$ | $0.0021(5)$ | $-0.0021(6)$ | $-0.0004(6)$ |


| C7 | $0.0262(7)$ | $0.0257(6)$ | $0.0242(6)$ | $0.0019(5)$ | $0.0011(5)$ | $-0.0031(6)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C8 | $0.0235(7)$ | $0.0290(7)$ | $0.0301(7)$ | $-0.0010(6)$ | $0.0016(6)$ | $0.0023(6)$ |
| C9 | $0.0226(7)$ | $0.0293(7)$ | $0.0305(7)$ | $0.0011(6)$ | $-0.0028(5)$ | $0.0006(6)$ |
| C10 | $0.0245(7)$ | $0.0222(6)$ | $0.0260(7)$ | $0.0021(5)$ | $-0.0016(5)$ | $-0.0022(6)$ |
| C11 | $0.0278(7)$ | $0.0293(7)$ | $0.0249(7)$ | $-0.0013(5)$ | $-0.0009(5)$ | $-0.0025(6)$ |
| C12 | $0.0406(9)$ | $0.0441(9)$ | $0.0377(8)$ | $-0.0141(7)$ | $-0.0021(7)$ | $0.0055(8)$ |
| C13 | $0.0509(10)$ | $0.0376(8)$ | $0.0242(7)$ | $0.0019(6)$ | $-0.0016(7)$ | $-0.0046(8)$ |
| C14 | $0.0884(17)$ | $0.0595(12)$ | $0.0351(9)$ | $0.0044(8)$ | $0.0028(11)$ | $-0.0373(13)$ |

Table 2.27. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $(\boldsymbol{S})$ 2.18c.

|  | $\mathbf{x} / \mathbf{a}$ | $\mathbf{y} / \mathbf{b}$ | $\mathbf{z} / \mathbf{c}$ | $\mathbf{U ( e q )}$ |
| :--- | :--- | :--- | :--- | :--- |
| H1 | 0.3743 | 0.6477 | 0.8725 | 0.051 |
| H1A | 0.6046 | 1.1287 | 1.1773 | 0.064 |
| H1B | 0.7057 | 1.2898 | 1.1523 | 0.064 |
| H1C | 0.8659 | 1.1382 | 1.1596 | 0.064 |
| H3 | 0.3423 | 1.2337 | 1.0870 | 0.037 |
| H4 | 0.2483 | 1.1439 | 0.9976 | 0.033 |
| H6 | 0.3605 | 0.9797 | 0.9123 | 0.031 |
| H8 | 0.9754 | 0.7673 | 0.9108 | 0.033 |
| H9 | 1.0488 | 0.8570 | 1.0008 | 0.033 |
| H12A | 0.7689 | 0.5794 | 0.8539 | 0.061 |
| H12B | 0.9111 | 0.7106 | 0.8205 | 0.061 |
| H12C | 0.7085 | 0.6189 | 0.7898 | 0.061 |
| H13A | 0.5308 | 0.8720 | 0.7642 | 0.045 |
| H13B | 0.4402 | 0.9903 | 0.8116 | 0.045 |
| H14A | 0.8085 | 1.0824 | 0.8275 | 0.091 |
| H14B | 0.7473 | 1.1013 | 0.7622 | 0.091 |
| H14C | 0.9062 | 0.9587 | 0.7825 | 0.091 |

## REFERENCES

(1) (a) Feng, C.; Kaneko, Y.; Kobayashi, Y. Tetrahedron Lett. 2013, 54, 4629. (b) Feng, C.; Kobayashi, Y. J. Org. Chem. 2013, 78, 3755. (c) Potter, B.; Edelstein, E. K.; Morken, J. P. Organic Letters. 2016, 18, 3286.
(2) (a) Joshi-Pangu, A.; Wang, C.-Y.; Biscoe, M. R. J. Am. Chem. Soc. 2011, 133, 8478. (b) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624. (c). Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 5638.
(3) (a) Zhou, Q.; Srinivas, H. D.; Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307. (b) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 280.
(4) Jeon, S.-J.; Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 16416.
(5) Balsells, J.; Walsh, P. J. J. Am. Chem. Soc. 2000, 122, 3250
(6) (a) Yagupsky, G.; Mowat, W.; Shortland, A.; Wilkinson, G. Journal of the Chemical Society D: Chemical Communications 1970, 1369. (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. (c) Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338.
(7) Parsons, S.; Flack, H. D.; Wagner, T. Acta Cryst. B 2013, 69, 249.
(8) Zhou, Q.; Cobb, K. M.; Tan, T.; Watson, M. P. J. Am. Chem. Soc. 2016, 138, 12057.
(9) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
(10) Walsh, P.J. U.S. Patent 0191345 A1, October 9, 2003.
(11) Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel P. J. Org. Chem., 1996, 61, 8229.
(12) Waltz, K.M.; Gavenonis, J.; Walsh, P.J.; Angew. Chem. Int. Ed. 2002, 41, 3697.
(13) Williams, F.J.; Crote, R.E.; Jarvo, E.R.; Chem. Commun. 2012, 48 , 1496.
(14) Enquist, P.-A.; Lindh, J.; Nilsson, P.; Larhed, M. Green Chem. 2006, 8, 338.
(15) (a) Jeon, S.-J.; Li, H.M.; Walsh, P.J. J. Am. Chem. Soc. 2005, 127, 16416. (b) Derwing, C.; Hoppe, D. Synthesis 1996, 149.
(16) Li. H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538.
(17) García, C.; Walsh, P.J. Org. Lett. 2003, 5, 3641.

## Appendix A

## NMR AND HPLC SPECTRA







-55.2819
$-46.1091$
$-33.9791$
-27.0590
$-9.3680$




[^0]





-142.7814
$\int_{135.7482}^{137.1738}$
133.4654
$C_{133.4343}$
131.7033

- 128.0126
127.7085
$\mathbf{1} 27.5507$
127.5507
127.4988
- 126.2825
- 126.0953
-125.8306
-125.2735
$-124.1825$
$-77.1600 \mathrm{CDCl} 3$
-46.8538
$-32.8128$
-27.9761
21.8815
-20.8726
$-9.5077$


$\sim_{-159.4226}$
乙157．5752
－151．6911
$-144.6194$

$<_{55.2498}^{55.4626}$
-46.6558
$-33.9275$
$-26.9418$
$-9.3619$


$-77.1600 \mathrm{CDCl} 3$
-55.2120
-47.4640
$-33.5703$
-29.4390
$-9.4348$



$-77.1600 \mathrm{CDCl} 3$
$-55.2386$
$-46.7558$
$-33.9032$
-26.8986
-25.3959
$-9.3154$





[^1]


[^2]

-159.5317
-150.9580
146.5152
137.0559
135.1024
133.3153
131.9894
131.1193
130.1365
-129.0964
128.942
128.1919
127.7801
127.5370
127.1005
127.0417
126.0446
126.0240
125.9076
-125.6797
-124.8267
-120.2608
-114.2293
110.6315
$-77.1600 \mathrm{CDCl} 3$
-55.3001
$-46.7860$
$-27.7164$
-19.8382


$<_{55.2829}^{55.2863}$
-49.9871
$-38.9310$
-30.8810
-29.5236
$-8.6276$




|  |
| :---: |
|  |
| 7.6023 |
| 7.5940 |
| 7.5919 |
| -7.5886 |
| -7.5180 |
| -7.5140 |
|  |
|  |
| 000 |
|  |
|  |
|  |
| 06 |
|  |
|  |
|  |
| -7.3449 |
| 7.3428 |
| -7.3355 |
| -7.33 |
| -7.3300 |
| . 3225 |
| -7.3203 |
| -7.3182 |
| -7.3066 |
| -7.3031 |
| 7.2998 |
| -7.2908 |
| -7.2884 |
| -7.2806 |
| 7.2777 |
| -7.2740 |
| -7.2601 |
| 7.2403 |
| 7.2380 |
| 7.2 |
| 7.2326 |
| 7.2292 |
|  |
| 7.2192 |
| 7.2137 |
| . 2 |
| 7.2 |
| 7.1 |
| 7.1920 |
| -7.1889 |
| 7.1 |
| 7.1780 |
| -7.1737 |
| -7.1664 |
| 7.1638 |
| -7.1606 |
| -7.1546 |
| -7.1522 |
| -7.1502 |
| -6.7890 |
| -6.7875 |
| -6.7840 |
| -6.7755 |
| -6.7741 |
| -6.7712 |
| -6.7697 |
| -6.7598 |
| -6.7583 |
| -6.7567 |
| -6.7551 |
| -6.7467 |
| -6.7452 |
| -6.7436 |
| -6.7420 |
| -6.7106 |
| -6.7070 |
| -6.7035 |
| -3.7386 |
| -2.2200 |








133.2393
$\begin{array}{r}132.5155 \\ 128.3367 \\ 128.0681 \\ 127.6227 \\ 126.1554 \\ 125.8861 \\ 123.6341 \\ 123.2258\end{array}$
$-84.6106$
$-77.1600 \mathrm{CDCl} 3$
$-35.0971$
$-24.5124$
$-22.3798$
$-8.3254$



-157.8034
-140.1095
$\begin{array}{r}-133.5910 \\ \simeq_{1}^{129.8078} \\ \hline-128.6806 \\ \hline\end{array}$
$\sim_{126.9160}$
$-123.7663$
-118.9521
-105.6739
-84.6747
$-77.1600 \mathrm{CDCl} 3$
-55.4686
-35.0995
$-24.4920$
$-22.4275$
$-8.3489$


$-169.4549$
$=\left[\begin{array}{l}139.8557 \\ 134.8647 \\ 130.4144 \\ 129.6911 \\ 128.7122 \\ 125.6416 \\ 125.4998 \\ 125.1200 \\ 124.9698 \\ 124.2951\end{array}\right.$
-85.6472
$-77.1600 \mathrm{CDCl} 3$
-33.9539
$-24.5636$
-21.8235
$-8.6762$



$乙_{147.0698}$

- 142.2440 $\int^{136.5306}$ 128.7441
$\mathcal{C}_{-126.7356}^{126.0662}$
- 

$乙_{123.2382}^{123.2677}$
$-84.2808$

- 77.1600 CDCl 3
$-35.1011$
25.4306
-24.4015
-22.3340
$-8.2693$








-159.7248

$-87.7645$
$-77.1600 \mathrm{CDCl} 3$
-55.2489
$-39.4064$
$-30.9258$
$-22.2182$
$-7.7896$




## 

-145.6323 $-142.9140$ $\int_{1}^{133.0377} \begin{array}{r}132.5715 \\ -128.4908\end{array}$ $\int \begin{aligned} & 128.4908 \\ & -128.2891 \\ & -28.192\end{aligned}$ $r_{128.2891}^{128.1492}$ $-127.6567$ - -127.3264 -126.2075
$-126.1208$ -124.5624
-84.8085
-77.1600 CDCI3
-26.9838
-22.5707








- 142.4264
$\int_{1}^{135.0227} \begin{array}{r}131.0965 \\ -129.2640\end{array}$
$\left[\begin{array}{l}131.0965 \\ 129.2640 \\ 128.5970\end{array}\right.$ r 128.5970 127.0880
-125.3139

-124.8693
$-35.4490$




$-45.8996$
$<{ }_{30.6530}^{30.7867}$



-145.0799

$-77.1600 \mathrm{CDCl} 3$

$-48.4019$
$-30.1201$


[^3]


$\begin{array}{r}77.6311 \\ \hline 7.1600\end{array}$
77.1600 CDCl 3
$-55.2394$
-44.4722
$-35.8806$
$-30.3048$
$-7.9054$







Racemic 2.22


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.674 | 264030 | 18609 | 50.155 | 53.657 |
| 2 | 14.231 | 262397 | 16073 | 49.845 | 46.343 |
| Total |  | 526427 | 34682 | 100.000 | 100.000 |

Enantioenriched 2.22, $93 \%$ ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12.058 | 138560 | 9748 | 96.319 | 96.759 |
| 2 | 14.930 | 5295 | 326 | 3.681 | 3.241 |
| Total |  | 143855 | 10075 | 100.000 | 100.000 |

Racemic 2.24


Enantioenriched 2.24, 95\% ee

| (A $=220 \mathrm{~nm}, \mathrm{~B}=254 \mathrm{~nm}, \mathrm{C}=280 \mathrm{~nm})$ |
| :--- |

Racemic 2.25


| Index | Name | Start | Time | End | RT Offset | Quantity | Height | Area | Area |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | $[$ Min $]$ | $[$ Min $]$ | $[$ Min $]$ | $[$ Min $]$ | $[\%$ Area $]$ | $[\mu \mathrm{V}]$ | $[\mu \mathrm{V} . \mathrm{Min}]$ | $[\%]$ |
| 1 | UNKNOWN | 10.97 | 11.74 | 12.94 | 0.00 | 49.90 | 627.8 | 276.5 | 49.904 |
| 2 | UNKNOWN | 16.89 | 18.37 | 19.87 | 0.00 | 50.10 | 387.5 | 277.5 | 50.096 |
|  |  |  |  |  |  |  |  |  |  |
| Total |  |  |  |  |  | 100.00 | 1015.2 | 554.0 | 100.000 |

Enantioenriched 2.25, 96\% ee


Racemic 2.26


| Index | Name | Start | Time | End | RT Offset | Quantity | Height | Area | Area |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | $[$ Min] | $[$ Min $]$ | $[$ Min $]$ | $[$ Min $]$ | $[\%$ Area $]$ | $[\mu \mathrm{V}]$ | $[\mu \mathrm{V} . M i n]$ | $[\%]$ |
| 1 | UNKNOWN | 4.69 | 4.91 | 5.25 | 0.00 | 49.78 | 396.5 | 55.7 | 49.783 |
| 2 | UNKNOWN | 6.01 | 6.28 | 6.67 | 0.00 | 50.22 | 308.1 | 56.2 | 50.217 |
|  |  |  |  |  |  |  |  |  |  |
| Total |  |  |  |  |  | 100.00 | 704.6 | 112.0 | 100.000 |

Enantioenriched 2.26, 96\% ee


Racemic 2.27


Enantioenriched 2.27, $92 \%$ ee


Racemic 2.28


Detector A Chl 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 31.758 | 1728236 | 44032 | 49.845 | 52.134 |
| 2 | 34.546 | 1738977 | 40427 | 50.155 | 47.866 |
| Total |  | 3467213 | 84459 | 100.000 | 100.000 |

Enantioenriched 2.28, 96\% ee


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.604 | 251321 | 6477 | 97.885 | 98.017 |
| 2 | 33.299 | 5430 | 131 | 2.115 | 1.983 |
| Total |  | 256751 | 6608 | 100.000 | 100.000 |

Racemic 2.29

Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.471 | 1653101 | 109872 | 50.507 | 52.247 |
| 2 | 11.483 | 1619926 | 100424 | 49.493 | 47.753 |
| Total |  | 3273026 | 210296 | 100.000 | 100.000 |

Enantioenriched 2.29, 94\% ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.179 | 9333 | 548 | 2.832 | 2.609 |
| 2 | 11.038 | 320214 | 20472 | 97.168 | 97.391 |
| Total |  | 329548 | 21021 | 100.000 | 100.000 |

Enantioenriched (R)-2.29, 96\% ee (crystal used for X-ray diffraction analysis)
mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.336 | 17968 | 1480 | 1.829 | 2.376 |
| 2 | 11.247 | 964530 | 60841 | 98.171 | 97.624 |
| Total |  | 982498 | 62321 | 100.000 | 100.000 |

Racemic 2.30


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 33.885 | 1587788 | 36919 | 49.856 | 51.534 |
| 2 | 36.489 | 1596950 | 34721 | 50.144 | 48.466 |
| Total |  | 3184738 | 71640 | 100.000 | 100.000 |

Enantioenriched 2.30, 96\% ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 35.980 | 18779 | 442 | 2.148 | 2.424 |
| 2 | 39.173 | 855635 | 17798 | 97.852 | 97.576 |
| Total |  | 874414 | 18241 | 100.000 | 100.000 |

Racemic 2.31


| Index | Name | Start | Time | End | RT Offset | Quantity | Height | Area | Area |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | $[\mathrm{Min}]$ | $[\mathrm{Min}]$ | $[\mathrm{Min}]$ | $[\mathrm{Min}]$ | $[\%$ Area $]$ | $[\mu \mathrm{V}]$ | $[\mu \mathrm{V} . \mathrm{Min}]$ | $[\%]$ |
| 1 | UNKNOWN | 5.01 | 5.21 | 5.41 | 0.00 | 49.95 | 599.1 | 80.3 | 49.946 |
| 2 | UNKNOWN | 5.41 | 5.55 | 5.88 | 0.00 | 50.05 | 555.9 | 80.5 | 50.054 |
|  |  |  |  |  |  |  |  |  |  |
| Total |  |  |  |  |  | 100.00 | 1155.0 | 160.8 | 100.000 |

Enantioenriched 2.31, 94\% ee


Racemic 2.32


Enantioenriched 2.32, 95\% ee


Racemic 2.33


Enantioenriched 2.33, $92 \%$ ee


Racemic 2.34
Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.916 | 330741 | 14782 | 49.859 | 50.395 |
| 2 | 20.200 | 332617 | 14550 | 50.141 | 49.605 |
| Total |  | 663357 | 29332 | 100.000 | 100.000 |

Enantioenriched 2.34, 90\% ee mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.688 | 147777 | 7132 | 94.789 | 94.386 |
| 2 | 18.948 | 8124 | 424 | 5.211 | 5.614 |
| Total |  | 155901 | 7556 | 100.000 | 100.000 |

Racemic 2.35
Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.933 | 192477 | 12599 | 50.018 | 54.934 |
| 2 | 15.440 | 192342 | 10336 | 49.982 | 45.066 |
| Total |  | 384819 | 22934 | 100.000 | 100.000 |

Enantioenriched 2.35, 88\% ee mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.227 | 378067 | 26292 | 93.832 | 94.517 |
| 2 | 14.389 | 24853 | 1525 | 6.168 | 5.483 |
| Total |  | 402920 | 27817 | 100.000 | 100.000 |

Racemic 2.36


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8.753 | 355326 | 28276 | 50.038 | 52.795 |
| 2 | 9.949 | 354785 | 25282 | 49.962 | 47.205 |
| Total |  | 710111 | 53557 | 100.000 | 100.000 |

Enantioenriched 2.36, $97 \%$ ee mAU


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8.758 | 310956 | 24796 | 98.496 | 98.455 |
| 2 | 9.969 | 4747 | 389 | 1.504 | 1.545 |
| Total |  | 315703 | 25185 | 100.000 | 100.000 |

Racemic 2.37
Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.232 | 416026 | 11202 | 50.139 | 56.329 |
| 2 | 33.767 | 413712 | 8684 | 49.861 | 43.671 |
| Total |  | 829738 | 19886 | 100.000 | 100.000 |

Enantioenriched 2.37, 99\% ee


Racemic 2.38
mAU
Detector A Ch2 220nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 53.803 | 3938543 | 65377 | 49.786 | 50.537 |
| 2 | 56.351 | 3972469 | 63987 | 50.214 | 49.463 |
| Total |  | 7911011 | 129364 | 100.000 | 100.000 |

Enantioenriched 2.38, 94\% ee mAU


Detector A Ch2 220nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 53.025 | 977426 | 19027 | 2.811 | 3.355 |
| 2 | 53.798 | 33790474 | 548101 | 97.189 | 96.645 |
| Total |  | 34767901 | 567128 | 100.000 | 100.000 |

Racemic 2.39
mAU

Enantioenriched 2.39, $94 \%$ ee
mAU

Racemic 2.40


| Index | Name | Start | Time | End | RT Offset | Quantity | Height | Area | Area |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  | $[$ Min $]$ | $[\mathrm{Min}]$ | $[\mathrm{Min}]$ | $[\mathrm{Min}]$ | $[\%$ Area $]$ | $[\mu \mathrm{V}]$ | $[\mu \mathrm{V} . \mathrm{Min}]$ | $[\%]$ |
| 1 | UNKNOWN | 7.16 | 7.54 | 8.07 | 0.00 | 49.93 | 445.3 | 104.9 | 49.926 |
| 2 | UNKNOWN | 8.74 | 9.18 | 9.79 | 0.00 | 50.07 | 356.0 | 105.2 | 50.074 |
|  |  |  |  |  |  |  |  |  |  |
| Total |  |  |  |  |  | 100.00 | 801.3 | 210.1 | 100.000 |

Enantioenriched 2.40, 87\% ee


Racemic 2.41
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 40.045 | 1348999 | 27748 | 49.573 | 50.539 |
| 2 | 41.650 | 1372253 | 27157 | 50.427 | 49.461 |
| Total |  | 2721252 | 54905 | 100.000 | 100.000 |

Enantioenriched 2.41, 94\% ee


Detector A Ch2 210nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 49.084 | 15876695 | 242733 | 97.073 | 97.378 |
| 2 | 52.102 | 478750 | 6535 | 2.927 | 2.622 |
| Total |  | 16355444 | 249267 | 100.000 | 100.000 |

Racemic 2.42
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.947 | 146239 | 7340 | 49.779 | 42.872 |
| 2 | 18.756 | 147539 | 9781 | 50.221 | 57.128 |
| Total |  | 293778 | 17120 | 100.000 | 100.000 |

Enantioenriched 2.42, $91 \%$ ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 18.288 | 179299 | 9861 | 4.531 | 3.984 |
| 2 | 18.913 | 3777644 | 237657 | 95.469 | 96.016 |
| Total |  | 3956943 | 247518 | 100.000 | 100.000 |

## Racemic 2.46

mAU


Detector A Chl 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.947 | 146239 | 7340 | 49.779 | 42.872 |
| 2 | 18.756 | 147539 | 9781 | 50.221 | 57.128 |
| Total |  | 293778 | 17120 | 100.000 | 100.000 |

Enantioenriched 2.46, 76\% ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.291 | 111446 | 6859 | 87.882 | 88.091 |
| 2 | 14.153 | 15367 | 927 | 12.118 | 11.909 |
| Total |  | 126813 | 7787 | 100.000 | 100.000 |

Racemic 2.19 mAU


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6.328 | 491674 | 54209 | 49.939 | 57.391 |
| 2 | 8.318 | 492882 | 40246 | 50.061 | 42.609 |
| Total |  | 984556 | 94456 | 100.000 | 100.000 |

Enantioenriched 2.19, 96\% ee
mAU


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 6.313 | 8728 | 1084 | 2.011 | 3.036 |
| 2 | 8.234 | 425380 | 34633 | 97.989 | 96.964 |
| Total |  | 434108 | 35717 | 100.000 | 100.000 |


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7.879 | 542497 | 54132 | 49.894 | 54.318 |
| 2 | 8.702 | 544812 | 45525 | 50.106 | 45.682 |
| Total |  | 1087309 | 99658 | 100.000 | 100.000 |

Enantioenriched 2.19b, 90\% ee mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 8.322 | 6955 | 681 | 5.184 | 5.523 |
| 2 | 9.214 | 127204 | 11657 | 94.816 | 94.477 |
| Total |  | 134159 | 12338 | 100.000 | 100.000 |

Racemic 2.19c
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.793 | 255341 | 8840 | 49.841 | 55.369 |
| 2 | 13.431 | 256972 | 7126 | 50.159 | 44.631 |
| Total |  | 512313 | 15966 | 100.000 | 100.000 |

Enantioenriched 2.19c, 99\% ee


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.787 | 2432 | 82 | 0.716 | 0.847 |
| 2 | 13.331 | 337293 | 9599 | 99.284 | 99.153 |
| Total |  | 339725 | 9681 | 100.000 | 100.000 |

Racemic 2.19d
mAU


Detector A Ch2 220nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14.150 | 6717068 | 118892 | 49.889 | 55.245 |
| 2 | 21.445 | 6746910 | 96316 | 50.111 | 44.755 |
| Total |  | 13463978 | 215209 | 100.000 | 100.000 |

Enantioenriched 2.19d, 99\% ee mAU


Detector Aं Ch2 220nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 14.469 | 10257 | 216 | 0.521 | 0.711 |
| 2 | 21.535 | 1957089 | 30206 | 99.479 | 99.289 |
| Total |  | 1967346 | 30422 | 100.000 | 100.000 |



Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.685 | 259259 | 14975 | 49.898 | 50.568 |
| 2 | 12.976 | 260324 | 14639 | 50.102 | 49.432 |
| Total |  | 519583 | 29614 | 100.000 | 100.000 |

Enantioenriched 2.19e, 94\% ee


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.227 | 154894 | 9370 | 97.078 | 96.964 |
| 2 | 12.577 | 4663 | 293 | 2.922 | 3.036 |
| Total |  | 159557 | 9664 | 100.000 | 100.000 |

Racemic 2.19f
mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.074 | 682100 | 29840 | 49.883 | 65.138 |
| 2 | 20.792 | 685307 | 15970 | 50.117 | 34.862 |
| Total |  | 1367408 | 45811 | 100.000 | 100.000 |

Enantioenriched 2.19f, 96\% ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.924 | 789682 | 35965 | 98.270 | 99.044 |
| 2 | 21.866 | 13905 | 347 | 1.730 | 0.956 |
| Total |  | 803587 | 36312 | 100.000 | 100.000 |



PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7.600 | 291470 | 28014 | 50.165 | 56.265 |
| 2 | 9.034 | 289554 | 21776 | 49.835 | 43.735 |
| Total |  | 581024 | 49790 | 100.000 | 100.000 |

Enantioenriched 2.19h, 96\% ee mAU


PDA Ch1 254 nm 4 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7.511 | 7964 | 824 | 1.915 | 2.731 |
| 2 | 8.923 | 407977 | 29359 | 98.085 | 97.269 |
| Total |  | 415942 | 30183 | 100.000 | 100.000 |

Racemic 2.18
mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.353 | 144648 | 11554 | 49.962 | 51.955 |
| 2 | 11.468 | 144869 | 10684 | 50.038 | 48.045 |
| Total |  | 289518 | 22238 | 100.000 | 100.000 |

Enantioenriched 2.18, 96\% ee mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.269 | 283433 | 22977 | 98.493 | 98.537 |
| 2 | 11.370 | 4338 | 341 | 1.507 | 1.463 |
| Total |  | 287771 | 23318 | 100.000 | 100.000 |

Racemic 2.18a
mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.534 | 73547 | 3522 | 50.022 | 56.460 |
| 2 | 21.305 | 73483 | 2716 | 49.978 | 43.540 |
| Total |  | 147031 | 6238 | 100.000 | 100.000 |

Enantioenriched 2.18a, $91 \%$ ee mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.516 | 6536 | 328 | 4.672 | 6.201 |
| 2 | 21.219 | 133384 | 4962 | 95.328 | 93.799 |
| Total |  | 139920 | 5291 | 100.000 | 100.000 |

Racemic 2.18b
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.186 | 337510 | 20102 | 49.967 | 52.913 |
| 2 | 17.346 | 337952 | 17889 | 50.033 | 47.087 |
| Total |  | 675461 | 37991 | 100.000 | 100.000 |

Enantioenriched 2.18b, $90 \%$ ee


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 15.085 | 379069 | 22316 | 94.789 | 95.245 |
| 2 | 17.287 | 20837 | 1114 | 5.211 | 4.755 |
| Total |  | 399906 | 23430 | 100.000 | 100.000 |

Racemic 2.18c mAU


Detector A Ch2 230nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 19.343 | 830508 | 27995 | 49.756 | 54.100 |
| 2 | 23.296 | 838670 | 23752 | 50.244 | 45.900 |
| Total |  | 1669178 | 51747 | 100.000 | 100.000 |

Enantioenriched 2.18c, 99\% ee


Detector A Ch2 230nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 19.313 | 10754 | 429 | 0.510 | 0.708 |
| 2 | 23.228 | 2099723 | 60224 | 99.490 | 99.292 |
| Total |  | 2110477 | 60653 | 100.000 | 100.000 |

Racemic 2.18d mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.737 | 525563 | 30811 | 49.594 | 50.552 |
| 2 | 14.503 | 534166 | 30139 | 50.406 | 49.448 |
| Total |  | 1059729 | 60950 | 100.000 | 100.000 |

Enantioenriched 2.18d, 99\% ee


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.695 | 2096 | 141 | 0.553 | 0.651 |
| 2 | 14.468 | 376900 | 21525 | 99.447 | 99.349 |
| Total |  | 378996 | 21666 | 100.000 | 100.000 |

Racemic 2-(Naphthalen-2-yl)pent-4-en-2-ol (2.18f) mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 11.909 | 435852 | 31788 | 49.790 | 52.848 |
| 2 | 13.876 | 439530 | 28362 | 50.210 | 47.152 |
| Total |  | 875382 | 60150 | 100.000 | 100.000 |

Enantioenriched 2-(Naphthalen-2-yl)pent-4-en-2-ol (2.18f), 96\% ee mAU


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 10.175 | 7104 | 570 | 2.024 | 2.336 |
| 2 | 12.164 | 343811 | 23822 | 97.976 | 97.664 |
| Total |  | 350915 | 24392 | 100.000 | 100.000 |

Racemic 2.18g mAU


PDA Ch1 254 nm 4 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.944 | 89648 | 6313 | 50.174 | 55.701 |
| 2 | 10.699 | 89026 | 5021 | 49.826 | 44.299 |
| Total |  | 178674 | 11333 | 100.000 | 100.000 |

Enantioenriched 2.18g, 89\% ee


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 9.989 | 678937 | 47129 | 94.701 | 95.414 |
| 2 | 10.700 | 37992 | 2265 | 5.299 | 4.586 |
| Total |  | 716930 | 49394 | 100.000 | 100.000 |

Racemic 2.18h
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12.591 | 110150 | 7219 | 50.024 | 51.378 |
| 2 | 13.419 | 110043 | 6832 | 49.976 | 48.622 |
| Total |  | 220194 | 14051 | 100.000 | 100.000 |

Enantioenriched 2.18h, 96\% ee
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 13.183 | 429320 | 27232 | 97.819 | 98.017 |
| 2 | 14.119 | 9571 | 551 | 2.181 | 1.983 |
| Total |  | 438890 | 27783 | 100.000 | 100.000 |

Racemic 2.18i
mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.830 | 1163647 | 54572 | 49.994 | 63.499 |
| 2 | 32.340 | 1163916 | 31370 | 50.006 | 36.501 |
| Total |  | 2327563 | 85942 | 100.000 | 100.000 |

Enantioenriched 2.18i, 91\% ee mAU


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 18.929 | 11129 | 512 | 4.454 | 8.053 |
| 2 | 34.792 | 238760 | 5845 | 95.546 | 91.947 |
| Total |  | 249889 | 6357 | 100.000 | 100.000 |

## Racemic 2.18j <br> mAU <br> 

Detector A Ch1 210nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 47.532 | 1402602 | 25630 | 49.626 | 53.076 |
| 2 | 51.538 | 1423738 | 22659 | 50.374 | 46.924 |
| Total |  | 2826340 | 48289 | 100.000 | 100.000 |

Enantioenriched 2.18j, 90\% ee


Detector A Ch1 210nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 48.112 | 105584 | 2056 | 5.216 | 6.123 |
| 2 | 52.217 | 1918457 | 31520 | 94.784 | 93.877 |
| Total |  | 2024041 | 33576 | 100.000 | 100.000 |

Appendix B
PERMISSION LETTER


## PERMISSION/LCENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms \& Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) Anerican Chenical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please subnit a new request.


## BACK <br> CLOSE WINDOW

Copyright © 2017 Copyriqht Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions
Comments? We would like to hear from you. E-mail us at customercare@copyright.com


[^0]:    
    
    $\left[\begin{array}{l}2.3631 \\ -2.3446 \\ -2.3295 \\ -2.3259 \\ 2.3183 \\ -2.3110 \\ 2.2994 \\ 2.2925 \\ 2.2813 \\ -2.2738 \\ -2.2659 \\ 2.2628 \\ 2.2477 \\ 2.2295 \\ -1.7368\end{array}\right.$
    0.8065
    $<$
    0.7881
    $乙_{0.7697}$

[^1]:    
    -159.4446
    -151.5830
    -147.0107
    $\left[\begin{array}{r}133.3072 \\ 131.8969 \\ 128.9684 \\ 128.1329 \\ 127.6540 \\ 127.5043 \\ 127.1363 \\ 125.9212 \\ 125.5387 \\ 124.7416 \\ 120.2884\end{array}\right.$
    -114.2137
    -110.2886
    $-77.1600 \mathrm{CDCl} 3$
    -63.1767
    -55.2449
    -46.6185
    -41.3942
    $-33.6927$
    -27.5744
    $\mathbf{Z}$
    -26.0567
    -21.2801
    -18.4187
    $-5.1472$

[^2]:    
    -159.5628

    - 151.1202
    -146.6431
    -143.0156
    $-\begin{aligned} & 133.3285 \\ & 131.9583 \\ & 129.1330 \\ & 128.5063 \\ & 128.5006 \\ & 128.1528 \\ & 127.8569 \\ & 127.5406 \\ & 127.0299 \\ & 126.0500 \\ & 125.8694 \\ & 125.6794 \\ & 124.7693 \\ & 120.2469 \\ & 114.2106 \\ & 110.5092\end{aligned}$
    $-77.1600 \mathrm{CDCl} 3$
    -55.2968
    -46.7016
    $-43.8754$
    -31.5138
    -27.5307

[^3]:    

