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ABSTRACT

This dissertation explores three topics at the intersection of probability theory,

combinatorics and information theory. The first part focuses on studying small ball

inequalities for sums and differences of independent, identically distributed random

variables taking values in very general sets. Depending on the setting (abelian or

non-abelian groups, or vector spaces, or Banach spaces) we provide a collection of

inequalities relating different small ball probabilities that are sharp in many cases of

interest. We show that underlying these distribution-free probabilistic inequalities are

inequalities of extremal combinatorial nature, related among other things to classical

packing problems such as the kissing number problem. As regards applications, we

develop various moment inequalities.

The second part is devoted to exploring a formal parallel relation between en-

tropy inequalities in information theory and sumset estimates in additive combina-

torics. Our work is closely related to the study of more-sum-than-difference sets in

additive combinatorics. Various information theoretical inequalities are obtained, such

as the entropy analogue of Freiman-Pigarev inequality. We also present applications of

our results in the construction of polar codes with significantly improved error proba-

bility compared to the canonical construction.

Concentration of measure principle is one of the cornerstones in geometric func-

tional analysis and probability theory, and it is widely used in many other areas. In

the third part, we study the concentration property of information content, which is

one of the central interests in information theory, and it has great relevance with var-

ious other areas such as probability theory, statistics and statistical physics. Sharp

exponential deviation estimates for the information content as well as a sharp bound

on the varentropy for convex probability measures are obtained on Euclidean spaces.

viii



Chapter 1

INTRODUCTION

This dissertation explores three topics: small ball inequalities in probability the-

ory, information theoretical inequalities analogous to sumset estimates in additive com-

binatorics, and concentration properties of information content for convex probability

measures. In this chapter, we give basic introduction of these topics and demonstrate

some motivations for our study. Detailed results will be discussed in the following three

chapters.

1.1 Small ball inequalities

Both the theory of large deviations (or tail probabilities) and the theory of small

deviations (or small ball probabilities) study the occurrence of rare events. The theory

of large deviation studies the asymptotic behavior of the probability that a random

variable is far away from its mean, i.e.

P(‖X − EX‖ > t)

as t → ∞. While the small ball deviation theory seeks to control the probability that

a random variable is very small, i.e.

P(‖X‖ < ε)

as ε→ 0. The theory of large deviations goes back the study of Cramér about actuarial

“ruin problems”, and it culminates in Varadhan’s landmark paper [160]. The large

deviation principle has been well developed in the last few decades, see e.g. Donsker

and Varadhan [39, 40, 41] for Markov processes, Ledoux and Talagrand [96], Ledoux

[94] and Bogachev [19] for Gaussian measures, Varadhan [161], Dembo and Zeitouni
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[34] for the general theory. Small ball probabilities have been extensively studied in

the setting of Gaussian processes and associated Banach or Hilbert spaces. It has been

found that the small ball estimate has close connections with various approximation

quantities of compact sets and operators [134, 90, 104], and has a variety of applications

in studies of fractal properties of random sets [169], rates of convergence in Strassen’s

law of the iterated logarithm [156, 91]. A nice exposition of the state of the art in the

theory of small deviations can be found in Li and Shao [105].

Motivation and goal. Given the ubiquity of sums of independent, identically dis-

tributed (i.i.d.) random variables in probability theory, it is natural to look for ways to

estimate the probability that their sum lies in a given measurable set. If the measurable

set is selected to be a normed ball, we are actually studying small ball probabilities,

although the normed ball is not necessary to be small. In general, this can be a rather

complex calculation, and is often intractable. The raison d’etre of the first part is the

fact that it is often much easier to estimate the probability that a symmetric random

variable lies in a symmetric set; so if we can find a way to relate the desired probabil-

ity to a probability of this type, then in many circumstances our task is significantly

simplified.

The most general setting in which we can talk about sums (and symmetry)

is that of group-valued random variables, where the group operation represents sum-

mation. To state our problem more precisely, consider i.i.d. random variables X, Y

taking values in a (possibly non-abelian) topological group with group operation “ + ”

and the Borel σ-algebra generated by all open sets; then our problem is to find good

bounds on P(X+Y ∈ F ) for arbitrary measurable set F in terms of P(X−Y ∈ K) for

symmetric measurable sets K. Since the distribution of X − Y is always symmetric,

this would provide a reduction of the form mentioned earlier. We also study a related

problem, namely that of estimating P(X−Y ∈ F ) for arbitrary measurable F in terms

of P(X − Y ∈ K) for symmetric measurable sets K.

It might seem that the problem stated is somewhat abstruse; however, it is
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closely related to a number of influential streams of recent research. To highlight these

connections, we discuss the problem from various perspectives.

Symmetrization. Symmetrization is one of the most basic and powerful meta-

techniques that arises in many different guises in different parts of mathematics. In-

stances include Steiner symmetrization in convex geometry and the study of isoperi-

metric phenomena, Rademacher symmetrization in empirical process theory, use of re-

arrangements in functional inequalities and the study of partial differential equations,

and others too numerous to mention. One goal of this part is to develop a symmetriza-

tion technique for estimating small ball probabilities of sums and differences of i.i.d.

random variables. We call these small ball probabilities even though there may be no

“ball” under consideration (for instance, no norm in the general group settings that

we will consider), because when considered in the context of finite dimensional vector

spaces, these are related to inequalities for the probability of lying in a ball with respect

to some norm.

Concentration function. The notion of the concentration function was introduced

by Lévy, as a means of describing in a flexible way the spread or concentration of

a real-valued random variable that may not have finite moments. For a real-valued

random variable X with distribution PX , the Lévy’s concentration function is given

by Q(X, s) = supx∈R PX([x, x + s])) for s > 0. While there was already much at-

tention paid to concentration functions in classical probability theory (see, e.g., [99,

37, 88, 137, 48, 49, 84, 70, 74, 123]), their study received renewed attention in recent

years [35, 36, 139, 57, 45, 128] because of the relevance of arithmetic structure to the

concentration function of linear combinations of i.i.d. random variables, as well as

applications to random matrix theory. While we do not directly address the literature

on concentration functions in our note, our results may be seen as providing bounds

on multidimensional or non-Euclidean analogs of concentration functions in general

spaces. Indeed, a natural way to define the concentration function in a general setting,
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say an abelian group G, would be to set

Q(X,F ) = sup
x∈G

PX(x+ F ),

where the set-valued parameter F plays the role of the parameter s in the definition

Q(X, s) of the concentration function for real-valued random variables. Since the

constants that appear in our results are covering/packing numbers N(F,K) that are

invariant with respect to translations of F , our results directly imply concentration

function bounds; for instance, Theorem 2.3.1 implies that for F an arbitrary measurable

subset of an abelian topological group G and K a measurable subset of G containing

the identity in its interior,

Q(X + Y, F ) ≤ N(F,K) ·Q(X − Y,K).

Packing problems/Extremal combinatorics. In 1995, Alon and Yuster [4] showed

that for any two i.i.d. real-valued random variables X, Y ,

P(|X − Y | ≤ b) < (2�b/a	 − 1) · P(|X − Y | ≤ a), (1.1)

thus answering a question raised by Peres and Margulis. They also observed that the

optimal constants in such estimates are closely related to the kissing number problem,

which is a long-standing problem in geometry; indeed, the kissing number in R
3 was

a subject of discussion between Isaac Newton and David Gregory in 1694. A similar

probabilistic inequality proved by Katona [76] is closely related to Turán-type theorems

for triangle-free graphs. It turns out that behind the main results of this paper, which

among other things generalize significantly the inequality (1.1) of [4], are actually

statements from extremal combinatorics, which we prove en route to proving our main

results. This strengthens the link between extremal combinatorial phenomena and

probabilistic inequalities, in a much more general setting than that of [4], in analogy

with similar links developed by Katona in a series of papers (see, e.g., [75, 83]).

Moment inequalities. Probability bounds are of course closely related to moment

inequalities, and our results in particular can be used to develop a number of moment
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inequalities for functions of sums and differences of random variables under various

assumptions on the distribution and/or the function. Such inequalities are of intrinsic

interest since they serve as tools in a variety of areas.

Random walks. For 0 < a < 2b, the following sharp symmetrization inequality for

i.i.d. real-valued random variables X, Y is proved in [38]:

P(|X + Y | ≤ b) < �2b/a	 · P(|X − Y | ≤ a). (1.2)

For a ≥ 2b, the estimate still holds with “ ≤ ” in the middle. This generalizes the early

work of Schultze and von Weizsächer [148], which considered the special case a = b

and used it as a key ingredient in studying the level crossing probabilities for random

walks on the real line. The first part contains those of [38], and although we do not

investigate this direction further here; it is likely that our results would be useful in

the study of random walks on groups.

1.2 Information theoretical inequalities

Classical information theoretical inequalities have been driven to solve commu-

nication theoretical problems. Nowadays information theory is no longer restricted to

the domain of communication theory. Information theoretical inequalities also play

important roles in many other areas, such as probability theory, convex geometry and

combinatorics. The second part of this dissertation studies certain entropy inequalities

analogous to some sumset estimates in additive combinatorics.

Introduction to entropy. Entropy made its first appearance in the middle of the

19th century in the context of thermodynamics. It was introduced by Clausius in

1865 as a macroscopic description of a thermodynamic system. Later, Boltzmann

in 1877 developed a statistical mechanical interpretation of entropy as a measure of

uncertainty or disorderedness of a system. It is proportional to the natural logarithm of

the number of possible microscopic states, which gives rise to the observed macroscopic

state of the system. Boltzmann entropy is now regarded as one of the cornerstones

of statistical mechanics. A statistical concept of entropy called Shannon entropy was
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introduced by Claude Shannon in his seminal paper [146] to study the communication

and transmission of information. According to the folklore Tribus and MacIrvine [159]

1 , the term entropy was suggested to Shannon by von Neumann for both its fuzziness

and resemblance with Boltzmann entropy. In nowadays, entropy is a fundamental

concept in many disciplines, such as probability theory, information theory, statistical

mechanics, dynamical systems and computer science, etc.

Let X be a random variable taking values in a finite set A with probability mass

function p(x) for x ∈ A. Its Shannon entropy H(X) is defined as

H(X) = −
∑
x∈A

p(x) log p(x) = −E log p(X). (1.3)

Here we adopt the usual abuse of notation: we write H(X) even though the entropy

is a functional depending only on the distribution of X and not on the value of X.

Shannon entropy measures the uncertainty of a distribution or the average missing

information from a random source. One basic fact implied by the concavity of −x log x

is that

0 ≤ H(X) ≤ log |A|, (1.4)

where |A| denotes the cardinality of A. Equality in the lower bound holds if only if X

is deterministic, in which there is no uncertainty. Equality in the upper bound holds

if only if X is uniform on A, in which case we have the largest uncertainty. For any

discrete random variables X, Y , we have the following sub-additive property

H(X ± Y ) ≤ H(X) +H(Y ). (1.5)

1 When John von Neumann asked him how he was getting on with his information
theory, Shannon replied: “The theory was in excellent shape. My greatest concern was
what to call it. I thought of calling it ‘information’, but the word was overly used, so
I decided to call it ‘uncertainty’.” John von Neumann told him, “You should call it
entropy, for two reasons. In the first place your uncertainty function has been used in
statistical mechanics under that name, so it already has a name. In the second place,
and more important, nobody knows what entropy really is, so in a debate you will
always have the advantage”.
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If X, Y are independent, we have

max{H(X), H(Y )} ≤ H(X ± Y ). (1.6)

The continuous analogous of Shannon entropy is called differential entropy,

which is defined for continuous random variables. For a real-valued continuous random

variable X with density function f(x), its differential entropy h(X) is defined as

h(X) = −
∫
R

f(x) log f(x)dx = −E log f(X). (1.7)

Unlike Shannon entropy, differential entropy could be negative even −∞. The lower

bound (1.6) does generalize for differential entropy, but the sub-additive property (1.5)

in general fails for differential entropy. Shannon entropy and differential entropy have

a lot of properties in common. But there is indeed a lot of properties, which hold

for Shannon entropy, fails for differential entropy. That is one of the reasons why

differential entropy is relatively harder to handle.

Information theoretical interpretation. Let X be a discrete random variables

taking values in a finite set A with probability mass function p(x) for x ∈ A. Let

X1, · · · , Xn be a sequence of independent copies of X. Without confusion, we use

p(x1, · · · , xn) to denote the joint probability mass function of this sequence. By the

weak law of large number, we have

− log p(X1, · · · , Xn)

n

p−→ H(X). (1.8)

For small ε > 0, we introduce the typical set Tn,ε(X) defined by

Tn,ε(X) = {(x1, · · · , xn) ∈ An : e−n(H(X)+ε) ≤ p(x1, · · · , xn) ≤ e−n(H(X)−ε)}, (1.9)

where we denote by An the n-th Cartesian product of A. For large n, from (1.8) we

can see that

P(Tn,ε(X)) = 1 − on(1). (1.10)
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Estimate of the o(1) term can follow from Hoeffding’s inequality. Using the definition

of Tn,ε(X), we have

|Tn,ε(X)| = en(H(X)+o(1)). (1.11)

The concentration property (1.10) is a special case of Asymptotic Equipartition Property

(AEP) for i.i.d. random variables. For a discrete-time stationary ergodic process, AEP

is known as Shannon-McMillan-Breiman theorem. We refer to [9] for a definitive version

of this theorem, as well as for a nice account of the history of it. The notion of typical

set and AEP plays an important role in coding theory [33].

Then we can see that after a long run the sequence X1, · · · , Xn is roughly

uniformly distributed on a set with probability close to 1 and approximately enH(X)

elements. This gives the traditional information theoretical interpretation of Shannon

entropy H(X) as the measure of the logarithm of the effective support of a large sample

of X. It is analogous to the definition of entropy in thermodynamics. In the continuous

setting, the typical set Tn,ε(X) is defined in a similar way, with the probability mass

function p(x1, · · · , xn) replaced by the joint density function f(x1, · · · , xn). The con-

centration property (1.10) still holds. The quantity |Tn,ε(X)| in equation (1.11) will be

interpreted as the volume of Tn,ε(X) and the Shannon entropy H(X) will be replaced

by the differential entropy h(X).

Formal parallel relation. The link between random variables and typical sets sug-

gests a formal parallel relation between entropy inequalities in information theory and

sumset estimates in additive combinatorics (and convex geometry): replace sets by

random variables, and replace the logarithm of cardinality (volume) of each set by the

entropy of the corresponding random variable. First identified by Ruzsa [143], this

connection has been studied extensively in the last few years. Useful tools in additive

combinatorics have been developed in the entropy setting, such as Plünnecke-Ruzsa in-

equalities by Madiman, Marcus and Tetali [110], and Freiman-Green-Ruzsa and Balog-

Szemerédi-Gowers theorems by Tao [158]. Much more work has also recently emerged

on related topics, such as efforts towards an entropy version of the Cauchy-Davenport
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inequality [64, 71, 164, 166], an entropy analogue of the doubling-difference inequality

[109], extensions from discrete groups to locally compact abelian groups [89, 108], and

applications of additive combinatorics in information theory [92, 107, 29, 50, 167].

In the following we demonstrate this relation by some examples. For two finite

subsets A,B of an additive group, the sumset A + B and difference set A − B are

defined by

A+B := {a+ b : a ∈ A, b ∈ B},

and

A− B := {a− b : a ∈ A, b ∈ B}.

Inequalities (1.5) and (1.6) are exactly entropy analogs of the following trivial bounds

max{|A|, |B|} ≤ |A± B| ≤ |A||B|.

This is, of course, an analogy but not a proof. Another typical sumset estimate in

additive combinatorics is Ruzsa’s triangle inequality [142], which says that

|A− C| ≤ |A− B||B − C|
|B| . (1.12)

Its entropy analog [158] asserts that for independent discrete random varialbes X, Y, Z,

we have

H(X − Z) ≤ H(X − Y ) +H(Y − Z) −H(Z). (1.13)

Its ifferential entropy analog is proved in [89]. The famous entropy power inequality

(EPI) [146, 150] asserts that for independent continuous random variables X, Y in R
n,

we have

e
2
n
h(X+Y ) ≥ e

2
n
h(X) + e

2
n
h(Y ). (1.14)

It has a strong formal resemblance to the well-known Brunn-Minkowski inequality in

convex geometry. It says that for non-empty compact Borel subsets A,B ⊂ R
n, we

have

|A+B|1/n ≥ |A|1/n + |B|1/n. (1.15)

9



Here we denote by | · | the Lebesgure measure. We refer to [153] for the derivation of

EPI from Brunn-Minkowski inequality for restricted sumsets.

Our motivation. In an abelian group, since addition is commutative while subtraction

is not, two generic elements generate one sum but two differences. Likely motivated

by this observation, J. H. Conway had posed the following conjecture (contained in H.

T. Croft’s Research Problems, 1967):

“Let A = {a1, a2, . . . , aN} be a finite set of integers, and define A + A =
{ai + aj : 1 ≤ i, j ≤ N} and A− A = {ai − aj : 1 ≤ i, j ≤ N}. Prove that
A−A always has more members than A+A, unless A is symmetric about
0.”

However, that is not always the case. In 1969, Marica [113] showed that the con-

jecture is false by exhibiting the set A = {1, 2, 3, 5, 8, 9, 13, 15, 16}, for which A + A

has 30 elements and A − A has 29 elements. (Conway himself is also said to have

found the counter example {0, 2, 3, 4, 7, 11, 12, 14} in the 1960’s, thus disproving his

own conjecture– some history about more-sum-than-difference (MSTD) sets is dis-

cussed in [127, 126].) Subsequently, Stein [152] showed that one can construct sets A

for which the ratio |A−A|/|A+A| is as close to 0 or as large as we please; apart from

his own proof, he observed that such constructions also follow by adapting arguments

in an earlier work of Piccard [132] that focused on the Lebesgue measure of A + A

and A − A for subsets A of R. A stream of recent papers aims to quantify how rare

or frequent MSTD sets are (see, e.g., [114, 69] for work on the integers, and [171] for

finite abelian groups more generally), or try to provide denser constructions of infinite

families of MSTD sets (see, e.g., [118, 170]); however these are not directions we will

explore in this part.

Since convolutions of uniforms are always distributed on the sumset of the sup-

ports, but are typically not uniform distributions, it is not immediately obvious from

the Conway and Marica constructions whether there exist i.i.d. random variables X

and Y such that H(X +Y ) > H(X−Y ). The purpose of the second part is to explore

this sum-difference problem for entropy. A natural related question to ask is for some
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description of the coefficient λ that maximizes H(X + λY ) for i.i.d. random variables

X, Y taking values in cyclic groups; restricting the choice of coefficients to {+1,−1}
would correspond to the sum-difference question. This question is motivated by appli-

cations to the class of polar codes, which is a very promising class of codes that has

attracted much recent attention in information and coding theory.

1.3 Concentration of information content

Information content is one of the central interests in information and coding

theory. It also has important relevance with other areas, such as probability theory,

statistical physics and statistics. The third part of the thesis devotes to the study of

concentration properties of information content for convex probability measures.

Concentration of measure principle. The concentration of measure phenomenon

roughly says if a function depends in a reasonably continuous way on a large number

of small variables, then it is almost always close to its expected value. This idea goes

back to the work of Lévy [100] on the spherical isoperimetric problem. But its full

strength was first realized by Milman in his revolutionary proof [119] of Dvoretzky’s

theorem [42]. Specially the proof is a milestone in the local theory of Banach spaces.

This concentration principle is responsible for many counterintuitive phenomenons in

high dimensional spaces. One simple example is that the volume of the unit ball goes

to 0 when the dimension increases to infinity. It also leads to new understandings of

some traditional probabilistic conditions, such as independence and martingale. This

principle is one of the cornerstones in geometric functional analysis and probability

theory, and it is widely used in many other areas. This concentration phenomenon has

been extensively studied in the last several decades by Milman [119, 120], Gromov and

Milman [60, 61], Milman and Shechtman [122], Maurey [116], Pisier [134], Shechtman

[144], Talagrand [154, 155, 157], Ledoux [95], and others.

Information content. Let X = (X1, X2, · · · ) be a stochastic process with each Xi

taking values in R. Suppose that the joint distribution of Xn = (X1, · · · , Xn) has

11



a density f with respect to the Lebesgue measure on R
n. We are interested in the

random variable

h̃(Xn) = − log f(Xn), (1.16)

which may be thought of as the (random) information content of Xn. In the discrete

case, the quantity h̃(Xn) (using f for the probability mass function) is essentially the

number of bits needed to represent Xn by a coding scheme that minimizes the average

code length [146]. In the continuous case, one may still call h̃(Xn) the information

content even though this coding interpretation no longer holds. The quantity h̃(Xn)

is of central interest in information theory and also naturally arises in several other

areas such as probability theory, statistical physics and statistics. The average value

of information content is known more commonly as the (differential) entropy defined

by

h(Xn) = −
∫
Rn

f(x) log f(x)dx = Eh̃(Xn). (1.17)

Background. A typical problem is to study the deviation estimate of information

content from the entropy, either through the varentropy, which is defined as the variance

of h̃(Xn), or through deviation inequalities for the random variable h̃(Xn). The entropy

rate of the stochastic process X is defined by

h(X) = lim
n→∞

h(Xn)

n
, (1.18)

when the limit exists. The question of whether the information content per coordinate
˜h(Xn)
n

converges to the entropy rate has been extensively studied. In the discrete case,

the affirmative answer goes back to Shannon [146], McMillan [117] and Breiman [25]

for stationary ergodic process. The theorem particularly implies the existence of a set

of roughly enh(X) typical sequences of length n all having roughly equal probability (a

fact that plays a fundamental role in compressing discrete data from ergodic sources).

McMillan [117] called this the asymptotic equipartition property (AEP). Extensions

12



to more general (including continuous) settings were obtained independently in [9] and

[131].

For processes that are not asymptotically mean stationary, the entropy rate

typically does not exist; so there is no convergence question of
˜h(Xn)
n

. With a global

restriction on the joint distribution of the process, namely log-concavity, but without

assuming an asymptotic framework (i.e., for a density on R
n for fixed n), [14] proved

that
˜h(Xn)
n

is highly concentrated around the entropy rate. It demonstrates that high-

dimensional log-concave measures are in a sense close to uniform distributions on the

annulus between two nested convex sets. The argument of [14] is non-trivial and

depends on the rather heavy machinery of the so-called Lovász-Simonovits localization

technique; however, optimal concentration bounds were recently obtained in [53] using

a much simpler approach.

Our goal. The purpose of this part is to extend the concentration property of the

information content from log-concave measures to the more general class of “convex

measures”. The class of convex measures (which we define more carefully in Section

4.3) includes all probability distributions with quasiconcave densities, i.e., densities

such that the value at a convex combination of two points is at least the minimum

of the values at the two points. In particular, these include all log-concave densities

(such as Gaussians and exponentials) as well as Pareto distributions (only some of

whose moments are finite) and the Cauchy distribution (whose mean does not exist).

Perhaps most importantly from the information theory point of view, we expect our

results to have implications for the study of fundamental limits of finite-blocklength

performance in contexts involving convexity, e.g., for additive noise channels where

the noise is drawn from a convex measure. Let us note that a very special case of

our results, namely information concentration for Gaussians (which can be proved by

explicit computations), is a key ingredient in the results of Cover and Pombra [32] on

feedback capacities of Gaussian channels. This is because bounds on concentration

of information content are often useful in obtaining concentration inequalities for the

13



Pinsker information density (which plays a key role in finite-blocklength analysis of

communication channels); this is laid out in the log-concave case in [16]. Develop-

ing this direction and the resulting applications to communications, however, requires

additional work and we do not attempt it in this part.

Our study is also closely related to many interesting problems in convex ge-

ometry and probability theory. For example, Corollary 4.3.4 was used in [15] (for

log-concave measures) to give an information-theoretic formulation of Bourgain’s fa-

mous hyperplane conjecture [23]. A weaker form of Corollary 4.3.5 and Corollary 4.3.4

are key ingredients used by [18] to obtain a reverse entropy power inequality for convex

measures; and the log-concave case of our main result also has applications in random

matrix theory [112].
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Chapter 2

SMALL BALL INEQUALITIES

In this chapter, we will develop a symmetrization technique for estimating small

ball probabilities for sums and differences of i.i.d. random variables. Let X, Y be

i.i.d. random variables taking values in certain measurable space, and let F,K be two

measurable subsets. More precisely we are looking for the smallest possible constants

c+, c− such that

P(X ± Y ∈ F ) ≤ c± · P(X − Y ∈ K) (2.1)

hold for all i.i.d. random variables. As mentioned before, this problem is related

to several other influential research streams. Depending on the space where X, Y

take values, various small ball inequalities are obtained. Estimates for real-valued

random variables are provided in Section 2.1. Extensions are made in Section 2.2

and Section 2.3 for random variables taking values in separable Banach spaces and

general topological groups, respectively. We will discuss the tightness problem for

various estimates in Section 2.4. Regarding applications, various moment inequalities

are obtained in Section 2.5. Estimates in Section 2.1 and Section 2.2 can be found in

[38], and results in the other three sections are from [101].

2.1 Small ball inequalities for real-valued random variables

In this section, we assume that X, Y are real-valued i.i.d. random variables.

Margulis raised the problem of determining the smallest possible constant c such that

the following inequality holds for any real-valued i.i.d. random variables X, Y ,

P(|X − Y | ≤ 2) ≤ c · P(|X − Y | ≤ 1). (2.2)
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Since X, Y have the same distribution, their difference X − Y is symmetric and has

positive probability concentrating around 0, this provides a reason for the possible

existence of such a distribution-free constant. Many researchers observed that the

optimal constant should satisfy 3 ≤ c ≤ 5. The lower bound follows by considering

the example that X, Y are independent and uniformly distributed on {2, 4, · · · , 2n}.

In this case, we have P(|X − Y | ≤ 1) = 1/n and P(|X − Y | ≤ 2) = 3/n − 2/n2. The

optimal constant c = 3 was obtained by Alon and Yuster [4], and independently by

Kotlov 1. Using a combinatorial approach, Alon and Yuster [4] actually proved the

following general result.

Theorem 2.1.1 (Alon and Yuster [4]). Let a, b be two positive numbers. For any

real-valued i.i.d. random variables X, Y , we have

P(|X − Y | ≤ b) < (2�b/a	 − 1) · P(|X − Y | ≤ a). (2.3)

Moreover the constant 2�b/a	 − 1 cannot be improved.

During the study of level crossing probabilities for random walks with symmetric

independent increments, Schultze and von Weizsächer [148] obtained a similar sharp

inequality: for any real-valued i.i.d. random variables X, Y , we have

P(|X + Y | ≤ 1) < 2 · P(|X − Y | ≤ 1). (2.4)

This estimate plays an important role in removing the symmetry assumption. Their

proof depends the following key lemma, which shows how to derive two-variable integral

inequalities from one-variable integral estimate. We state the lemma in a form suitable

for our purpose.

Lemma 2.1.1 (Schultze and von Weizsächer [148]). Let (X ,B) be a measurable space

and f : X ×X → R be a B ⊗B measurable bounded symmetric function. Let P be the

set of all probability measures on B. Then the following statements are equivalent:

1 The authors of [4] learnt from Y. Peres that A. Kotlov also obtained this result
without strict inequality. But we can not find the reference.
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• For all μ ∈ P, ∫
X×X

f(x, y)dμ(x)dμ(y) > 0.

• For all μ ∈ P,

μ

({
x ∈ X :

∫
X
f(x, y)dμ(y) > 0

})
> 0.

Using this lemma, we can obtain the following extension of (2.4).

Theorem 2.1.2. Let a, b be positive real numbers such that 0 < a < 2b. For any

real-valued i.i.d. random variables X, Y , we have

P(|X + Y | ≤ b) < �2b/a	 · P(|X − Y | ≤ a). (2.5)

Moreover the constant �2b/a	 can not be improved. When a ≥ 2b, the inequality is still

tight with “ ≤ ” in the middle.

Remark. When a ≥ 2b, equality can indeed happen. To see that we can take X, Y to

be independent random variables with the same distribution P(X = 0) = 1. In this

case, it is easy to see P(|X + Y | ≤ b) = P(|X − Y | ≤ a) = 1.

Proof. Upper bound: Without loss of generality, we can assume a = 1. Then we can

rewrite the inequality (2.5) as∫
R×R

ϕ(x, y)dμ(x)dμ(y) > 0,

where

ϕ(x, y) = �2b	 · 1{(x,y):|x−y|≤1} − 1{(x,y):|x+y|≤b},

and μ is the probability measure induced by X. It is easy to see that ϕ(x, y) is bounded

and symmetric with respect to x, y. By Lemma 2.1.1, it is equivalent to prove

μ

({
x ∈ R :

∫
R

ϕ(x, y)dμ(y) > 0

})
> 0

for all μ ∈ P . We define μr(x) := μ ([x− r, x+ r]). Then the above statement can be

rewritten as

μ ({x ∈ R : μb(−x) < �2b	 · μ1(x)}) > 0.
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Suppose that the claim is not true, then there is some μ such that μ(S) = 1, where

S = {x ∈ R : μb(−x) ≥ �2b	 · μ1(x)} . (2.6)

Define α = supx∈S μ1(x), which is positive. For ε > 0 small, we will show that there

exists a sequence of disjoint intervals {Ik} such that μ(Ik) > α− �2b	2kε. For M large

enough, we have

μ
(∪Mk=0Ik

)
>

M∑
k=0

(α− �2b	2kε) > 1,

which is impossible. So the claim must be true. Firstly, we can pick x0 ∈ S such that

μ1(x0) > α− ε, and define

I0 = [x0 − 1, x0 + 1]. (2.7)

Since x0 ∈ S, we have μb(−x0) > �2b	(α − ε). Without loss of generality, we assume

x0 ≥ 0. It is easy to see that [−x0 − b,−x0 + b] can be divided into �2b	 disjoint

intervals of the form

[−x0 + b− 1,−x0 + b], [−x0 + b− 2,−x0 + b− 1), · · · , [−x0 − b,−x0 + b+ 1 − �2b	).

Due to μ(S) = 1, the interval above with positive measure must have non-empty

intersection with S. So it can be covered by [y − 1, y + 1] for some y ∈ S. Then we

can see that every interval above has measure at most α, which implies

μ ([−x0 − b,−x0 + b+ 1 − �2b	)) > �2b	(α− ε) − (�2b	 − 1)α = α− �2b	ε.

For any x1 ∈ [−x0 − b,−x0 + b+ 1 − �2b	) ∩ S, we have μ1(x1) > α− �2b	ε and

μb(−x1) > �2b	(α− �2b	ε). (2.8)

When b > 1/2, we always have

−x1 + b > x0 + �2b	 − 1 > x0 + 1. (2.9)

For 1/2 < b ≤ 1, we can see

x0 ≥ −x1 − b > x0 + �2b	 − 2b− 1 ≥ x0 − 1. (2.10)
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Combining (2.8), (2.9) and (2.10), we have

μ((x0 + 1,−x1 + b]) ≥ μb(−x1) − μ1(x0) > α− �2b	2ε.

For b > 1, we have

−x1 − b− 1 + �2b	 > x0 + 2(�2b	 − b− 1) ≥ x0 + 1.

In this case, we also have

μ((−x1 − b− 1 + �2b	,−x1 + b]) ≥ α− �2b	2ε.

Hence, we can define

I1 =

⎧⎨⎩(x0 + 1,−x1 + b] 1/2 < b ≤ 1,

(−x1 − b− 1 + �2b	,−x1 + b] b > 1.

Apparently, we have I0 ∩ I1 = ∅. Proceeding recursively we can construct a sequence

of disjoint intervals {Ik} with properties as we mentioned before. So, the claim is true.

Lower bound: The following example shows that our estimate in Theorem 2.1.2

is sharp. Let X, Y be independent random variables with the same distribution P(X =

xi) = (2n)−1, where

xi =

⎧⎨⎩ i(1 + ε)a i = 1, 2, · · · , n,
i(1 + ε)a− r i = 0,−1, · · · ,−n+ 1,

(2.11)

with ε > 0 small and 0 < r ≤ a(1 + ε)/2. It is easy to see

P(|X − Y | ≤ a) = P(X = Y ) = (2n)−1, (2.12)

and

P(|X + Y | ≤ 1) = (2n)−1
(∑
i∈I1

+
∑
i∈I2

+
∑
i∈I3

)
P(−xi − 1 ≤ X ≤ −xi + 1), (2.13)

where {I1, I2, I3} is a partition of the index set {i : −n + 1 ≤ i ≤ n}. The sets I1, I2

are defined by

I1 = {i : −x0 + 1 ≤ xi ≤ −x−n+1 − 1},
I2 = {i : −xn + 1 ≤ xi ≤ −x1 − 1}.
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Elementary calculations show that

|I1| = �n− 1 − (1 − r)(1 + ε)−1a−1� − �(1 + r)(1 + ε)−1a−1	 + 1, (2.14)

|I2| = �n− (1 + r)(1 + ε)−1a−1� − �1 + (1 − r)(1 + ε)−1a−1	 + 1. (2.15)

For any i ∈ I1 ∪ I2, we have

P(−xi − 1 ≤ X ≤ −xi + 1) = (2n)−1 · |{k : −xi − 1 ≤ xk ≤ −xi + 1}|
= (2n)−1 · (1 + �(1 − r)(1 + ε)−1a−1� + �(1 + r)(1 + ε)−1a−1�) . (2.16)

For any i ∈ I3, we can see

P(−1 − xi ≤ X ≤ 1 − xi) = O(n−1). (2.17)

Combining (2.12)-(2.17), we have

lim
n→∞

P(|X + Y | ≤ 1)

P(|X − Y | ≤ a)
= 1 + �(1 − r)(1 + ε)−1a−1� + �(1 + r)(1 + ε)−1a−1�. (2.18)

For all a > 0, we will see that there are always appropriate ε, r such that the right
hand side of (2.18) can achieve �2/a	.

1. When k < 1/a ≤ k + 1/2, for some non-negative integer k, and r > 0 small, we
have

k < (1 − r)a−1 < k + 1, k < (1 + r)a−1 < k + 1.

For ε > 0 small, we have

1 + �(1 − r)(1 + ε)−1a−1� + �(1 + r)(1 + ε)−1a−1� = 2k + 1 = �2/a	.

2. When k + 1/2 < 1/a ≤ k + 1, and r = a/2, we have

k < (1 − r)a−1 < k + 1 < (1 + r)a−1 < k + 2.

Then we can choose ε > 0 small such that

1 + �(1 − r)(1 + ε)−1a−1� + �(1 + r)(1 + ε)−1a−1� = 2k + 2 = �2/a	.

Now we finish the proof.

�
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2.2 Small ball inequalities in Banach spaces

In this section, we will extend small ball inequalities for real-valued random

variables to rather general settings, such as for random variables taking values in

Banach spaces. Moreover we will see the geometric meanings of the optimal constants

in these estimates. We denote by τ(n, r) the maximal number of points that can be

placed in a closed ball of radius r such that the ball is centering at one of these points

and all mutual distances exceed 1. Then the extension of Theorem 2.1.1 for random

variables taking values in high dimensional Euclidean spaces R
n can be stated in the

following way.

Theorem 2.2.1 (Alon and Yuster [4]). Let r > 0 be a positive number. For any i.i.d.

random variables X, Y taking values in R
n, we have

P(‖X − Y ‖ ≤ r) ≤ τ(n, r) · P(‖X − Y ‖ ≤ 1). (2.19)

In the note [38], we gave an unified treatment for the small ball problem (2.1) in

the more general Banach space setting. Before stating our results, let us specify some

notations that will be used.

Let (X , ‖ ·‖) be a separable Banach space with the norm ‖ ·‖, and let F,K ⊆ X
be two measurable subsets. Their Minkowski sum F +K is defined as

F +K = {x+ y : x ∈ F, y ∈ K}.

For ρ > 0, we denote by N(F,K, ρ) the ρ-covering number of F by K, which is defined

to be

N(F,K, ρ) = inf{|A| : A ⊆ X , F ⊆ A+ ρK}, (2.20)

where ρK = {ρy : y ∈ K}. It measures the minimal number of points needed to cover

the set F under the translation of the dilated set ρK. If ρ = 1, then it is corresponding

to the standard definition of covering number. The diameter d(K) of K is defined in

the usual way

d(K) = sup
x,y∈K

‖x− y‖. (2.21)
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Another notation to be used is the inner radius r(K) of K, which is defined by

r(K) = sup{r ≥ 0 : B(r) ⊆ K}, (2.22)

where B(r) is the closed ball of radius r centered at the origin. With all these notations

introduced, we can state one of our main results as follows.

Theorem 2.2.2. Let F,K ⊆ X be two measurable subsets. Suppose that K is sym-

metric with non-empty interior around the origin. For i.i.d. random variables X, Y

taking values in X , we have

P(X + Y ∈ F ) ≤ N(F,K, ρK) · P(X − Y ∈ K), (2.23)

where ρK = r(K)/d(K). If F is also symmetric, we have

P(X − Y ∈ F ) ≤ [N(F\K,K, ρK) + 1] · P(X − Y ∈ K), (2.24)

where F\K is the set consisting of all elements in F but not in K.

Remark. Before showing the proof, let us demonstrate how this general result can

give us the estimates for real-valued random variables. We can take F = [−b, b] and

K = [−a, a]. In this case, we have r(K) = a and d(K) = 2a, which implies ρK =

1/2. Then N(F,K, ρK) is the number of translations of [−a/2, a/2] needed to cover

the interval [−b, b]. Using elementary geometric argument, it is not hard to see that

N(F,K, ρK) = �2b/a	. Similarly we have N(F\K,K, ρK)+1 = 2�b/a	−1. That gives

us the slightly weaker versions of Theorem 2.1.1 and Theorem 2.1.2 without the strict

inequality.

Proof. We use P to denote the set of all probability measures on X . Without confusion,

we let ρ := ρK and N := N(F,K, ρ). Apparently, the theorem is true for N = ∞. In

the following, we always assume N is finite. By Lemma 2.1.1, in order to prove (2.23),

we only need to show that for any constant C > N ,

P(X + Y ∈ F ) < C · P(X − Y ∈ K) (2.25)
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for all i.i.d. random variables X, Y . The inequality above can be rewritten as∫
X×X

ϕ(x, y)dμ(x)dμ(y) > 0, (2.26)

where

ϕ(x, y) = C · 1{(x,y):x−y∈K} − 1{(x,y):x+y∈F}, x, y ∈ X ,

and μ ∈ P is induced by X. Since K is symmetric, we can see ϕ(x, y) is symmetric

and bounded. By Lemma 1, it is equivalent to prove

μ

({
x ∈ X :

∫
X
ϕ(x, y)dμ(y) > 0

})
> 0 (2.27)

for all μ ∈ P . Assume otherwise, then there exists some μ ∈ P such that μ(S) = 1,

where

S =

{
x ∈ X :

∫
X
ϕ(x, y)dμ(y) ≤ 0

}
= {x ∈ X : μ (−x+ F ) ≥ C · μ (x−K)} . (2.28)

Let’s define

α = sup
x∈S

μ (x−K) . (2.29)

Since r(K) > 0 and X is separable, there exists a countable subset S ′ ⊆ S such that

S ⊆ S ′−K := ∪x∈S′(x−K), which implies α > 0. For ε > 0 small, we can pick x∗ ∈ S

such that

μ(x∗ −K) > α− ε. (2.30)

By the definition of N , there exists a subset {xi}Ni=1 ⊆ X such that

F ⊆ ∪Ni=1(xi + ρK).

So we have

−x∗ + F ⊆ ∪Ni=1(xi − x∗ + ρK) = ∪Ni=1(xi − x∗ − ρK). (2.31)
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From (2.30), (2.28) and (2.31), we have

C · (α− ε) < C · μ(x∗ −K) ≤ μ(−x∗ + F ) ≤ N · sup
x∈X

μ(x− ρK). (2.32)

Since μ(S) = 1, for any set x− ρK with positive measure, there is

x0 ∈ (x− ρK) ∩ S. (2.33)

Next we will show

x− ρK ⊆ B(x0, r(K)) ⊆ x0 −K. (2.34)

By (2.33), there exists y0 ∈ K such that x0 = x− ρy0. For any y ∈ K,

‖x− ρy − x0‖ = ρ‖y0 − y‖ ≤ ρ · d(K) = r(K),

which implies the first part of (2.34). The second part follows from the assumption on

K and the definition of r(K). Combining (2.32), (2.33) and (2.34), we have

C · (α− ε) < N · sup
x∈X

μ(x− ρK) ≤ N · sup
x∈S

μ(x−K).

Taking ε = α · (1 −N/C), we have

N · α = C · (α− ε) < N · sup
x∈S

μ(x−K), (2.35)

which contradicts the definition of α in (2.29). So we proved (2.23).

To prove (2.24), we only need to make a slight modification of the previous

proof. Similar to (2.25), we need to prove that for any C > N := N(F\K,K, ρ) + 1,

P(X − Y ∈ F ) < C · P(X − Y ∈ K). (2.36)

Instead of (2.28), we redefine

S = {x ∈ X : μ (x− F ) ≥ C · μ (x−K)} , (2.37)

and α is defined in the same way as in (2.29). For ε > 0 small, we can pick x∗ ∈ S

such that

μ(x∗ −K) > α− ε. (2.38)
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By the definition of N , there exists a subset {xi}N−1
i=1 ⊆ X such that

F\K ⊆ ∪N−1
i=1 (xi + ρK).

Hence

x∗ − F ⊆ (x∗ −K) ∪ (∪N−1
i=1 (x∗ − xi − ρK)

)
. (2.39)

From (2.38), (2.37) and (2.39), we have

C · (α− ε) < C · μ(x∗ −K) ≤ μ(x∗ − F ) (2.40)

≤ μ(x∗ −K) + (N − 1) · sup
x∈X

μ(x− ρK). (2.41)

Combining (2.40), (2.41), (2.33) and (2.34), we have

C · (α− ε) < μ(x∗ −K) + (N − 1) · sup
x∈X

μ(x− ρK) ≤ N · sup
x∈S

μ(x−K).

Taking ε = α ·(1−N/C), we get (2.35) again, which is in contradiction to the definition

of α. So we proved (2.24). �

Let us assign two norms ‖ · ‖1 and ‖ · ‖2 on the measurable vector space X . We

denote by B1(r) and B2(r) the closed balls centered at the origin with radius r under

the gauges ‖ · ‖1 and ‖ · ‖2, respectively. Then the following result is an immediate

consequence of Theorem 2.2.2.

Corollary 2.2.1. Let a, b > 0 be positive numbers. For any i.i.d. random variables

X, Y taking values in X , we have

P(‖X + Y ‖1 ≤ b) ≤ N(B1(b), B2(a), 1/2) · P(‖X − Y ‖2 ≤ a),

and

P(‖X − Y ‖1 ≤ b) ≤ [N(B1(b)\B2(a), B2(a), 1/2) + 1] · P(‖X − Y ‖2 ≤ a).

We denote by ‖ · ‖∞ the l∞ norm in R
n. Then Theorem 2.1.1 in conjugation

with Theorem 2.1.2 imply the following sharp estimates.
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Corollary 2.2.2. Let X, Y be i.i.d. random vectors in R
n with independent entries.

For 0 < a < 2b, we have

P(‖X + Y ‖∞ ≤ b) < (�2b/a	)n P(‖X − Y ‖∞ ≤ a).

For a ≥ 2b, the above inequality still holds with “≤” in the middle. For all a, b > 0,

we have

P(‖X − Y ‖∞ ≤ b) < (2�b/a	 − 1)n P(‖X − Y ‖∞ ≤ a).

Proof. Let X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn). Since Y is an independent copy

of X and their entries are independent, we have

P(‖X + Y ‖∞ ≤ b) =
n∏
i=1

P(|Xi + Yi| ≤ b)

≤ (�2b/a	)d
n∏
i=1

P(|Xi − Yi| ≤ a)

= (�2b/a	)d P(‖X − Y ‖∞ ≤ a).

The second estimate can be proved in a similar way. So we omit the proof. �

2.3 Small ball inequalities in groups

The most general setting in which we can talk about sums (and symmetry)

is that of group-valued random variables, where the group operation represents sum-

mation. In this section, we will explore small ball inequalities for random variables

taking values in a topological group from a combinatorial point of view. The reason

is two-fold: firstly, it seems to be impossible to generalize the analytical technique

developed in [38] to the group setting because it relies essentially on the availability

of a dilation operation on the space, and secondly (and perhaps more importantly), it

is reasonable to expect a deterministic phenomenon behind these estimates since they

are independent of the probability distributions imposes on our random variables.

2.3.1 Combinatorial perspective on distribution-free inequalities

Firstly we demonstrate a combinatorial approach, that enables us to prove

distribution-free probabilistic inequalities by considering their combinatorial analogs.
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This idea originated from Katona’s proof certain probabilistic inequalities [76] using

results from extremal graph theory.

Let X be a random variable taking values in certain measurable space, and

let F,K be two measurable subsets of the k-fold product space. Given a sequence

X1, · · · , Xm of independent copies of X, the random variable Tm(X,F ) is defined as

Tm(X,F ) = |{(i1, · · · , ik) : i1 �= · · · �= ik, (Xi1 , · · · , Xik) ∈ F}|. (2.42)

Similarly we can define Tm(X,K). For a deterministic sequence x1, · · · , xm, we define

Tm(F ) = |{(i1, · · · , ik) : i1 �= · · · �= ik, (xi1 , · · · , xik) ∈ F}|. (2.43)

The quantity Tm(K) is defined similarly.

Proposition 2.3.1. Suppose that there is a function hk(m) = o(mk) and an absolute

constant C(F,K) such that the inequality

Tm(F ) ≤ hk(m) + C(F,K) · Tm(K) (2.44)

holds for all deterministic sequences x1, · · · , xm. Then the following inequality

P((X1, · · · , Xk) ∈ F ) ≤ C(F,K) · P((X1, · · · , Xk) ∈ K). (2.45)

holds for any i.i.d. random variables X1, · · · , Xk.

Proof. The assumption (2.44) for any deterministic sequences implies that

Tm(X,F ) ≤ hk(m) + C(F,K) · Tm(X,K).

In particular, we have

E(Tm(X,F )) ≤ hk(m) + C(F,K) · E(Tm(X,K)). (2.46)

Notice that Tm(X,F ) can be written as the summation of Bernoulli random variables

with the same distribution

Tm(X,F ) =
∑

1{(Xi1
,··· ,Xik

)∈F}, (2.47)
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where the summation is taken over all ordered k-tuples (i1, · · · , ik) with distinct coor-

dinates. Therefore we have

E(Tm(X,F )) = (m)k · P((X1, · · · , Xk) ∈ F ). (2.48)

where the notation (m)k stands for the product m(m − 1) · · · (m − k + 1). Similarly

we have

E(Tm(X,K)) = (m)k · P((X1, · · · , Xk) ∈ K). (2.49)

Combining (2.46), (2.48) and (2.49), we have

P((X1, · · · , Xk) ∈ F ) ≤ h(m)

(m)k
+ C(F,K) · P((X1, · · · , Xk) ∈ K).

As m is large, the quantities mk and (m)k are of the same magnitude for fixed k. Since

hk(m) = o(mk), the proposition follows by taking the limit m→ ∞. �

Although the proof is very simple, let us demonstrate the heuristic idea behind

Proposition 2.3.1. We will see that the assumption (2.44) is not artificial and it has

to be true if the inequality (2.45) holds for all distributions. Using the representation

(2.47), it is not hard to show that

E

(
Tm(X,F )

mk
− P((X1, · · · , Xk) ∈ F )

)2

−→ 0, as m→ ∞.

In particularly, we have

Tm(X,F )

(m)k

a.s.−−→ P((X1, · · · , Xk) ∈ F ), as m→ ∞.

We have similar convergence for Tm(X,K). Then the inequality (2.45) for a fixed

random variable X will imply

Tm(X,F ) ≤ o(mk) + C(F,K) · Tm(X,K), a.s.

Therefore, for almost all realizations ofX1, · · · , Xm, i.e. deterministic sequences x1, · · · , xm,

we will have

Tm(F ) ≤ o(mk) + C(F,K) · Tm(K).
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We should notice that such sequences depend on the support of X and the o(mk)

term may depend on the sequences. However, if the inequality (2.45) holds for all

distributions, it will be reasonable to expect that (2.44) holds for all deterministic

sequences.

2.3.2 Abelian groups

Let G be a topological group equipped with the Borel σ-algebra generated by

all open sets. Let X, Y be i.i.d. random variables taking values in G. A subset of G

is said to be symmetric if it contains the group inverse of each element of this set. In

this section, we assume that G is abelian with the identity 0.

Before showing our results, let us introduce some notations to be used. For two

subsets F,K ⊆ G, their Minkowski sum F +K is defined as

F +K = {x+ y : x ∈ F, y ∈ K}. (2.50)

Similarly we can define the difference set F − K. The generalized entropy number

N(F,K) is defined to be the maximal number of elements we can select from F such

that the difference of any two distinct elements does not belong to K. To state more

precisely, it is defined by

N(F,K) = sup{|S| : S ⊆ F, (S − S) ∩K ⊆ {0}}. (2.51)

Let T = {x1, x2, · · · , xm} be a multi-set (or sequence) of G, i.e. the elements of T are

selected from G and are not necessary distinct. For any s ∈ R, the quantities T+(F, s)

and T−(K, s) are defined as

T+(F, s) = ms+ |{(i, j) : i �= j, xi + xj ∈ F}|, (2.52)

and

T−(K, s) = ms+ |{(i, j) : i �= j, xi − xj ∈ K}|. (2.53)

The relation between these two quantities is given in the following lemma, which is

similar in spirit to Lemma 2.1 and Lemma 3.2 in [4].
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Lemma 2.3.1. Suppose K is a symmetric set with 0 ∈ K. For s ≥ 2 and any multi-set

T , we have

T+(F, s) ≤ N(F,K) · T−(K, 2s). (2.54)

Proof. If N(F,K) = ∞, the above statement is obviously true. So, we will assume

that N(F,K) is finite and prove the lemma by induction on the cardinality of T . When

counting the cardinality of a multiset, every element counts even for two elements with

the same value. For the base case |T | = 1, we have T+(F, s) = s and T−(K, 2s) = 2s.

Since N(F,K) ≥ 1, it is clear that the lemma has to be true. We assume that the

lemma holds for any multi-set T with cardinality |T | ≤ m − 1. Let t be some non-

negative integer such that

max
x∈T

|(x+K) ∩ T | = t+ 1.

Here we use (x+K) ∩ T to denote the multi-set consisting of elements of T which lie

in x+K. We will use similar notations without further clarification. Let x∗ ∈ T be an

element that can achieve the above maximum and we set T ∗ = T\{x∗}, where ‘\’ is

the standard set subtraction notation. (We only throw x∗ away but not other elements

with the same value). Since K is a symmetric set containing 0, we have

T−(K, 2s) = T ∗
−(K, 2s) + 2s+ 2t. (2.55)

We also have

T+(F, s) ≤ T ∗
+(F, s) + s+ 2|(−x∗ + F ) ∩ T |. (2.56)

The definition in (2.51) implies that we can select at most N(F,K) elements from

(−x∗+F )∩T , say {y1, y2, · · · , yk} with k ≤ N(F,K), such that their mutual differences

are not in K. Therefore we have

(−x∗ + F ) ∩ T ⊆ ∪i(yi +K) ∩ T. (2.57)

Combining with (2.56), we have

T+(F, s) ≤ T ∗
+(F, s) + s+ 2(t+ 1)N(F,K). (2.58)
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By the induction assumption, the lemma holds for T ∗. Combining (2.55) and (2.58),

it is not hard to check that the lemma holds when

s ≥ 2N(F,K)

2N(F,K) − 1
,

which is implied by the assumption s ≥ 2. �

By Proposition 2.3.1, we have the following result.

Theorem 2.3.1. Let F,K ⊆ G be measurable subsets. Suppose that K is symmetric

and contains the identity of G in its interior. For any G-valued i.i.d. random variables

X, Y , we have

P(X + Y ∈ F ) ≤ N(F,K) · P(X − Y ∈ K). (2.59)

The same argument can be used to study the comparison between P(X−Y ∈ F )

and P(X − Y ∈ K). Let T−(F, s) be defined the same as (2.53) with K replaced by F .

Similar to Lemma 2.3.1, we have

Lemma 2.3.2. Suppose K is a symmetric set with 0 ∈ K. For s ≥ 2 and any multi-set

T , we have

T−(F, s) ≤ (1 +N(F\K,K)) · T−(K, 2s). (2.60)

Proof. We only need to make a slight modification of the proof of Lemma 2.3.1. Let

x∗ be chosen in the same way as before and we set T ∗ = T\{x∗}. It is clear that the

equation (2.55) still holds. Instead of (2.56), we have

T−(F, s) ≤ T ∗
−(F, s) + s+ |((x∗ + F ) ∩ T )\{x∗}| + |((x∗ − F ) ∩ T )\{x∗}|. (2.61)

Notice the following set-inclusion relations

(x∗ + F ) ⊆ (x∗ +K) ∪ (x∗ + F\K),

and

(x∗ − F ) ⊆ (x∗ +K) ∪ (x∗ − F\K).
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We use the symmetry assumption of K in the second inclusion relation. Applying the

covering argument (2.57) again to x∗ + F\K and x∗ − F\K, we have

T−(F, s) ≤ T ∗
−(F, s) + s+ 2t+ 2(t+ 1)N(F\K,K). (2.62)

Combining (2.55) and (2.62), for s ≥ 2, we will have

T−(F, s) ≤ (1 +N(F\K,K)) · T−(K, 2s).

So we complete the proof of the lemma. �

By Proposition 2.3.1, we have the following result.

Theorem 2.3.2. Let F,K ⊆ G be two measurable subsets. Suppose that K is sym-

metric and contains the identity of G in its interior. For any G-valued i.i.d. random

variables X, Y , we have

P(X − Y ∈ F ) ≤ (1 +N(F\K,K)) · P(X − Y ∈ K). (2.63)

2.3.3 Non-abelian groups

In this section, we let G be a general group with the identity e. We will show

that Theorem 2.3.1 and Theorem 2.3.2 still hold for certain measurable sets F,K in

this general setting. Similar to the sumset F + K in the abelian case, we define the

product set F ·K in this non-abelian setting as

F ·K = {xy : x ∈ F, y ∈ K}. (2.64)

The generalized entropy number N(F,K) is redefined as

N(F,K) = sup{|S| : S ⊆ F, (S · S−1) ∩K ⊆ {e}}, (2.65)

where S−1 is the set of all inverses of the elements of S. For s ∈ R and a multi-set

T = {x1, · · · , xm}, the quantities T+(F, s) and T−(K, s) are redefined as

T+(F, s) = ms+ |{(i, j) : i �= j, xixj ∈ F}|, (2.66)
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and

T−(K, s) = ms+ |{(i, j) : i �= j, xix
−1
j ∈ K}|. (2.67)

Similar to Lemma 2.3.1, we have the following result.

Lemma 2.3.3. Suppose K is a normal subgroup of G. For s ≥ 2 and any multi-set

T , we have

T+(F, s) ≤ N(F,K) · T−(K, 2s). (2.68)

Proof. The lemma can be proved with a slight modification of the proof of Lemma

2.3.1. In order to see how the assumption of K is used, we write the proof again. Let

t be some non-negative integer such that

max
x∈T

|(xK) ∩ T | = t+ 1,

where xK is the set of the products of x and the elements of K. Let x∗ be an element

such that the maximum can achieved and T ∗ = T\{x∗}. By the definition of T−(K, 2s),

we have

T−(K, 2s) = T ∗
−(K, 2s) + 2s+ |((Kx∗) ∩ T )\{x∗}| + |((x∗K−1) ∩ T )\{x∗}|

Since K is a normal subgroup, the estimate of T−(K, 2s) in (2.55) still holds. Similar

to (2.56), we have

T+(F, s) ≤ T ∗
+(F, s) + s+ |((x∗)−1F ) ∩ T | + |(F (x∗)−1) ∩ T |.

Let α1, α2 ∈ F be any two elements, and u1 = (x∗)−1α1, u2 = (x∗)−1α2. Since K is a

normal subgroup, we can see that u1u
−1
2 ∈ K if only if α1α

−1
2 ∈ K. (The assumption

that K is a normal subgroup is important here). By the definition of N(F,K) in (2.65),

we can select at most N(F,K) elements from ((x∗)−1F )) ∩ T , say {y1, · · · , yk}, such

that yiy
−1
j /∈ K for any yi �= yj. Then we have the following covering relation

((x∗)−1F ) ∩ T ⊆ ∪i(yiK) ∩ T,
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which implies

|((x∗)−1F ) ∩ T | ≤ (t+ 1)N(F,K).

Similarly we have the same estimate for |(F (x∗)−1) ∩ T |. Then we can see that the

estimate of T+(F, s) is exactly the same as (2.58). So we proved the lemma. �

Using Proposition 2.3.1, we have the following result.

Theorem 2.3.3. Let F,K ⊆ G be measurable subsets. Suppose that K is a normal

subgroup and contains the identity in its interior. For any G-valued i.i.d. random

variables X, Y , we have

P(XY ∈ F ) ≤ N(F,K) · P(XY −1 ∈ K). (2.69)

The following lemma can be proved in the same way as done for Lemma 2.3.2.

Thus we omit its proof.

Lemma 2.3.4. Suppose K ⊆ G is a normal subgroup. For s ≥ 2 and any multi-set T ,

we have

T−(F, s) ≤ (1 +N(F\K,K)) · T−(K, 2s). (2.70)

Using Proposition 2.3.1, we have the following result.

Theorem 2.3.4. Let F,K ⊆ G be two measurable subsets. Suppose that K is a normal

subgroup and contains the identity in its interior. For any G-valued i.i.d. random

variables X, Y , we have

P(XY −1 ∈ F ) ≤ (1 +N(F\K,K)) · P(XY −1 ∈ K). (2.71)

2.3.4 Topological vector spaces

Let V be a topological vector space over a field F with the Borel σ-algebra

generated by all open sets. Let F,K ⊆ V be measurable subsets and let a, b ∈ F. Then

we can consider the comparison between P(aX + bY ∈ F ) and P(X −Y ∈ K) for i.i.d.

random variables X, Y taking values in V .
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Theorem 2.3.5. Let F,K ⊆ V be measurable subsets. Suppose that K is symmetric

and contains the zero vector in its interior. Let a, b be non-zero elements of F. For

any i.i.d. random variables X, Y taking values in V , we have

P(aX + bY ∈ F ) ≤ N(a, b, F,K) · P(X − Y ∈ K), (2.72)

where the constant N(a, b, F,K) is defined by

N(a, b, F,K) =
1

2

(
N(a−1F,K) +N(b−1F,K)

)
. (2.73)

Proof. The proof is essentially the same as that of Theorem 2.3.1. Let T = {x1, · · · , xm}
be a multi-set of V . For s ∈ R, we define

T+(F, s, a, b) = ms+ |{(i, j) : i �= j, axi + bxj ∈ F}|. (2.74)

By Proposition 2.3.1, we only need to prove the following combinatorial analogue

T+(F, s, a, b) ≤ N(a, b, F,K) · T−(K, 2s) (2.75)

for s ≥ 2, where T−(K, 2s) is defined the same as (2.53). We choose x∗ in the same

way as in Lemma 2.3.1 and set T ∗ = T \{x∗}. The estimate of T−(K, 2s) in (2.55) still

holds. Similar to (2.56), we have

T+(F, s, a, b) ≤ T ∗
+(F, s, a, b) + s+ |(−b−1ax∗ + b−1F ) ∩ T | + |(−a−1bx∗ + a−1F ) ∩ T |.

Applying the covering argument (2.57) to −b−1ax∗ + b−1F , and using the definition of

N(b−1F,K), we will have

|(−b−1ax∗ + b−1F ) ∩ T | ≤ (t+ 1)N(b−1F,K).

Similarly we can see that

|(−a−1bx∗ + a−1F ) ∩ T | ≤ (t+ 1)N(a−1F,K).

Thus we have

T+(F, s, a, b) ≤ T ∗
+(F, s, a, b) + s+ 2(t+ 1)N(a, b, F,K). (2.76)

Then the estimate (2.75) follows from (2.55) and (2.76). So we complete the proof. �
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The following result emerges as a special case of Theorem 2.3.5. It extends

Theorem 2.1.1 and Theorem 2.1.2 in certain extent.

Corollary 2.3.1. Let a, b, c, d be non-zero real numbers and c, d > 0. For any real-

valued i.i.d. random variables X, Y , we have

P(|aX + bY | ≤ c) ≤ 1

2

(⌈
2c

|a|d
⌉

+

⌈
2c

|b|d
⌉)

P(|X − Y | ≤ d). (2.77)

Proof. We can take F = [−c, c] and K = [−d, d]. Elementary geometric argument will

yield

N(a−1F,K) =

⌈
2c

|a|d
⌉
, N(b−1F,K) =

⌈
2c

|b|d
⌉
.

Then the result follows from Theorem 2.3.5. �

Remark. If a = b, we can see that Theorem 2.3.5 and Corollary 2.3.1 match Theo-

rem 2.3.1 and Theorem 2.1.2, respectively. However, for a = −b, Theorem 2.3.5 and

Corollary 2.3.1 are weaker than Theorem 2.3.2 and Theorem 2.1.1, respectively.

Let F ⊆ V be a measurable subset and let X be a random variable taking values

in V . The generalized Lévy’s concentration function of X is defined to be

Q(X,F ) = sup
x∈V

P(X ∈ x+ F ). (2.78)

Then Theorem 2.3.5 can be used to bound the concentration function of aX + bY by

that of X − Y for i.i.d. random variables X, Y .

Corollary 2.3.2. Let F,K ⊆ V be measurable subsets. Suppose that K is symmetric

and contains the zero vector in its interior. Let a, b be non-zero elements of F. For

any i.i.d. random variables X, Y taking values in V , we have

Q(aX + bY, F ) ≤ N(a, b, F,K) ·Q(X − Y,K). (2.79)

Proof. By the definition of generalized Lévy’s concentration function, for any ε > 0,

there exists x ∈ V such that

Q(aX + bY, F ) < P(aX + bY ∈ x+ F ) + ε

≤ N(a, b, F,K) · P(X − Y ∈ K) + ε

≤ N(a, b, F,K) ·Q(X − Y,K) + ε.
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In the second inequality, we use Theorem 2.3.5. Since ε > 0 is arbitrary, the statement

follows by letting ε→ 0. �

The main study of concentration function is devoted to the sum of independent

random variables in Banach spaces (mostly on Euclidean spaces) with F = K taken

to be normed balls, see [99, 37, 88, 137, 48, 49, 84, 70, 74, 123]. In the i.i.d. case,

Theorem 2.3.1 can provide us a symmetrization technique to treat different sets and

also general groups where no norm may exist. For a random variable X, we use X̃ to

denote the symmetrized random variable X − Y , where Y is an independent copy of

X.

Corollary 2.3.3. Let G be an abelian group and let F,K ⊆ G be measurable subsets.

Suppose that K is symmetric and contains the identity of G in its interior. For any

i.i.d. random variables X1, · · · , Xn taking values in G, we have

Q(X1 + · · · +Xn, F ) ≤ N(F,K) ·Q(X̃1 + · · · + X̃�n/2	, K). (2.80)

Proof. For independent random variables X, Y , (Y is not necessary an independent

copy of X), it is not hard to see that

Q(X + Y, F ) ≤ Q(X,F ).

Thus we have

Q(X1 + · · · +Xn, F ) ≤ Q(X1 + · · · +X2�n/2	, F )

≤ N(F,K) ·Q(X̃1 + · · · + X̃�n/2	, K).

The second inequality follows from Theorem 2.3.1. �

As another application of the combinatorial argument, we include the following

result of Katona [76], which is related to Turán’s theorem for triangle-free graph. We

claim no contribution for the proof.
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Theorem 2.3.6 (Katona [76]). Let X, Y be i.i.d. random variables taking values in a

Hilbert space V with the norm ‖ · ‖. Then we have

(P(‖X‖ ≥ 1))2 ≤ 2P(‖X + Y ‖ ≥ 1). (2.81)

Proof. Let F,K ⊆ V × V be the subsets defined by

F = {(x, y) : ‖x‖ ≥ 1, ‖y‖ ≥ 1},

and

K = {(x, y) : ‖x+ y‖ ≥ 1}.

Given a multi-set T = {x1, · · · , xm} of V , we define

Tm(F ) = |{(i, j) : i �= j, (xi, xj) ∈ F}|,

and

Tm(K) = |{(i, j) : i �= j, (xi, xj) ∈ K}|.

By Proposition 2.3.1, the theorem will hold if we can show that

Tm(F ) ≤ 2(m+ Tm(K)). (2.82)

Suppose that there are n elements of T with norms not less than 1. Then we have

Tm(F ) = n2 − n. (2.83)

Let us consider a simple graph G on these n elements. (The notation G should not

be confused with the notation used for group. For any two elements, we always think

them as different vertices even if they have the same value). Two vertices x, y are

adjacent if and only if ‖x+ y‖ ≥ 1. Then we have

Tm(K) ≥ 2e(G), (2.84)

where e(G) is the number of edges of G. For any 3 vertices x, y, z, there exists at least

a pair, say x, y, such that the angle between them is no more than 2π/3, which implies
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that ‖x + y‖ ≥ 1. This fact implies that the complementary graph is triangle free.

Using Turán’s theorem, we have

e(G) ≥
(
n

2

)
− n2

4
. (2.85)

Then the estimate (2.82) follows from (2.83), (2.84) and (2.85). �

Remark. The above argument was used by Katona to prove the theorem for discrete

random variables uniformly distributed on a finite subset of a Hilbert space. Then he

made generalizations for arbitrary distributions based on extensions of discrete Turán-

type theorems to the continuous setting. We can not see if this extension process is

necessary, since the problem can be treated in a unified way according to Proposition

2.3.1.

Remark. In a series of papers [76, 77, 78, 79, 79, 80, 81, 82, 83], Katona studied the

optimal estimate of P(‖X + Y ‖ ≥ c) in terms of P(‖X‖ ≥ 1) for i.i.d. random vari-

ables X, Y taking values in a Hilbert space. The basic idea is to study this type of

problems for uniformly distributed discrete random variables and make extensions to

the continuous setting. In the discrete situation, it usually involves extremal combi-

natorial problems. Comprehensive results are given in the survey [83]. Similar results

were independently obtained by Sidorenko [147], who also considered the estimate of

P(‖aX + bY ‖ ≥ c).

Remark. Proposition 2.3.1 provides a combinatorial argument for the comparison of two

probabilities of the same magnitude, i.e. one can be bounded by the other one linearly.

A general question is that do we have a similar approach when the probabilities are

of different magnitudes. In another word, can we establish the combinatorial analogue

for the following distribution-free inequality

P((X1, · · · , Xk) ∈ F ) ≤ f(P(X1, · · · , Xl) ∈ K),

where f is certain function, not necessary linear. The estimate in Theorem 2.3.6 is a

particular example in this flavor.
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2.4 Discussion of tightness

In this section, we study the near extremal distributions for the probabilistic

estimates developed in previous sections. The discussion will mainly focus on Theorem

2.3.1 and Theorem 2.3.2 for random variables taking values in the Euclidean space R
d.

We will see their close connections with the sphere packing problem in geometry.

In general it is hard to compute the ratio of P(X ± Y ) ∈ F and P(X − Y ) ∈ K.

If X, Y are assumed to be uniformly distributed on a finite set T = {x1, x2, · · · , xn},

then we have

P(X ± Y ∈ F ) =
1

n

n∑
i=1

|(∓xi + F ) ∩ T |,

and

P(X − Y ∈ K) =
1

n

n∑
i=1

|(xi +K) ∩ T |.

If the set T is K-separated, i.e. xi − xj �∈ K for i �= j, we will have |(xi +K) ∩ T | = 1

for all xi ∈ T . We can even make a further assumption that, except o(n) of them, all

the sets ∓xi + F contain the same number of elements of T . This is possible if T is

selected to consist of certain lattice points. (So the random variables X, Y need to be

in a topological vector space V ). Under these assumptions, we have

P(X ± Y ∈ F )

P(X − Y ∈ K)
→ max

x∈T
|(∓x+ F ) ∩ T |, as n→ ∞.

Then the estimate in Theorem 2.3.1 is tight if there exists a K-separated lattice L and

a point x ∈ V (not necessary a lattice point) such that x+F contains N(F,K) points

of L. We can take the support set T as the union of a subset of L and the reflection

of this subset after certain shift. Similarly, Theorem 2.3.2 is tight if for every lattice

point x ∈ L the set x+ (F\K) contains N(F\K,K) points of L. In this case, we only

need to take T to be certain subset of the lattice L. This idea can be used to produce

near optimal examples for the estimates (1.2) and (1.1). For the estimate (1.2), we

can take X to be uniformly distributed on {−(n− 1)δ − r, · · · ,−δ − r, δ, 2δ, · · · , nδ},

where r > 0 and δ > a. For any a, b, we can always choose appropriate parameters r, δ

such that the ratio P(|X + Y | ≤ b)/P(|X − Y | ≤ a) will approach �2b/a	 as n → ∞.
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This example is essentially the same as the one given in [38]. To see the sharpness of

(1.1), we can take X to be uniformly distributed on {δ, 2δ, · · · , nδ} for certain δ > a,

which was given in [4].

In the Euclidean space R
d, let us take F and K to be closed balls centered at

the origin of radius r and 1, respectively. For simplicity, we use N+(r) and N−(r) to

denote N(F,K) and N(F\K,K)+1, respectively. Then N+(r) represents the maximal

number of points in a Euclidean ball of radius r with all mutual distances greater than

1. For N−(r) we put an extra restriction that one of these points should be at the

center of the ball. These are the so-called sphere packing problems. The dual problem

of N+(r) asks for the smallest radius of the ball to contain n points with mutual

distances at least 1. We use r+(n) to denote this quantity. (Notice that they are not

exactly dual to each other, since in the definition of r+(n) the mutual distances can be

equal to 1). Similarly we can define r−(n) with the restriction that one of the points

should be at the center of the ball.

For d = 2, instead of the radius function r+(n), Bateman and Erdős [10] studied

the diameters of the extremal configurations of points. Using their results, we can get

the corresponding radius function r+(n). Using the duality, we list the values of N+(r)

for r in certain range.

N+(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 0 < r ≤ 1/2

2, if 1/2 < r ≤ √
3/3

3, if
√

3/3 < r ≤ √
2/2

4, if
√

2/2 < r ≤ 1
2

csc(π/5)

5, if 1
2

csc(π/5) < r ≤ 1

7, if 1 < r ≤ 1 + ε, small ε > 0.

Since the extremal configurations given by Bateman and Erdős are lattice points, the

listed values of N+(r) are tight for Theorem 2.3.1. It is not hard to see that r−(2) =

· · · = r−(7) = 1 with one point at the center of a unit circle and the rest points on this
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circle. Bateman and Erdős also gave the values of r−(n) for n = 8, 9, 10, 11. Then we

can get a list of values of N−(r).

N−(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

7, if 1 < r ≤ 1
2

csc(π/7)

8, if 1
2

csc(π/7) < r ≤ 1
2

csc(π/8)

9, if 1
2

csc(π/8) < r ≤ 1
2

csc(π/9)

10, if 1
2

csc(π/9) < r ≤ 1
2

csc(π/10).

which are tight for Theorem 2.3.2. For sphere packing problems, people are generally

interested in the packing density. In R
2, it is known that hexagonal lattice packing

is optimal among all packings (not necessary lattice packings) with packing density
√

3π/6 ≈ 0.9069. Then we have the following asymptotic behavior

N+(r) = N−(r) = (1 + o(1))
2
√

3

3
πr2, (2.86)

which is asymptotically tight for Theorem 2.3.1 and Theorem 2.3.2.

There is a long history on the sphere packing problem in three dimensional

Euclidean space. Kepler conjectured that no arrangement of equally sized spheres can

fill the space with a greater average density than that of the face-centered cubic and

hexagonal close packing arrangements. The density of these arrangements is
√

2π/6 ≈
0.7404. It is proved by Gauss that Kepler’s conjecture is true if the spheres have to be

arranged in a regular lattice. The complete proof of Kepler’s conjecture was given by

Hales [65]. Thus we have the following asymptotic behavior

N+(r) = N−(r) = (1 + o(1))
4
√

2

3
πr3, (2.87)

which is asymptotically tight for Theorem 2.3.1 and Theorem 2.3.2.

In the very recent breakthrough work [162], Viazovskait proved that the E8

lattice packing gives the optimal packing density in dimension 8, and the density is

π4/384 ≈ 0.025367. Thus we have the following asymptotic behavior

N+(r) = N−(r) = (1 + o(1))
2

3
π4r8. (2.88)
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Building on Viazovskait’s work, it is shown in [30] that Leech lattice is the densest pack-

ing in 24 dimension, and the packing density is π12/12! ≈ 0.00193. Correspondingly

we have the following asymptotic behavior

N+(r) = N−(r) = (1 + o(1))
224

12!
π12r24. (2.89)

Another interesting problem related to our study is the kissing number problem.

In three dimensions it asks how many billiard balls can be arranged so that they all

just touch another billiard ball of the same size. This question was a subject of a

famous discussion between Isaac Newton and David Gregory in 1694. Newton believed

the answer was 12, while Gregory though that 13 might be possible. Generally we can

define the d-dimensional kissing number τd as the maximal number of points on the

unit sphere with Euclidean distances at least 1. For 1 < r < 1 + εd with small εd > 0,

it is not hard to see the following relation

N−(r) = τd + 1. (2.90)

The number τ3 = 12 was studied by various researchers in the nineteenth century. The

best proof now available is due to Leech [97]. The answers τ8 = 240 and τ24 = 196, 560

are given by [130] and [98], respectively. It is somewhat surprising that they are

technically easier to establish than τ3. The correct answer τ4 = 24 was obtained

much later by Musin [125]. For all these results, the extremal configurations follows

from lattice packings. Using the relation (2.90), Theorem 2.3.2 can give explicit tight

estimates for r slightly greater than 1 in corresponding dimensions. These are all the

known values of the kissing number so far. In high dimensions, τd grows exponentially

with unknown base. We refer to the monograph [31] for more discussions of sphere

packing problems and their relations with number theory and coding theory.

2.5 Applications

In this section, we will apply the estimates developed in the previous section to

study the comparison between E (ϕ(aX + bY )) and E (φ(X − Y )) for certain functions

ϕ and φ. In particular we will establish some moment inequalities.
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2.5.1 Hölder type inequalities

Let V be a vector space over the complex field C. Let ϕ = ‖·‖1 and φ = ‖·‖2 be

two equivalent norms on V and let I : (V, ‖ · ‖1) → (V, ‖ · ‖2) be the identity operator.

Its norm ‖I‖ is defined in the usual way

‖I‖ = sup
‖x‖1=1

‖x‖2. (2.91)

Let B1(r), B2(r) be the closed balls centered at the origin of radius r under the gauges

‖·‖1, ‖·‖2, respectively. Then it is not hard to see the following geometric interpretation

of ‖I‖:

‖I‖ = inf{r > 0 : B1(1) ⊆ B2(r)}. (2.92)

Theorem 2.5.1. Let a, b ∈ C be non-zero complex numbers, and let q ≥ p be real

numbers such that pq > 0. For any i.i.d. random variables X, Y taking values in V ,

we have

(E‖X − Y ‖p2)1/p ≤ 2‖I‖max
{|a|−1, |b|−1

} · (E‖aX + bY ‖q1)1/q . (2.93)

Proof. We assume that the right hand side of (2.93) is finite. Otherwise the theorem

yields a trivial result. By Hölder’s inequality, we only need to prove the theorem for

q = p. For p > 0 we have

E‖aX + bY ‖p1 =

∫ ∞

0

ptp−1
P(‖aX + bY ‖1 > t)dt

=

∫ ∞

0

ptp−1 (1 − P(‖aX + bY ‖1 ≤ t)) dt.

By the geometric interpretation (2.92) of ‖I‖ and Theorem 2.3.5, we have

P(‖aX + bY ‖1 ≤ t) ≤ P(‖aX + bY ‖2 ≤ t‖I‖)

≤ P(‖X − Y ‖2 ≤ Ct),

where the constant C = 2‖I‖max {|a|−1, |b|−1}. Hence we have

E‖aX + bY ‖p1 ≥
∫ ∞

0

ptp−1 (1 − P(‖X − Y ‖2 ≤ Ct)) dt

=

∫ ∞

0

ptp−1
P(‖X − Y ‖2 > Ct)dt

= C−p · E‖X − Y ‖p2,
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which is exactly the estimate (2.93) for p = q. For p < 0, we have

E‖aX + bY ‖p1 = −p
∫ ∞

0

t−p−1
P(‖aX + bY ‖1 ≤ t−1)dt

≤ −p
∫ ∞

0

t−p−1
P(‖aX + bY ‖2 ≤ ‖I‖t−1)dt

≤ −p
∫ ∞

0

t−p−1
P(‖X − Y ‖2 ≤ Ct−1)dt

= C−p
(
−p

∫ ∞

0

t−p−1
P(‖X − Y ‖2 ≤ t−1)dt

)
= C−p · E‖X − Y ‖p2

In the first and second inequalities, we use the geometric interpretation of ‖I‖ and

Theorem 2.3.5, respectively. We will get (2.93) by taking the 1/p-th root of both

sides. �

The following result is an immediate consequence of the above theorem.

Corollary 2.5.1. Let (V, ‖ · ‖) be a normed vector space over the complex field C. For

any i.i.d. random variables X, Y taking values in V , we have

E‖X − Y ‖ ≤ 2E‖X + Y ‖, (2.94)

and

E‖X + Y ‖−1 ≤ 2E‖X − Y ‖−1. (2.95)

For p > 2, Buja, et al [26] constructed an example such that

E‖X − Y ‖p > E‖X + Y ‖p, (2.96)

where ‖ · ‖p is the lp norm on R
d. But the ratio is a little bit greater than 1. So we do

not know whether the estimate (2.94) is tight. Let p, r be positive numbers such that

0 < γ ≤ p ≤ 2, 1 ≤ p ≤ 2. For R
d-valued i.i.d. random variables X, Y , Buja, et al [26]

also proved that

E‖X − Y ‖γp ≤ E‖X + Y ‖γp . (2.97)
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Another related result proved by Mattner [115] is that for 0 < γ ≤ 2 and any orthogonal

map T on R
d we have

E‖X − Y ‖γ ≤ E‖X − TY ‖γ, (2.98)

where ‖ · ‖ is the Euclidean norm.

We call a function ϕ : V → R unimodal if the super-level set {x ∈ V : ϕ(x) ≥ t}
is convex for all t ∈ R.

Theorem 2.5.2. Let a, b ∈ C be non-zero complex numbers and let ϕ be a non-negative

symmetric unimodal function on V . For any i.i.d. random variables X, Y taking values

in V , we have

Eϕ(aX + bY ) ≤ Eϕ

(
X − Y

2 max{|a|−1, |b|−1}
)
. (2.99)

Proof. Since ϕ is non-negative, we have

Eϕ(aX + bY ) =

∫ ∞

0

P (ϕ(aX + bY ) > t) dt

=

∫ ∞

0

P(aX + bY ∈ ϕ−1(t,∞))dt

where we use ϕ−1(t,∞) to denote the set {x ∈ V : ϕ(x) > t}. Since ϕ is a symmet-

ric unimodal function, we can see that ϕ−1(t,∞) is a symmetric convex set. Using

Theorem 2.3.5, we have

P(aX + bY ∈ ϕ−1(t,∞)) ≤ P
(
X − Y ∈ 2 max{|a|−1, |b|−1}ϕ−1(t,∞)

)
,

which implies

Eϕ(aX + bY ) ≤
∫ ∞

0

P

(
X − Y

2 max{|a|−1, |b|−1} ∈ ϕ−1(t,∞)

)
dt

= Eϕ

(
X − Y

2 max{|a|−1, |b|−1}
)
,

�
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Remark. Take ϕ(x) = ‖x‖p for p < 0. The above result will yield Theorem 2.5.1 when

the two norms are the same. Let ϕ and φ be two non-negative symmetric unimodal

functions. The comparison between Eϕ(aX + bY ) and Eφ(X − Y ) usually involves

the comparison of the gauges ‖ · ‖ϕ,t and ‖ · ‖φ,t induced by the symmetric convex

sets ϕ−1(t,∞) and φ−1(t,∞), respectively. That is related to the study of the entropy

number N(a, b, ϕ−1(t,∞), ψ−1(t,∞)) defined in Theorem 2.3.5.

2.5.2 Reverse Hölder type inequalities

The reverse Hölder inequality asserts the equivalence of higher and lower mo-

ments of random variables. More precisely, there exists a constant C(p, q) depending

only on q ≥ p such that

(E‖X‖q)1/q ≤ C(p, q)(E‖X‖p)1/p (2.100)

holds for random variables X in certain normed measurable space. In general such

an inequality does not hold. But it is well known that the reverse Hölder inequality

holds for a large class of random variables, the so-called log-concave random variables.

For example, Borell [21] showed the equivalence between the p-th and q-th moments of

log-concave random variables for q ≥ p ≥ 1. It is demonstrated by Lata�la [93] that the

constant C(p, q) can be independent of p and the result also holds under semi-norm for

p→ 0. Later Guédon [62] extended Lata�la’s result to negative moments p ∈ (−1, 0].

A finite Borel measure μ on R
n is called log-concave if we have

μ(λA+ (1 − λ)B) ≥ μ(A)λμ(B)1−λ (2.101)

for all 0 ≤ λ ≤ 1 and all non-empty Borel sets A,B ⊆ R
n. Here λA + (1 − λ)B

stands for the Minkowski sum of λA and (1 − λ)B. A random variable is called

log-concave if its distribution is log-concave. Log-concave distributions consist of a

large class of distributions, such as Gaussian distribution, exponential distribution,

and uniform distribution over any convex set. An important fact implied by Prékopa-

Leindler inequality is that the sum and difference of independent log-concave random
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variables are still log-concave. Therefore it is reasonable to expect reverse Hölder-type

inequalities relating aX + bY and X − Y for i.i.d. log-concave random variables.

To prove such reverse Hölder-type inequalities, we need the following result of

Guédon [62], which demonstrates the concentration phenomenon of log-concave prob-

ability measures.

Lemma 2.5.1 (Guédon [62]). Let μ be a log-concave probability measure on R
d, and

let K ⊆ R
d be a symmetric convex body. For any t ≥ 1, we have

μ((tK)c) ≤ (1 − μ(K))
t+1
2 . (2.102)

For any 0 < t ≤ 1, we have

μ(tK) ≤ −2t log(1 − μ(K)). (2.103)

Remark. Guédon’s result (2.102) is a generalization of Borell’s lemma, which says

μ((tK)c) ≤ μ(K)

(
1 − μ(K)

μ(K)

) t+1
2

. (2.104)

It is clear that Borell’s lemma is non-trivial only when μ(K) > 1/2.

Let ‖ · ‖1 and ‖ · ‖2 be two equivalent norms on R
n.

Theorem 2.5.3. Let a, b ∈ R be non-zero numbers and let p, q ∈ R such that q ≥ p > 0

or −1 < p ≤ q < 0. Then there is a constant C(a, b, p, q) such that

(E‖X − Y ‖q2)1/q ≤ C(a, b, p, q) · (E‖aX + bY ‖p1)1/p (2.105)

holds for all i.i.d. log-concave random variables X, Y taking valued in R
n.

Proof. If q ≥ p > 0, we assume that E‖aX + bY ‖p1 = 1. For r1 ≥ 1, Chebyshev’s

inequality implies

P(‖aX + bY ‖1 ≤ r1) ≥ 1 − r−p1 .

By Theorem 2.3.5, for any r2 ≥ 0 we have

P(‖X − Y ‖2 ≤ r2) ≥ (1 − r−p1 )N−1,
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where

N =
1

2

(
N(a−1B1(r1), B2(r2)) +N(b−1B1(r1), B2(r2))

)
and we denote by B1(r), B2(r) the closed balls centered at the origin of radius r under

the gauges ‖·‖1 and ‖·‖2, respectively. For any s ≥ 1, Guédon’s lemma (2.102) implies

that

P(‖X − Y ‖2 > r2s) ≤ Δ
s+1
2 . (2.106)

where Δ = 1 − (1 − r−p1 )N−1. Since q > 0, we have

E‖X − Y ‖q2 =

∫ ∞

0

qtq−1
P(‖X − Y ‖2 > t)dt

≤ rq2 +

∫ ∞

r2

qtq−1
P (‖X − Y ‖2 > t) dt.

Combine the estimate (2.106) with s = tr−1
2 , then elementary calculations will yield

E‖X − Y ‖q2 ≤ rq2

(
1 + Γ(q + 1)Δ1/2

(
− log Δ

2

)−q)
.

That implies

(E‖X − Y ‖q2)1/q ≤ r2

(
1 + Γ(q + 1)Δ1/2

(
− log Δ

2

)−q)1/q

.

For −1 < p ≤ q < 0, we assume E‖X − Y ‖q2 = 1. For any r2 ∈ [0, 1], Chebyshev’s

inequality implies that

P(‖X − Y ‖2 < r2) ≤ r−q2 .

For 0 ≤ s ≤ 1 and r1 ≥ 0, by Guédon’s lemma (2.103) and Theorem 2.3.5, we have

P(‖aX + bY ‖1 < sr1) ≤ −2s log (1 − P(‖aX + bY ‖1 < r1))

≤ −2s log(1 − r−q2 N), (2.107)

where N is the same as before. For −1 < p < 0, we have

E‖aX + bY ‖p1 =

∫ ∞

0

(−p)t−p−1
P(‖aX + bY ‖1 < t−1)dt

≤ rp1 +

∫ ∞

r−1
1

(−p)t−p−1
P(‖aX + bY ‖1 < t−1)dt.
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Combine the estimate (2.107) with s = (r1t)
−1, then we have

E‖aX + bY ‖p1 ≤ rp1

(
1 +

2p

1 + p
log(1 − r−q2 N)

)
.

That implies

(E‖aX + bY ‖p1)1/p ≥ r1

(
1 +

2p

1 + p
log(1 − r−q2 N)

)1/p

.

�

Remark. There is no Hölder-type or reverse Hölder-type inequalities of the following

form

(E‖X + Y ‖q1)1/q ≤ c · (E‖X − Y ‖p2)1/p.

To see this, we can take X, Y to be uniformly distributed on [n, n+ 1].

2.5.3 Positive definite functions

In this section, we consider the estimate of Eϕ(aX + bY ), where ϕ is a positive

definite function. The study in the following is independent of the small ball inequalities

developed in previous sections.

Let G be an abelian topological group. A Hermitian function ϕ : G → C is

called positive definite if, for any x1, · · · , xn ∈ G and c1, · · · , cn ∈ C, we have

n∑
i,j=1

ϕ(xi − xj)cicj ≥ 0. (2.108)

Similarly the Hermitian function ϕ is called negative definite if the reversed inequality

holds under the condition
∑n

i=1 ci = 0. For example, for 0 < p ≤ 2, the function e−‖x‖p

is positive definite over the Euclidean space R
d.

The famous Bochner’s theorem asserts that a continuous positive definite func-

tion ϕ on a locally compact abelian group G can be uniquely represented as the Fourier

transform of a positive finite Radon measure μ on the Pontryagin dual group G∗, i.e.

ϕ(x) =

∫
G∗
ξ(x)dμ(ξ). (2.109)
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The counterpart of Bochner’s theorem is the Lévy-Khinchin representation formula for

a continuous negative definite function ϕ on R
d, i.e.

ϕ(x) = c+ i〈y0, x〉 + q(x) +

∫
Rd\{0}

(
1 − e−i〈x,y〉 − i〈x, y〉

1 + ‖y‖2
)
dμ(y) (2.110)

where c ∈ R, y0 ∈ R
d, q(x) is some quadratic form on R

d and μ is a Lévy measure.

The close relations between these two types of functions has been well studied. For

example, a function ϕ is negative definite if and only if e−tϕ is positive definite for all

t > 0. This observation goes back to Schoenberg. They are also closely related to

another important type of functions, the so-called completely monotone functions. We

refer to [11, 12] for more details in this direction.

Theorem 2.5.4. Let G be a locally compact abelian group and let ϕ : G → C be a

continuous positive definite function. For independent random variables X, Y taking

values in G and m,n ∈ Z, we have

|Eϕ(mX + nY )|2 ≤ Eϕ(mX −mX ′)Eϕ(nY − nY ′), (2.111)

where X ′, Y ′ are independent copies of X, Y , respectively.

Proof. Using Bochner’s theorem (2.109), we have

|Eϕ(mX + nY )| =

∣∣∣∣E ∫
G∗
ξ(mX + nY )dμ(ξ)

∣∣∣∣ =

∣∣∣∣∫
G∗

Eξ(mX)Eξ(nY )dμ(ξ)

∣∣∣∣
The second equation follows from Fubini’s theorem and the assumption that X, Y are
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independent. By Cauchy-Schwartz inequality, we have

≤
(∫

G∗
|Eξ(mX)|2dμ(ξ)

∫
G∗

|Eξ(nY )|2dμ(ξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(mX)dμ(ξ)

∫
G∗

Eξ(nY )Eξ(nY )dμ(ξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(mX)dμ(ξ)

∫
G∗

Eξ(nY ) · Eξ(nY )dμ(ξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(−mX)dμ(ξ)

∫
G∗

Eξ(nY )Eξ(−nY )dμ(ξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(−mX ′)dμ(ξ)

∫
G∗

Eξ(nY )Eξ(−nY ′)dμ(ξ)

)1/2

=

(
E

∫
G∗
ξ(mX −mX ′)dμ(ξ)E

∫
G∗
ξ(nY − nY ′)dμ(ξ)

)1/2

= (Eϕ(mX −mX ′)Eϕ(nY − nY ′))1/2 .

We denote by Eξ(mX) the conjugate of Eξ(mX), and the equation ξ(mX) = ξ(−mX)

follows from the fact that ξ ∈ G∗. �

Let V be a topological vector space over a field F. Assume that V is locally

compact. Then the following result is a consequence of the above theorem.

Corollary 2.5.2. Let ϕ : V → C be a continuous positive definite function. For

independent random variables X, Y taking values in V and a, b ∈ F, we have

|Eϕ(aX + bY )|2 ≤ Eϕ(aX − aX ′)Eϕ(bY − bY ′), (2.112)

where X ′, Y ′ are independent copies of X, Y , respectively.

Corollary 2.5.3. Let G be a locally compact abelian group and let ϕ : G → C be a

continuous positive definite function. For i.i.d. random variables X, Y taking values

in G, we have

|Eϕ(X + Y )| ≤ Eϕ(X − Y ). (2.113)
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Remark. Let ϕ : R
d → R be a continuous negative definite function. For all i.i.d.

random variables X, Y taking values in R
d, Lifshits, et al [106] proved that

Eϕ(X − Y ) ≤ Eϕ(X + Y ). (2.114)

Their proof relies on the Lévy-Khinchin representation theorem for continuous negative

definite functions. They also show that Eϕ(X + Y )−Eϕ(X − Y ) is the variance of an

integrated centered Gaussian process.

Corollary 2.5.4. Let G be a locally compact abelian group and let ϕ : G → C be a

continuous positive definite function. For any random variable X taking values in G,

we have

|Eϕ(X)|2 ≤ Eϕ(X −X ′), (2.115)

where X ′ is an independent copy of X.
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Chapter 3

INFORMATION-THEORETIC INEQUALITIES

The second part devotes to the study of information theoretical inequalities

analogous to sumset estimates in additive combinatorics. In particular, we consider

the comparison between entropies of sum and difference of i.i.d. random variables. In

Section 3.1, we show that entropies of sums (of i.i.d. random variables) are never greater

than entropies of differences for random variables taking values in the cyclic group

Z/3Z; however this fails for larger groups, and in particular we show that there always

exist distributions on finite cyclic groups of order at least 21 such that H(X + Y ) >

H(X − Y ). In Section 3.2 and Section 3.3, we explore more quantitative questions–

that is, we ask not only what the ordering of H(X+Y ) and H(X−Y ) may be, but how

different these can be in either direction; the finding here is that on Z, these can differ

by any amount additively, but not too much multiplicatively. These results are closely

related to the study of more-sum-than-difference (MSTD) sets in additive number

theory. Finally we investigate polar codes for q-ary input channels using non-canonical

kernels to construct the generator matrix, and present applications of our results to

constructing polar codes with significantly improved error probability compared to the

canonical construction. All the results in this part can be found in [3].

3.1 Basic examples

Let p = (p0, p1, p2) be a probability distribution on Z/3Z, and let H(p) be its

Shannon entropy. We denote by ‖p − U‖2 the Euclidean distance between p and the

uniform distribution U = (1/3, 1/3, 1/3). For any fixed 0 ≤ t ≤ log 3, the following

lemma verifies the “triangular” shape of the entropy circle H(p) = t.
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Lemma 3.1.1. Let p be a probability distribution on the entropy circle H(p) = t such

that p0 ≥ p1 ≥ p2. Then the distance ‖p− U‖2 is an increasing function of p0.

Proof. If t = 0, then p has to be the deterministic distribution (1, 0, 0). In this case,

we have ‖p − U‖2 =
√

2/3. If t = log 3, we have p = U and ‖p − U‖2 = 0. In the

following, we may assume that 0 < t < log 3. The condition p0 + p1 + p2 = 1 yields

1 +
dp1
dp0

+
dp2
dp0

= 0. (3.1)

The entropy identity H(p) = t implies

(log p0 + 1) + (log p1 + 1)
dp1
dp0

+ (log p2 + 1)
dp2
dp0

= 0 (3.2)

The above two identities give us that

dp1
dp0

=
log p0 − log p2
log p2 − log p1

(3.3)

and

dp2
dp0

=
log p0 − log p1
log p1 − log p2

. (3.4)

Using identities (3.1), (3.3) and (3.4), we have

1

2
· d

dp0
‖p− U‖2 =

2∑
i=0

(
pi − 1

3

)
dpi
dp0

= p0 + p1
log p0 − log p2
log p2 − log p1

+ p2
log p0 − log p1
log p1 − log p2

= (p0 − p1)
log p0 − log p2
log p1 − log p2

− (p0 − p2)
log p0 − log p1
log p1 − log p2

=
(p0 − p1)(p0 − p2)

log p1 − log p2

(
log p0 − log p2

p0 − p2
− log p0 − log p1

p0 − p1

)
≥ 0

The last inequality follows from the assumption that p0 ≥ p1 ≥ p2 and the concavity

of the logarithmic function. �

Now we can show that the entropy of the sum of two i.i.d. random variables

taking values in Z/3Z can never exceed the entropy of their difference. We use basic

facts about the Fourier transform on finite groups, which can be found, e.g., in [151].

55



Theorem 3.1.1. For any i.i.d. random variables X, Y taking values in Z/3Z, we have

H(X + Y ) ≤ H(X − Y ). (3.5)

Proof. Let p = (p0, p1, p2) be the distribution of X. Since Y is an independent copy

of X, we can see that −Y has distribution q = (p0, p2, p1). Then the distributions of

X + Y and X − Y can be written as p � p and p � q, respectively, where ‘�’ is the

convolution operation. Let p̂ = (p̂0, p̂1, p̂2) be the Fourier transform of p with Fourier

coefficients defined by

p̂j =
2∑

k=0

pke
−i2πjk/3, j = 0, 1, 2.

One basic property of the Fourier transform asserts that

q̂j = p̂j, (3.6)

where p̂j is is the conjugate of p̂j. We also have

(p̂ � q)j = p̂j · q̂j, (3.7)

which holds for general distributions q. The Parseval-Plancherel identity says

‖p̂‖22 = 3‖p‖22. (3.8)

Using the identities (3.6), (3.7) and (3.8), we have

‖p � p‖2 = ‖p � q‖2,

which implies

‖p � p− U‖2 = ‖p � q − U‖2.

It is not hard to see that X − Y is symmetric with (p � q)0 ≥ (p � q)1 = (p � q)2. Using

Lemma 3.1.1, we can see that the entropy circle passing through p � q lies inside the

Euclidean circle centered at U with radius ‖p � q − U‖2. Thus the distribution p � p is

on an entropy circle with entropy not greater than H(p � q). Then we have the desired

statement. �
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The property in Theorem 3.1.1 fails to hold for larger cyclic groups; we demon-

strate this by discussing three specific examples of i.i.d. random variables X, Y such

that the entropy of their sum is larger than the entropy of their difference.

1. For Conway’s MSTD set A = {0, 2, 3, 4, 7, 11, 12, 14}, we have |A + A| = 26 and
|A− A| = 25. Let X, Y be independent random variables uniformly distributed
on A. Straightforward calculations show that

H(X + Y ) −H(X − Y ) =
1

64
log

282429536481

215886856192
> 0.

2. The second example is based on the regular set A = {0, 1, 3, 4, 5, 6, 7, 10} with
|A + A| = |A − A| = 19. Let X, Y be independent random variables uniformly
distributed on A. Then we have

H(X + Y ) −H(X − Y ) =
1

64
log

510 · 810

36 · 77
> 0.

3. The group Z/12Z is the smallest cyclic group that contains a MSTD set. Let
A = {0, 1, 2, 4, 5, 9}. It is easy to check that A is a MSTD set since A + A =
Z12 and A − A = (Z/12Z)\{6}. We let X, Y be independent random variables
uniformly distributed on A. Then we have

H(X + Y ) −H(X − Y ) =
1

36
log

334

2010
> 0.

Remark. Applying linear transformations, we can get infinitely many MSTD sets of

Z from Conway’s MSTD set. Correspondingly, one can get as many MSTD random

variables as one please. The second example shows that one can always find MSTD

random variables taking values in Z/nZ for n ≥ 21. These examples show that MSTD

sets are useful in the construction of MSTD random variables. However we can indeed

get MSTD random variables supported on non-MSTD sets as shown by the second

example.

Remark. Hegarty [68] proved that there is no MSTD set in Z of size 7 and, up to linear

transformations, Conway’s set is the unique MSTD set in Z of size 8. We do not know

the smallest support of MSTD random variables taking values in Z.
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3.2 Achievable differences

In the following, we briefly introduce the construction of Stein [152] of finite

subsets Ak ⊂ Z such that the ratio |Ak − Ak|/|Ak + Ak| can be arbitrarily large or

small when k is large. Using this construction we will give an alternate proof of the

result of Lapidoth and Pete [92], which asserts that H(X − Y ) can exceed H(X + Y )

by an arbitrarily large amount.

Let A,B ⊂ Z be two finite subsets. Suppose that the gap between any two

consecutive elements of B is sufficiently large. For any b ∈ B, the set b+A represents

a relatively small fluctuation around b. Large gaps between elements of B will imply

that (b+A)∩(b′+A) = ∅ for distinct b, b′ ∈ B. Then we will have |A+B| = |A||B|. For

m ∈ Z large, this argument implies that |A+m·A| = |A|2, where m·A := {ma : a ∈ A}.

Therefore, the following equations hold simultaneously for sufficiently large m0 ∈ Z,

which depends on A,A− A and A+ A,

|A+m0 · A| = |A|2,

|(A+m0 · A) − (A+m0 · A)| = |(A− A) +m0 · (A− A)| = |A− A|2,

and

|(A+m0 · A) + (A+m0 · A)| = |A+ A|2.

Repeating this argument, we can get a sequence of sets Ak, defined by

Ak = Ak−1 +mk−1Ak−1, (3.9)

where A0 = A, mk−1 ∈ Z sufficiently large, with the following properties

|Ak| = |A|2k, |Ak ± Ak| = |A± A|2k. (3.10)

Now we are ready to reprove the result of Lapidoth and Pete [92].

Theorem 3.2.1. [92] For any M > 0, there exists i.i.d. Z-valued random variables

X, Y with finite entropy such that

H(X − Y ) −H(X + Y ) > M.

58



Proof. Recall the following basic property of Shannon entropy

0 ≤ H(X) ≤ log |range of X|. (3.11)

We let Xk, Yk be independent random variables uniformly distributed on the set Ak

obtained by the iteration equation (3.9). Using the right hand side of (3.11) and the

properties given by (3.10), we have

H(Xk + Yk) ≤ log |Ak + Ak| = 2k log |A+ A|. (3.12)

Since Xk, Yk are independent and uniform on Ak, for all x ∈ Ak − Ak, we have

P(Xk − Yk = x) ≥ |Ak|−2.

Notice the fact that −t log t is increasing over (0, 1/e). When k is large enough, we

have

H(Xk − Yk) ≥ |Ak − Ak|
|Ak|2 log |Ak|2

= 4k log |A|
( |A− A|

|A|2
)2k

. (3.13)

For any k ∈ Z
+, we can always find a set A ⊂ Z with k2 elements such that the set

A− A achieves the possible maximal cardinality,

|A| = k2, |A− A| = |A|2 − |A| + 1. (3.14)

Combining (3.12), (3.14) and the trivial bound

|A+ A| ≤ |A|(|A| + 1)

2
,

we have that for k large

H(Xk + Yk) ≤ 2k log
|A|(|A| + 1)

2

= 8k log k − 2k log 2 + 2k log(1 + k−2)

= 8k log k − 2k log 2 + o(1).
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Combining (3.13) and (3.14), we have

H(Xk − Yk) ≥ 8k log k
(
1 − k−2 + k−4

)2k
= 8k log k exp(2k(−k−2 +O(k−4)))

= 8k log k(1 − 2k−1 +O(k−2))

= 8k log k − 16 log k + o(1).

Therefore we have

H(Xk − Yk) −H(Xk + Yk) = 2k log 2 − 16 log k + o(1).

Then the statement follows from that k can be arbitrarily large. �

We observe that the following complementary result is also true.

Theorem 3.2.2. For any M > 0, there exists i.i.d. Z-valued random variables X, Y

with finite entropy such that

H(X + Y ) −H(X − Y ) > M.

Remark. The previous argument can not be used to prove this result. If we proceed

the same argument, we will see that the lower bound of H(Xk + Yk) similar to (3.13)

will be really bad. The reason is that( |A+ A|
|A|2

)2k

→ 0

exponentially fast. Both results can also be proved using a probabilistic construction

of Ruzsa [141] on the existence of large additive sets A with |A− A| very close to the

maximal value |A|2, but |A+A| ≤ n2−c for some explicit absolute constant c > 0; and

similarly with the roles of A− A and A+ A reversed.

In fact, we have the following stronger result.

Theorem 3.2.3. For any M ∈ R, there exist i.i.d Z-valued random variables X, Y

with finite entropy such that

H(X + Y ) −H(X − Y ) = M.
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Proof. Let X be a random variable taking values in {0, 1, · · · , n − 1} ⊂ Z. Then

H(X + Y ) −H(X − Y ) is a continuous function of n variables. We can assume that

n is large enough if necessary. From the discussion in Section 3.1, we know that this

function can take both positive and negative values. (For instance Theorem 3.1.1

implies that a binary distribution can give us negative difference, and the uniform

distribution on Conway’s MSTD set will yield positive difference). Since the function

is continuous, the intermediate value theorem implies that its range must contain an

open interval (a, b) with a < 0 < b. Let X1, · · ·Xk be k independent copies of X and

we define X ′ = (X1, · · · , Xk). Let Y ′ be an independent copy of X ′. Then we have

H(X ′ + Y ′) −H(X ′ − Y ′) = k(H(X + Y ) −H(X − Y )).

The range of H(X ′+Y ′)−H(X ′−Y ′) will contain (ka, kb). The right hand side can take

any real number since k can be arbitrarily large. The random variables X ′, Y ′ take finite

values of Zk. Using the linear transformation (x1, · · · , xk) → x1 + dx2 + · · · + dk−1xk,

we can map X, Y to Z-valued random variables. This map preserves entropy as d is

large enough. So these Z-valued random variables will have the desired property. �

Recall that, for a continuous random variable X with the density function f(x),

the differential entropy h(X) is defined by

h(X) = −E log f(X). (3.15)

Theorem 3.2.4. For any M ∈ R, there exist i.i.d. real-valued random variables X, Y

with finite differential entropy such that

h(X + Y ) − h(X − Y ) = M. (3.16)

Proof. From the above theorem we know that there exist Z-valued random variables

X ′, Y ′ with the desired property. Let U, V be independent random variables uniformly

distributed on (−1/4, 1/4), which are also independent of (X ′, Y ′). Then we define

X = X ′ + U and Y = Y ′ + V . Elementary calculations will show that

h(X + Y ) = H(X ′ + Y ′) + h(U + V ),
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and

h(X − Y ) = H(X ′ − Y ′) + h(U − V ).

Since U, V are symmetric, U + V and U − V have the same distribution. Therefore,

we have

h(X + Y ) − h(X − Y ) = H(X ′ + Y ′) −H(X ′ − Y ′).

Then the theorem follows. �

Remark. In the set cardinality setting, Nathanson [127] raised the question: what are

the possible values of |A+A|− |A−A| for finite subsets A ⊂ Z? Martin and O’Bryant

[114] proved that for any k ∈ Z there exists A such that |A + A| − |A − A| = k, that

is independently obtained by Hegarty [68].

3.3 Entropy analogue of Freiman-Pigarev inequality

We proved that the entropies of the sum and difference of two i.i.d. random

variables can differ by an arbitrarily large amount additively. However we will show

that they do not differ too much multiplicatively.

In additive combinatorics, for a finite additive set A, the doubling constant σ[A]

is defined as

σ[A] =
|A+ A|
|A| . (3.17)

Similarly the difference constant δ[A] is defined by

δ[A] =
|A− A|
|A| . (3.18)

It was first observed by Ruzsa [140] that

δ[A]1/2 ≤ σ[A] ≤ δ[A]3. (3.19)

The upper bound can be improved down to δ[A]2 using Plünnecke inequalities. Thus

a finite additive set has small doubling constant if and only if its difference constant is

also small. In the entropy setting, we have

1

2
≤ H(X + Y ) −H(X)

H(X − Y ) −H(X)
≤ 2 (3.20)
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for i.i.d. random variables X, Y . The upper bound was proved by Madiman [107]

and the lower bound was proved independently by Ruzsa [143] and Tao [158]. The

inequalities also hold for differential entropy, see Madiman and Kontoyiannis [109]. In

other words, after subtraction of H(X), the entropies of the sum and the difference

of two i.i.d. random variables are not too different. We observe that the entropy

version (3.20) of the doubling-difference inequality implies the entropy analogue of the

following result proved by Freiman and Pigarev [133]:

|A− A|3/4 ≤ |A+ A| ≤ |A− A|4/3. (3.21)

Theorem 3.3.1. Let X, Y be i.i.d. discrete random variables with finite entropy, then

we have

3

4
<
H(X + Y )

H(X − Y )
<

4

3
. (3.22)

Proof. The basic facts of Shannon entropy (1.5) and (1.6) imply that H(X +Y ) = 0 if

and only if H(X−Y ) = 0. In this case, the above theorem is true if we define 0/0 = 1.

So we assume that neither H(X + Y ) nor H(X − Y ) is 0. For the upper bound, we

have

H(X + Y )

H(X − Y )
=

H(X + Y )

H(X − Y ) −H(X) +H(X)

≤ H(X + Y )

(H(X + Y ) −H(X))/2 +H(X)

=
2H(X + Y )

H(X + Y ) +H(X)

<
4

3

The second step follows from the upper bound in (3.20) and the fact that Shannon

entropy is non-negative. The last step uses (1.5) and the fact that, in the i.i.d. case,

“ = ” of the upper bound happens only when X takes on a single value, i.e. H(X) = 0.

The lower bound can be proved in a similar way. �
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Remark. It is unknown if the inequality (3.20) is best possible. Suppose that, for some

α ∈ (1, 2), we have

α−1 ≤ H(X + Y ) −H(X)

H(X − Y ) −H(X)
≤ α.

Using the same argument, the above theorem can be improved to

α + 1

2α
<
H(X + Y )

H(X − Y )
<

2α

α + 1
.

Remark. The above theorem does not hold for continuous random variables. For ex-

ample, let X be an exponential random variable with parameter λ, and Y be an

independent copy of X. Then X + Y satisfies the Gamma distribution Γ(2, λ−1) with

the differential entropy

h(X + Y ) = 1 + γ − log λ ≈ 1.577 − log λ,

where γ is the Euler’s constant. On the other hand, X−Y has the Laplace distribution

Laplace(0, λ−1) with the differential entropy

h(X − Y ) = 1 + log 2 − log λ ≈ 1.693 − log λ.

We can see that

lim
λ→(2e)+

h(X + Y )

h(X − Y )
= ∞,

and

lim
λ→(2e)−

h(X + Y )

h(X − Y )
= −∞.

3.4 Applications to polar codes

3.4.1 Introduction to polar codes

Polar codes, invented by Arıkan [6] in 2009, achieve the capacity of arbitrary

binary-input symmetric discrete memoryless channels. Moreover, they have low en-

coding and decoding complexity and an explicit construction. Consequently they have

attracted a great deal of attention in recent years. In order to discuss polar codes

more precisely, we now recall some standard terminology from information and coding

theory.
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As a standard practice in information theory, we use Uk to denote (U1, . . . , Uk),

and I(X;Y |Z) to denote the conditional mutual information between X and Y given

Z, which is defined by

I(X;Y |Z) = H(X,Z) +H(Y, Z) −H(X, Y, Z) −H(Z).

It is well known, and also trivial to see, that the conditional entropy H(X|Y ), defined

as the mean using the distribution of Y of H(X|Y = y), satisfies the “chain rule”

H(Y ) +H(X|Y ) = H(X, Y ), so that I(X;Y |Z) = H(X|Z)−H(X|Y, Z). The mutual

information between X and Y , namely I(X;Y ) = H(X) − H(X|Y ), emerges in the

case where there is no conditioning. In particular, I(X;Y |Z) = 0 if and only if X and

Y are conditionally independent given Z. Furthermore, one also has the chain rule for

mutual information, which states that I(X;Y, Z) = I(X;Z) + I(X;Y |Z).

A major goal in coding theory is to obtain efficient codes that achieve the

Shannon capacity on a discrete memoryless channel. A memoryless channel is defined

first by a “one-shot” channel W , which is a stochastic kernel from an input alphabet

X to an output alphabet Y (i.e., for each x ∈ X , W (·|x) is a probability distribution

on Y), and the memoryless extension of W for length n vectors is defined by

W (n)(yn|xn) =
n∏
i=1

W (yi|xi), xn ∈ X n, yn ∈ Yn. (3.23)

To simplify the notation, one often makes a slight abuse of notation, writing W (n) as

W .

A linear code of block length n on an alphabet X = F (which must be a field) is

a subspace of Fn. The vectors in the subspace are often called the codewords. A linear

code is equivalently defined by a generator matrix, i.e., a matrix with entries in the

field whose rows form a basis for the code. If the dimension of the code is k, and if G

is a k× n generator matrix for the linear code, the codewords are given by the span of

the rows of G, i.e., all multiplications uG where u is a 1 × k vector over the field. We

refer to [33, 138] for a more detailed introduction to information and coding theory.
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In polar codes, the generator matrix of block length n is obtained by deleting1

some rows of the matrix Gn =
[
1 0
1 1

]⊗ log2 n. Which rows to delete depends on the chan-

nel and the targeted error probability (or rate). For a symmetric discrete memoryless

channel W , the rows to be deleted are indexed by

Bε,n := {i ∈ [n] : I(Ui;Y
nU i−1) ≤ 1 − ε}, (3.24)

where ε is a parameter governing the error probability, the vector Un has i.i.d. compo-

nents which are uniform on the input alphabet, Xn = UnGn, and Y n is the output of

n independent uses of W when Xn is the input.

To see the purpose of the transform Gn, consider the case n = 2 first. Applying

G2 to the vector (U1, U2) yields

X1 = U1 + U2,

X2 = U2.

Transmitting X1 and X2 on two independent uses of a binary input channel W leads

to two output variables Y1 and Y2; recall that this means that Y1 (or Y2) is a random

variable whose distribution is given by W (·|x) where x is the realization of X1 (or X2).

If we look at the mutual information between the vectors X2 = (X1, X2) and Y 2 =

(Y1, Y2), since the pair of components (X1, Y1) and (X2, Y2) are mutually independent,

the chain rule yields

I(X2;Y 2) = I(X1;Y1) + I(X2;Y2) = 2I(W ), (3.25)

where I(W ) is defined as the mutual information of the one-shot channel W with a

uniformly distributed input. Further, since the transformation G2 is one-to-one, and

since the mutual information is clearly invariant under one-to-one transformations of

1 If the channel is symmetric the generator matrix is indeed obtained by deleting rows,
otherwise in addition to deleting rows one may also have to translate the codewords
(affine code).
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its arguments (the mutual information depends only on the joint distribution of its

arguments), we have that

I(U2;Y 2) = I(X2;Y 2). (3.26)

If we now apply the chain rule to the left hand side of previous equality, the depen-

dencies in the components of U2 obtained by mixing X2 with G2 lead this time to two

different terms, namely,

I(U2;Y 2) = I(U1;Y
2) + I(U2;Y

2, U1). (3.27)

Putting back (3.25), (3.26), and (3.27) together, we have that

I(W ) =
1

2

(
I(U1;Y

2) + I(U2;Y
2, U1)

)
. (3.28)

Now, the above is interesting because the two terms in the right-hand side are precisely

not equal. In fact, I(U2;Y
2, U1) must be greater than its counter-part without the

mixing of G2, i.e., I(U2;Y
2, U1) ≥ I(X2;Y2) = I(W ). To see this, note that

I(U2;Y
2, U1) = H(U2) −H(U2|Y 2, U1)

≥ H(U2) −H(U2|Y 2)

= H(X2) −H(X2|Y2)
= I(X2;Y2)

where the inequality above uses the fact that conditioning can only reduce entropy,

hence dropping the variable U1 in H(U2|Y 2, U1) can only increase the entropy. Further,

one can check that besides for degenerated cases where W is deterministic or fully

noisy (i.e., making input and output independent), I(U2;Y
2, U1) is strictly larger than

I(X2;Y2). Thus, the two terms in the right-hand side of (3.28) are respectively lesser

and greater that I(W ), but they average out to the original amount I(W ).

In summary, out of two independent copies of the channel W , the transform G2

allows us to create two new synthetic channels

W− : U1 → Y1, Y2

W+ : U2 → Y1, Y2, U1
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that have respectively a worse and better mutual information

I(W−) ≤ I(W ) ≤ I(W+).

while overall preserving the total amount of mutual information

I(W ) =
1

2
(I(W+) + I(W−)).

The key use of the above phenomena, is that if one wants to transmit only one bit

(uniformly drawn), using W+ rather than W leads to a lower error probability since

the channel W+ carries more information. One can then iterate this argument several

times and hope obtaining a subset of channels of very high mutual information, on

which bits can be reliably transmitted. After log2 n iterations, one obtains the synthe-

sized channels Ui �→ (Y n, U i−1). Thus, for a given number of information bits to be

transmitted (i.e., for a given rate), one can select the channels with the largest mu-

tual informations to minimize the error probability. As explained in the next section,

the phenomenon of polarization happens in the sense that as n tends to infinity, the

synthesized channels have mutual information tending to either 0 or 1 (besides for a

vanishing fraction of exceptions). Hence, sending information bits through the high

mutual information channels (equivalently, deleting rows of Gn corresponding to low

mutual information channels) allows one to achieve communication rates as large as

the mutual information of the original binary input channel. The construction extends

to q-ary input alphabets when q is prime, using the same matrix Gn =
[
1 0
1 1

]⊗ log2 n,

while carrying the operations over Fq.

It is tempting to investigate what happens if one keeps the Kronecker structure

of the generator matrix but modifies the kernel
[
1 0
1 1

]
. For binary input alphabets, there

is no other interesting choice (up to equivalent permutations). In Mori and Tanaka

[124], the error probability of non-binary polar codes constructed on the basis of Reed-

Solomon matrices is calculated using numerical simulations on q-ary erasure channels.

It is confirmed that 4-ary polar codes can have significantly better performance than

binary polar codes. Our goal here is to investigate potential improvements at finite block
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length using modified kernels over Fq. We propose to pick kernels not by optimizing

the polar code exponent as in [124] but by maximizing the polar martingale spread.

This connects to the object of study in this paper, as explained next. The resulting

improvements are illustrated with numerical simulations.

3.4.2 Polar martingale

In order to see that polarization happens, namely that

1

n
|{i ∈ [n] : I(Ui;Y

n, U i−1) ∈ (ε, 1 − ε)}| → 0, (3.29)

it is helpful to rely on a random process having a uniform measure on the possible

realizations of I(Ui;Y
nU i−1). Then, counting the number of such mutual informations

in (ε, 1 − ε) can be obtained by evaluating the probability that the process lies in this

interval. The process is defined by taking {Bn}n≥1 to be i.i.d. random variables uniform

on {−,+} and the binary (or q-ary with q prime) random input channels {Wn, n ≥ 0}
are defined by

W0 := W,

Wn := WBn
n−1, ∀n ≥ 1. (3.30)

Then the polarization result can be expressed as

P{I(Wn) ∈ (ε, 1 − ε)} → 0. (3.31)

The process I(Wn) is particularly handy as it is a bounded martingale with respect

to the filtration Bn. This is a consequence of the balance equation derived in (3.28).

Therefore, I(Wn) converges almost surely, which means that almost surely, for any

ε > 0 and n large enough, |I(Wn+1) − I(Wn)| = I(W+
n ) − I(Wn) < ε. Since for q-ary

input channels (q prime), the only channels for which I(W+) − I(W ) is arbitrarily

small is when I(W ) is arbitrarily close to 0 or 1, the conclusion of polarization follows.

The key point is that the martingale I(Wn) is a random walk in [0, 1] and it is ‘unstable

at any point I(W ) ∈ (0, 1) as it must move at least I(W+) − I(W ) > 0 in this range.

The plot of I(W+) − I(W ) > 0 for different values of I(W ) is provided in Figure 3.1.
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Figure 3.1: Plot of I(W ) (horizontal axis) vs. I(W+) − I(W ) for all possible binary
input channels (the tick on the horizontal axis is at 1 and the tick on
vertical axis is at 1/4).

Thus, the larger the spread I(W+)− I(W ), the more unstable the martingale is

at non-extremal points and the faster it should converge to the extremes (i.e., polarized

channels). To see why this is connected to the object of study of this paper, we need

one more aspect about polar codes.

When considering channels that are ‘additive noise’, polarization can be under-

stood in terms of the noise process rather than the actual channels Wn. Consider for

example the the binary symmetric channel. When transmitting a codeword cn on this

channel, the output is Y n = cn + Zn, where Zn has i.i.d. Bernoulli components. The

polar transform can then be carried over the noise Zn. Since

I(Ui;Y
nU i−1) = 1 −H((GnZ

n)i|(GnZ
n)i−1), (3.32)

the mutual information of the polarized channels is directly obtained from the condi-

tional entropies of the polarized noise vector GnZ
n. The counter-part of this polar-

ization phenomenon is called source polarization [7]. It is extended in [2] to multiple

correlated source. For n = 2, the spread of the two conditional entropies is exactly

given by H(Z + Z ′) − H(Z), where Z,Z ′ are i.i.d. under the noise distribution. In

Arıkan and Telatar [8], the rate of convergence of the polar martingale is studied as

a function of the block length. Our goal here is to investigate the performance at
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finite block length, motivated by maximizing the spread at block length n = 1. When

considering non-binary polar codes, that spread is governed by the entropy of a linear

combination of i.i.d. variables. Preliminary results on this approach were presented

in [1], while the error exponent and scaling law of polar codes have been studied in

particular in [67] and references therein.

3.4.3 Kernels with maximal spread

Being interested in the performance of polar codes at finite block length, we start

with the optimization of the kernel matrix over Fq of block length n = 2. Namely, we

investigate the following optimization problem:

K∗(W ) = arg max
K∈M2(Fq)

I(W+(W,K)), (3.33)

where W+(W,K) is the channel u2 �→ Y1Y2u1, and (Y1, Y2) are the output of two

independent uses of W when (x1, x2) = (u1, u2)K are the inputs. We call K∗ the

2-optimal kernel for W .

A general kernel is a 2 × 2 invertible matrix over Fq. Let K =
[
a b
c d

]
be such a

matrix and let (U1, U2) be i.i.d. under μ over Fq and (X1, X2) = (U1, U2)K. Since K

is invertible, we have

2H(μ) = H(U1, U2) = H(X1, X2) = H(X1) +H(X2|X1) (3.34)

and

H(X1) −H(μ) = H(μ) −H(X2|X1) (3.35)

which is the entropy spread gained by using the transformation K. To maximize the

spread, one may maximize H(X1) = H(aU1+cU2) over the choice of a and c, or simply

H(U1 + cU2) over the choice of c. Hence, the maximization problem depends only on

the variable c, (a can be set to 1, and b, d only need to ensure that K is invertible),

which leads to a kernel of the form K =
[
1 0
c 1

]
. Note that to maximize the spread, one

may alternatively minimize H(X2|X1) = H(U2|U1 + cU2).
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We consider in particular channels which are ‘additive noise’, in which case one

can equivalently study the ‘source’ version of this problem as follows:

λ∗(μ) = arg max
λ∈Fq

H(U1 + λU2), (3.36)

where U1, U2 are i.i.d. under μ. As discussed above, this is related with the previous

problem by choosing

K∗(W ) =

⎡⎣ 1 0

λ∗(μ) 1

⎤⎦ ,
where μ is the distribution of the noise of the channel W .

Corollary 3.4.1. For a probability distribution μ over F3,

λ∗(μ) = 2

if μ(1) �= μ(2), and λ∗(μ) = {1, 2} if μ(1) = μ(2).

Figure 3.2 illustrates the improvements of the error probability of a polar code

using the kernel
[
1 0
2 1

]
instead of

[
1 0
1 1

]
for a block length n = 1024 when the channel is

an additive noise channel over F3 with noise distribution {0.7, 0.3, 0}.

When μ is over Fq with q ≥ 5, λ∗(μ) varies with μ. For example, one can check

numerically that for the distribution {0.8, 0.1, 0.1, 0, 0} we have λ∗ = 4, whereas for

the distribution {0.7, 0.2, 0.1, 0, 0} we have λ∗ = {2, 3}. Thus finding a solution to the

problem of determining λ∗(μ) for general probability distributions μ on Fq seems not

so easy. Nonetheless, for a certain class of probability distributions μ, we can identify

λ∗(μ) explicitly using the following observation.

Proposition 3.4.1. Let μ be a probability distribution over Fq with support Sμ. If

there exists γ ∈ Fq such that

|Sμ + γSμ| = |Sμ|2 (3.37)

then

H(U2|U1 + γU2) = 0 (3.38)

where U1, U2 are i.i.d. under μ.
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Figure 3.2: Block error probability (in log10 scale) of a polar code using the 2-optimal
kernel (red curve – lower curve) vs. original kernel (blue curve) for a block
length of n = 1024 and an additive noise channel over F3 with noise
distribution {0.7, 0.3, 0}.

Proof. The condition |Sμ+γSμ| = |Sμ|2 ensures that knowing u1+γu2 with u1, u2 ∈ Sμ

allows to exactly recover both u1 and u2. �

Remark. The condition on the support could be simplified but as such it makes the

conclusion of Proposition 3.4.1 immediate. Also note that γ such thatH(U2|U1+γU2) =

0 is clearly optimal to maximize the spread, i.e., it maximizes H(U1 + γU2).

Let us consider some examples of distributions satisfying (3.37):

1. Let μ over F5 be such that Sμ = {0, 1}. Picking γ = 2, one obtains 2Sμ = {0, 2}
and Sμ + 2Sμ = {0, 1, 2, 3}, and (3.37) is verified. In this case, using γ = 1 can
only provide a strictly smaller spread since it will not set H(U2|U1 +γU2) = 0. It
is hence better to use the 2-optimal kernel

[
1 0
2 1

]
rather than the original kernel[

1 0
1 1

]
. As illustrated in Figure 3.3, this leads to significant improvements in the

error probability at finite block length. Also note that a channel with noise μ
satisfying (3.37) has positive zero-error capacity, which is captured by the 2-
optimal kernel as shown with the rapid drop of the error probability (it is 0 at
low enough rates since half of the synthesized channels have noise entropy exactly
zero). If μ is close to a distribution satisfying (3.37), the error probability can
also be significantly improved with respect to the original kernel

[
1 0
1 1

]
.
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Figure 3.3: Block error probability (in log10 scale) of a polar code using the 2-optimal
kernel (red curve – lower curve) vs. original kernel (blue curve) for a
block length of n = 1024 and an additive noise channel over F5 with
noise distribution {0.5, 0.5, 0, 0, 0}. This channel takes any symbol of
F5 to itself with probability 1/2 and shifts any symbol circularly with
probability 1/2.

2. Over F11, let μ be such that Sμ = {0, 1, 2}. Picking γ = 2, one obtains 2Sμ =
{0, 2, 4} and (3.37) does not hold. However, picking γ = 3 leads to 3Sμ = {0, 3, 6}
and (3.37) holds. Therefore, the choice of γ varies with respect to q.

3. Over general Fq, let k = �√q − 1�. If Sμ = {0, 1, . . . , k − 1}, we can see that
γ = k will satisfy (3.37).

In conclusion, we have shown that over Fq, the martingale spread can be sig-

nificantly enlarged by using 2-optimal kernels rather than the original kernel
[
1 0
1 1

]
.

Moreover, we have observed that this can lead to significant improvements on the error

probability of polar codes, even at low block length (n = 1024). For additive noise

channels, while the improvement is significant when the noise distribution is concen-

trated on “small” support, the improvement may not be as significant for distributions

that are more more spread out.
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Chapter 4

CONCENTRATION OF INFORMATION CONTENT

This chapter devotes to the study of concentration properties of information

content. Sharp exponential deviation estimates for the information content as well

as a sharp bound on the varentropy are obtained for convex probability measures on

Euclidean spaces. These provide, in a sense, a nonasymptotic equipartition property for

convex measures even in the absence of stationarity-type assumptions. In Section 4.1,

we show that the exponential deviation of a functional follows from the log-concavity of

normalized moments of that functional. The log-concavity of the normalized moments

of s-concave functions are studied in Section 4.2. Optimal concentration and sharp

variance bound of the information content of κ-concave random variables are obtained

in Section 4.3 by combining the results of the preceding two sections. All the results

can be found in [52], which will form one part of a larger paper [13].

4.1 General principle for exponential deviation

Let X be a random variable taking values in R
n. Suppose that it has density

f with respect to the Lebesgue measure on R
n. Let ϕ : R

n → R be a real-valued

function. One natural way to show the exponential deviation of ϕ(X) from its mean is

to prove the finiteness of the moment generating function Eeαϕ(X) for certain α. The

logarithmic moment generating function L(α) is defined by

L(α) = logEeαϕ(X). (4.1)

The following observation is a well known fact about exponential families in statistics.
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Lemma 4.1.1. Let a, b > 0 be certain positive real numbers. Suppose that L(α) < ∞
for α ∈ (−a, b). Then we have

L′(α) = Eϕ(Xα), L′′(α) = Var(ϕ(Xα)), (4.2)

where Xα is a random variable with density

fα(x) =
eαϕ(x)f(x)∫

Rn eαϕ(x)f(x)dx
. (4.3)

For α = 0, one particularly has L′(0) = Eϕ(X) and L′′(0) = Var(ϕ(X)).

Proof. The assumption L(α) < ∞ for α ∈ (−a, b) guarantees that L(α) is infinitely

differentiable with respect to α ∈ (−a, b) and that we can freely change the order of

differentiation and expectation. Then we have

L′(α) =

∫
Rn e

αϕ(x)f(x)ϕ(x)dx∫
Rn eαϕ(x)f(x)dx

= Eϕ(Xα).

Differentiate L′(α) one more time. We have

L′′(α) =

∫
Rn e

αϕ(x)f(x)ϕ2(x)dx∫
Rn eαϕ(x)f(x)dx

−
(∫

Rn e
αϕ(x)f(x)ϕ(x)dx∫

Rn eαϕ(x)f(x)dx

)2

= Var(ϕ(Xα)).

�

A function f : Rn → R+ is called log-concave if we have

f((1 − λ)x+ λy) ≥ f(x)1−λf(y)λ (4.4)

for all x, y ∈ R
n and all λ ∈ [0, 1]. The following lemma tells us that the upper

bound of Eeαϕ(X) emerges as a consequence of the log-concavity of L(α) after certain

normalization.

Lemma 4.1.2. Let c(α) be a smooth function such that e−c(α)Eeαϕ(X) is log-concave

for −a < α < b. Then we have

Eeα(ϕ(X)−Eϕ(X)) ≤ eψc(α), (4.5)

where ψc(α) = c(α) − c(0) − c′(0)α.
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Proof. Since e−c(s)Eesϕ(X) is log-concave, we have L′′(s) ≤ c′′(s). For any 0 < t < α < b,

integrating the inequality over (0, t) we have

L′(t) − L′(0) ≤ c′(t) − c′(0).

Integrating both sides over (0, α), we have

L(α) − L(0) − L′(0)α ≤ c(α) − c(0) − c′(0)α. (4.6)

Similarly we can show that the estimate also holds for −a < α < 0. Notice that

L(0) = 0 and L′(0) = Eϕ(X). Then the lemma follows from exponentiating both sides

of (4.6). �

Remark. From Lemma 4.1.1 and Lemma 4.1.2, we can see that the study of upper

bound of Var(ϕ(Xα)) is equivalent to that of the normalizing function for Eeαϕ(X)

to be log-concave. We can get one from the other by differentiating or integrating

twice. That is why variance bounds can imply exponential deviation inequalities when

moment generating functions exist.

Let f : R → R∪{∞} be a real-valued function. For x ∈ R, its Fenchel-Legendre

transform f ∗(x) is defined as

f ∗(x) = sup
y

(xy − f(y)). (4.7)

Let ψc,+(α) and ψc,−(α) be the restrictions of ψc(α) on the positive and negative half

axis, respectively.

Corollary 4.1.1. Under the assumptions and notations of Lemma 4.1.2, for any t > 0

we have

P(ϕ(X) − Eϕ(X) > t) ≤ e−ψ
∗
c,+(t), (4.8)

and

P(ϕ(X) − Eϕ(X) < −t) ≤ e−ψ
∗
c,−(−t), (4.9)

where ψ∗
c,+, ψ

∗
c,− are Fenchel-Legendre transforms of ψc,+, ψc,−, respectively.
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Proof. The proof follows from the so-called Cramér-Chernoff method: using Markov

inequality in conjunction with optimization of the resulting bound. For the upper tail,

we have for 0 < α < b and t > 0 that

P(ϕ(X) − E(ϕ(X)) > t) = P(eα(ϕ(X)−Eϕ(X)) > eαt)

≤ e−αt · Eeα(ϕ(X)−Eϕ(X))

≤ e−(αt−ψc,+(α)).

We use Lemma 4.1.2 in the second inequality. Then the upper tail estimate follows

by taking the infimum of the right hand side over 0 < α < b. The lower tail estimate

follows from the same argument for −a < α < 0. �

4.2 Log-concavity of Moments of s-concave functions

In this section, we study the log-concavity of the (normalized) moments of s-

concave functions, which, in conjugation with the results from the previous section,

will enable us to obtain optimal concentration of the information content for convex

measures.

Definition 4.2.1. For s ∈ R, a function f : Rn → R+ is called s-concave if we have

f((1 − λ)x+ λy) ≥ ((1 − λ)f(x)s + λf(y)s)1/s (4.10)

for all x, y such that f(x)f(y) > 0 and for all λ ∈ [0, 1].

For s = 0, the right hand side is defined by continuity, which corresponds to

log-concave functions defined in (4.4). For s > 0, the previous definition is equivalent

to that f s is concave on its support; while for s < 0, it is equivalent to that f s is convex

on its support.

Recall that for x > 0, the Gamma function Γ(x) is defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt.

For x, y > 0, the Beta function B(x, y) is defined by

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt.
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The following result is proved by Borell [20] for s > 0, except that the function

ϕ is assumed to be decreasing. It was then noticed by some people and available for

example in Guédon, Nayar and Tkocz [63] that the result remains true without any

monotonicity hypothesis. For s < 0, it is proved by Fradelizi, Guédon and Pajor [51],

and the case s = 0 follows by taking the limits (or reproducing the mechanics of the

proof).

Proposition 4.2.1. Let s ∈ R and let ϕ : [0,+∞) → [0,+∞) be an s-concave inte-

grable function.

1) If s > 0, then p �→ B(p, s−1 + 1)−1
∫ +∞
0

tp−1ϕ(t)dt is log-concave for p > 0.

2) If s = 0, then p �→ Γ(p)−1
∫ +∞
0

tp−1ϕ(t)dt is log-concave for p > 0.

3) If s < 0, then p �→ B(p,−s−1−p)−1
∫ +∞
0

tp−1ϕ(t)dt is log-concave for 0 < p < −1/s.

Let us define the function ϕs(t) = (1− st)
1/s
+ 1R+ for s �= 0, and ϕ0(t) = e−t1R+ .

Then the preceding proposition may be expressed in the following way: if ϕ : [0,+∞) →
[0,+∞) is s-concave, then the function

p �→
∫ +∞
0

tp−1ϕ(t)dt∫ +∞
0

tp−1ϕs(t)dt

is log-concave for p such that 1/p > max(0,−s). Using the preceding proposition, we

can prove the following theorem which unifies and partially extends previous results

of Borell [20], Bobkov and Madiman [15], and Fradelizi, Madiman and Wang [53]. A

weaker log-concavity statement was also obtained by Nguyen[129].

Theorem 4.2.1. Let s ∈ R and let f : Rn → R+ be an integrable s-concave function.

Then the function

p �→ (p+ s) · · · (p+ ns)

∫
Rn

f(x)pdx (4.11)

is log-concave for p > max(0,−ns).

Proof. The case s = 1 is due to Borell [20] and the case s > 0 deduces directly by

applying Borell’s result to f s. The case s = 0 was proved by Fradelizi, Madiman and
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Wang [53]. The case s = −1 is due to Bobkov and Madiman [15]1, except that the

range was p > n+ 1. In the same way, the case s < 0 deduces from the case s = −1 by

applying it to f |s|. So we only need to prove the extension of the range for s = −1. Let

us assume that s = −1. Thus f is −1-concave, which means that g = f−1 is convex

on its support. As done by Bobkov and Madiman [15], we write∫
Rn

f(x)pdx =

∫
Rn

g(x)−pdx =

∫ +∞

0

ptp−1ψ(1/t)dt,

where ψ(t) = |{x ∈ R
n : g(x) ≤ t}|n is the Lebesgue measure of the sub-level set

{x ∈ R
n : g(x) ≤ t}. Using Brunn-Minkowski theorem, we can see that ψ is a 1/n-

concave function. Using the properties of the perspective function, we can deduce that

the function ϕ(t) = tnψ(1/t) is also a 1/n-concave function. Thus it follows that∫
Rn

f(x)pdx = p

∫ +∞

0

tp−n−1ϕ(t)dt.

Applying Proposition 4.2.1 to s = 1/n and p replaced by p− n we get that

B(p− n, n+ 1)−1

∫ +∞

0

tp−1−nϕ(t)dt

is log-concave on (n,+∞). Then we can conclude the proof using the following identity

B(p− n, n+ 1)−1 =
p(p− 1) · · · (p− n)

Γ(n+ 1)
.

�

The fact that Theorem 4.2.1 is optimal can be seen from the following example.

Let U : Rn → [0,∞] be a positively homogeneous convex function of degree 1, i.e. that

U(tx) = tU(x) for all x ∈ R
n and all t > 0. We define fs,U = (1− sU)

1/s
+ for s �= 0 and

f0,U = e−U for s = 0. Then we have∫
Rn

fs,U(x)pdx =
CUn!

(p+ s) · · · (p+ ns)
,

1 The details of this proof were omitted from [15] because of space considerations, and
are being presented here. A complete presentation will appear in [13].
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where CU is the Lebesgue measure of the sub-level set {x ∈ R
n : U(x) ≤ 1}. We only

check the identity for s > 0, and the other two cases can be proved similarly.∫
Rn

fs,U(x)pdx = p

∫ 1

0

tp−1|{x ∈ R
n : (1 − sU(x))

1/s
+ > t}|dt

= p

∫ 1

0

tp−1|{x ∈ R
n : U(x) < (1 − ts)/s}|dt

= CUp

∫ 1

0

tp−1((1 − ts)/s)ndt

= CUs
−n−1pB(p/s, n+ 1)

In the third equation, we use the homogeneity of U and the property of Lebesgue

measure. Then we can prove the identity using the following fact

B(p/s, n+ 1) =
n!

(p/s+ n) · · · p/s.

Thus the preceding theorem can be written in the following way: if f : Rn → R+ is an

integrable s-concave function, then

p �→
∫
Rn f(x)pdx∫

Rn fs,U(x)pdx

is log-concave for p > max(0,−ns).

4.3 Concentration of information content

Now we are ready to study the concentration property of information content

for convex measures introduced and studied by Borell [21, 22].

Definition 4.3.1. Let −∞ ≤ κ ≤ ∞. A finite Borel measure μ on R
n is called

κ-concave if we have

μ((1 − λ)A+ λB) ≥ ((1 − λ)μ(A)κ + λμ(B)κ)1/κ (4.12)

for all λ ∈ [0, 1] and all Borel sets A,B ⊆ R
n such that μ(A)μ(B) > 0.

Here (1− λ)A+ λB = {(1− λ)x+ λy : x ∈ A, y ∈ B} stands for the Minkowski

sum of two sets. The limit cases are interpreted by continuity. Thus the right hand
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side of (4.12) is equal to min(μ(A), μ(B)) for κ = −∞; μ(A)1−λμ(B)λ for κ = 0; and

max(μ(A), μ(B)) for κ = ∞. Note that the inequality (4.12) becomes stronger as κ

increases. For κ = −∞, we obtain the largest class, whose members are called convex

or hyperbolic measures. The case κ = 0 describes log-concave measures. If μ is a convex

measure on R
n then it is absolutely continuous with respect to the Lebesgue measure

on the subspace generated by its support and its density has a concavity property.

For example, if μ is κ-concave and has a density f on R
n then κ ≤ 1/n and f is

−1/β-concave with β = n− 1/κ.

We say that a R
n-valued random variable X is κ-concave if the probability

measure induced by X is κ-concave. In this section, we let X be a κ-concave random

variable with density f and κ < 0. Then Borell’s characterization implies that there is

a convex function V such that f = V −β. In the following, we will study the deviation

of h̃(X) from its mean h(X), that is corresponding to taking ϕ = − log f in Section

4.1. Then the moment generating function is

Ef−α(X) =

∫
Rn

f(x)1−αdx.

The integral is finite as long as (1 − α)β > n, i.e. that α < 1 − n/β.

Proposition 4.3.1. Let β > n and let X be a random variable in R
n with density f

being −1/β-concave. Then the function

α �→
n∏
i=1

((1 − α)β − i)Ef−α(X) (4.13)

is log-concave for α < 1 − n/β.

Proof. It easily follows from Theorem 4.2.1 with p replaced by 1−α and s replaced by

−1/β. �

Following Lemma 4.1.2, we can set

c(α) = −
n∑
i=1

log((1 − α)β − i). (4.14)
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Corollary 4.3.1. Under the conditions and notations of Proposition 4.3.1, we have

Var(h̃(X)) ≤ β2

n∑
i=1

(β − i)−2. (4.15)

Proof. By Lemma 4.1.1, we know that Var(h̃(Xα)) = L′′(α), where Xα is a random

variable with density proportional to f 1−α and L(α) = logEf−α(X) is the logarithmic

moment generating function. By Proposition 4.3.1, we know that L′′(α) ≤ c′′(α), where

c(α) is defined in (4.14). Then the variance bound (4.15) follows by differentiating c(α)

twice and setting α = 0. �

Remark. The variance bound is sharp. Suppose X has density f = (1+U/β)−β+ with U

being a positively homogeneous convex function of degree 1. In this case, the function

in Proposition 4.3.1 is log-affine, i.e. L′′(α) = c′′(α). Then we have equality in the

above variance bound. In particular, it includes the Pareto distribution with density

f(x) =
1

Zn(a, β)
(a+ x1 + · · · + xn)−β, xi > 0, (4.16)

where a > 0 and Zn(a, β) is a normalizing constant.

Let β > n+2 and let X be a random variable in R
n with density f being −1/β-

concave. In this case, we have E|X|2 < ∞ and the covariance matrix Σ is defined

by

Σ = E(X − EX) ⊗ (X − EX). (4.17)

Then we have

n =

∫
Rn

〈x− EX,−∇ log f(x)〉f(x)dx

≤
(∫

Rn

|x− EX|2f(x)dx ·
∫
Rn

|∇ log f(x)|2f(x)dx

)1/2

=
√

tr(Σ)J(X),

where tr(Σ) is the trace of Σ and J(X) is the Fisher information defined by

J(X) =

∫
Rn

|∇f |2
f

dx. (4.18)

Combining with Corollary 4.3.1 we have the following result.
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Corollary 4.3.2. Let β > n+ 2 and let X be a random variable in R
n with density f

being −1/β-concave. Then we have

Var(h̃(X)) ≤ tr(Σ)β2

n2

n∑
i=1

(β − i)−2J(X). (4.19)

In particular, if X is isotropic, i.e. that EX = 0 and Σ is the identity matrix,

we have

Var(h̃(X)) ≤ β2

n

n∑
i=1

(β − i)−2J(X). (4.20)

Taking β → ∞ yields the analogue for log-concave random variables, namely

Var(h̃(X)) ≤ J(X), (4.21)

which was observed by Nguyen [129].

Theorem 4.3.1. Let β > n and let X be a random variable in R
n with density f being

−1/β-concave. Then we have

Eeα(
˜h(X)−h(X)) ≤ eψc(α) (4.22)

for α < 1 − n/β, where

ψc(α) = −αβ
n∑
i=1

(β − i)−1 −
n∑
i=1

log
(1 − α)β − i

β − i
. (4.23)

Particularly, one has equality for Pareto distributions.

Proof. The moment generating function bound (4.22) easily follows from Lemma 4.1.2

and Proposition 4.3.1. Some easy calculations will show the equality case for Pareto

distributions. Essentially that is due to the identity L′′(α) = c′′(α), where c(α) is

defined in (4.14).

�

Corollary 4.3.3. Under the conditions and notations of Theorem 4.3.1, for any t > 0

we have

P(h̃(X) − h(X) > t) ≤ e−ψ
∗
c,+(t), (4.24)
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and

P(h̃(X) − h(X) < −t) ≤ e−ψ
∗
c,−(−t), (4.25)

where ψ∗
c,+ and ψ∗

c,− are Fenchel-Legendre transforms of ψc,+ and ψc,−, respectively.

In general we do not have explicit expressions for ψ∗
c,+ or ψ∗

c,−. The following

result was obtained by Bobkov and Madiman [15] with the assumption β ≥ n+1, which

can be relaxed to β > n. It basically says that the entropy of an κ-concave distribution

can not exceed that of the Pareto distribution with the same maximal density value.

Corollary 4.3.4. Under the conditions and notations of Theorem 4.3.1, we have

h(X) ≤ − log ‖f‖∞ + β

n∑
i=1

(β − i)−1, (4.26)

where we denote by ‖f‖∞ the essential supremum. We have equality for Pareto distri-

butions.

Proof. As a function of α, we have

(−αt− ψc(α))′ = −t+ β
n∑
i=1

(β − i)−1 − β
n∑
i=1

((1 − α)β − i)−1.

For any t > β
∑n

i=1(β − i)−1, we can see that −αt − ψc(α) is a decreasing function

of α < 1 − n/β. It is clear that limα→−∞(−αt − ψc(α)) = ∞. Therefore we have

ψ∗
c,−(−t) = ∞ for t > β

∑n
i=1(β− i)−1. Using the lower tail estimate in Corollary 4.3.3,

almost surely we have

h̃(X) − h(X) ≥ −β
n∑
i=1

(β − i)−1.

Taking the supremum over all realizable values of X yields

− log ‖f‖∞ − h(X) ≥ −β
n∑
i=1

(β − i)−1.

That is equivalent to the desired statement. �
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Remark. We can get corresponding estimates for log-concave random variables (see

[15, 53]) by taking the limit β → ∞.

The following result is an improvement of Proposition 5.1 of Bobkov and Madi-

man [18]. Its analogue for log-concave probability measures was first observed by

Klartag and Milman [87], with refinement made by [53, Corollary 4.7].

Corollary 4.3.5. Under the conditions and notations of Theorem 4.3.1, we have

P(f(X) ≥ cn0‖f‖∞) ≥ 1 − cn1 (4.27)

for 0 < c0 < 1 such that n log c0 < −β∑n
i=1(β − i)−1 and some 0 < c1 < 1 depending

on c0 and β.

Proof. Note that

P(f(X) ≤ cn0‖f‖∞) = P(log f(X) ≤ log ‖f‖∞ + n log c0)

= P(h̃(X) ≥ − log ‖f‖∞ − n log c0)

≤ P

(
h̃(X) ≥ h(X) − β

n∑
i=1

(β − i)−1 − n log c0

)

We use Corollary 4.3.4 in the above inequality. Applying the upper tail estimate of

Corollary 4.3.3 with

t = −n log c0 − β

n∑
i=1

(β − i)−1 (4.28)

yields

P(f(X) ≤ cn0‖f‖∞) ≤ e−ψ
∗
c,+(t). (4.29)

As a function of α, we have

(αt− ψc(α))′ = −n log c0 −
n∑
i=1

β

(1 − α)β − i
,
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from which we can see (αt− ψc(α))′(0) = t > 0 and (αt− ψc(α))′(1 − n/β) = −∞. In

addition we can see the concavity of αt− ψc(α) from

(αt− ψc(α))′′ = −
n∑
i=1

β2

((1 − α)β − i)2
< 0.

Therefore we have

ψ∗
c,+(t) = α∗t− ψc(α

∗), (4.30)

where α∗ is a positive number such that (αt− ψc(α))′(α∗) = 0, i.e. that

n∑
i=1

β

(1 − α∗)β − i
= −n log c0. (4.31)

Using the definitions of ψc(α) and t in (4.23) and (4.28), respectively, we have

ψ∗
c,+(t) = −nα∗ log c0 +

n∑
i=1

log
(1 − α∗)β − i

β − i
. (4.32)

Combining with (4.29), we have

P(f(X) ≤ cn0‖f‖∞) ≤ cn1 , (4.33)

where

c1 = cα
∗

0

(
n∏
i=1

β − i

(1 − α∗)β − i

)1/n

. (4.34)

That is equivalent to the desired statement. To see that c1 < 1, we take the logarithm

of c1,

log c1 = α∗ log c0 +
1

n

n∑
i=1

log
β − i

(1 − α∗)β − i

= − 1

n

n∑
i=1

α∗β
(1 − α∗)β − i

+
1

n

n∑
i=1

log
β − i

(1 − α∗)β − i

= − 1

n

n∑
i=1

(
α∗β

(1 − α∗)β − i
− log

(
1 +

α∗β
(1 − α∗)β − i

))
< 0.

We use the equation (4.31) in the second identity. The last inequality follows from the

fact that log(1 + x) < x for x > 0. �
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Chapter 5

FUTURE WORK

In the last part, we discuss several specific projects or directions that I would

like to explore in the future.

Discrete EPI. The role of the entropy power inequality (EPI), which states that

e2h(X+Y )/n ≥ e2h(X)/n + e2h(Y )/n

for independent R
n-valued random variables X and Y , in information and communi-

cation theory, as well as in physics and in probability theory, is now well known. The

problem of searching for discrete analogues of the EPI has been long studied, with

various interesting partial results [145, 64, 71, 164, 166]. When we talk about discrete

analogues of the EPI, what we really mean is looking for lower bounds on the entropy

of a sum of independent random variables that take values in a finite or countable

group G. We define the minimal entropy function

fG(s, t) = inf H(X + Y ),

where the infimum is taken over all independent G-valued random variables X, Y such

that H(X) = s and H(Y ) = t. For simplicity we use fn(s, t) instead for the cyclic

group G = Zn. For the special case of Z2, Wyner and Ziv [168] made the interesting

observation that they termed “Mrs. Gerber’s lemma”: f2 is convex in each of its

arguments if the other is held fixed. Shamai and Wyner [145] used this to obtain a

binary analogue of the EPI. Recently, Jog and Anantharam [71] made the following

remarkable observation: If G is a group of order 2n for some natural number n, then

fG(s, t) is convex in each argument. More importantly, they found that fG(s, t) has
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certain interesting structure. Mrs. Gerber’s Lemma generally fails, even for Z3. But

we believe that fG(s, t) has certain structure property for cyclic groups with orders of

prime powers.

Conjecture 5.0.1. For any prime number p, we have

fpn(s, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k log p+ fp(s− k log p, t− k log p),

if k log p ≤ s, t < (k + 1) log p,

max{s, t}, otherwise.

Numerical experiments show that the formula appears to hold for p = 3, 5.

There exist random variables X, Y such that H(X + Y ) can reach the lower bound.

To see this, let G′ be any subgroup of Zpn of order pk. For the first case, we can

let X, Y be random variables such that both are uniform when conditioned on each

coset of G′. For the second case, we always have fpn(s, t) ≥ max{s, t}. Suppose that

s < k log p ≤ t < (k + 1) log p for some 1 ≤ k ≤ n − 1. To see that the equality

can happen, we can let X be a random variable supported on G′ and Y be a random

variable such that it is uniform when conditioned on each coset of G′. For such X, Y ,

it is not hard to check that H(X + Y ) = H(Y ), which implies the second case.

A more general question is to study the property of fG(s, t) for any abelian group

G. That might be doable by the decomposition of every finitely generated abelian group

into the direct sum of primary cyclic groups and infinite cyclic groups. It is actually

analogous to the Cauchy-Davenport problem in additive combinatorics: looking for the

lower bound of |A + B| over all subsets A,B ⊂ G with fixed cardinalities. Eliahou,

Kervaire and Plagne [44] proved that the lower bound only depends on the order of G

rather than the group structure. It is reasonable to expect similar properties in the

entropy setting.

Sum-product phenomena. Let A ⊂ Z be a finite subset. Recall the definition of

sumset A + A = {a + b : a, b ∈ A}. Similarly the product set A · A is defined to be

A · A = {a · b : a, b ∈ A}. If A is an arithmetic progression, it is not hard to see that
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|A + A| ≈ |A| and |A · A| ≈ |A|2 up to some constant factors. If A is a geometric

progression, we have |A ·A| ≈ |A| and |A+A| ≈ |A|2 up to some constant factors. The

sum-product phenomenon roughly says that a finite subset of Z can not behave as an

arithmetic progression and a geometric progression simultaneously. The most general

setting we can talk about the sum-product problem is for subsets of a ring. In this

general setting, the sum-product phenomenon says that if a finite set A is not close to

a subring, then either the sumset A+A or the product set A ·A must be considerably

larger than A. In another word, it is difficult to make A closed under addition and

multiplication simultaneously unless that A is close to a subring.

This problem was initiated by Erdős and Szemerédi [47] for integers. They

proved that max{|A + A|, |A · A|} ≥ c|A|1+δ for a small but positive number δ. It is

conjectured that δ can be arbitrarily close to 1 as long as |A| is large enough. Elekes

[43] proved that δ ≥ 1/4 by using the Szemerédi-Trotter theorem in an ingenious

way. More importantly, it opens the gate of using tools from incidence geometry

to study the sum-product problem. For real numbers, the state of the art is due to

Solymosi [149]: one can take δ arbitrarily close to 1/3. Motivated by finite field Kakeya

conjecture, Wolff [165] formulated the finite field version of sum-product problem, and

the breakthrough work is done by Bourgain, Katz and Tao [24]. Improvements are made

in [66, 59, 163]. Similar problems, such as difference-product, sum-ratio and difference-

ratio, as well as other generalizations are also studied for rational functions and elliptic

curves. The sum-product phenomenon has deep connections with and applications to

many other areas, such as incidence geometry, number theory, combinatorics, spectral

graph theory, complexity theory, pseudo randomness, probabilistic checkable proofs,

and cryptography.

The sum-product problem is one of my favorite problems. In the current project

[102], we are trying to use the entropy method to tackle this problem. Its entropy analog

asserts that for i.i.d real-valued random variables X, Y , we have

max{H(X + Y ), H(X · Y )} ≥ (1 + δ)H(X),
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and the constant δ > 0 can be arbitrarily close to 1, as long as H(X) is large enough.

Its entropy version is actually stronger than the original conjecture, which can be

seen by taking X, Y to be uniform on a finite subset A. The key idea of [149] is to

upper bound the multiplicative energy by the sumset. But the bound is not tight for

geometric progressions. Our study involves the estimate of a quantity, which is a kind

of “mixed” energy. Partial results are obtained and some equivalent formulations are

also considered.

Entropy inverse sumset theory. Inverse sumset estimate is another fundamental

part of additive combinatorics. It seeks to conclude the structural statement about

additive sets provided that the sumsets are small or large. The famous Freiman-

Green-Ruzsa theorem says that an additive set A with small doubling constant σ[A]

(i.e. σ[A] � log |A|) is contained in a generalized arithmetic progression. The entropy

analog developed by Tao [158] asserts that a discrete random variable X with small

doubling constant σ[X] (i.e. σ[X] ≤ K for some constant K) is roughly uniform on a

generalized arithmetic progression. The continuous extension is made by Kontoyannis

and Madiman [89], i.e. a continuous random variable with small doubling constant is

close to Gaussian.

Our understanding of additive sets with large doubling constant (i.e. |A|ε �
σ[A] ≤ |A|) is quite poor. An additive set with distinct pairwise sums is called a

Sidon set. The structure of Sidon sets is unclear so far. In the entropy setting, we

are interested in the classification of random variables with large doubling constants.

Suppose that X, Y are i.i.d. random variables such that H(X + Y ) ≥ 2H(X) −K for

some constant K. Our goal is to conclude the structure of the distribution of X and

Y . If X is supported on a Sidon set, the ambiguity in the pair (X, Y ) given the sum

X+Y is at most 1 bit. In another word, we have H(X+Y ) ≥ 2H(X)−1 bit. However

it can not guarantee that X has large doubling constant even if we know the range(X)

has large doubling constant. It is possible that the subset of range(X) which plays the

key role in sumset estimate may contribute little in the entropy sense. We can indeed
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construct such random variables. But it is reasonable to believe that range(X) must

contain a subset with large doubling constant and X restricted on this subset makes

the main contribution to the entropy of X. Then the classification of random variables

with large doubling constants should be closely related to the study of additive sets

with large doubling constants.

Entropy method in combinatorics. Entropy-based argument has been proved very

useful in many combinatorial enumeration problems. Erdős and Rényi [46] gave the

first combinatorial application of entropy to deriving a lower bound of the size of the

smallest distinguishing family of a set. The so-called Shearer’s lemma was introduced

by Chung, Frankl, Graham and Shearer [28] to bound the size of intersecting families.

Another application of entropy method is Radhakrishnan’s entropy proof of Brégman’s

theorem [135]. Various other applications of entropy method can be found in the study

of the number of embeddings of one graph in another Friedgut and Kahn [55], the

number of independent sets in a regular bipartite graph Kahn [72], the number of graph

homomorphisms Galvin and Tetali [58], the number of Hamilton cycles in a tournament

Friedgut and Kahn [56], the number of matchings and independent sets of fixed size

Carroll, Galvin and Tetali [27], counting graph homomorphisms and zero-error codes

Madiman and Tetali [111]. For general background, we refer to the nice survey by

Radhakrishnan [136]. In addition, entropy sumset inequalities of non-independent pair

of random variables have great utility in many classical problems in combinatorics,

such as the Kakeya problem and Erdős distance problem.

Slicing problem in asymptotic convex geometry. One of the central questions in

convex geometry is called Hyperplane Conjecture or Slicing Problem. It asserts that for

every convex body K ⊂ R
n of volume 1, there exists a (n− 1)-dimensional hyperplane

H such that Voln−1(K ∩H) ≥ c for some dimension-free constant c > 0. This question

was raised by Bourgain [23] and the best known lower bound is cn−1/4 by Klartag [86].

It is implied by the Thin Shell Conjecture [5, 17], which again trivially implied by the

Kannan-Lovsz-Simonovits Conjecture [73]. There are many equivalent formulations of
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this problem [121, 85, 15, 54]. The information theoretical formulation in [15] asserts

that the slicing problem is equivalent to the estimate of how (dimension-free) closeness

of log-concave measure to a Gaussian measure. It is also equivalent to finding a lower

bound of entropies of log-concave random variables with fixed covariance matrix. Even

for real-valued random variables with fixed variance, it is still unknown which log-

concave density has the minimum entropy. To figure out this extreaml density among

one-dimensional log-concave densities is a topic we are studying in the current project

[103].
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[48] C. G. Esseen. On the Kolmogorov-Rogozin inequality for the concentration func-
tion. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 5:210–216, 1966.

[49] C. G. Esseen. On the concentration function of a sum of independent random
variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9:290–308, 1968.

[50] R. H. Etkin and E. Ordentlich. The degrees-of-freedom of the K-user Gaussian
interference channel is discontinuous at rational channel coefficients. IEEE Trans.
Inform. Theory, 55(11):4932–4946, 2009.
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[133] V. P. Pigarev and G. A. Frĕıman. The relation between the invariants R and T .
In Number-theoretic studies in the Markov spectrum and in the structural theory
of set addition (Russian), pages 172–174. Kalinin. Gos. Univ., Moscow, 1973.

[134] G. Pisier. The volume of convex bodies and Banach space geometry, volume 94
of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge,
1989.

[135] J. Radhakrishnan. An entropy proof of Bregman’s theorem. J. Combin. Theory
Ser. A, 77:161–164, 1997.

[136] J. Radhakrishnan. Entropy and counting. In Computational Mathematics, Mod-
eling and Algorithms. Narosa, 2003.

[137] B. A. Rogozin. On the increase of dispersion of sums of independent random
variables. Teor. Verojatnost. i Primenen, 6:106–108, 1961.

[138] R. M. Roth. Introduction to coding theory. Cambridge Univ. Press, Cambridge,
2006.

[139] M. Rudelson and R. Vershynin. The Littlewood-Offord problem and invertibility
of random matrices. Adv. Math., 218(2):600–633, 2008.

[140] I. Z. Ruzsa. On the cardinality of A + A and A − A. In Combinatorics (Proc.
Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, volume 18 of Colloq. Math.
Soc. János Bolyai, pages 933–938. North-Holland, Amsterdam-New York, 1978.

[141] I. Z. Ruzsa. On the number of sums and differences. Acta Math. Hungar., 59(3-
4):439–447, 1992.

[142] I. Z. Ruzsa. Sums of finite sets. In Number theory (New York, 1991–1995), pages
281–293. Springer, New York, 1996.

[143] I. Z. Ruzsa. Sumsets and entropy. Random Structures Algorithms, 34(1):1–10,
2009.

103



[144] G. Schechtman. Concentration results and applications. In Handbook of the
geometry of Banach spaces, Vol. 2, pages 1603–1634. North-Holland, Amsterdam,
2003.

[145] S. Shamai and A. Wyner. A binary analog to the entropy-power inequality. IEEE
Trans. Inform. Theory, 36(6):1428–1430, 1990.

[146] C. E. Shannon. A mathematical theory of communication. Bell System Tech. J.,
27:379–423, 623–656, 1948.

[147] A. F. Sidorenko. Extremal estimates of probability measures and their combina-
torial nature. Izv. Akad. Nauk SSSR Ser. Mat., 46(3):535–568, 671, 1982.

[148] R. Siegmund-Schultze and H. von Weizsäcker. Level crossing probabilities. I.
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