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Despite the great potential of topically administered therapeutics in wound 

repair, due to the harsh wound environment, topically administered therapeutics are 

cleared out from the wound quickly, resulting in the reduced local concentration and 

their effectiveness of therapeutics. To overcome this limitation, the overall goal of my 

dissertation work is to improve the efficacy of topically administered therapeutics 

through the control over the therapeutic delivery kinetics using the interactions between 

therapeutic carriers and matrices. I specifically leverage the hybridization of collagen 

mimetic/like peptides (CMP or CLP) with a native collagen through the strand invasion 

process to tether CMP/CLP modified nanostructure carriers onto collagen-containing 

matrices. I hypothesize that CMP/CLP modified carrier and collagen tether approach 

would result in the extended the duration of therapeutic effects and control over the 

delivery of the cargo in response to cell-mediated collagen degradation. 

The first/second objectives of this thesis were to control growth factor gene 

transfer kinetics while regulating cell behaviors via manipulating both the number of 

CMP-collagen tethers and the ECM composition for the improved wound repair. 

Disruption in vascularization during wound healing can severely impair healing. Pro-

angiogenic growth factor therapies have shown great healing potential; however, 

controlling growth factor activity and cellular behavior over desired healing time scales 

remains a critical challenging. I developed gene-activating hyaluronic acid-collagen 

matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on 

hyaluronic acid (HA)-collagen (HCM) hydrogels using CMPs. First, I observed that 
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polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of 

polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified 

polyplexes. Moreover, the enhanced the retention of polyplex through CMP 

modification, as well as HA-CD44 interaction via the incorporation of HA in the 

collagen hydrogel increased the gene transfection efficiency to fibroblast. Furthermore, 

when fibroblasts were exposed to pro-angiogenic and pro-healing vascular endothelial 

growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A 

production for up to 7 days, with maximal expression at day 5. This sustained VEGF-A 

production using VEGF-GAHCM with 50 CP stimulated prolonged pro-healing 

responses, including the TGF-β1-induced myofibroblast transformation. In addition, 

application of fibroblasts containing VEGF-GAHCM with 50 CP stimulated the 

increased growth and persistent migration of endothelial cells (ECs) for at least 7 days, 

as compared to non-CMP modified GAHCM. Moreover, this resulted in the high CD31 

expression on ECs and formation of an interconnected EC network with a significantly 

higher network volume and a larger diameter network structure. Lastly, application of 

VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged 

pro-healing and pro-angiogenic responses resulting in the overall enhanced wound 

closure via increased myofibroblasts differentiation and blood vessel formation, 

improved granulation tissue formation, and faster re-epithelialization. Overall, these 

findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer 

and regulate cellular phenotype, resulting in improved control of growth factor activity 

for wound repair.  

The third objective of this thesis was to design new antibiotic delivery systems 

that maximize pharmacological effects and minimize side effects. Despite the great 
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promise for antibiotic therapy in wound infections, antibiotic resistance stemming from 

frequent dosing diminishes drug efficacy and contributes to recurrent infection. To 

overcome the limitations of current antibiotic therapies, I developed elastin-like peptide 

and collagen-like peptide (ELP-CLP) nanovesicles tethered to collagen-containing 

matrices to control vancomycin delivery and provide extended antibacterial effects 

against methicillin-resistant Staphylococcus aureus (MRSA). I observed that as 

compared to liposome formulations, ELP-CLP nanovesicles showed enhanced 

entrapment efficacy of vancomycin by 3-fold and enabled the controlled release of 

vancomycin at a constant rate with zero-order kinetics. Moreover, ELP-CLP 

nanovesicles could be retained on both collagen-fibrin (co-gel) matrices and collagen-

only matrices, with differential retention and release on/from the two biomaterials 

resulting in different release profiles of vancomycin. Overall, the biphasic release 

profiles of vancomycin from ELP-CLP tethered collagen/co-gel more effectively 

inhibited and delayed the growth of MRSA even after repeated bacterial inoculation as 

compared to matrices containing free vancomycin. Thus, this newly developed 

antibiotic delivery system exhibited distinct advantages for controlled vancomycin 

delivery and prolonged antibacterial activity relevant to the treatment of wound 

infections.  

In summary, this dissertation describes CMP modification of nanocarriers 

enables not only the extended delivery of therapeutics from collagen-containing 

matrices through CMP and collagen tethers, but also the maximized therapeutic effects 

in vitro. Thus, this work suggest that CMP-collagen tether approach has significant 

potential to overcome key challenges in the topically administrated therapeutics for 

wound healing and regenerative medicine.
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TARGETED DRUG DELIVERY VIA THE USE OF ECM-MIMETIC 
MATERIALS 

The use of drug delivery vehicles to improve the efficacy of drugs and to target 

their action at effective concentrations over desired periods of time has been an active 

topic of research and clinical investigation for decades. Both synthetic and natural drug 

delivery materials have facilitated locally-controlled as well as targeted drug delivery. 

Extracellular matrix (ECM) molecules have generated widespread interest as drug 

delivery materials owing to the various biological functions of ECM. Hydrogels created 

using ECM molecules can provide not only biochemical and structural support to cells, 

but also spatial and temporal control over the release of therapeutic agents, including 

small molecules, biomacromolecules, and cells. In addition, the modification of drug 

delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-

targeted delivery and improved the therapeutic efficiency of drugs through interaction 

with highly-expressed cellular receptors for ECM. The combination of ECM-derived 

hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a 

great promise for the delivery of intracellular drugs, which require specific endocytic 

pathways for maximal effectiveness. In this chapter, I provide an overview of cellular 

receptors that interact with ECM molecules and discuss examples of selected ECM 

components that have been applied for drug delivery in both local and systemic 

platforms. Finally, I highlight the potential impacts of utilizing the interaction between 

Chapter 1 
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ECM components and cellular receptors for intracellular delivery, particularly in tissue 

regeneration applications. 

1.1 Introduction 

Conventional drugs have been critical to the effective management of disease. 

Despite the benefits of free drugs, 118 drugs approved from 1980 to 2009 in the United 

States were withdrawn from the market, 22% of them due to safety reasons including 

hepatic toxicity, severe cardiovascular effects, gastrointestinal issues, and allergic 

reactions (1, 2). In addition, safety concerns and inadequate efficacy (78%) were the 

main reasons for the failure of 54% of the 640 therapeutics that entered phase 3 trials 

between 1998 and 2008, with follow-up through 2015 (3). The pharmacokinetics of any 

drug compound, including its efficacy and safety, is critically affected by the route of 

drug entry (4). For example, systemically administrated drugs are exposed to the entire 

circulatory system, and may access multiple tissues/organs within the body in the 

absence of direct targeting (5); for drugs with intracellular targets, additional challenges 

are posed by the need to navigate the intracellular landscape. The challenges are 

compounded for drugs that are highly toxic to healthy cells, such as cytostatic drugs for 

chemotherapeutics or immunosuppressants, adding an extra set of barriers during pre-

clinical and clinical evaluation.  

To overcome the pharmacokinetic limitations of free drugs, drug delivery systems 

(DDS) have been designed based on nanomaterials, polymers, and lipids, which can be 

attached to drugs or used to encapsulate drugs in order to better localize their delivery 

or control drug release over extended periods (6-9). Nanometer-scale therapeutics can 

extravasate from circulation and accumulate in some tissues via passive targeting effects 

(10). Such advances were the basis of the improvements in chemotherapy efficacy using 

liposomal formulations of doxorubicin (Doxil), which was introduced for the treatment 

of Kaposi’s sarcoma in 1995. In addition, over 340 DDS have been approved by the 

FDA and employed clinically to date (Table 3 from (11)), and it is clear that 
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nanomaterial DDS have great potential for the targeted delivery of drugs. However, 

passive targeting is only useful for targeting very specific organs such as tumors (12), 

and even in those cases, some regions of tumors exhibit variations in microvascular 

permeability that diminish the efficacy of passive targeting.  

Local administration provides a simple strategy to enhance active targeting to 

specific sites, taking advantage of physical localization (13). Employing DDS for 

localized therapy can improve drug efficacy by preventing the loss of therapeutic agent 

from the administration site, which minimizes necessary doses and maximizes potency. 

In addition, polymeric or liposomal carriers can be tailored to achieve sustained release 

of drugs at optimal therapeutic concentrations in a particular tissue(14-16). As DDS for 

localized therapy, hydrophilic polymeric hydrogels (for hydrophilic drugs) or 

nanoparticles (for encapsulation of hydrophobic drugs) can be directly injected or 

applied to the tissue of interest to achieve sustained and controlled drug release to a 

particular site through diffusion (4, 17). The tailoring of hydrogel and nanoparticle 

composition, structure, and porosity has been possible owing to the enormous range of 

polymers and crosslinking chemistries developed for these applications. 

Hydrogels have been designed to exploit the mechanical and biochemical 

activities of the native extracellular matrix (ECM) to influence cells through cell-matrix 

interactions (18-22). These cell-matrix interactions are pivotal to enhance cell 

infiltration into the hydrogel and promote cell responses in hydrogels that are 

appropriate for tissue regeneration and drug delivery applications. To create hydrogels 

that support cell-matrix interactions, ECM molecules are often utilized in hydrogel 

formulations. For example, decellularized ECM (dECM) matrices derived from tissues 

and organs are composed of native ECM molecules, and dECM therefore mimics the 

structural properties of the native matrix (23, 24). Owing to the preservation of 

biochemical cues from the native tissue microenvironment, dECM matrices trigger 

cellular response that have been exploited clinically in tissue engineering and 

regenerative medicine (Tissue Mend® (Stryker Orthopaedics, USA), AlloDerm® 
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(LifeCell Corp. USA), CutffPatchTM (Organogenesis, USA)). In addition, the delivery 

of growth factors (25) and microRNA (26) using dECM has recently been explored.  

Owing to the myriad cellular interactions with ECM-based materials, the surfaces 

of drug-loaded nanoparticles also have been modified with ECM-based materials to 

increase the extent of ligand-mediated, site-specific DDS. The incorporation of bio-

specific ligands such as proteins, polysaccharides, peptides, aptamers, and small 

molecules, facilitates interaction with specific receptors that are either over-expressed 

or expressed only in specific tissues or cells to achieve active targeting. For example, it 

has been reported that avb3 integrin and CD44 receptors are upregulated in various 

tumor tissues (27). The RGD sequence derived from multiple ECM proteins to target 

integrin receptors, and hyaluronic acid to target CD44 receptor on cancerous cells, have 

been widely employed to transport anti-tumor agents (28-31). Furthermore, target 

receptor-mediated siRNA delivery has been developed utilizing ligands such as peptides, 

GalNAc, and aptamers (32). Alnylam Pharmaceuticals launched the first RNA 

interference (RNAi) drug, ONPATTRO®, which uses lipid nanoparticles to deliver 

RNAi intravenously and treat polyneuropathy caused by hereditary ATTR amyloidosis 

(33). As next-generation alternatives of ONPATTRO®, the GalNac ligand has been 

employed to target asialoglycoprotein receptor (ASGP-R) on the hepatocytes. ASGP-R 

has been shown to mediate endocytosis and degradation of wide variety of desialylated 

glycoproteins and neoglycoproteins which contain GalNAc residues on the their N-

linked carbohydrate chains, and it recognizes specific markers of autoimmune hepatitis 

(34). The GalNAc conjugated RNAi systems for treatment of liver diseases are currently 

in phase III (Table 1 from (35)). Thus, active targeting strategies have great potential to 

optimize the delivery of intracellularly active drugs such as many small molecules, as 

well as biomacromolecules including nucleic acids, peptides, or proteins, which require 

specific endocytic pathways for action.  

Here, I focus on recent developments in the use of ECM components for actively 

targeted DDS. In particular, I briefly review ligand-receptor mediated endocytosis and 

cellular interactions with various ECM components as targeting strategies, and I 
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consider the advantages afforded by each approach. I then provide examples of the use 

of key ECM components in DDS, either as hydrogels or as ligands applied for targeted 

intracellular DDS. 

1.2 ECM-cell interaction mediated drug delivery applications 

Researchers have exploited an expanded understanding of the interactions 

between cells and the extracellular matrix (ECM), as well as increased knowledge about 

signaling pathways and molecules relevant to the treatment of disease, in designing new, 

more cell-specific therapeutics and drug delivery systems (DDS). Cell surface receptors 

are attractive pharmacological targets since they transduce signals from the extracellular 

environment to modulate cell responses. Integrins, a major class of transmembrane 

receptors whose primary role is to recognize and bind ECM, have been a target of 

therapeutic development for nearly 30 years in the pharmaceutical industry (36, 37). 

However, despite some promising therapeutic advances, the complex biology of 

integrins has often confounded drug development. Integrins are involved in canonical 

processes ranging from embryonic development to mature tissue function through 

binding to their ligands. Therefore, it is critical to understand the mechanisms by which 

cell-ECM interactions enable cells to sense and respond to extracellular signals encoded 

in the matrix.  

Each ECM molecule has an affinity to a cell surface receptor or receptors, 

including integrins (Figure 1.1); moreover, the specific integrins expressed by a given 

cell depend both on the cell type as well as on the cell’s physiological state. Accordingly, 

DDS can be modified with ECM molecules to serve as ligands that will facilitate drug 
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targeting. These approaches are described below for various classes of ECM that have 

been particularly fruitful in targeted delivery. Types of ECM molecules 

1.2.1.1 Proteins 

ECM proteins include fibrous proteins such as collagen and elastin, and 

glycoproteins such as fibronectin, laminins, vitronectin, thrombospondin, 

chondronectin, osteonectin, and fibrin. Collagen is a major extracellular matrix 

component that provides mechanical support, regulates cellular behaviour, and directs 

tissue development. Collagen fibrils, which are formed by self-assembly of triple helical 

Figure 1.1. Schematic overview of extracellular matrix components and their cell 
surface receptors (196)). Copyright 2016. Reproduced with permission 
from Elsevier Inc. Cells have specific surface receptors, such as integrins, 
cell surface proteoglycans (ex. syndecans and glypicans), the HA receptor 
CD44, and DDRs, to bind ECM components for regulation of various 
cellular functions. 
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collagen molecules, are cross-linked to provide mechanical strength and integrity to the 

extracellular matrix, and collagens strongly influence the tensile strength and elasticity 

of tissue. In addition, collagens interact with integrins to regulate cell adhesion, 

proliferation, and migration, and collagens also interact with other ECM components to 

direct matrix remodelling (38). Fibronectin also regulates a wide variety of cellular 

functions including cell adhesion, migration, growth and proliferation, embryonic 

morphogenesis, and wound healing (39, 40). Fibronectin usually exists as a dimer 

composed two nearly identical subunits (type I, type II, and type III) linked together 

through disulfide bond formation at their C-termini. The type III subunit contains about 

100 amino acids in two anti-parallel b-sheets, which are also present in collagens, and 

the type III subunit also encodes integrin binding (via the RGD motif) and heparin-

binding domains. Laminins promote cell adhesion and migration, neurite outgrowth, 

angiogenesis. Laminins are a major component of basement membrane along with 

collagen type IV, with a structure that is comprised of heterotrimeric glycoproteins; 

three subunits, a, b, and g, come together to form at least 19 laminin isoforms (41, 42). 

These laminin isoforms are specifically expressed in tissues to promote biological 

activities, including cell differentiation, cell shape and movement, and managing tissue 

phenotypes and survival. The isoforms can bind to other laminins, proteoglycans, and 

other ECM proteins via various integrins receptors. Due to the ability of ECM proteins 

to influence cell fate via interactions with integrins, the biocompatible and 

biodegradable ECM proteins are widely used natural materials for biomedical 

application (43-45). 

1.2.1.2 Polysaccharides 

ECM polysaccharides including heparin sulfate, chondroitin sulfate, dermatan 

sulfate, keratin sulfate and hyaluronic acid provide largely a structural network, as most 

ECM polysaccharides are not directly involved in cellular interactions, but indirectly 

through interaction with other proteins. Heparan sulfate/heparin is a linear 
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polysaccharide of repeating N-acetyl glucosamine (GlcNAc)-D-glucuronic acid (GlcA) 

disaccharide units (46), and is often covalently attached to cell-associated proteins such 

as the syndecans (SDCs) and glypicans (GPCs) to form heparan sulfate proteoglycans 

(HSPGs) (47). HSPGs such as syndecans and glypicans are able to modulate the cellular 

uptake of bound ligands; in addition, heparin interacts with various proteins to regulate 

biological process including growth factor or cytokine signalling, coagulation factor 

activity, microbe-host interactions, and lipoprotein metabolism (48). The interaction is 

highly specific, involving electrostatic forces between the negatively charged heparin 

and positively charged amino acid residues (e.g., lysine and arginine), and both protects 

the stability of proteins and increases their affinity for cell receptors (49). Due to the 

ability of heparin to interact with proteins, particularly growth factors, heparin has been 

utilized widely in DDS, with a focus on binding of growth factors (rather than to cell-

surface receptors). Heparin-based hydrogels have been widely employed as growth 

factor carriers for tissue regeneration (50-55). 

On the other hand, chondroitin sulfate and hyaluronic acid have an affinity to 

non-integrin cell receptors such as CD44. Chondroitin sulfate is also composed of a 

sulfated b-1,3-linked N-acetyl galactosamine (GalNAc) and b-1,4-linked D-glucuronic 

acid (GlcA) disaccharide repeating units. The sulfation pattern defines the different roles 

of chondroitin sulfate and its selective interaction with molecules mediating such 

functions as regulation of signal transduction, cell division and morphogenesis, and 

development of the central nervous system (56). Hyaluronic acid is a non-sulfated 

polysaccharide composed of disaccharide repeating units of glucuronic acid and N-

acetylglucosamine. Hyaluronic acid as a major role in tissue architecture, tissue 

regeneration, ingrowth of blood vessels, and cellular functions such as motility, 

adhesion, and proliferation (57) has been utilized in DDS to improve long-acting and 

target-specific delivery (58-60). In particular, due to the highly specific cellular receptor 

interaction and cellular uptake of hyaluronic acid in kidney, liver, lymphatic vessels, 

and tumor sites, hyaluronic acid often has been employed as carriers for intracellular 

drugs such as anti-tumor agents, and nucleic acids (31, 61-64).  
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1.2.2 Interactions of ECM with cell receptors 
 

Integrin Non-integrin receptors 
Collagen a1b1, a2b1, a10b1, a11b1  Discoidin domain receptors (DDR1 

and DDR2), GPVI (platelets), LAIR 
( immune cell), OSCAR  
(osteoblast), and mannose 
receptors (Endo180 or uPARAP), 
Syndecan, CD44 

Fibronectin α5β1, α3β1, α8β1, and αvβ3, 
α4β1, α4β7, α9β1, 

Syndecan 

Laminin α1β1, α2β1, α3β1, α6β1, α7β1, 
α10β1, α6β4, αvβ8 

Syndecan, α-Dystroglycan 
CD44 

Heparan sulfate  
Syndecan, Glypicans 

Chondroitin sulfate  
CD44, NG2, RPTP-σ, GPI-brevican 

Hyaluronic acid   
CD44, RHAMM, Toll-like receptors 

Table 1.1 The extracellular matrix components and their cell surface receptors. 

 

ECM molecules typically interact with cells through both integrin and non-

integrin cell surface receptors (Table 1.1). The integrin receptors primarily bind the 

extracellular matrix proteins to connect with the cytoskeleton and to cooperate with 

growth factor receptors for cell survival, cell cycle progression, and cell migration (65-

67). As introduced above, integrins consist of heterodimeric non-covalent association 

of a and b subunits which comprise a specific receptor. In particular, a subunits have a 

highly specific role in ligand binding for signal transduction (68), with a2b1, for 

example, binding to the collagen family, a5b1 binding to fibronectin, and avb3 binding 

to fibronectin, vitronectin and fibrinogen as summarized in Table 1.1 (from (69)). 

Integrin-mediated binding has been leveraged for an enormous range of applications, as 

multiple integrin receptors, including avb3, avb5, avb6, avb8, aIIbb3, a5b1, and a8b1 
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recognize and bind to the Arg-Gly-Asp (RGD) motif which is found in multiple ECM 

proteins including collagens, fibronectin, laminin, tenascin, vitronectin, and 

thrombospondin (70, 71). The RGD sequence as a ‘minimal’ ligand for multiple 

integrins has been widely used over numerous decades in the development of targeted 

polymeric and nanoparticle-based therapies. The selectivity of RGD peptide for a 

specific integrin can be modulated by conformation of the RGD sequence and its 

flanking residues (72). Cyclic peptides, cRGDfK, cRGDyK, and RGDC4 are selective 

for the integrins αvβ3 and αvβ5, which are overexpressed in vasculature of tumor tissue. 

Likewise, the GFOGER sequence of collagen binds to four different integrin cell 

receptors (a1b1, a2b1, a10b1, and a11b1) (73); since the a2b1 integrin receptor is involved 

in osteogenesis, the GFOGER sequence has been utilized to assist in bone repair (74).  

The REDV sequence from fibronectin is a cell adhesion motif to integrin a4b1, 

selective for the endothelial cells (75, 76). Owing to the specificity toward endothelial 

cells, the REDV sequence has been modified on the system to transport gene to vascular 

endothelial cells (77, 78). In addition, the active peptide sequences from laminin are 

able to interact with integrins, syndecans, a-dystroglycan, and CD44, to perform various 

biological activities, cell adhesion and  neurite outgrowth and proliferation, and 

angiogenesis, such as those mediated by laminin (79). The YIGSR sequence and 

IKVAV sequence from laminin are also cell adhesion domains (80, 81), and the 

RKRLQVQLSIRT (AG73) sequence derived from the mouse laminin a1 chain interacts 

with syndecans to promote cell adhesion, neurite outgrowth, and angiogenesis (82). In 

contrast, DFKLFAVYIKYR-GGC (C16Y), derived from the mouse laminin g1 chain, 

binds to integrin avb3 and a5b1 receptors (83). Laminin-derived peptides have been 

incorporated into the delivery systems of anti-tumor agents to enhance their specificity 

to highly expressed laminin receptors on cancer cells, including YIGSR for the 32/67 

kD receptor, IKVAV for the a3b1 and a6b1 integrin receptors, AG73 for syndecan-2 

receptor and C16Y for the avb3 integrin receptors (83-87).  
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Short synthetic peptides derived from ECM proteins retain the integrin-binding 

function, thus are attractive in the design of materials. For example, the Stupp group has 

developed bioactive peptide amphiphiles (PA) for regenerative medicine applications 

(88-90). The RGDS sequence has been attached to PA to induce integrin-mediated 

adhesion, spreading or migration of fibroblasts, breast cancer cells, and bone marrow 

mononuclear cells in vitro (91-93). In addition, the IKVAV sequence has been added to 

PA to induce differentiation of progenitor cells into neurons (94). In addition, these 

ECM proteins have binding sites for both integrin and growth factors. Once ECM 

proteins engage integrins for adhesion, the proximity of the cell to the ECM localizes 

the growth factors to their cell surface receptors to induce and/or amplify the signaling 

for development or repair. Capitalizing on this biological cooperativity offers an 

enormous advantage in ECM protein-based systems for delivery of growth factors, 

particularly, in inflammatory diseases where the growth factors are easily degraded (95). 

ECM protein-based DDS are able to protect growth factors while delivering them to 

their receptor sites to regulate cellular responses.  

Non-integrin cell receptors for extracellular matrix molecules include CD36, 

certain laminin-binding proteins, and proteoglycans (68) comprising 

glycosaminoglycan (GAG) chains such as heparan sulfate, chondroitin sulfate, 

dermatan sulfate and keratin sulfate (96). Proteoglycan co-receptors (CD44, glypicans, 

neuropilins, syndecans, and TbRIII/betaglycan) mediate interactions with ligands, ECM 

proteins or other cell surface receptors to promote the formation of cell surface receptor-

signaling complexes, and also to regulate cell adhesion, migration, morphogenesis, and 

differentiation. Among the proteoglycan co-receptors, syndecan and CD44 receptors 

also bind ECM molecules. Syndecan receptors bind collagens, fibronectin, and laminin 

and growth factors (e.g., fibroblast growth factor) to assemble signaling complexes with 

other receptors to control cellular differentiation and development (97), and CD44 

receptors bind to type I and IV collagens and hyaluronan to regulate cell adhesion and 

movement (98). These ECM molecules have been exploited in the DDS not only to 
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target cells that highly expressed those receptors in certain pathological conditions, but 

also to control the regulation of cellular responses.  

Collagen directly interacts with four different integrin cell receptors, a1b1, 

a2b1, a10b1, and a11b1, depending on the type and form of collagen (73). a2b1 and 

a11b1 integrins primarily interact with the fibrillar collagen type I (e.g., a2b1 integrin 

mediates collagen type I binding for phagocytosis in fibroblasts (99), while a1b1 and 

a10b1 interact with the non-fibrillar collagens IV and VI. Collagen also binds to non-

integrin receptors such as discoidin domain receptors (DDR1 and DDR2), the GPVI 

receptor on platelets, the LAIR receptor of immune cells, the OSCAR receptor of 

osteoblasts, and mannose receptors (Endo180 or uPARAP) (100). Under particular 

pathological conditions, these collagen receptors are highly expressed. 

Endo180/uPARAP receptor is overexpressed by malignant cells in sarcomas, 

glioblastomas, subsets of acute myeloid leukemia (101). For integrins, expression of 

a1b1 and a2b1 was localized to scleral fibroblast focal adhesions and expression of 

integrin a11b1 is restricted to tumor stroma or other fibrotic disease (102, 103). 

Collagen as a ligand to target these pathological conditions thus represents a powerful 

therapeutic strategy.  

Fibronectin binds both integrin receptors and other ECM molecules. Fibronectin 

type III10 domain which includes the RGD sequence, is the binding sites for integrins, 

α5β1, α3β1, α8β1, and αvβ3 in a broad range of cell types and tissues (39). In particular, 

α5β1 integrin is required for internalization of fibronectin through caveolin-1 dependent 

endocytosis in myofibroblasts (99). And, α4β1 and α4β7 integrins recognize the LDV 

and REDV motifs in the alternatively spliced V region, IDAPS in the III14 domain, and 

KLDAPT in the III5 domain. In addition, α4β1 and α9β1 binds the EDGIHEL sequence 

in the alternatively spliced EDA segment. Fibronectin also contains two heparin-binding 

domains within its V domain to interact with heparin and chondroitin sulfate for cell 

adhesion, and the fibronectin I6-9 and II1,2 domains recognize denatured collagens to 

clear them from blood and tissue. The expression of the various fibronectin integrin 
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receptors depends on the pathological conditions, providing targets for DDS. The 

integrins α5β1 and αvβ3 are upregulated in angiogenic vessels during angiogenesis 

(104); in particular, the integrin αvβ3 is not expressed in healthy adult animal tissue but 

overexpressed during angiogenesis in tumor tissues, allowing for the targeting of 

integrin αvβ3 with fibronectin-based, chemotherapeutic DDS.   

Moreover, laminin binds various integrins receptors (α1β1, α2β1, α3β1, α6β1, 

α7β1, α10β1, α6β4, and αvβ8) (69). Laminin-1, 2, 5, 8, 10, 11 isoforms interact with 

integrins α3β1 and α6β1 which regulate embryonic development, epithelial regeneration, 

and wound healing processes, and which also internalize to endosome as well (105). 

Laminin binding cell receptors are highly expressed in various cancer cells types. For 

example, integrins α3β1 and α6β1 are overexpressed in various epithelial cancers. 

Amongst non-integrin receptors, laminin receptor (LAM 67R) is overexpressed on 

human prostate cancer cells and syndecan-2 is overexpressed in various cancer cell lines 

and during angiogenesis (106). Based on expression of laminin receptors in certain 

pathological condition, laminin or synthetic laminin mimetic peptides as ligand are 

utilized as ligands to target and deliver therapeutic agents. 

Chondroitin sulfate interacts with cell-surface CD44 receptors. CD44 receptors 

are an attractive target as they are a cancer stem cell marker which is overexpressed 

about 4- to 5-fold in metastasis and cancer progression (107). Owing to the interaction 

between chondroitin sulfate and CD44 receptor, chondroitin sulfate has been utilized in 

DDS to target CD44 overexpressing cancer cells and promote receptor-mediated 

endocytosis. The polysaccharide hyaluronic acid binds toll-like receptors, CD44, and 

RHAMM on cell membrane. Interactions with toll-like receptors regulate signalling in 

inflammatory cells and other cell types, and those with CD44 control leukocyte homing 

and recruitment. In addition, hyaluronic acid interactions with CD44 and RHAMM 

regulates tumour growth and metastasis. CD44 expression is characteristic in cells under 

certain pathological conditions such as infarcted myocardium, infiltrating leukocytes, 

wound myofibroblasts, vascular cells, and many tumor cells. 
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1.2.3 Receptor-mediated endocytosis 

The efficacy, biomedical function, biodistribution, and toxicity of drugs with 

intracellular targets of action are dictated by their internalization into the cells through 

interaction with the exterior of the plasma membrane and their endocytic pathway (108, 

109). Endocytosis occurs via two primary routes - phagocytosis and pinocytosis (110), 

with phagocytosis characteristic of dendritic cells, neutrophils, monocytes and 

macrophages (111) and pinocytosis, which occurs via clathrin-mediated endocytosis, 

caveolae-mediated endocytosis, clathrin/caveolae-independent endocytosis, and 

micropinocytosis (108, 110), possible for all cell types. Micropinocytosis is an actin-

driven endocytic process that initiates the activation of receptor tyrosine kinases (e.g., 

via growth factors) to polymerize actin and form macropinosomes for cell entry. Unlike 

micropinocytosis, receptor-mediated endocytosis (e.g., clathrin-mediated endocytosis, 

caveolae-mediated endocytosis, and clathrin/caveolase-independent endocytosis) is 

regulated by specific interactions between a receptor and an extracellular ligand or 

particle (110). Physical properties of the extracellular cargo, including particle size, 

shape, and surface charge, all influence the cellular uptake pathway. In addition to these 

physical properties, very specific ligand-receptor interactions dictate the receptor-

mediated endocytosis pathways of ligand-decorated cargo.  

The majority of DDS are internalized into cells through the clathrin-mediated 

endocytosis pathway using interactions with numerous receptors on cell membrane 

including transferrin, asialoglycoprotein receptor, epidermal growth factor receptor, 

chemokine receptors, and cell adhesion receptors (112-117). In this process, particular 

ligands in the extracellular fluid bind to the receptors on the surface of the cell 

membrane, which is rich in clathrin, to form a ligand-receptor complex (118) that forms 

a clathrin-coated pit and results in the formation of clathrin-coated vesicles 

approximately 10 to 200 nm in diameter for internalization. After internalization, the 

clathrin coat on the vesicles is expelled and recycled to the plasma membrane and the 

vesicle fuses with the early endosomes. The cargo within early endosomes will reach 

lysosomes and eventually be degraded by the acidic pH and digestive enzyme of the 
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lysosome. Given the relatively large number of binding molecules, clathrin-mediated 

endocytosis is a primary uptake pathway for most polymeric DDS.  

Polymer-mediated nucleic acid delivery systems have been reported with both 

clathrin-mediated endocytosis and caveolae-mediated endocytosis as their uptake 

pathways, depending on the size, types, and surface charge of their cargos, and cellular 

microenvironment (2D vs 3D) (119, 120). However, trafficking of cargo through 

caveolae-mediated endocytosis routes enhances gene expression owing to the low or 

non-acidifying pathway (121, 122). Caveolae-mediated endocytosis occurs via 

association of the delivery vehicle with cholesterol-rich lipid rafts in the plasma 

membrane for cellular entry (108). Once cargo molecules bind to the caveolae surface 

rich in glycosphingolpids including GM-1 and Gb3, the caveolae engulf the cargo to 

form vesicles approximately 50 nm in diameter. The detached caveolar vesicles can fuse 

with early endosomes, but because the caveolar vesicles have neutral pH, they generally 

avoid fusion with lysosomes thus preventing lyososomal degradation of drug cargo.  

Clathrin-and caveolae-independent endocytosis occurs without binding of the 

cargo to clathrin or caveolae (110); the pathway depends instead on cell-surface 

molecules such as Arf-6, flotillin, Cdc42, and RhoA, involving different subtypes of 

internalization routes depending on the specific cell-surface molecule. Once cargo is 

internalized, it is usually delivered to the early endosome and trafficked though 

lysosomal pathways. 

The ECM is constantly remodeled, via balancing of synthesis, deposition, and 

degradation to control tissue homeostasis, and during this process ECM molecules 

themselves are internalized through receptor-mediated endocytic pathways. 

Degradation of the ECM occurs largely through two pathways; extracellular 

degradation mediated by matrix metalloproteases (MMPs) and lysosomal degradation 

after receptor-mediated internalization (99). The internalization of the most abundant 

component of ECM, collagen, is controlled by integrin-mediated phagocytic uptake and 

Endo-180 dependent clathrin mediated pathway. Fibrillar collagen type I binds to α2β1 

integrin receptor, promoting internalization of collagen to early endosomes (123). On 
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the other hand, soluble collagen type I, IV and V fragments bind Endo180 or uPARAP 

to internalize to endosome via the clathrin-dependent endocytic pathway (124).  

Similar to collagens, fibronectin is degraded by lysosomal degradation after 

endocytosis. Endocytosis of both soluble and matrix fibronectin is mediated by α5β1 

integrin receptor via caveolin-1 dependent uptake (125). Fibronectin binding to α2β1 

integrin receptor, ultimately leading to endosomal sorting and transport to the lysosome 

(126). The internalization of the major component of basement membrane, laminin, is 

controlled by α3β1 integrin receptor and dystroglycan for protein turnover. Interestingly, 

the activation of the α3β1 integrin receptor by laminin binding results in phagocytosis 

of other ECM molecules as well (127). The internalization of laminin requires 

dystroglycan for receptor-mediated and dynamin-dependent pathways, leading to 

lysosomal degradation (128). Meanwhile, degradation of hyaluronic acid is controlled 

by multiple events. High molecular weight hyaluronic acid is degraded to smaller 

fragments by the extracellular hyaluronic acid-digesting enzyme, hyaluronidase 2 (Hyal 

2) (129). These fragments can be endocytosed by either receptor-mediated endocytosis 

(104 Da) or micropinocytosis (106 Da), depending on the molecular weight of the 

fragment. Hyaluronic acid fragments binding to CD44 and lymphatic vessel endothelial-

1 (LYVE-1) receptors promote the endocytosis of hyaluronic acid via the clathrin-

mediated pathway. The wide range of different internalization mechanisms for ECM 

molecules can be exploited in DDS for the selective uptake of intracellularly active 

drugs. 

1.3 ECM-targeted delivery of particle-based DDS 

ECM 
molecules 

Peptides Cell receptor Application Reference 

Collagen GGYGGGP(GPP)5G
FOGER(GPP)5GPC 

a2b1 Local protein 
delivery 

Shekaran et al. 
2014 
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(GPO)4GVKGDKGN
PGWPGAP(GPO)4 

Chondroitin 
sulfate 

modified 
CD44 

Anti-cancer 
drug delivery 

Ndinguri et al. 
2012 

VCLCL-DDRT 
(Recombinant 

protein) 

DDRs Block the 
activity of 

cancer cell 

An and Brodsky 
2016 

ECM 
proteins 

cRGD4C αvβ3 and αvβ5 Anti-cancer 
drug delivery 

Arap, 
Pasqualini, and 
Ruoslahti 1998 

cRGDfC αvβ3 and αvβ5 Anti-cancer 
drug delivery 

Bibby et al. 
2005 

cACRGDMFGCA αvβ3 and αvβ5 VEGFR2-
SiRNA 
delivery 

Schiffelers et 
al. 2004 

Laminin RKRLQVQLSIRT Syndecan Anti-cancer 
drug delivery 

Negishi and 
Nomizu 2019 

DFKLFAVYIKYR-
GGC (C16Y) 

Integrin αvb3 Anti-cancer 
drug delivery 

Hamano et al. 
2012 

Table 1.2. Extracellular matrix protein-derived peptides as ligands to bind to cell 
surface receptors in drug delivery system. 

ECM molecules have been successfully formulated into particles for drug 

delivery applications. The chondroitin-sulfate modified CD44 receptor is able to bind 

to triple helical sequence from collagen Type IV (130); Fields and co-workers thus 

developed CD44-binding, collagen-mimetic peptides 

((GPO)4GVKGDKGNPGWPGAP(GPO)4) and used them to modify liposomes as a 

DDS to cancer cells with highly expressed CD44 cell receptor (Table 1.2). They 

demonstrated that doxorubicin delivered via this DDS reduced the tumor size up to 60%, 

compared to untreated control in a CD44+ mouse melanoma model (131). Moreover, 

others have taken advantage of another collagen receptors, DDR2, which is highly 
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expressed in fast-growing invasive tumors (132). The Brodsky group reported a 

recombinant collagen protein (VCLCL-DDRT) that binds DDR2 and could thus serve 

as a potential tumor treatment (100). They showed the delay of megakaryocyte 

migration as a result of the competition between the recombinant VCLCL-DDRT and 

animal collagen for binding to DDR2. In addition, our group recently has developed 

conjugates of the collagen-like peptide ((GPO)4GFOGER(GPO)4GG, CLP) and 

elastin-like peptide ((VPGFG)6, ELP) to serve as thermoresponsive vesicles as a drug 

carrier (Figure 1.2(A)) (133). This CLP-decorated vesicle has both thermally responsive 

assembly behavior owing to the temperature-responsiveness of the CLP domain’s triple 

helix formation, and a strong affinity to native collagen through collagen triple helix 

hybridization, and is therefore able to sequester, for at least 21 days, a hydrophobic 

model compound (fluorescein) in collagen type II films, with subsequent thermally 

triggered release. The vesicles also show high cytocompatibility with both fibroblasts 

and chondrocytes and essentially no activation of a macrophage cell line. The ELP-CLP 

conjugates have the potential to deliver intracellularly active drugs through receptor-

mediated endocytosis using interactions between the GFOGER sequence on CLP and 

integrin receptors (a1b1, a2b1, a10b1, and a11b1) (73).  
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The use of fibronectin-based molecules has also been employed for successful targeting 

and increased intracellular uptake of local DDS. The Akaike group incorporated 

fibronectin in a calcium phosphate co-precipitated, non-viral gene delivery system (134); 

the fibronectin coating in calcium phosphate and pDNA precipitate allowed cell-surface 

integrin receptor binding for internalization into cells and supported 100-fold higher 

levels of gene expression than without the fibronectin coating. In the past, direct 

conjugation of the cyclic RGD peptide, RGD4C, on the anticancer agent, doxorubicin, 

(B) 

(A) (C) 

Figure 1.2. ECM-based targeted delivery of particle-based DDS. (A) Schematic of 
ELP-CLP conjugate-based thermoresponsive nanovesicles (133). 
Copyright 2017. Reproduced with permission from American chemical 
society. (B) RGD dendrimer peptide modified polyethyleneimine-
grafted chitosan for siRNA delivery. In vivo tumor growth of treatment 
with non-RGD-modified system (PgWSC) and RGD-modified system 
(RpgWSC), and non-treatment (136). Copyright 2017. Reproduced with 
permission from Elsevier Inc. (C) Confocal images of internalization of 
dendrimer particles (CMCht/PAMAM and YIGSR-CMCht/PAMAM) 
on HCT-116 cancer cells (red) and L929 fibroblasts (blue) (138). 
Copyright Wiley-VCH Verlag GmbH. & Co. KGaA. Reproduced with 
permission. 
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demonstrated better efficacy in suppressing tumor progression than doxorubicin alone, 

in mouse models bearing human breast carcinoma cells (135). The RGD peptide-

modified DDS showed improved localization and intracellular uptake into cancer cells. 

The Jang group investigated the dendrimeric RGD peptides modified on co-polymer, 

which consists of polyethyleneimine and water soluble chitosan (RpgWSC), for an 

siRNA delivery system to target avb3 integrin-overexpressing tumor cells for cancer 

therapy (Figure 1.2(B)) (136). The delivery systems allow the cellular uptake of siRNA 

to PC3 cancer cells through microtubule-dependent micropinocytosis and clathrin-

mediated endocytosis. The delivery of siRNA, via the use of their DDS with RGD 

(RpgWSC), for silencing the mRNA encoding the hBCL2 protein in a PC3 tumor 

xenograft mouse model, presented greater inhibition of tumor growth through the 

blocking of BCL2 protein expression, compared to a non-RGD modified delivery 

system (PgWSC) (Figure 1.2(B)). These results are a recent illustration of the power of 

employing RGD in DDS for improving delivery of intracellularly active cancer 

therapeutics into avb3 integrin overexpressing tumor cells. 

The active sequence peptides from laminin are able to interact with cell surface 

receptors, integrins, syndecans, a-dystroglycan, and CD44, to perform various 

biological activities like those mediated by full-length laminin. The laminin-derived 

RKRLQVQLSIRT (AG73) peptide was modified with PEGylated liposomes to deliver 

plasmid DNA in human embryonic kidney carcinoma cells, which overexpress 

syndecan-2 (84, 137). On the other hand, cancer cells, including bile duct carcinoma, 

colorectal carcinoma, cervical cancer, and breast carcinoma, highly express the 67 KDa 

laminin receptor (67LR), for which the laminin-derived YIGSR sequence has high 

affinity. YIGSR-modified carboxylmethychitosan/poly(amidoamine) 
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(CMCht/PAMAM) dendrimer nanoparticles were developed to drive targeted 

internalization into colorectal cancer cells (HCT-116 CRC cells) (138) via this 

interaction. The YIGSR-modified CMCht/PAMAM nanoparticles were more 

selectively internalized by HCT-116 colorectal cancer cells than by L929 fibroblasts 

and non-YIGSR-modified CMCht/PAMAM nanoparticles were non-selectively 

internalized by both types of cells (Figure 1.2(C)). Laminin-based material modification 

are a promising strategy to improve the specificity of the delivery system on the laminin 

receptor expressed cells such as tumor.     

Heparin is incorporated in DDS to target overexpressed angiogenic growth 

factors in tumor tissues (139). Tae groups demonstrated heparin-coated PLGA 

nanoparticle to accumulate in the tumor in SCC7 tumor-bearing athymic mice (140). In 

addition, dendronized heparin-doxorubicin conjugate-based nanoparticle developed by 

Gu group represented the improvement of antitumor efficacy and anti-angiogenic 

effects in a mouse 4T1 breast cancer tumor model, compared to free doxorubicin (141). 

On the other hand, many studies have investigated the DDS incorporating hyaluronic 

acid or chondroitin sulfate as a ligand to target CD44-overexpressing cancer cells. Gupta 

and co-workers formulated polyehtylenimine (PEI) conjugated chondroitin sulfate to 

form complexes with plasmid DNA (142). Their system, administrated by intravenous 

injection in Ehrlich ascites tumor (EAT)-bearing mice, accumulated in tumor mass to a 

significantly greater extent as compared to non-chondroitin sulfate-modified PEI/pDNA 

complex. The attachment of hyaluronic acid on liposomes loaded with doxorubicin 

resulted in the selective binding of the DDS on CD44-expressing murine melanoma 

cells, resulting in a substantial reduction in the IC50 (143). In addition, Zhang group 

developed ternary complex based on hyaluronic acid, dexamethasone conjugated 
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polyethyleneimine (PEI) and plasmid DNA to enhance CD44 receptor-mediated 

endocytosis (144). This ternary complex improved cellular uptake and nuclear transport 

of DNA in melanoma tumor cells, leading to the highest transfection efficiency and 

suppressed the growth of tumor in mice. Hyaluronic acid has also been utilized to target 

CD44 receptors overexpressed in macrophages as a strategy for the treatment of 

inflammatory disease. Pilehvar-Soltanahmadi and co-workers reported hyaluronic acid-

conjugated polylactide nanoparticles encapsulated curcumin delivered to macrophage 

to achieve the modulation of macrophage polarity from the pro-inflammatory M1 

phenotype to the anti-inflammatory M2 phenotype (145). The modification of ECM 

polysaccharides accomplishes the delivery of drugs at the target sites where their 

receptors are highly expressed. 

1.4 ECM-based hydrogel matrices for drug delivery 

Drug transport within a hydrogel can be controlled by manipulating its mesh size 

and/or its interaction with drugs using chemical strategies (146-150). Hydrogels 

comprise crosslinked polymer networks, and drugs smaller than the network mesh size 

can simply diffuse through the hydrogel, whereas drugs larger than the mesh size are 

entrapped in the hydrogel and released upon degradation of the network. The polymer 

backbone and crosslinks can be degraded by either slow hydrolysis of ester bonds or 

peptide bonds, by the scission of thiol-based crosslinks, or by bio-responsive 

mechanisms such as enzyme activity (151-153). The degradation of hydrogels in 

biomedical applications can be tuned based on the local cellular environment by 

incorporating crosslinks comprising peptides that are degradable by different types of 

matrix metalloproteinases (154). Moreover, drug release from the hydrogel can be 

modulated by incorporating non-covalent or covalent drug-matrix interactions (146, 
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155-157). Non-covalent interactions include electrostatic interactions such as heparin 

and heparin binding proteins (50, 51), or hydrophobic associations such as cyclodextrin 

and hydrophobic drugs (158). Otherwise, covalent interactions can be designed using 

non-cleavable and cleavable linkages between drugs and hydrogels that are incorporated 

via reactions such as click chemistries (e.g. copper-free click, thiol-ene, Diels-Alder 

reactions, and oxime and hydrazine ligation) and photochemistries (e.g. nitrobenzyl and 

coumarin photocleavage reactions); these reactions also are employed for hydrogel 

crosslinking (157, 159-164). Thus, the chemical tunability of hydrogels, particularly 

their mesh size, crosslinking chemistry, and drug interactions, enables fine-tuned 

control over drug transport through the hydrogel. 

1.4.1 Simple Diffusion 

ECM-based hydrogels for local drug delivery not only support cells 

biochemically and mechanically through cell-matrix interactions, but also release the 

drugs into infiltrated cells. Since the hydrogel is formed by the crosslinked polymer 

network, the mesh space between polymer chains allows the diffusion of liquid and 

small molecules (146). Depending on the mesh size of a hydrogel, small molecule drugs 

can diffuse through the hydrogel and be released from the hydrogel for delivery to the 

surrounding cells.  
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Due to its structural properties, collagen is often utilized as the matrix for local 

drug delivery. A type I collagen matrix on the surface of polyurethane films enhanced 

fibroblast attachment, proliferation, and growth (165). While collagen matrices provide 

a physiologically-inspired microenvironment to cells, collagen also can control the 

delivery of drugs such as small molecules, proteins, and genes via simple diffusion 

and/or biodegradation. Collagen matrices have been loaded with a variety of small 

molecules such as antibiotics for wound care, cisplatin for local cancer therapy, and 

anti-inflammatory reagents for tissue regeneration in ophthalmology (166-168). Small 

molecule gentamicin-eluting collagen matrix (Collatamp® (Schering-Plough, 

Stockholm, Sweden), Sulmycin®-Implant (Schering-Plough, USA), and 

Septocoll®(Biomet Merck, Germany)) have been used in the clinic as wound care 

(B) (A) 

Figure 1.3. Simple diffusion of drugs from ECM based matrices. (A) Computed 
tomography (CT) images for the efficacy of INFUSE® Bone Graft in 
clinical applications (172). Copyright 2007. Reproduced with permission 
from Springer Nature. (B) The scheme of overall study design. Histologic 
analysis using H&E, Saf-O/FG, and Gram staining of femurs after treating 
with hydrogel (UAMS-1), Lysostaphin-delivering hydrogel (UAMS-
1+Lst), and Lysostaphin, and sterilization (174). Copyright 2018. 
Reproduced with permission from the National Academy of Sciences. 
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products to promote both granulation tissue formation and epithelialization, and to 

protect tissues from potential infection(169-171).  

 

In addition to small molecule delivery, proteins such as growth factors can be 

loaded into the collagen matrix; for example the delivery of bone morphogenetic protein 

(BMP) from a collagen matrix has been shown to promote bone formation. 

Recombinant human BMP-2 (rhBMP-2)-loaded collagen matrices (INFUSE® bone 

graft and MASTERGRAFT ®) are available in the clinic to treat bone fracture and 

spinal fusion (146). Clinical trials using INFUSE® in spinal orthopedic trauma, and oral 

maxillofacial applications have demonstrated the efficacy of INFUSE® to form de novo 

bone (Figure 1.3(A)) (172). The Garcia group created a collagen mimetic peptide 

(GFOGER)-modified PEG synthetic hydrogel to deliver BMP-2 to murine radial 

critical-sized defects (173). The GFOGER-modified hydrogel increased 

osteoprogenitor localization in the defect site and sustained release of BMP-2 to enhance 

bone formation and healing. In addition, the Garcia group investigated RGD and 

GFOGER-modified PEG synthetic hydrogels for the delivery of lysostaphin to treat 

staphylococcus aureus infections in bone fractures (Figure 1.3(B)) (174). Based on 

histological analysis, lysostaphin delivery using the RGD/GFOGER-based PEG 

hydrogel system (UAMS-1 + Lst) demonstrated the ability of the system to reduce 

bacterial infection compared to the non-treatment control (UAMS-1), and these 

materials were shown to promote fracture repair of femoral bone in mouse such that the 

resulting healed tissue was similar to sterile positive control groups. A lysostaphin 

solution without hydrogel (UAMS-1 + Sol.) failed both in reducing bacterial infection 

and in improving bone repair. ECM-based hydrogel matrices create a microenvironment 
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conductive to supporting growth of recruited cells while also controlling drug release to 

enhance tissue regeneration. 

1.4.2 ECM-based matrix and drug/carrier interactions 

Drug release from ECM-based matrix is also dependent upon drug-ECM 

interactions. Electrostatic and hydrophobic attractive forces between drug molecules 

and ECM molecules can reduce and/or prohibit drug diffusion through the network, 

leading to prolonged drug retention and alternate controlling parameters for release from 

the matrix. The electrostatic interactions between highly negative polysaccharides and 

drugs are employed in the sustained delivery/retention of many drugs. For example, 

Cool and colleagues validated the delivery efficacy of BMP-2 using thiol-modified 

hyaluronan (GlycosilTM), and these materials were compared to collagen sponges (e.g. 

as a mimic of INFUSE® bone grafts) in terms of their influence on ectopic bone 

formation (175). The electrostatic interaction between BMP-2 and negatively charged 

hyaluronic acid hydrogels resulted in a low burst followed by sustained release of BMP-

2, whereas collagen hydrogels showed high burst and sustained release of BMP-2. The 

low burst and sustained release of BMP-2 from hyaluronic acid hydrogels improved the 

bone formation to the greatest extent in a rat intramuscular ectopic model. 

Moreover, due to the ability of ECM molecules to interact with growth factors, 

ECM molecules are utilized in DDS for the sustained release of growth factors from 

hydrogel matrices. In particular, heparin-based hydrogels have been widely employed 

as growth factor carriers for tissue regeneration (50, 51, 176-178). Netti and co-workers 

developed porous PEG-heparin hydrogels encapsulating the angiogenic growth factor 
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VEGF. Because of the interaction between heparin and VEGF, VEGF was released in 

a controlled manner and the released VEGF promoted angiogenesis in vivo (179). Also, 

the Werner group investigated RGD-functionalized star PEG-heparin hydrogels with a 

variable degree of heparin sulfation for controlled release of angiogenic growth factors 

from the hydrogel and capture of inflammatory chemokines in the hydrogel for the 

chronic wound healing applications (180, 181). In addition, the Hubbell group 

developed laminin-mimetic peptides, which include heparin-binding domains, and 

employed them to decorate a fibrin matrix for the delivery of VEGF-A165 and platelet 

derived growth factor PDGF-BB in a chronic wound treatment application (182). Since 

(A) 

(B) 

Figure 1.4. ECM-based matrices and drug interaction-based delivery systems. (A) 
Growth factor retention in fibrin matrices with laminin-mimetic peptides 
(α2PI1–8-LAMA33043–3067 or α2PI1–8-LAMA53417–3436) or 
without peptide. (182). Copyright 2018. Reproduced with permission from 
Springer Nature. (B) The scheme of study design. Antimicrobial activity 
of LL37 and with collagen-binding domains (cCBD-LL37 or fCBD-LL37) 
on collagen scaffold after 12 h and 14 days (183). Copyright 2017. 
Reproduced with permission from Elsevier Inc 
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the heparin-binding domain in laminin-mimetic peptides has a strong affinity to 

syndecan cell surface receptors, as well as to VEGF-A165 and PDGF-BB, the system 

enhanced cell adhesion through interaction with syndecan, and also enabled the 

sustained release of growth factors from the matrix (Figure 1.4(A)). This resulted in 

promotion of wound healing in a type-2 diabetic mouse. With a similar approach, the 

Christman group applied decellularized ECM-derived hydrogels in heparin-binding 

growth factor delivery systems for tissue regeneration in the post-myocardial infarction 

(25). Porcine pericardia were decellularized using 1% SDS and digested with pepsin to 

prepare decellularized ECM-derived hydrogel with intact native sulfated 

glycosaminoglycans (PPM). Plasmid DNA encoding fibroblast growth factors (pFGF) 

in PPM injected into rats with post myocardial infarction was still retained in the tissue 

after 5 days of administration, and the amount of pFGF retained was greater than the 

amount of bFGF retained in collagen hydrogels or in saline (Figure 1.4(B)).  

While controlled drug release via drug-ECM interactions is a powerful strategy 

to improve retention and sustained delivery, existing examples are mostly limited to the 

use of heparin-binding growth factors and charged molecules. To address this limitation, 

as described above, active peptide sequences from various ECM proteins have been 

identified and exploited in controlling the drug release from ECM-based matrices. 

Chemical modifications of the active sequences and their attachment to drugs or 

polymeric carriers enable immobilization in ECM-based hydrogel matrices for 

sustained drug release. Rolle and co-workers utilized a collagen-binding domain (cCBD 

derived from collagenase or fCBD derived from fibronectin) to tether synthetic human 

antimicrobial peptides, catelicidin LL37, on collagen scaffolds for treatment of wound 

infection (Figure 1.4(C)) (183). Even after 14 days, LL37 with collagen domains 
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(cCBD-LL37 and fCBD-LL37) was still retained on the collagen scaffold and showed 

similar levels of antimicrobial activity after 12 h. However, due to the burst release of 

LL37 from collagen scaffold, the antimicrobial activity of LL37-loaded collagen 

scaffolds was reduced at 14 days compared to 12 h. In another example, the Hubbell 

group developed strategies for the delivery and release of both immune checkpoint 

inhibitor antibodies (aCTLA4 + aPD-L1) and interleukin-2 (IL-2) using collagen-

binding domains (CBDs) derived from the von Willebrand factor (vWF) A3 domain to 

immobilize drugs on collagen in the tumor stroma for cancer immunotherapy (184). 

Systemically-administered CBD-tumor drug conjugates mainly accumulated in the 

tumor sites in murine cancer models, whereas non-CBD modified drugs did not. Drug 

delivery and release from the tumor collagen matrix-DDS interaction improved safety 

by eliminating antibody hepatotoxicity and by ameliorating pulmonary edema by IL-2, 

and it also improved efficacy through reducing the size of tumor. Overall, these 

examples demonstrate that the immobilization of therapeutic agents on the matrix using 

peptides prolongs the effectiveness of the therapeutic agents via controlled release from 

the scaffold. 

1.4.3 ECM-based matrix and carrier interaction for intracellular delivery 

DDS that combine these two approaches, e.g. immobilizing a drug in an ECM-

based hydrogel and exploiting ECM-mediated cell uptake, have demonstrated enhanced 

therapeutic efficacy. In particular, this hybrid strategy will have enormous benefit on 

the delivery of intracellular therapeutic agents such as nucleic acids, which require DDS 

to facilitate cellular internalization and prevent the degradation of nucleic acids in the 

extra- and intracellular environments before they transfer to the appropriate cellular 

compartment. BMP-delivery systems using ECM-based hydrogels (INFUSE, 
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MASTERGRAFT, OP-1) are clinically available. However, gene delivery systems 

often fail to meet their clinical potential due to their relative low transfection efficiency 

and off-target expression (146, 185). The ideal gene delivery system in tissue 

regeneration applications should be able to sustain the delivery of active genes 

throughout the tissue formation process. Thus, immobilization of gene carriers in ECM-

based hydrogels has the potential to achieve sustained delivery in response to cell-

secreted proteases that are present during tissue repair and regeneration process, and the 

subsequent targeted cell uptake mediated by cell-receptor/ECM interactions.  

Polymer and DNA complexes (polyplexes) have been encapsulated into 

scaffolds through non-specific and specific interactions between the complex and 

scaffold, leading to sustained DNA release from the matrix (186, 187). Collagen-based 

matrix has been widely utilized to incorporate DNA complexes via non-specific 

interactions with the matrix to promote skin tissue repair and bone regeneration 

applications (188, 189). For example, Gao and co-workers demonstrated the 

incorporation of cationic trimethylchitosan chloride (TMC) and DNA encoding VEGF-

165 complex into the collagen-chitosan/silicone membrane bilayer dermal scaffold 

(TMC/pDNA-VEGF complexes loaded scaffold) to enhance angiogenesis for wound 

repair applications (190). Immunohistological analysis, RT-qPCR, and Western blotting 

analysis showed that the TMC/pDNA-VEGF complex-loaded scaffold was able to 

promote wound healing in incisional porcine wounds via VEGF-driven angiogenesis. 

The Salem group explored the delivery of polyethylenimine (PEI) and DNA encoding 

PDGF-B complex (Polyplex-PDGF-B) using collagen scaffolds for bone regeneration 

(188). In vivo studies using a calvarial defect rat model revealed  
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that after 4 weeks of sample implantation, polyplex-PDGF-B in collagen promoted 

significantly higher new bone formation as compared to collagen-only scaffold, 

suggesting the effective approach and potential clinical translation for bone regeneration.   

 

Figure 1.5. Polyplex immobilized in an ECM-based matrix for gene delivery. (A) Flow-
activated cell sorting (FACS) analysis of biotin-functionalized pGFP 
polyplex immobilized in avidin-modified collagen hydrogel through 
avidin-biotin interaction (right graph) and avidin-free collagen hydrogel 
(left) (Orsi et al. 2010). Copyright 2010. Reproduced with permission from 
Elsevier Inc. (B) pGluc expression for 30 days of cell culture in the 
presence of immobilized pGluc polyplex on the surface of hyaluronic acid 
hydrogel through electrostatic interaction, and bolus transfection controls 
(Truong and Segura 2018). Copyright 2018. Reproduced with permission 
from the American Chemical Society. (C) pGluc expression of 
immobilized GPP-PEI in the collagen hydrogel and free GPP polyplex in 
hydrogel after a week of pre-incubation in media with and without the 
presence of metalloproteinase (Urello, Kiick, and Sullivan 2014). 
Copyright 2014. Reproduced with permission from The Royal Society of 
Chemistry. (D) Colocalization study of FITC labeled collagen (Green) 
with Alexa Fluor 350 labeled GPP-PEI (Blue) in NIH3T3 cells after 5 days 
of pre-incubation in the media (Urello, Kiick, and Sullivan 2017). The 
scale bar is 25 µm. Copyright 2017. Reproduced with permission from 
Elsevier Inc. 
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Polyplexes also have been incorporated into the matrix via specific interactions 

between polyplex and matrix. Netti et al. developed gene-activated matrices through 

immobilization of biotin-polyethylenimine (PEI) and DNA complexes (polyplexes) in 

avidin-functionalized collagen matrix (191). The immobilized polyplexes provided 

higher bioavailability to NIH3T3 cells recruited into the collagen matrix. The use of 

avidin-biotin interactions increased the transfection efficiency by approximately two-

fold as compared polyplexes in collagen matrix lacking avidin-biotin linkages (Figure 

1.5(A)). Moreover, Segura and co-workers recently investigated electrostatically-

immobilized PEI/DNA complexes (polyplexes) in porous hyaluronic acid hydrogels 

(192). The hydrogel formulation approach reduced the cytotoxicity of the polyplexes in 

murine mesenchymal stem cells as compared to 2D bolus transfections with multiple 

doses. These observations suggested that the immobilized polyplex on the hydrogel 

enhanced and sustained the transgene expression over 30 days of cell culture, compared 

to a non-coated bolus transfection (Figure 1.5(B)).  In addition to these two strategies 

for noncovalent immobilization of poyplex to ECM hydrogels, our group has developed 

approaches to immobilize polyplexes in collagen hydrogels through interactions with 

collagen-mimetic peptides (e.g. GPP: (GPP)3GPRGEKGERGPR(GPP)3GPCCG) that 

have affinity for native collagen through strand invasion and triple-helical binding (193-

195). With higher amounts of GPP incorporated in the polyplex, the polyplex was 

retained in the hydrogel longer, with retention up to 35 days (193). In addition, GPP-

modified PEI polyplexes, after a week of pre-incubation within collagen hydrogels in 

media, still showed greater gene expression by murine fibroblasts compared to GPP-

free polyplexes. In particular, gene transfer in MMP-stimulated cells was highly robust, 

suggesting potential treatment options for chronic inflammatory diseases such as 
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chronic wounds (Figure 1.5(C)). A collagen-polyplex colocalization study revealed that 

the GPP-PEI, along with collagen fragments, were internalized in cells largely via 

caveolar endocytosis, suggesting integrin interaction with the integrin-binding sites of 

collagen fragments are involved in cellular internalization (Figure 1.5(D)) (195). GPP-

PEI and collagen hydrogel interactions allowed both the controlled release and ligand-

mediated efficient endocytosis into cells. 

1.5 Summary and future prospects 

For the past several decades, significant progress has been made in the 

development of targeted DDS using both local administration and ligand-based active 

targeting strategies. Hydrogel-based local delivery and ligand-cell interaction-mediated 

delivery enable drugs such as biomacromolecules (e.g., growth factors or genes) and 

small molecules to better localize at the target sites. Owing to the biological versatility 

of ECM molecules, ECM-based DDS have been applied not only to provide structural 

and biochemical signals to cells, but also to serve as ligands for cell receptors in specific 

pathological conditions to improve therapeutic efficacy of growth factor, gene, and 

small molecule treatments.  However, despite progressive improvements, many 

challenges and unmet clinical needs still remain, particularly for intracellularly active 

drugs such as genes, which require control over cellular uptake mechanisms for 

optimized delivery and activity.  

The innovative combination of these two targeting approaches using 

immobilizing drug carriers in ECM-based hydrogels has generated promising cell-

responsive gene-activated matrices for regenerative medicine and functional tissue 

repair. ECM scaffolds not only function as substrates for cell infiltration, organization, 

and differentiation, but also enable resident cells to efficiently uptake genes on demand 
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to supply essential tissue inductive factors. However, many challenges remain in further 

developing this type of DDS to, for example, enable the delivery of multiple drugs from 

a single system, or provide mechanisms for on-demand drug release with a high level 

of control to a specific cell type. The sequential signaling of multiple growth factors 

typically regulates tissue repair and regeneration. Although researchers have 

demonstrated the release of multiple drugs, obtaining release of a specific molecule with 

optimal timing remains a challenge. Further, despite the advances in targeting, materials 

that localize only at or in their target cells are still difficult to design due to the lack of 

cell-specific gene expression relevant to a given disease physiology. Use of multiple 

ECM-inspired peptides in conjunction may offer a promising strategy to increase 

affinity to a particular cell type, using information about the cell’s natural ECM receptor 

expression patterns, or to promote the sequential delivery of a series of drugs in a desired 

profile.  In the future, ECM molecule-based DDS are likely to have an increasingly 

significant impact on disease treatment and tissue regeneration. 

1.6 Overview of dissertation 

The overall aim of this dissertation is to improve the efficacy of topically 

administered therapeutics through the control over the therapeutics delivery using the 

ability of CMP modified therapeutic carrier tethering on collagen-containing matrices 

via CMP strand invasion to the native collagen. Owing to the advantage of CMP-

collagen tethers, I hypothesize that CMP/CLP modified carrier and collagen tether 

approach would demonstrate the extended the duration of therapeutic effects and control 

over the delivery of the cargo in response to cell-mediated collagen degradation. 

Chapter 3 and 4 will discuss the control over the growth factor gene transfer kinetics 

while regulating cell phenotypes both in vitro and in vivo for the enhanced wound repair 
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through the manipulating the numbers of CMP-collagen tethers and ECM compositions 

in gene-activating hyaluronic acid-collagen matrix (GAHCM) comprising CMP 

modified DNA/polyethylenimine (PEI) polyplexes and hyaluronic acid (HA)-collagen 

(HCM). Chapter 5 will include the utilizing the different degree of retention and release 

profiles of elastin-like peptide and collagen-like peptide (ELP-CLP) nanovesicles with 

collagen containing matrices to control antibiotic delivery and support the extended 

antibacterial effects. Lastly, Chapter 6 will discuss the potential future studies to develop 

from this dissertation. 
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MATERIALS AND METHODS FOR GENE ACTIVATED HYALURONIC 
ACID AND COLLAGEN MATRIX (GAHCM) 

This chapter explains the materials and methods for preparation of gene activated 

hyaluronic acid and collagen matrix (GAHCM) with collagen mimetic peptide (CMP) 

modification, which is a combination of CMP-modified pDNA/Polyethyleneimine (PEI) 

polyplex and HCM matrix. GAHCM would be the major samples to be evaluated in 

chapter 3 and chapter 4. Thus, the most of content in this chapter are derived and reused 

from chapter 3 and chapter 4. In particular, this chapter describes the details about the 

synthesis and purification of CMP and CMP-PEI conjugate, polyplex formation, HCM 

formulation, and finally, GAHCM preparation.  

2.1 Materials 

TentaGel R RAM Resin (90 µm), O-benzotriazole-N,N,N′,N′-tetramethyl-

uronium-hexafluoro-phosphate (HBTU), and Fmoc-protected amino acids were 

procured from Peptides International (Louisville, KY), Aapptec (Louisville, KY), and 

ChemPep, Inc. (Wellington, FL), respectively. Trifluoroacetic acid (TFA), N,N-

dimethyl formamide (DMF), acetonitrile, methanol, and anhydrous ethyl ether were 

acquired from Fisher Scientific (Fairlawn, NJ). Piperidine, diisopropylethylamine 

(DIEA), Triisopropylsilane, 1,2-Ethaneithiol, and branched PEI (25 kDa) were procured 

from SigmaAldrich (St. Louis, MO). The gWIZ-GFP plasmid was procured from 

Genlantis (San Diego, CA). pCMV-GLuc plasmids were acquired from New England 

Chapter 2 
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Biolabs (Ipswich, MA). Following the manufacturer’s protocols, the pCMV-GLuc 

plasmids were amplified in NEB 5-α electrocompetent Escherichia coli (New England 

Biolabs, Ipswich, MA) purified using a Qiagen Maxiprep Kit (Germantown, MD).  

2.2 Synthesis and purification of collagen mimetic peptide (CMP)  

The CMP [(GPP)3GPRGEKGERGPR(GPP)3GPCCG] and scrambled CMP 

(sCMP) [EGKPPCGRGPRGGPPPCRPGPGEGPGGPPPPPPGG] were synthesized via 

standard Fmoc and HBTU chemistry based solid phase peptide synthesis (SPPS) using 

a Focus XC automatic peptide synthesizer (AAPPTec Inc., Louisville, KY). In details, 

TentaGel R RAM Resin with a loading capacity of 0.18 mmol/g (0.2 mmol scale) was 

used for the synthesis. The resin was mixed with each Fmoc-amino acid in DMF (5 

molar equivalence), HBTU in DMF (5 molar equivalence), and DIEA in NMP (7.5 

molar equivalence) and incubated for 60 min with shaking and under nitrogen gas 

mixing for coupling reaction. And amino acid residues from 11th were run twice of 

coupling reaction. Three times of incubation with piperidine for 10 min was used to 

deprotect the Fmoc group from amino acid to be prepared for coupling the next amino 

acid residue. Next, for carboxyfluorescein (CF) labeled CMP, CF (6 molar equivalence) 

was coupled to CMP on resin in a 24 hr reaction with PyAOP (6 molar equivalence) and 

DIPEA (12 molar equivalence). As described in our previous papers (1-4), the peptides 

were cleaved from resin with 2 h incubation in 94:2.5:2.5:1 TFA:TIS:water:EDT 

(v:v:v:v). After the cleavage reaction, the crude peptides in the cleavage cocktail 

solution were filtered out from the resin and precipitated out by rinsing with a cold 

anhydrous ethyl ether. After centrifugation, the ether was mostly removed from the 

crude peptide precipitate. The crude peptides were further incubated in chemical hood 

overnight to get rid of any residual ether and dry them, prior to HPLC purification. After 
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the crude peptides were dissolved in water and filtered through 0.25 µm syringe filter, 

the crude peptides were purified via reverse-phase HPLC (Waters Inc., Milford, MA) 

on a Waters XBridge BEH130 Prep C-18 column using a linear gradient mixture of 

water (0.1% TFA) and acetonitrile (0.1% TFA) (1% of acetonitrile increase per each 

min) at a temperature of 70 °C (Figure 2.1).           Then, the  molecular weights and 

purities of each of the purified peptides were confirmed with either MALDI-TOF MS 

(Bruker MicroFlex MALDI-TOF) or an ultra-performance liquid chromatographic unit 

in line with an electrospray ionization (UPLC-ESI) Xevo G2-S QTof mass spectrometer 

(Waters Corporation, Milford, MA). SCMP, CF-CMP, and CF-SCMP were analysed 

by MALDI-TOF MS; m/z calculated 3219.092 [M + H+] for SCMP, m/z calculated 

3577 [M + H+] for CF-CMP and m/z calculated 3577 [M + H+] for CF-SCMP. In 

addition, CMP was analysed by UPLC-ESI (Figure. 2.2).  

Figure 2.1. HPLC trace at 220 nm for crude peptides; (A) TCMP or CMP 
((GPP)3GPRGEKGERGPR(GPP)3GPCCG) (B) CF-TCMP or CF-CMP 
(CF-(GPP)3GPRGEKGERGPR(GPP)3GPCCG) (C) SCMP 
(EGKPPCGRGPRGGPPPCRPGPGEGPGGPPPPPPGG) (D) CF-SCMP 
(EGKPPCGRGPRGGPPPCRPGPGEGPGGPPPPPPGG). * indicates the 
peak for the target peptide. 
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2.3 CMP-PEI conjugation and purification 

The purified peptides were conjugated to PEI using heterobifunctional sulfo-

SMCC crosslinker (Thermo Fisher, Waltham, MA). A solution containing branched PEI 

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100

m/z
200 400 600 800 1000 1200 1400 1600 1800 2000

%

0

100
Kiick_huanghf_042621_SCMP 491 (2.291) TOF MS ES+ 

5.58e3158.96

137.99

130.97

644.92

644.72186.96

644.32

303.88

644.12
437.23

645.12

645.33
801.40

801.15
655.71 806.15

819.12920.74 1084.82

Kiick_huanghf_042621_SCMP 478 (2.244) TOF MS ES+ 
7.14e3644.92

158.96

137.99

130.97

644.52186.96

644.32
303.89

236.94 546.43
546.10304.90

645.12

645.33

645.52 805.65

655.71

656.10

806.15
806.40

Kiick_huanghf_042621_TCMP_1 486 (2.273) Cm (475:500) TOF MS ES+ 
5.66e6644.92

644.72

644.52

644.32

644.12

645.12

805.65645.32

805.40

645.72

806.15

1074.20806.40

1073.53806.65

1073.19878.71

1074.53
1074.87

1610.80
[M+2H]

2+
 

[M+3H]
3+

 

[M+4H]
4+

 

[M+5H]
5+

 

Re
la

tiv
e 

in
te

ns
ity

  

Time
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

%

0

100

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

%

0

100
Kiick_huanghf_042621_TCMP_2 TOF MS ES+ 

TIC
1.05e6

2.30

0.56
1.34

2.732.80 3.14 3.40 3.58
4.274.18 4.39

4.514.77

Kiick_huanghf_042621_TCMP_1 TOF MS ES+ 
TIC

3.05e7
2.27

Kiick_huanghf_042621_SCMP TOF MS ES+ 
TIC

1.12e6
2.24

0.71
1.11 2.072.031.31

2.29

2.44

2.55 2.72
3.08

3.39 3.43
4.294.19 4.40

Re
la

tiv
e 

in
te

ns
ity

  

A) 

B) 

Figure 2.2. A) Ultra-performance liquid chromatography total ion chromatograms of 
the purified CMP. Integrations of the chromatograms displayed a greater 
than 95% of the total chromatogram for CMP, indicating high purity of 
CMP.  B) Electrospray ionization mass spectrometry of the purified 
CMP; m/z=1610.6 [(M + 2H)2+ = 1610.8], m/z= 1073.4 [(M + 3H) 3+ = 
1074.2], m/z= 804.8 [(M + 4H) 4+ = 805.6], m/z= 643.6 [(M + 5H) 5+ = 
644.9], m/z= 188.6. 
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and sulfo-SMCC at a molar ratio of 1:2.5 was incubated with magnetic stirring at room 

temperature for 1 h. After removing the excess Sulfo-SMCC using a Sartorius Vivaspin 

6 centrifugal concentrator with a 5 kDa molecular weight cut-off (MWCO), CMP (3 

molar equivalence to PEI) was added to SMCC-PEI and incubated with magnetic 

stirring for 24 h at 37 ºC to facilitate the Michael-type reaction between the thiol of the 

cysteine in the CMP and the maleimide in SMCC-PEI. The products were purified via 

dialysis (using SnakeSkin dialysis tubing with a 10 kDa MWCO) (Thermo Fisher, 

Waltham, MA) against deionized water at 37 ºC for 3 days and lyophilized to a powder.  

2.4 CMP-PEI conjugate characterization 

Successful production of CMP-PEI conjugates was confirmed via gel permeation 

chromatography (GPC) on Waters Ultrahydrogel linear and 250 columns (Waters Inc., 

Milford, MA), using a 0.5 M acetate buffer at pH 4.7 (Figure. 2.3). GPC of CMP-PEI 

showed a peak shift to an earlier time point (~14.5 min) as compared to the peaks for 

PEI (~16 min) or SMCC-PEI (~15.5 min), which indicated an increased molecular 

weight and confirmed the successful CMP conjugation to PEI. In addition, the triple 

helical assembly of the CMP-PEI conjugate was confirmed via circular dichroism 

spectrometry (Jasco 810 spectrometer, Jasco Inc., Easton, MD), using a spectral scan 

measurement from 215 to 235 nm. Measurements were performed at both 4 °C, to 

examine the characteristic peaks for the CMP triple helical secondary s tructure of CMP-

PEI (Figure. 2.4(A)), and 65 ºC, to examine the CMP-PEI above the Tm of the CMP 
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(43 °C) (3) (Figure. 2.4(B)), using a scanning speed of 20 nm/min, a data integration 

time of 16 s, and a data pitch of 1 nm.  
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2.5 Polyplex formulation and characterization 

CMP-modified polyplexes were formed by self-assembly driven by electrostatic 

interactions between negatively-charged plasmid DNA and positively charged 

PEI/CMP-PEI, as described in our previous reports (1-4). Briefly, after heating CMP-

PEI solution for 30 min at 65 °C to disassemble the triple helix of the CMP, equal 

volumes of plasmid and PEI/CMP-PEI solutions in 20 mM HEPES (pH 6.0) were mixed 

to prepare a solution containing 20 μg/mL plasmid. While vortexing the plasmid 

solution with speed at 6, PEI/CMP-PEI solutions were added in dropwise. This mixture 

was incubated for 10 min at room temperature (or 65 °C for CMP-polyplex) to facilitate 

polyplex formation. The N:P ratio (number of amines (N) in PEI: the number of 

phosphates (P) in the plasmid) was adjusted by varying the concentration of PEI. CMP 

modification was varied by altering the ratio of CMP-PEI to total PEI (20% CMP-PEI 

to total PEI as 20 CP and 50% CMP-PEI to total PEI with as 50 CP). The polyplex were 

further mixed with 20 mM Sucrose and lyophilized at least overnight to prepare the 

lyophilized polyplex for incorporating HCM hydrogel.  

Figure 2.5. Dynamic light scattering measurement for (A) hydrodynamic diameter (Dh) 
and (B) zeta potential of CMP-PEI/pGFP complex (N/P=8) with a varying 
CMP-PEI percentage. 
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Polyplex formation was characterized via dynamic light scattering (DLS) and 

agarose gel electrophoresis. The hydrodynamic radii of the polyplexes were measured 

using a ZetaSizer Nano Series (Nano ZS, Malvern Instruments, UK), using a scattering 

angle of 173° (Figure. 2.5(A)). The data fitting was performed by using the cumulant 

method. In addition, the polydispersity index (PDI) and ζ-potential of the polyplexes 

were calculated using the Nano DTS software (version 6.34) (Figure. 2.5(B)). All 

measurements were performed in triplicate for each sample at 25 °C with a sub‐run 

count of at least 11 correlations. I acquired the size (<180 nm with PDI<0.3) and zeta 

potentials (+30 mV to +40 mV) of polyplexes (N/P=8) with varying CMP amounts, 

within the range for an efficient endocytosis by fibroblasts. To evaluate the efficiency 

of plasmid condensation in polyplexes, the polyplexes with analyzed by gel 

electrophoresis in 1% agarose gels containing ethidium bromide [0.5 μg per mL of 

tris/borate/ethylenediaminetetraacetic acid (TBE) buffer] and 1✕ gel loading dye blue. 

Gels were run for 1 h at 100 V and 400 mA and imaged with a BioRad Gel Doc XR 

(Hercules, CA) (Figure 2.6). 

pDNA PEI 20CP 50CP pDNA PEI 20CP 50CP pDNA PEI 20CP 50CP

Figure 2.6. Representative gel electrophoresis 
image for ethidium bromide stained 
polyplex. White band indicates the 
destabilized and released GLuc from 
polyplex 
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2.6 In vitro 2D transfection of fibroblasts 

Fibroblasts (NIH/3T3 cells; ATCC, Manassas, VA) were cultured in complete 

DMEM containing 10% heat-inactivated fetal bovine serum and 1% penicillin-

streptomycin at 37 °C with 5% CO2. Cells were passaged with 0.25% Trypsin 

containing 2.21 mM EDTA every 2-3 days. To optimize the N:P ratio (amine groups in 

the polymer to phosphate groups in the nucleic acid) of the polyplexes, bolus 

transfection of fibroblasts was studied using various N:P ratios in the polyplexes. Cells 

were plated at a density of 10,000 cells per cm2 for 24 h. GFP-encoding polyplexes with 

4 µg of GFP plasmid in 20 mM HEPES at pH 6 were added dropwise into the cells 

growing in Opti-MEM, and the cells were incubated in the transfection solution for 90 

min at 37 °C with 5% CO2. The Opti-MEM was replaced with complete DMEM and 
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Figure 2.7. 24 h post-bolus transfection of NIH3T3 using PEI/pGFP complex and 50% 
CMP-PEI/pGFP complex with varying N/P ratio. 
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cells were incubated at 37 °C with 5% CO2 for an additional 24 h. GFP transfection was 

examined using microscopic imaging of GFP expression in the cells (Figure. 2.7).  The 

optimal N:P ratio of polyplexes was identified as 8 using a visual evaluation of gene 

expression and an analysis of cell viability in the fibroblasts after 24 h of bolus 

transfection with GFP encoding polyplex. As used by previous our studies (1-4), PEI, 

20 CP and 50 CP were formulated for this study.  

2.7 Polyplex stability in the presence of HA 

To evaluate the stability of polyplexes in the presence of negatively charged HA, 

fluorescence recovery assays and agarose gel electrophoresis experiments were 

conducted. For the YoYo-3 recovery assay, the GLuc plasmid was pre-stained with 

YoYoTM-3 Iodide (0.02 µL per µg DNA, Thermo Fisher) for 10 min at room 

temperature before forming the polyplexes at an N:P ratio of 8. The polyplexes were 

incubated with heparin sodium salt from porcine intestinal mucosa (2 mg/mL, Sigma-

Aldrich) or hyaluronic acid (430 K Da, 2 mg/mL) at room temperature for 45 min. After 

incubation with heparin or hyaluronic acid, the fluorescence intensity of YoYo-3 in the 

polyplexes was measured at λex = 612 nm and λem = 638 nm using a SpectraMax i3 plate 

reader (Molecular Devices, San Jose, CA). As described in section 2.2, polyplexes were 

assessed by agarose gel electrophoresis following polyplex (N:P = 8) incubation with 

heparin (2 mg/mL) or hyaluronic acid (430 K Da, 2 mg/mL) at room temperature for 45 

min.   

To investigate whether anionic HA destabilized the polyplexes resulting in 

disassembly, fluorescence quenching assays and gel electrophoresis experiments were 

performed to detect plasmid DNA after polyplex incubation with HA. YoYo-3 

fluorescence was used as a probe to monitor polyplex disassembly, as the fluorescence 
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of the YoYo-3 dye is quenched when plasmid DNA is condensed with a carrier in 

polyplex form (5). Polyplexes resisted disassembly in the presence of HA, whereas more 

than 60% of both CMP and non-CMP-modified polyplexes were significantly 

disassembled in the presence of high concentrations of heparin (Figure 2.8(A)). 

Moreover, agarose gel electrophoresis confirmed the stability of the polyplexes after 

incubation with anionic HA, as no free plasmid bands were observed for the polyplex 

samples after incubation was complete (Figure 2.8(B)), indicating that the presence of 

HA did not disrupt polyplex assembly. 

Figure 2.8. The stability of polyplex in the presence of hyaluronic acid. (A) The 
fluorescent measurement of pre-stained GLuc with YoYo-3 complexing 
with PEI, 20% CMP-PEI, and 50% CMP-PEI after treatments with no 
(Black), Heparin (1 mg/mL, Stripe) as a negative control, and Hyaluronic 
acid (~450K Da, 2 mg/mL, Blank) for 2 hr. The F-intensity is normalized 
to the initial F- intensity of YoYo-3 pre-stained pGLuc before complexing 
with PEI, 20% CMP-PEI and 50% CMP-PEI. Each data point represents 
the mean  ±  standard deviation for n=3. The statistically significant 
differences state +P<0.05 compared to HA, and *P<0.05 compared to NT. 
(B) Representative gel electrophoresis image for ethidium bromide stained 
polyplex after treatment with no, heparin, and HA for 2 h. White band 
indicates the destabilized and released GLuc from polyplex. 
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2.8 HCM hydrogel formulation and 3D culture of fibroblast 

The HCM hydrogels were composed of self-assembly of bovine collagen type I, 

(Fibricol (4 mg/mL)) driven by pH, temperature and ionic strength, and disulfide bond 

formation in thiolated-HA (Glycosil®, HA-SH).  The HCM hydrogels with various 

concentrations (0, 1, 2, and 4 mg/mL) of Glycosil® were evaluated for the optimum 

condition for fibroblast culture. The neutralized collagen (8 mg/mL) was prepared 

through mixing with acidic solubilized collagen (Fibricol,10 mg/mL), 10% total volume 

of 10× DPBS and 10% total volume of 0.1 N NaOH. Fibroblasts suspended in 1× DPBS 

(100,000 cells/mL) were added to the neutralized collagen and incubated at room 

temperature for 10 min. After Glycosil® (20 mg/mL) was dissolved in degassed water 

for 30 min incubation at 37 °C with regularly vortexing every 10 min for the complete 

dissolution, the various volumes of Glycosil®, depending on the concentration, were 

mixed with the fibroblasts suspended in the neutralized collagen. The pre-gel solution 

with fibroblasts were incubated for 45 min at 37 °C to form the gel and encapsulate the 

fibroblasts within HCM hydrogel. Then, the complete DMEM media were added on the 

top of fibroblasts containing HCM hydrogel and incubated at 37 °C with 5% CO2 for 2 

days. After 2 days or 7 days of culture, the viability of the fibroblasts in the HCM 

hydrogels was examined using live/dead cell staining. After removing the culture 

medium, cells in hydrogels were washed with 1× DPBS three times and incubated with 

the mixture of Calcein-AM (2 µM) to detect live cells and EtDH-1 (4 µM) to detect 

dead cells in HEPES-based live cell imaging solution (Thermo Fisher, Waltham, MA) 

for 40 min. Cells were imaged with z-stack imaging to detect Calcein-AM stained live 

cells (ex. 495 nm) and EtDH-1 stained dead cells (ex. 535 nm) using a Zeiss LSM 880 

confocal microscope with a EC Plan-Neofluar 10× objective (Carl Zeiss Microscopy, 

LLC, White Plains, NY). The images were analyzed to evaluate fibroblasts viability via 
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cell counting using Fiji, ImageJ software and were plotted as 3D view to evaluate the 

fibroblasts behavior within Hydrogel using Volocity software.  

 

Figure 2.9. Live and dead staining of NIH3T3 3D-cultured in collagen hydrogel with a 
varying hyaluronic acid amounts. (A) Representative confocal image of 
live (Green) and dead (Red) stained fibroblasts cultured in the hydrogel for 
2 days. Scale bar is 200 µm (B) Confocal Image quantitative analysis using 
cell count for live and dead cells to determine cell viability for 2 days 
culture. Collagen = HA (0 mg/mL) + Collagen (4 mg/mL), 1HCM = HA 
(1 mg/mL) + Collagen (4 mg/mL), 2HCM = HA (2 mg/mL) + Collagen (4 
mg/mL), 4HCM = HA (1 mg/mL) + Collagen (4 mg/mL).   

In order to identify appropriate formulation conditions for HA-collagen matrices 

(HCM), the HA-SH (Glycosil®) concentration in HCM was varied in order to maximize 

the viability of murine NIH3T3 fibroblasts cultured in HCM. After 2 days of culture, 

the calcein-AM stained live cells (green) and ethidium homodimer stained dead cells 

(red) were analyzed to quantify cell viability (Figure 2.9). Incorporation of various 

concentrations of HA-SH (1, 2, and 4 mg/mL) in the collagen hydrogel (4 mg/mL) did 

not cause significant changes to fibroblast viability, with fibroblast populations 
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exhibiting similar percentages of live cells in HA-collagen (1HCM = 81.7%, 2HCM = 

82.9%, and 4HCM = 78.6%) as compared to collagen-only hydrogels (90.2%). Based 

on these results, I defined the mixture of HA-SH (2 mg/mL) and collagen (4 mg/mL) as 

the final HCM formulation.  

Furthermore, after 7 days of 3D culture, fibroblasts cultured in HCM hydrogels 

remained dispersed throughout the hydrogels, whereas cells in the collagen-only 

hydrogel had relocated entirely to the bottom side (Figure 2.10). This behavior 

demonstrated that the local microenvironment caused a significant difference in cellular 

migratory behavior.  

Figure 2.10. 3D plot of the z-stacked confocal microscopic images for Calcein-AM 
(Live) and Ethidium homodimer (dead) stained fibroblasts cultured in 
collagen hydrogel or HCM hydrogel for 2 days or 7 days. Each unit is 
85.35 μm. 
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2.9 GAHCM formulation 

Based on the studies in sections 2.5-2.8, GAHCM formulation was finalized as 

the combination of polyplex with N:P = 8 (20 µg/mL of pDNA) and HCM (Collagen = 

4 mg/mL and Glycosil® = 2 mg/mL).   As described in section 2.5, equal volumes of 

plasmid DNA and PEI/heated CF-CMP-PEI solutions in 20 mM HEPES (pH 6.0) were 

mixed to prepare polyplexes (N:P = 8, 20 μg/mL of pDNA), and the polyplexes were 

lyophilized with 20 mM sucrose. The lyophilized polyplexes were mixed into 

neutralized collagen (8 mg/mL) which was prepared by mixing with acidic solubilized 

collagen (10 mg/mL), 10% total volume of 10× DPBS and 10% total volume of 0.1 N 

NaOH.  Then, the polyplex and collagen mixture was incubated at 4 °C for 2 h for CMP 

hybridization with collagen. Fibroblasts (100,000 cells/mL) suspended in 1× DPBS 

were added into the polyplex/neutralized collagen mixture, and this solution was 

incubated at room temperature for 10 min. Next, Glycosil® or 1× DPBS were added 

into the fibroblast containing polyplex and collagen mixture to allow polyplex loaded 

HCM formation (GAHCM). After gelation for 45 min incubation at 37 °C, GAHCM 

was incubated in complete DMEM at 37 °C with 5% CO2 for 7 days. The culture 

medium was collected and replaced with the fresh culture medium every two days to 

detect the gene expression.  
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MODIFIED HYALURONIC ACID-COLLAGEN MATRICES TRIGGER 
EFFICIENT GENE TRANSFER AND PROHEALING BEHAVIOR IN 

FIBROBLASTS FOR IMPROVED WOUND REPAIR 

Growth factor therapy has demonstrated great promise for chronic wound repair, 

but controlling growth factor activity and cell phenotype over desired time frames 

remains a critical challenge. In this study, I developed a gene-activated hyaluronic acid-

collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes 

retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides 

(CMPs). I hypothesized that manipulating both the number of CMP-collagen tethers and 

the ECM composition would provide a powerful strategy to control growth factor gene 

transfer kinetics while regulating cell behavior, resulting in enhanced growth factor 

activity for wound repair. I observed that polyplexes with 50% CMP-modified PEI (50 

CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as 

compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the 

hydrogel promoted a significant increase in gene transfection efficiency based upon 

analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression 

could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts 

were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP 

matrix facilitated sustained VEGF-A production for up to 7 days, with maximal 

expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged 

pro-healing responses, including the TGF-β1-induced myofibroblast-like phenotypes 

and enhanced closure of murine splinted wounds. Overall, these findings demonstrate 

the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular 

phenotype, resulting in improved control of growth factor activity for wound repair. 

Chapter 3 
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GAHCM have significant potential to overcome key challenges in growth factor therapy 

for regenerative medicine. 

3.1 Introduction 

The management of wounds is a prolonged challenge to the global healthcare 

system that is associated with annual healthcare costs of $50 billion for nonhealing 

wounds, $12 billion for scars from surgical incisions and trauma, and $7.5 billion for 

burns (1-3). While treatment options including traditional wound dressings are available 

(4), these methods often do not provide adequate healing, and more effective ways to 

manage wounds over reasonable time frames are necessary to overcome the societal and 

economic burdens of inadequate wound repair.  

Growth factor application in the wound milieu has emerged as a promising 

strategy to mediate the healing response. The wound healing process is a complex 

orchestrated effort of multiple types of cells including fibroblasts, endothelial cells, 

keratinocytes, and leukocytes that utilize extracellular matrix (ECM) components and 

soluble mediators such as growth factors to regulate migration, proliferation, and 

differentiation in a timely and sequential manner (5). For example, the vascular 

endothelial growth factor (VEGF) protein family not only induces endothelial cell 

proliferation and migration leading to blood vessel formation in later-stage wound repair, 

but also promotes fibroblast proliferation, migration, and myofibroblast differentiation 

over the proliferative phase of wound healing (6-10). Topical treatments to extend 

growth factor activity over appropriate time frames offer advantages for improving 

wound repair, but clinical studies to date have demonstrated that the short half-life and 

instability of recombinant growth factors in the wound environment has limited the 

success of existing formulations owing to the need for high doses, corresponding off-

target side effects, and modest clinical benefits (11, 12).     

Two key challenges in growth factor therapy are the need for better control of 

growth factor delivery kinetics, in alignment with the wound healing process, and the 

need to provide an appropriate microenvironment for cells to maximize growth factor 
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signaling. Over the past ten years, biomaterials have emerged as both a delivery vehicle 

and a cell adhesion scaffold able to enhance growth factor stability and activity while 

promoting cell recruitment and differentiation (13-17). Due to their biochemical and 

physical similarity to tissues, ECM-mimicking materials including collagen, gelatin, 

and fibrin have exhibited especially promising potential to serve as a reservoir for 

growth factors and enable sustained growth factor delivery, activity, and cellular 

responses throughout the healing process (18-24). Meanwhile, gene activated matrix 

(GAM) approaches enable entrapment of genes for protection from protein-rich 

conditions like those in the wound bed. GAMs deliver the entrapped genes to infiltrating 

cells through diffusion and/or matrix degradation, resulting in localized and sustained 

transgene expression (25, 26). In fact, the use of GAM approaches has enabled growth 

factor gene expression to be sustained for 2 weeks in experimental wound models, with 

growth factor healing benefits occurring at orders-of-magnitude dose reductions as 

compared to topically administered growth factors (27-29).  

Our groups previously developed biomaterials that further leveraged the ECM 

for gene delivery by harnessing the affinity of collagen mimetic peptides (CMPs) for 

collagen. CMPs were used as tethers to retain gene nanocarriers in collagen-based 

hydrogels. CMP-triggered gene delivery sustained gene expression by improving the 

availability of the DNA complex and controlling the expression of the gene on cellular 

demand (30-33). Collagen degradation is natively controlled by matrix 

metalloproteinases (MMPs), which are expressed during tissue remodeling processes 

including those involved in wound healing and various disease states (34, 35). Degraded 

collagen is internalized into cells through ⍺2β1 integrin-mediated phagocytosis or 

clathrin-dependent endocytosis driven by Endo-180 or uPARAP (36-39). I proved that 

when CMP-polyplex-modified collagen hydrogels were degraded by cell-secreted 

MMPs, the polyplexes remained bound to the released collagen fragments, facilitating 

polyplex internalization and gene transfection (30-32). In order to promote cellular 

recruitment for wound healing, I also have incorporated fibrin into CMP-modified 

collagen hydrogels for PDGF-BB gene delivery, showing that these materials increased 
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PDGF gene expression by 30% in vitro, and improved wound closure by 19% after 9 

days in vivo in comparison to wounds treated with non CMP-modified polyplex 

containing materials (33). These studies suggested that growth factor gene delivery and 

ECM signaling together may provide synergistic benefits that enhance the wound 

healing process. 

Hyaluronic acid (HA) has been extensively utilized in wound healing to 

accelerate wound repair, decrease fibrosis, and improve the quality of healing by 

modulating inflammation, cellular recruitment, and angiogenesis (40, 41). The 

application of commercially available HA (IALUSET®) in clinical studies resulted in 

promising wound healing effects in patients with acute wounds (42), pressure ulcers 

(43), and venous leg ulcers (44). HA activates a variety of cells involved in wound 

healing, including fibroblasts, endothelial cells, and macrophages via interaction with 

the HA-specific receptors CD44, RHAMM, TLR-4, and LYVE-1 (45, 46). For example, 

HA fragments are internalized via interactions with CD44 receptors, enabling regulation 

of inflammation (as well as fibroblast proliferation and migration) during the wound 

healing process. In addition, HA-CD44 interactions stimulate transforming growth 

factor-β (TGF-β)-mediated differentiation of fibroblasts to myofibroblasts, critical for 

wound healing because of myofibroblast-mediated deposition of ECM components (47, 

48). However, despite all of their promising wound healing benefits, commercially 

available HA-based wound dressings still present some limitations in cell adhesion, cell 

proliferation, and mechanical properties, necessitating further manipulation of HA-

based materials to enable better healing outcomes (49, 50).  

In this study, I developed multi-functional biomaterials combining HA matrix 

with CMP polyplex-modified collagen. Our new gene activated HCM (GAHCM) 

matrices are designed to overcome the limitations of HA matrix and improve growth 

factor delivery by leveraging collagen to enhance cell adhesion and proliferation while 

also stimulating growth factor gene transfer. The overall goal of this study was to 

demonstrate the advantages of the GAHCM on both the efficiency of gene transfer for 

growth factor production and its capacity to drive pro-healing behavior in fibroblasts 
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for wound repair. Due to the versatile roles of VEGF-A during the wound healing 

process, and in particular, its effect on fibroblasts for inducing collagen deposition and 

epithelialization via myofibroblast differentiation, plasmid DNA encoding for VEGF-

A was used in this study. Herein, I demonstrate that GAHCM increased the efficiency 

and duration of VEGF-A production via CMP linkage to the collagen-HA matrix, while 

engineering the cellular microenvironment to mediate pro-healing myofibroblast-like 

phenotypic change and trigger complete wound closure. Our findings suggest the great 

potential for GAHCM as a treatment option to overcome the current challenges in 

growth factor therapy for wound healing, via control over the duration of growth factor 

expression and maximization of growth factor stimulated pro-healing cellular responses. 

3.2 Materials and Methods 

3.2.1 Materials 

Type I bovine collagen (10 mg/mL) and Glycosil® were obtained from 

Advanced BioMatrix (San Diego, CA). pCMV3-VEGF-A plasmids were acquired from 

Sino Biological. Following the manufacturer’s protocols, pCMV3-VEGF-A plasmids 

were amplified in MAX EfficiencyTM DH5α competent Escherichia coli (Thermo Fisher, 

Waltham, MA) and purified using a Qiagen Maxiprep Kit (Germantown, MD). The 

Mouse VEGF-A Quantikine enzyme-linked immunosorbent assay (ELISA) kit and 

Mouse TGF-ß1 DuoSet ELISA kit were obtained from R&D Systems (Minneapolis, 

MN). Murine recombinant VEGF-A was acquired from Pepro Tech. (Cranbury, NJ). 

Rat IgG2b-CD44 monoclonal antibody (IM7) was purchased from Thermo Fisher 

(Waltham, MA). Mouse IgG2a monoclonal α-SMA-FITC antibody and mouse IgG2a-

FITC antibody were obtained from Sigma-Aldrich (St. Louis, MO). 
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3.2.2 Animals 

BALB/cJ mice (8-week-old, male) were procured from Jackson Laboratory (Bar 

Harbor, ME, USA). All experiments were performed in accordance with protocols and 

guidelines approved and established by the University of Delaware’s Institutional 

Animal Care and Use Committee (IACUC). 

 

3.2.3 In vitro 3D cell culture of fibroblasts in HCM hydrogel 

The HCM hydrogels were formed by self-assembly of bovine collagen type I 

(Fibricol (4 mg/mL)), driven by pH, temperature, and ionic strength; and disulfide bond 

formation in thiolated-HA (Glycosil®) at various concentrations (0, 1, 2, and 4 mg/mL). 

The collagen was neutralized with 10× DPBS and 0.1 N NaOH. Fibroblasts suspended 

in 1× DPBS (100,000 cells/mL) were added to the neutralized collagen and incubated 

at room temperature for 10 min. After dissolving Glycosil® in degassed water at 37 °C, 

Glycosil® was mixed with the fibroblasts suspended in the neutralized collagen. The 

hydrogels were allowed to form and encapsulate the fibroblasts for 45 min at 37 °C. The 

hydrogels were incubated in complete DMEM at 37 °C with 5% CO2 for 2 days. After 

2 days of culture, the viability of the fibroblasts in the HCM hydrogels was assessed 

using live/dead cell staining. Cells in hydrogels were incubated with Calcein-AM (2 

µM) and EtDH-1 (4 µM) in HEPES-based live cell imaging solution (Thermo Fisher, 

Waltham, MA) for 40 min. Cells were imaged with z-stack imaging to detect Calcein-

AM stained live cells (ex. 495 nm) and EtDH-1 stained dead cells (ex. 535 nm) using a 

Zeiss LSM 880 confocal microscope with a EC Plan-Neofluar 10× objective (Carl Zeiss 

Microscopy, LLC, White Plains, NY). The images were analyzed to evaluate cell 

viability via cell counting using Fiji, ImageJ software.  
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3.2.4 Polyplex distribution and stability in HCM hydrogel 

As described in chapter 2.2-2.4, CMP-PEI was prepared via covalent linkage 

between CMP and PEI using a sulfo-SMCC bifunctional linker. CMP-PEI was further 

analyzed for its propensity to undergo triple helical assembly at 4 ºC and disassembly 

at 65 ºC via circular dichroism spectra measurements from 215 to 235 nm. The CMP-

PEI was mixed with PEI at various percentages, and the CMP-PEI/PEI solution was 

mixed with GLuc plasmid in 20 mM HEPES, pH 6 to prepare GLuc/PEI (Dh = 118 nm), 

GLuc/20% CMP modified PEI (20 CP) (Dh = 115 nm), or GLuc/50% CMP modified 

PEI (50 CP) (Dh = 140 nm) complexes, defined as PEI, 20 CP, or 50 CP polyplexes 

(N:P = 8, 20 μg/mL of GLuc). After the polyplexes were lyophilized with 20 mM 

sucrose, the lyophilized polyplexes were mixed into neutralized collagen and incubated 

at 4 °C for 2 h before adding Glycosil® to allow gelation to occur via a 45 min 

incubation at 37 °C. To visualize the plasmid within the gel, the gel was incubated with 

YoYo-3 (1:100) overnight at 37 °C and then rinsed with 1× DPBS overnight at 37 °C. 

YoYo-3 stained GLuc plasmid (λex 612 nm), carboxyfluorescein-labeled CMP-PEI 

(CF-CMP-PEI, λex 489 nm), and the autofluorescence of collagen fibers (reflected light 

at 405 nm) in HCM hydrogels were visualized using a Zeiss LSM 880 confocal 

microscope with a C-Apochromat 40× water objective. Volocity Imaging Software 

(Quorum Tech. Inc., Canada) was utilized to create a 3D image plot, and to perform 

image analysis and quantification of colocalization. The locations of YoYo-3 stained 

DNA and CFCMP-PEI were determined from measurement statistics associated with 

individual voxel intensities. The fraction of CFCMP-PEI (Magenta) that colocalized 

with the YoYo-3 stained GLuc (Cyan) was analyzed by calculation of the Mander’s 

coefficient (M2), which represents the sum of the colocalized magenta intensity divided 

by the sum of the total cyan intensity. To distinguish signal from background, minimum 
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values for magenta and cyan intensities were automatically determined using Costes’ 

auto-threshold method. Then, the sum of fluorescence intensity of CFCMP-PEI and 

YoYo-3 per volume (µm3) were calculated with the threshold. 

3.2.5 GAHCM 3D-transfection studies 

Fibroblast transfection in 3D culture was evaluated using GLuc encoding 

GAHCM. The lyophilized GLuc encoding polyplexes (20 µg/mL of pGLuc) with PEI, 

20% CMP modified PEI (20 CP), or 50% CMP modified PEI (50 CP) were mixed into 

neutralized collagen and incubated at 4 °C for 2 h. Fibroblasts (100,000 cells/mL) 

suspended in 1× DPBS were added into the polyplex/neutralized collagen mixture, and 

this solution was incubated at room temperature for 10 min. Next, Glycosil® was mixed 

into the fibroblast/neutralized collagen. After gelation at 37 °C for 45 min, GAHCM 

was incubated in complete DMEM at 37 °C with 5% CO2 for 7 days. The culture 

medium was collected and replaced with the fresh culture medium every two days. Gene 

expression in the collected medium was evaluated by quantifying the luminescence 

using a Gaussia Luciferase Assay (Targeting Systems; El Cajon, CA), according to the 

manufacturer’s protocol. To understand the influence of HA and cell interaction on gene 

transfection, the gene expression of fibroblasts cultured in GAHCM was evaluated after 

blocking the CD44 receptor for hyaluronic acid. First, the expression of CD44 receptors 

on fibroblasts cultured in collagen or HCM was evaluated using immunostaining for 

CD44. After 2 days of culture in collagen or HCM, fibroblasts were fixed with 4% 

paraformaldehyde for 30 minutes, permeabilized with 0.2% Triton X-100 for 45 min, 

and blocked with 3% BSA in PBS at room temperature overnight. Samples were 

incubated for 1 day at room temperature with rat CD44 monoclonal antibody (IM7) 

(1:50) in 1% BSA in PBS at room temperature with shaking. After incubation, the gel 
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samples were rinsed, and incubated with goat anti-rat AlexaFluor 488 (1:250, Life 

Technologies), Phalloidin-568 (1:100; Life Technologies), and the nuclear stain 

Hoechst 33258 (1:500; Life Technologies) for 2 days at room temperature with shaking. 

After rinsing by incubation in 3% BSA in 0.05% Tween-20 in PBS for 1 day, cells were 

visualized by z-stack imaging using a Zeiss LSM 880 confocal microscope with a 10× 

objective. Fibroblasts were incubated with rat CD44 monoclonal antibody (IM7) or rat 

IgG control antibody (10 µg/mL) at 37 °C with 5% CO2 for 12 hr. Then, fibroblasts 

treated with either IM7 antibody or IgG control antibody were encapsulated and cultured 

in GAHCM as described above. 

3.2.6 VEGF-GAHCM 3D-transfection studies 

Fibroblast transfection was examined using a GAHCM encoding for VEGF-A 

(VEGF-GAHCM) with PEI, 20 CP, or 50 CP. HCM without polyplexes as well as 

recombinant VEGF containing HCM (rVEGF) were used as controls. Fibroblasts 

cultured in VEGF-GAHCM were prepared separately for each time interval (1, 3, 5, and 

7 days), and were incubated in complete DMEM at 37 °C with 5% CO2 for 7 days. The 

culture medium was collected and replaced with fresh medium every two days. VEGF 

expression by the fibroblasts were evaluated using ELISA assays (described below). 

Separately, the fibroblast viability in VEGF-GAHCM was determined at 2, 4, and 6 

days using an MTS assay, following the manufacturer’s procedure. 

To evaluate fibroblast distribution in VEGF-GAHCM after culture in the 

hydrogels for various time periods, fibroblasts were fixed, permeabilized, and blocked 

as described in section 3.2.5. Samples were subsequently incubated for 2 days with the 

nuclear stain Hoechst 33258 (1:500) at room temperature with shaking. After rinsing, 

cells were visualized as a z-stack using a Zeiss LSM 880 confocal microscope with 10× 
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objective. Using a z-stack of full height in VEGF-GAHCM, 30 µm ‘sections’ of the z-

stack from the top, center, and bottom were analyzed for cell counts using Fiji ImageJ 

Software. 

3.2.7 Quantification of expressed growth factors via ELISA 

VEGF-A expression in fibroblasts cultured in VEGF-GAHCM was examined 

by ELISA. Briefly, the culture medium was collected, and fibroblasts within the VEGF-

GAHCM were washed three times with 1× DPBS after 1, 3, 5, and 7 days of culture. 

Then, fibroblasts within the VEGF-GAHCM were homogenized in lysis buffer (0.1 M 

Tris-HCl, 2mM EDTA, 0.1% Triton X-100) using disposable pellet pestles with a motor 

mixer. The lysate was centrifuged at 12,000 rpm at 4 °C for 5 min to collect the 

supernatant. The amount of VEGF-A in the homogenized supernatant and the collected 

medium were quantified via Mouse VEGF-A Quantikine ELISA kits following the 

procedure described in the manual. In addition, after acid activation of latent TGF-β1 in 

the collected medium to the immunoreactive form, the amount of TGF-β1 was 

quantified via mouse TGF-ß1 DuoSet ELISA following the manufacturer’s manual. The 

amounts of VEGF-A/TGF-β1 were normalized to the total fibroblast number per sample, 

which was measured using tryptophan blue cell counting after the collagenase digestion 

of each sample. 

3.2.8 α-SMA immunostaining and image analysis 

After 3 or 7 days of culture in VEGF-GAHCM, fibroblasts were fixed, 

permeabilized, and blocked as described in section 3.2.5. Samples were incubated for 1 

day with mouse anti-goat IgG (0.01 mg/mL, Sigma-Aldrich) at room temperature with 

shaking, rinsed in 3% BSA in 0.05% Tween-20 in PBS, and incubated with α-SMA-
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FITC antibody or mouse IgG2a-FITC control antibody (1:100), Phalloidin-568 (1:100), 

and the nuclear stain Hoechst 33258 (1:500) for 2 days at room temperature with 

shaking. After rinsing, cells were visualized as a z-stack using a Zeiss LSM 880 confocal 

microscope with 20× objective as decribed in previous literature for α-SMA detection 

of cells cultured in hydrogel (51-55). Fiji ImageJ Software was utilized for image plots 

of the maximum intensity of z-projections, image analysis, and quantification of 

colocalization. To distinguish signal from background, minimum values for α-SMA 

(green) and F-actin (red) intensities were manually determined as a threshold by Fiji 

ImageJ software using JACoP plugins for each image. In addition, α-SMA expression 

was quantified using the sum of fluorescent intensity of α-SMA normalized to the in 

sum of fluorescent intensity of F-actin with the same threshold setting for each channel 

to avoid background signal. 

3.2.9 Murine splinted excisional wound healing studies and α-SMA 

immunostaining 

The murine splinted excisional wound healing studies were performed in 8-

week-old BALB/cJ mice. The splint was used to prohibit murine physical wound 

contraction via the panniculus carnosus and loose attachment of the murine dermis, the 

primarily wound healing process used by mice, and to thereby employ a model better 

able to mimic the human wound healing processes that depend on granulation tissue 

formation and myofibroblast wound contraction via reorganization of granulation tissue, 

epithelialization, cellular proliferation, and angiogenesis (56-58). The splint was 

prepared using a silicone sheet, which was cut into disks (O.D. = 14 mm and I.D. = 6.35 

mm) and sterilized by rinsing in 70% ethanol. OpSite wound dressing was cut into a 

similarly sized circle with a 14 mm diameter. Mice were anesthetized using isoflurane 



 96 

and the fur on the back of mouse was removed using an electric razor. The area was 

sterilized with 4% chlorhexidine and isopropanol using a cotton tipped applicator. One 

wound per mouse was created at the mouse’s midline at the level of the shoulders using 

a biopsy punch (D = 5 mm), as in prior published studies (56, 58). Then, the wound was 

treated with by application of 35 µL of saline, HCM gel with/without rVEGF (1 µg per 

wound), or VEGF-GAHCM with/without CMP tethering (200 µg/mL of pVEGF per 

wound, PEI or 50 CP polyplexes). To secure the splint, Krazy Glue was added dropwise 

on the outside edge of the silicone ring, and the splint was attached onto the top of the 

wound such that the inside orifice of the silicon ring encircled the wound. OpSite wound 

dressing was subsequently applied on the top side of the attached silicone ring. 6 to 8 

interrupted sutures (5-0 Vicryl Suture with Cutting Needle, Ethicon Inc.) were placed 

around the outer edge of the O-ring to further secure the splint. Splints were maintained 

on the mice until Day 7, and then the splints were removed, as mice typically self-

remove the splints between day 6 and 7, resulting in the secondary damage and 

misleading results (58). Body weights of the mice and photographs of the wound bed 

were recorded at days 0, 1, 3, 7, 10, and 14. Wound closure was calculated from photos 

obtained from 6 or 12 mice per group at each time point. As in prior sutdies (57, 59), 

the area of the remaining open wound was measured manually by the author using Fiji 

ImageJ software, and the area of the wound at various time points was compared to the 

wound area at day 0 and expressed as a percentage of its original size for wound closure 

analysis. After euthanizing mice at days 7 or 14, the wound skin tissue was collected 

using surgical scissors and fixed in 2% paraformaldehyde. For immunohistology 

analysis, the tissues were embedded in OCT for freezing and cut into 10 µm sections. 

Tissue sections were stained for ⍺-SMA and nuclei as described in section 2.8.  Tissue 
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section slides were incubated for 2 h with mouse anti-goat IgG (0.01 mg/mL, Sigma-

Aldrich) at room temperature. After rinsing with PBS, tissue section slides were 

incubated with α-SMA-FITC antibody or mouse IgG2a-FITC control antibody (1:100), 

and the nuclear stain Hoechst 33258 (1:500) was applied overnight at 4 ºC. After rinsing 

with PBS, the tissue sections were mounted with a ProLongTM Gold Antifade mountant. 

The stained entire tissue sections were visualized using a tile function via Zeiss Axio 

Observer 7 inverted microscope with 10× objective. An average of ⍺-SMA expression 

was quantified using Fiji ImageJ analyses performed on 5 random non-overlapping 

images within the wound or within the normal skin of each tissue section sample, 

marked as white/pink boxes in Figure 3.17, with six samples per group. While the 

dimensions of the pink boxes delineating the expanded regions of the image appear 

different in the non-expanded (tiled) view, the sizes of the expanded areas assessed were 

identical. As a result of the difference in size of skin tissue sections, the tiled images 

have the widths of the macroscopic skin sections, which varied slightly between samples. 

Thus, to standardize these images to the same figure width in Figure 3.17, some of the 

tiled images had to be expanded. The average of the ⍺-SMA expression measured within 

the wound was further normalized to the average of ⍺-SMA expression within the 

normal skin, which has minimum level of ⍺-SMA expression, for measuring relative 

expression between the groups. 

The skin wound tissue sections after 14 days of treatment were additionally 

analyzed for collagen deposition in the healed wounds using a Leica SP8-MP 

confocal/multiphoton microscope to detect forward and reverse second harmonic 

generation (SHG) signals with a 20× water immersion HCX APO L (1.00 NA) objective. 

The SHG signals generated from the collagen fibers in the skin wound tissue sections 
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were detected using a HyD-RLD2 with an emission filter in the range of 435-485 nm 

for detection of the backward SHG and a photomultiplier tube (PMT) with an emission 

filter in the range of 417-477 nm for detection of the forward SHG at 910 nm with the 

maximum laser output. The ratio of forward/backward signal was determined using 

integrated density measurements within select regions of interest, applying the same 

threshold range for 3 images in each mouse skin wound tissue section, as described in 

(33, 60). 

3.2.10 Statistical Analysis 

Unless indicated, all experimental data were expressed as the mean ± standard 

deviation of the mean. The statistical significance was analyzed using Kaleidagraph 4.0 

(Synergy software) and Origin (OriginLab Corporation). Sample groups were compared 

using either one-way or two-way analysis of variance (ANOVA) with a Tuckey’s post-

hoc test for multiple comparison with a significance of 0.05. 

3.3 Results 

3.3.1 Polyplex stability and distribution in GAHCM 

To investigate whether the CMP-modified polyplexes were stably distributed 

and retained in the GAHCM, confocal microscopy imaging was used to analyze the 

location of CFCMP-PEI and YoYo-3 plasmid within GAHCM (Figure 3.1.(A)). The 

hydrogel matrix was visualized by the reflected or back-scattered light from collagen  
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fibers (61), and the colocalized signals of YoYo-3-plasmid and CFCMP-PEI were 

distributed throughout the GAHCM. Analyses comparing the sum of fluorescence 

intensity (F-intensity) per volume of YoYo-3 plasmid and CFCMP-PEI revealed that 

polyplexes with greater CMP modification (50% CMP modified polyplex, or 50 CP) 

presented 2.7-fold greater retention of polyplexes in GAHCM as compared to non-CMP 

modified polyplexes (Figure 3.1(B)). The sum of F-intensity per volume for 50  
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Figure 3.1. Polyplex distribution and stability in HCM hydrogel. (A) Representative 
confocal microscope images of fluorescently labeled polyplex (GLuc for 
Cyan and CFCMP-PEI for Margenta) and autofluorescence of collagen 
(Grey). 1 unit = 21.34 µm. (B) Image quantification for sum of fluorescent 
intensity of polyplex (GLuc for Blank and CFCMP-PEI for Grey) in HCM 
hydrogel. (C) Co-localization image analysis for stability of polyplex in 
ECM hydrogel. Mander’s coefficient (M2) indicates CFCMP-PEI voxels 
overlap GLuc voxels, range from 0 (no co-localization) to 1 (complete co-
localization). PEI: DNA/PEI complex, 20CP: 20% CMP modified 
DNA/PEI complex, 50CP: 50% CMP modified DNA/PEI complex. Each 
data point represents the mean ± standard deviation for total of 5 images.  
The statistically significant differences to PEI state *P<0.01 and **P<0.001. 
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CP was 2.5 times higher than the sum of F-intensity for 20% CMP modified polyplex 
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Figure 3.2. Polyplex distribution and stability in collagen hydrogel. (A) Representative 
confocal microscope images of fluorescently labeled polyplex (GLuc for 
Cyan and CFCMP-PEI for Margenta) and autofluorescence of collagen 
(Grey). 1 unit = 21.34 µm. (B) Image quantification for sum of fluorescent 
intensity of polyplex (GLuc for Blank and CFCMP-PEI for Grey) in 
collagen hydrogel. (C) Co-localization image analysis for stability of 
polyplex in collagen hydrogel. Mander’s coefficient (M2) indicates 
CFCMP-PEI voxels overlap GLuc voxels, range from 0 (no co-localization) 
to 1 (complete co-localization). PEI: DNA/PEI complex, 20CP: 20% CMP 
modified DNA/PEI complex, 50CP: 50% CMP modified DNA/PEI 
complex. Each data point represents the mean  ±  standard deviation for 
total of 5 images. 
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(20 CP). Moreover, the 50 CP polyplexes were retained to a greater extent in collagen-

only hydrogels than the 20 CP or PEI polyplexes (Figure 3.2(B)). Thus, the greater 

retention of CMP-modified polyplexes in GAHCM was attributed to the ability of 

CMPs to strand invade with native collagen, which is in agreement with our previous 

studies showing the prolonged retention of CMP-modified polyplexes in both collagen 

and collagen-fibrin gel formulations (30, 33). In addition, analysis of the colocalization 

of CFCMP-PEI voxels overlapping the YoYo-3-plasmid voxels demonstrated an almost 

complete colocalization for 50 CP samples (0.93 ± 0.07) and less colocalization for 20 

CP samples (0.68 ± 0.06) (Figure 3.2(C)) in collagen-only hydrogels. Meanwhile, 

GAHCM showed an almost complete colocalization of YoYo-3 plasmid and CFCMP-

PEI for 50 CP samples (0.93 ± 0.07), but only slightly lower colocalization for 20 CP 

samples (0.85 ± 0.06) (Figure 3.1(C)), indicating that polyplexes with CMP 

modification were more intact within the GAHCM, as compared to collagen-only 

hydrogel. 

3.3.2 Model gene transfer from GAHCM 

The ability of the GAHCM to sustain and control transient gene expression over 

prolonged time periods was evaluated with NIH/3T3 fibroblasts due to the minimal 

variability of the response with these cell types. Gene expression by NIH/3T3 

fibroblasts cultured in GAHCM or polyplexes in collagen hydrogel was monitored daily 

to determine the effects of CMPs on gene expression in the various samples (Figure 

3.3(A)). Statistically significant increases in gene expression were observed for 50 CP 

polyplexes in collagen at day 5, 20 CP GAHCM at days 3, 5, and 7, and 50 CP GAHCM 

at days 3 and 5, as compared to the PEI polyplexes in collagen hydrogel (at a given 
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timepoint). Overall, CMP modification of the polyplexes enhanced gene expression in 

both polyplexes in collagen hydrogel and GAHCM, although CMP modification of 

polyplexes in the GAHCM further amplified this enhancement.  

Based on our observation of enhanced gene transfer in the presence of HA, I 

hypothesized that HA-CD44 interactions might be stimulating gene transfer by CMP-
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Figure 3.3. GLuc transfection of fibroblast 3D cultured in GAHCM. (A) Gaussia 
Luciferase expression of fibroblast cultured in GLuc encoding polyplex 
modified i) collagen (Circle) and ii) HCM (Triangle) hydrogel for 7 days. 
GLuc expression is normalized to the highest GLuc expression point, (A-
ii) 50 CP at day 3. (B) Gaussia Luciferase expression of fibroblast 
cultured in GLuc encoding polyplex modified HCM hydrogel for 7 days 
with pre-treatment with i) IgG Rat antibody (Triangle) and ii) Anti-CD44 
(IM7) Rat antibody (Square). GLuc expression is normalized to the 
highest GLuc expression point, (B-ii) PEI at day 3.  PEI for Dark grey, 
20CP for Grey, and 50CP for Blank. Each data point represents the mean  
±  standard error for n=5.  The statistically significant differences to (A-
i) PEI for A or (B-i) PEI for B at each time point state *P<0.05 and 
**P<0.0001 
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modified polyplexes in GAHCM. In order to evaluate HA-CD44 interactions in the 

HCM hydrogel, immunostaining of fibroblasts cultured in either collagen or HCM 
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Figure 3.4. CD44 (IM7) immunostained NIH3T3 cells. (A) Representative fluorescent 
microscopic images of CD44 immunostained fibroblasts seeded on the 
tissue culture plate. (B) Representative confocal image of CD44 
immunostained fibroblasts 3D cultured in collagen or HCM for 2 days. 
The scale bars are 40 µm. (Green - CD44/IgG control and Red - F-actin) 
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hydrogel was conducted; these studies showed an enhancement of the CD44 signal on 

fibroblasts cultured in the HCM hydrogel (Figure 3.4). To investigate how HA-CD44 

affected fibroblast transfection efficiency, fibroblasts were pre-treated with a CD44-

blocking antibody to prevent the interaction between the CD44 receptor and the HCM 

hydrogel, prior to culture in the GAHCM. The trends for gene expression of the various 

GAHCM samples were similar with and without the addition of the IgG control 

antibody. In contrast, blocking the CD44 receptor in the fibroblasts resulted in highly 

significant reductions in gene expression of up to 10-fold for the 20 CP and 50 CP 

samples in GAHCM, as compared to the gene expression levels for 20 CP and 50 CP in 

IgG control GAHCM. However, the CD44-blocking antibody treatment induced a 

surprising increase in gene expression at all timepoints for fibroblasts growing in the 

PEI-containing GAHCM, with a 10-fold increase in gene expression at day 3 as 

compared to in the PEI-containing GAHCM treated with the IgG control antibody 

(Figure 3.3(B)). 

3.3.3 VEGF gene transfer from GAHCM 

Due to the crucial roles of VEGF in regulating angiogenesis, epithelization, and 

collagen deposition, sustained VEGF activity during wound healing is key for complete 

healing (62). Thus, I next sought to test the capacity of VEGF-A encoding GAHCM to 

induce VEGF production and signaling. VEGF expression by fibroblasts cultured in 

VEGF-A encoding GAHCM was measured using VEGF-A ELISA to evaluate the 

efficiency of GAHCM gene transfer. To accurately quantify and compare differences in 

VEGF expression within proliferating cells, VEGF levels were normalized by the total 

cell number at each time point. Both the total fibroblast count and the fibroblast viability 

at each timepoint showed that there were greater numbers of viable fibroblasts in the 
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HCM hydrogel and in the rVEGF-HCM hydrogel than in the VEGF-GAHCM hydrogel 

(Figure 3.5(A) & Figure 3.6(A)). VEGF levels detected in both the culture-conditioned 

media and in the hydrogel, however, indicated an overall increase in VEGF expression 

by fibroblasts cultured for 7 days in the VEGF-GAHCM, especially with CMP-

modification, and statistically significant increases were detected at days 5 and 7 in the 

50 CP VEGF-GAHCM sample, as compared to fibroblasts cultured in HCM hydrogel 

(Figure 3.5(B) & Figure 3.7). In contrast, the amount of VEGF detected in the HCM 

hydrogels loaded with recombinant VEGF-A protein decreased over time in culture; 

only 11% of initial amount (1800 pg) remained  
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Figure 3.5. The bioactivity of expressed VEGF by NIH3T3 cultured in VEGF encoding 
GAHCM for 7 days. (A) The fibroblast viability after 2, 4, and 6 days of 
cultured in VEGF-GAECM is normalized to fibroblast cultured in HCM 
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days. VEGF-A expression is measured from condition culture media 
(Dark Grey) and homogenized gel (Grey) Each data point represents the 
mean  ±  standard deviation for n=4. 
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after day 1, with further reductions to 5.5% at day 7. This result was attributed to the 

known instability and short half-life (30 min) of recombinant VEGF protein under 

physiological conditions (63, 64). The VEGF levels for cells growing in CMP-modified 
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distribution using (B-ii) normalized to total fibroblast count. Each data 
point represents the mean ±  standard deviation for n=4. 
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VEGF-GAHCM, however, increased over the 7-day culture period, with statistically 

significant increases in VEGF levels in the 50 CP samples at days 5 and 7, when 

compared to PEI at the same timepoints. Taken together, similar to our observations of 

GLuc activity from GLuc-encoding GAHCM (Figure 3.3(A-ii)), the increased 

availability of CMP-modified polyplex and its strengthened interaction with the HCM 

hydrogel together stimulated sustained production of VEGF by the cells at least for 7 

days, with maximized production at day 5.  

I next sought to evaluate the distribution of fibroblasts within the VEGF-

encoding GAHCM hydrogel; the distribution of non-transfected versus transfected 

fibroblasts was assessed by tracking the location of fibroblasts whose nuclei were 

labelled with Hoechst 33258. The schematic in Figure 3.6(B-i) illustrates the 

distribution of fibroblasts, transfected fibroblasts, and expressed VEGF-A in VEGF-

Figure 3.7. VEGF-A expression of NIH3T3 cultured in VEGF encoding GAHCM for 
7 days. VEGF-A measurements from condition media (Dark grey) and 
homogenized gel (Grey) were normalized to total cell counts. Each data 
point represents the mean ± standard deviation for n=4. The statistically 
significant differences of total VEGF-A amounts per cell state +P<0.05 
and ++P<0.001 compared to HCM, #P<0.05 and ##P<0.001 compared 
to rVEGF, and *P<0.05 and **P<0.001 compared to PEI. 
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GAHCM. I expected the expressed VEGF-A to be concentrated away from the top of 

the VEGF-GAHCM where the culture media was replaced with fresh media every other 

day, and thus, that fibroblasts would migrate towards the bottom of the hydrogel, 

following the VEGF-A gradient. The locations of the cells over time were defined in 30 

µm ‘slices’ based on z-stack imaging, with three 30 µm slices comprising the top, center, 

and bottom of the VEGF-GAHCM gel. Non-transfected fibroblasts in the HCM 

hydrogel or in the rVEGF-HCM hydrogel were dispersed uniformly in the z-direction 

of the gels over 5 days of culture, although fibroblasts migrated to the top of the HCM 

hydrogel by day 7 (Figure 3.6(B)). In contrast, the fibroblast distribution in VEGF-

GAHCM showed a trend aligned with our expectations, with fibroblasts migrating 

toward the bottom of the hydrogel starting from day 3. Specifically, 60% of the 

fibroblasts were located at the bottom of the 50 CP VEGF-GAHCM at day 3, and 90% 

were located at the bottom at day 7. 

3.3.4 VEGF-GAHCM-mediated myofibroblast-like phenotype 

To evaluate the biological activities of both VEGF-A and CD44, myofibroblast-

like phenotype was observed via immunocytochemical staining to detect ⍺-smooth 

muscle actin (⍺-SMA). The expression of α-SMA also was quantified in fibroblasts 

cultured in the VEGF-GAHCM at day 3 and day 7 (Figure 3.8). At day 3, more intense 

α-SMA signals were observed for fibroblasts cultured in VEGF-GAHCM, in agreement 

with the α-SMA expression quantification analysis. Statistically significant differences 

in α-SMA expression were observed between fibroblasts cultured in PEI, 20 CP, and 50 

CP VEGF-GAHCM versus the expression from fibroblasts cultured in the HCM 

hydrogel (Figure 3.8(A)&(B)). At day 7, α-SMA expression by fibroblasts cultured in 

50 CP was still present at significantly higher levels than the levels detected in 
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fibroblasts cultured in the PEI, rVEGF, and HCM hydrogels. In addition, to identify 

myofibroblast-like phenotype characterized by the contractile element of the expressed 

α-SMA, the polymerized form of cytoplasmic actin microfilaments (stress fibers) 

containing α-SMA was further identified via colocalization analysis of α-SMA staining 

HCM rVEGF PEI 20 CP 50 CP

⍺-
SM

A
F-

ac
tin

M
er

ge
⍺-

SM
A

F-
ac

tin
M

er
ge

D
ay

 3
D

ay
 7

(A) (B)

(C)

*

+

+

++, ##, **

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 7

M
an

de
r's

 C
oe

ffi
ci

en
t (

M
2)

Fibroblast incubation time (day)

ECM rVEGF PEI 20 CP 50 CPHCM

+,*
##,**

+,#

+,##,*

Figure 3.8. VEGF-GAHCM mediated myofibroblast transformation. (A) Representative 
confocal microscope images of ⍺-SMA expressed fibroblasts cultured in 
VEGF-GAHCM for 3 or 7 days (⍺-SMA for green, F-actin for red, and 
nuclei for blue). Scale bar is 100 µm. (B) ⍺-SMA quantification using 
confocal images (HCM for Blank, rVEGF for Dark grey, PEI for Grey, 
20CP for Stripe, and 50CP for Dot). Sum of F-intensity for ⍺-SMA  is 
normalized to sum of F-intensity for F-actin.  (C) Co-localization image 
analysis to define stress fibers in expressed a-SMA. Mander’s coefficient 
(M2) indicates ⍺-SMA voxels overlap F-actin voxels, range from 0 (no co-
localization) to 1 (complete co-localization).. Each data point represents the 
mean  ±  standard deviation for total of 4 images. The statistically 
significant differences state +P<0.05 and ++P<0.001 compared to HCM, 
#P<0.05 and ##P<0.001 compared to rVEGF, and *P<0.05 and **P<0.001 
compared to PEI. 
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overlapping with F-actin staining as described in previous studies (65, 66). The fraction 

of α-SMA (green) that colocalized with the F-actin (red) was analyzed by calculation of 

the Mander’s coefficient (M2). ⍺-SMA overlapped with the F-actin signal at 

significantly higher (ca. 2-fold) levels for the VEGF-GAHCM (0.8) relative to the 

rVEGF and HCM hydrogels  (0.4) at day 3 (Figure 3.8(C)). At day 7, the overlap of the 

Figure 3.9.  VEGF encoding polyplex integrated collagen hydrogel mediated 
myofibroblast transformation. (A) Representative confocal microscope 
images of ⍺-SMA expressed fibroblasts cultured in VEGF-GAHCM for 3 
or 7 days (⍺-SMA for green, F-actin for red, and nuclei for blue). Scale bar 
is 100 µm. (B) ⍺-SMA quantification using confocal images (HCM for 
Blank, rVEGF for Dark grey, PEI for Grey, 20CP for Stripe, and 50CP for 
Dot). Sum of F-intensity for ⍺-SMA  is normalized to sum of F-intensity 
for F-actin.  (C) Co-localization image analysis to define stress fibers in 
expressed a-SMA. Mander’s coefficient (M2) indicates ⍺-SMA voxels 
overlap F-actin voxels, range from 0 (no co-localization) to 1 (complete 
co-localization). 
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α-SMA and F-actin signals for the 50 CP VEGF-GAHCM was still significantly higher  

than the overlap observed for PEI, rVEGF, and HCM hydrogels. Moreover, the  

expanded versions of images were used to analyze Figure 3.9 (Figure 3.10) confirmed 

more clear colocalization between α-SMA and F-actin signals with at least three 

continuous straight overlapping lines in VEGF-GAHCM samples at day 3 and 50 CP 

VEGF-GAHCM at day 7, indicating the differentiated myofibroblast-like phenotypic 

appearance [66]. Thus, CMP modification of VEGF-GAHCM sustained ⍺-SMA 

expression, consistent with myofibroblast differentiation, for at least 7 days.  
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Figure 3.10. VEGF-encoding GAHCM mediated myofibroblast-like differentiation. 
Representative confocal microscope images of ⍺-SMA expressed 
fibroblasts cultured in VEGF-GAHCM for 3 or 7 days. (⍺-SMA for green, 
F-actin for red, and nuclei for blue) to demonstrate localization of ⍺-SMA 
signals on the F-actin fibers. Scale bar is 50 µm. 
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To determine the impact of HA-CD44 signaling on α-SMA expression, I performed the 

same α-SMA expression analysis using VEGF-polyplex incorporated in a collagen 
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Figure 3.11. VEGF-encoding HCM hydrogels mediated ⍺-SMA expression in 
fibroblasts pre-treated with CD44 antibody. (A) Representative confocal 
microscope images of ⍺-SMA expressed fibroblasts cultured in VEGF-
polyplex incorporated collagen hydrogel for 3 or 7 days (⍺-SMA for 
Green, F-actin for Red, and nuclei for blue). Scale bar is 100 µm. (B) ⍺-
SMA quantification using confocal images (HCM for Blank, rVEGF for 
Dark grey, PEI for Grey, 20CP for Stripe, and 50CP for Dot). Sum of F-
intensity for ⍺-SMA  is normalized to sum of F-intensity for F-actin.  (C) 
Co-localization image analysis to define stress fibers in expressed a-SMA. 
Mander’s coefficient (M2) indicates the extent to which ⍺-SMA voxels 
overlap F-actin voxels (with a range from 0 (no co-localization) to 1 
(complete co-localization)). The statistically significant differences are 
indicated as #P<0.05 and ##P<0.001 compared to rVEGF, and *P<0.05 and 
**P<0.001 compared to PEI. 



 113 

hydrogel lacking HA (Figure 3.9). The α-SMA expression quant ification and 

colocalization analysis revealed a similar trend as for the HCM hydrogel (Figure 3.8). 

However, due to low mechanical stiffness and limited long-term stability of the collagen 

hydrogel (67), an unequal cell distribution was observed within the hydrogel with 

increasing culture time (Figure 3.11), thus preventing a direct comparison of 

microscopy images of cells from the different z-locations in the collagen hydrogel 

(toward the bottom) vs. the HCM hydrogel. On the other hand, the α-SMA expression 

quantification and colocalization analysis revealed a greater reduction in α-SMA and 

less stress fiber formation in the 20 CP and 50 CP (Figure 3.10) HCM hydrogels for the 

CD44 receptor pre-blocked fibroblasts, indicating that HA-CD44 signaling was 

involved in the myofibroblast differentiation.  

Figure 3.12. TGF-β1 expression of NIH3T3 cultured in VEGF encoding GAHCM for 7 
days. TGF-β1 measurements from condition culture media for each sample 
(HCM for Blank, rVEGF for Dark grey, PEI for Grey, 20CP for Stripe, and 
50 CP for Dot) were normalized to total cell counts. Each data point 
represents the mean  ±  standard deviation for n=4. The statistically 
significant differences of total VEGF-A amounts per cell state +P<0.05 and 
++P<0.001 compared to HCM, #P<0.05 and ##P<0.001 compared to 
rVEGF, and *P<0.05 and **P<0.001 compared to PEI.  
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To understand whether TGF-β1 induced by VEGF triggered myofibroblast-like 

phenotypic feature, I further evaluated TGF-β1 expression by fibroblasts cultured in 

VEGF-GAHCM for 7 days. In order to minimize effects arising from different cell 

numbers (Figure 3.6(A)), TGF-β1 amounts were normalized to the total cell number at 

each time point. TGF-β1 quantification of the collected culture media showed 4-fold 

higher expression levels for 20 CP and 3-fold higher levels for PEI and 50 CP than HCM 

at day 1, and significantly higher levels for 50 CP than any other samples at days 3 and 

5 (Figure 3.12 & Figure 3.13(A)). These TGF-β1 levels of fold increase by VEGF-

GAHCM were similarry observed in the previous studies, with approximately 2.8-fold 

increase TGF-β1 levels in rabbit fibrotic trabeculectormy eye tissue sample with a high 

myofibroblasts activity, as compared with normal rabbit eye samples [8]. Surprisingly, 
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Figure 3.13. TGF-β1 expression (pg) of NIH3T3 cultured in (A) VEGF encoding 
GAHCM and (B) GLuc encoding GAHCM for 7 days. (A) TGF-β1 from 
condition culture media for each sample (HCM for Blank, rVEGF for 
Dark grey, PEI for Grey, 20 CP for Stripe, and 50 CP for Dot) were 
measured using TGF-β1 ELISA. Each data point represents the mean  ±  
standard deviation for n=4. (B) TGF-β1 from condition culture media for 
each sample (GLuc-PEI for Grey, GLuc-20CP for Stripe, and GLuc-50 
CP for Dot) were measured using TGF-β1 ELISA. Each data point 
represents the mean  ±  standard deviation for n=3. 
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TGF-β1 expression for the rVEGF positive control was slightly higher than that of the 

HCM samples at day 1, and this sample maintained similar levels of TGF-β1 as the 

HCM samples at days 3, 5, and 7.  

Thus, the VEGF-GAHCM was more effective for stimulating TGF-β1 

production than the rVEGF, even though the VEGF-GAHCM presented VEGF-A at 

concentrations that were nearly 15-fold lower than those of the rVEGF at day 1. 

Negative control experiments revealed that fibroblasts transfected by GLuc-GAHCM 

did not show increased TGF-β1 expression (Figure 3.13(B)), confirming that it was the 

VEGF-GAHCM that enhanced TGF-β1 production during culture. In particular, 

fibroblasts cultured in 50 CP sustained high TGF-β1 expression up to day 5. Taken 

together, these results suggest that TGF-β1 induced by the expressed VEGF triggered 

myofibroblast-like phenotypic transformation, with the enhanced TGF-β1 production 

directly correlated with the increased α-SMA expression and myofibroblast-like 

phenotypic feature. Moreover, the 50 CP hydrogels sustained the highest levels of TGF-

β1 production, which supported myofibroblast-like phenotypic features over at least 7 

days. 

3.3.5 In vivo wound healing and ⍺-SMA expression 

To evaluate the efficacy of VEGF-GAHCM for stimulating wound repair, I 

investigated in vivo wound healing using a mouse splinted excisional wound model. 

Based upon in vitro analyses, I predicted that the topical application of CMP-modified 

VEGF-GAHCM (50 CP) on the wound would engage and extend the myofibroblast 

transformation response, resulting in robust wound healing and accelerated wound 

closure. Wounds were treated with saline, HCM hydrogel, recombinant VEGF in HCM 
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hydrogel, or VEGF-GAHCM (PEI and 50 CP) and evaluated for 14 days. No significant 

changes were observed in the mouse body weights across all sample groups, indicating 

no adverse effects from the surgical process and materials (Figure 3.14). The wound 

closure process was recorded for 14 days, and wound size was quantified at various time 

points relative to the initial wound size (Figure 3.15 and Figure 3.16). At day 3, the 

wound size in PEI- (80.4%) and 50 CP- (77.1%) treated wounds was significantly 

reduced as compared to rVEGF- (87.7%), HCM- (89.7%), or saline- (91.7%) treated 

wounds. Furthermore, at day 7 (immediately prior to splint removal), wounds treated 

with PEI (63.5%) or 50 CP (62.0%) were significantly more closed than those treated 

with saline (78.6%) or HCM (75.2%), indicating that the bioactive VEGF produced by 

transfected cells using VEGF-GAHCM effectively stimulated healing responses leading 

to wound closure. After removing the splint to prevent secondary damage (58), the 

healing effect of 50 CP (19.3%) continued to reduce the wound size, with approximately 

15% more closure in 50 CP treated wounds than in saline treated wounds (35.8%) at 

day 10. By day 14, wounds treated with 50 CP (10.2%) exhibited significantly increase 

wound closure compared to wounds treated with saline (21.0%) or HCM (16.7%), 

Figure 3. 14. Body weight of mouse during the wound healing studies. Each data point 
represents the mean  ±  standard deviation for n=12 for Day 0,1, and 3, 
and n=6 for Day 10 and 14. 
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showing that the extended VEGF bioactivity induced by 50 CP treatment triggered 

accelerated closure. However, no statistically significant differences were observed 

between PEI and 50 CP treated wounds.  

 

Figure 3.15. In vivo wound healing evaluation. (A) The schematic of the mouse 
splinted excisional wound model. After application of treatment, mouse 
was sutured with a silicone O-ring and covered with a Opsite dressing. 
The silicone O-ring was removed at day 7. (Created with Biorender.com) 
(B) Photograph of skin wounds. (C) The wound closure evaluation for 
14 days. Each data point represents the mean  ±  standard deviation for 
n=12 for Day 0,1,3, and 7 and n=6 for Day 10 and 14. [*P < 0.05 for 
samples relative to Saline, #p < 0.05 for samples relative to HCM, and 
+P < 0.05 for samples relative to rVEGF]. 
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To investigate whether the observed wound healing behavior was correlated 

with myofibroblast activity, myofibroblasts in the wound bed were detected using an 

immunostaining analysis for ⍺-SMA at days 7 and 14. The specificity of ⍺-SMA 

antibody was confirmed with the minimal signal on mouse skin tissue sections using 

IgG control antibody (Figure 3.17). Due to the variation of ⍺-SMA expression in the 

Saline HCM rVEGF PEI 50 CP

Figure 3.16. Representative IVIS image of mouse with splinted excisional wounds at 
day 0. 
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Figure 3.17. The tiled images of mouse IgG2a-FITC control antibody-stained mouse 
skin wound after 7 or 14 days of treatment with VEGF-GAHCM (⍺-
SMA  for green and nuclei for blue). Scale bar is 800 µm 
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native mouse skin tissues, ⍺-SMA expression in the wound bed was determined relative 

to ⍺-SMA expression in the native mouse skin (Figure 3.18). The lower magnification 

images on figure 3.18 were used to capture the overall distribution of ⍺-SMA in the 

healed wound, as compared to the distribution in native skin. And, the higher 

mamigification images with similar power level with previously reported literature (68-

71) were used to illustrate ⍺-SMA expression levels and cellular morphology in order 

to enable comparison between groups and time points. Overall, ⍺-SMA expression 

levels at day 7 were higher than ⍺-SMA expression levels at day 14 in HCM, rVEGF, 

(A) (B)
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Figure 3. 18. ⍺-SMA expression in mouse skin wound after treatment with VEGF-
GAHCM  (A) The tiled images of ⍺-SMA expression in mouse skin wound 
tissue section after 7 or 14 days of treatment with VEGF-GAHCM (⍺-
SMA  for green and nuclei for blue) and the zoom-in image of pink-colored 
box in the tiled images (⍺-SMA  for green). s = native skin and w = wound. 
Scale bar is 800 µm and scale bar for zoom-in image is 60 µm. (B) ⍺-SMA 
quantification using images for five different areas (white/pink-colored 
boxes) in the wound or native skin of each tiled image. Each data 
represents the average of fluorescent intensity of ⍺-SMA in the wound is 
normalized to average of fluorescent intensity of ⍺-SMA in the native skin 
for each tiled image. The lines represent the mean ± standard deviation for 
total 6 mouse. The statistically significant differences state *P<0.05 for 
samples relative to Saline and #P<0.05 for samples relative to HCM. 
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PEI, and 50 CP-treated wounds, whereas similar ⍺-SMA expression levels were 

observed at days 7 and 14 in saline-treated wounds. At day 7, ⍺-SMA expression in 50 

CP-treated samples (12 a.u.) was enhanced approximately 6-fold and 4-fold as 

compared to expression in saline- (2 a.u.) or HCM- (3 a.u.) treated wounds, respectively, 

and ⍺-SMA expression in PEI-treated wounds (9 a.u.) was increased 4.5-fold higher 

than in saline-treated wounds. By day 14, ⍺-SMA expression in 50 CP-treated wounds 

(6 a.u.) was still higher than expression in other groups (PEI (4 a.u.), and rVEGF, HCM 

and saline (2 a.u.)), but the differences were not statistically significant.  This 

observation suggests that VEGF produced by 50 CP effectively engaged α-SMA 

expression in the wound bed.   

In addition, I further evaluated collagen deposition, typically stimulated by 

myofibroblasts, in the healed skin wound tissue sections. Specifically, SHG imaging 

was used to detect the non-centrosymmetric structure of collagen fibers. Mature fibrils, 

which normally represent type I collagen, generate more SHG signal in the forward 
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Figure 3.19. Collagen analysis in wound tissue sections after 14 days of treatment. (A) 
The representative SHG images of forward and backward scattering in the 
wound tissue sections. Scale bar is 40 µm. (B) Forward/Backward SHG 
ratio. Each data represents the mean ± standard deviation for total 6 mouse. 
The statistically significant differences state %P<0.05 for samples relative 
to Native, &P<0.05 for samples relative to Saline, +P<0.05 for samples 
relative to HCM, and #P<0.05 for samples relative to rVEGF. 
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direction, whereas immature fibrils, which normally represent type III collagen, produce 

more SHG signal in the backward direction (72). With an agreement of our previous 

observation (33), the intensity of the SHG signals in both the forward and backward 

directions for all treated wound tissue sections were visibly lower than the SHG signals 

for the native skin tissue sections, most likely because of the difference in the orientation 

of the collagen found in native skin (dense reticular pattern) vs. healed wounds (loose 

parallel bundles) (73) (Figure 3.19). The image quantification for the ratio of forward-

emitted to backward-emitted SHG revealed a ratio of ~1 in the 50 CP treated wounds 

after 14 d, however, which was close to the ratio of ~1 that was detected in the native 

skin tissue section; moreover, the ratio in the 50 CP treated wounds exhibited a 

statistically different value than the ratios detected in all other treated samples (saline, 

HCM, and rVEGF). This result indicates that myofibroblast behavior stimulated by 50 

CP VEGF-GAHCM application resulted in collagen deposition with a similar mature to 

immature collagen ratio as healthy skin tissue. 

3.4 Discussion 

Despite the great promise for growth factor therapy in wound and tissue repair, 

controlling growth factor acitivty and cell phenotype over desired time frames presents 

a significant roadblock to clinical translation. To overcome this challenge, I have 

developed an advanced therapeutic biomaterial, GAHCM, that offers key advantages in 

wound repair based on its capacity for triggering both efficient growth factor gene 

transfer and pro-healing behavior in fibroblasts. 

Anionically charged HA improved the stability and retention of CMP modified 

polyplexes in the GAHCM (Figure 3.1). The negatively charged HA may serve to 

neutralize positive charges within the collagen, thereby preventing charge-repulsions 



 122 

between collagen and polyplexes and thus further stabilizing 20 CP hybridization in 

GAHCM vs. collagen-only (74, 75). In addition, the negatively charged HA might 

interact with the positively charged polyplexes bound on the collagen, and further 

prevent disassembly of the DNA/PEI polyplex (76-78). Overall, greater amounts of 

CMP on the polyplexes were able to improve not only the polyplex stability but also the 

retention in the GAHCM.    

Incorporation of HA also affected the gene transfection efficiency of fibroblasts 

cultured in GAHCM, with evidence indicating that the alterations in gene transfer were 

driven by the HA-CD44 interaction. I demonstrated that blocking HA-CD44 

interactions led to decreased gene expression in the CMP-modified polyplexes within 

the GAHCM (Figure 3.3). HA interacts predominantly with the CD44 receptor to 

regulate various physiological events such as cell-cell and cell-substrate adhesion, cell 

migration, proliferation, intracellular GTPase activation, and HA uptake and 

degradation (46, 79). Specifically, CD44-HA binding promotes cell motility by both 

anchoring to filamentous actin and activating RhoGTPases via recruitment of guanine 

nucleotide exchange factors (GEFs) to the cell membrane (80). The Segura group has 

revealed the crucial roles of the RhoGTPases in regulating the internalization and 

effective intracellular processing of polyplexes for efficient gene transfer (81). An HA-

RGD hydrogel-mediated 3D gene transfer system was employed for inhibition of 

ROCK to block the actin-myosin interaction in mouse mesenchymal stem cells 

(mMSCs), which significantly reduced the overall transgene expression by 81%, 

suggesting that cell motility is important for efficient gene transfer in 3D (82-85). 

Moreover, HA-mediated CD44 signaling in human fibroblasts has also been shown to 

increase production of proinflammatory cytokines such as TNF-⍺, which 
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correspondingly induces MMP secretion for ECM degradation, increased cell migration, 

and improved gene transfer (86). Given that our previous studies demonstrated that 

transfection from CMP polyplex-modified hydrogels was driven by MMP production 

(33), it is likely that the reduction in MMP secretion as a result of CD44 blocking 

diminished CMP-mediated transfection via an MMP-dependent mechanism (Figure 

3.3(B)). Thus, the reduction of gene expression observed for the CMP-modified 

polyplex upon CD44 blocking is more likely due to the interruption of CD44-HA 

signaling, which impacts fibroblast motility and MMP secretion.   

On the other hand, I have observed that blocking the CD44 receptor led to 

increased gene expression in the DNA/PEI polyplex-containing GAHCM (Figure 

3.3(B)). Cellular uptake of DNA/PEI polyplexes occurs through both caveolar and 

clathrin-mediated pathways (87). Clathrin-mediated pathways regulate surface 

expression of receptors for internalization (88); for example, blocking the N-glycan 

usually present on the CD44 receptor has been shown to reduce the interaction with 

clathrin to prevent clathrin-mediated internalization (89). Although important for 

internalization, the clathrin-mediated pathway is not efficient for localization to the 

nucleus to stimulate gene transfection (81). Previous studies, including those from our 

group, have demonstrated that inhibiting the clathrin-mediated pathway resulted in an 

enhancement of gene expression (90, 91). These previous reports and observations are 

consistent with those of the current study. In the current study, blocking the CD44 

receptor caused the inhibition of the clathrin-mediated endocytic pathway for DNA/PEI 

polyplexes. Thus, DNA/PEI polyplexes likely internalized into cells using mainly the 

more efficient caveolar pathway, resulting in increased gene expression in DNA/PEI 

polyplex-containing GAHCM. However, there was no enhancement of gene expression 
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by CD44 blocking in the CMP-modified polyplex GAHCM, in agreement with the 

observation that CMP-modified polyplexes are mainly internalized via caveolar-

mediated pathways (32).  

Next, I observed that fibroblast migratory behaviors were altered in VEGF-

encoding GAHCM.  The difference in the migration of the fibroblasts in the VEGF-

encoding GAHCM vs. HCM and rVEGF-HCM hydrogels (Figure 3.6(B)) likely 

resulted from differences in VEGF-A expression levels (Figure 3.7). Specifically, the 

initial increased level of VEGF-A expression by fibroblasts within the 50 CP VEGF-

GAHCM between day 1 and 3 in culture would be expected to increase the steepness of 

the VEGF-A gradient away from the culture media, which was freshly replaced every 

two days. Correspondingly, the altered VEGF-A profiles in the 50 CP VEGF-GAHCM 

likely increased MMP secretion by the fibroblasts, resulting in the observed further 

accelerated migration at days 5 and 7 following the VEGF-A gradient towards the 

bottom of the 50 CP VEGF-GAHCM (9, 92, 93). In addition, consistent with this 

interpretation, the persistent fibroblast migration in 50 CP VEGF-GAHCM starting 

from day 3 would contribute to enhanced VEGF-A expression at days 5 and 7 (Figure 

3.7). The Shea group also has demonstrated a direct relationship between increasing cell 

migration and increasing gene delivery within hydrogels (94). Cells with persistent 

migration have increased contact with polyplexes retained within hydrogels, leading to 

sustained and elevated gene expression levels. The Shea group results are consistent 

with our observations of the sustained and increased VEGF-A production for 50 CP 

VEGF-GAHCM at day 5 and 7, based on the persistent fibroblast migratory behaviors 

in the 50 CP VEGF-GAHCM. 
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The signals from both VEGF-A and HA-CD44 from the VEGF-GAHCM 

hydrogels stimulated fibroblasts to differentiate into pro-healing myofibroblasts via 

TGF- β1 production (Figure 3.8, 3.9, and 3.12). Myofibroblasts are key cells in the 

regulation of tissue repair and wound healing through ECM deposition, maturation of 

granulation tissue, and vascular network development (95, 96). VEGF-A plays an 

important regulatory role in myofibroblast behavior because of its role as a mediator in 

the fibroblast-to-myofibroblast transformation process (7, 8). Specifically, VEGF-A-

induced TGF-β1 expression leads to myofibroblast transformation through the SMAD-

signaling pathway (97). In addition, HA also plays a key role in facilitating TGF-β1 

dependent fibroblast differentiation through a CD44-mediated, MMP-dependent 

mechanism (47). Relocation of CD44, through interaction with HA, enhances the 

interaction with EGFR in lipid rafts to activate the SMAD pathway through intracellular 

signaling via both the MAPK/ERK pathway and CaMKII, leading to myofibroblast 

differentiation. I have observed indirect evidence of myofibroblast-like phenotype 

change of fibroblast through a lower proliferation rate of fibroblasts cultured in VEGF-

GAHCM (Figure 3.6(A)). The data in Figures 3.8, 3.9, and 3.12 demonstrated that the 

sustained and engaged signals of VEGF-A and HA-CD44 using CMP-modified VEGF-

GAHCM (50 CP) induced the highest levels of TGF-β1 production, leading to the 

increased ⍺-SMA expression and myofibroblast-like phenotypic differentiation over at 

least 7 days.  

Furthermore, in vivo studies using splinted excisional mouse wound models 

revealed the direct correlation between wound closure and ⍺-SMA expression/potent 

myofibroblast activity (Figure 3.15 and Figure 3.18). In agreement with in vitro analyses 

(Figures 3.8 and 3.12), the 50 CP VEGF-GAHCM facilitated the highest levels of 
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wound closure, the highest levels of ⍺-SMA expression, and the closest ratios of mature 

vs. immature collagen fibrils as compared with healthy native skin tissue. These results 

indicated that myofibroblasts transformed by 50 CP VEGF-GAHCM prompted 

granulation tissue formation and collagen deposition, and that these changes to 

fibroblast/myofibroblast behavior contributed to the observed improvements in wound 

closure and healing response. Also, as ⍺-SMA is a marker for smooth muscle cells of 

blood vessels (71, 98), the α-SMA expression at day 14 could potentially indicate the 

presence of newly formed blood vessels in the wound bed. However, the enhancement 

of 50 CP VEGF-GAHCM in in vivo wound closure and ⍺-SMA expression was not 

significantly different from PEI VEGF-GAHCM, despite the differences between these 

samples based on in vitro experiments. The different outcomes in vivo vs. in vitro for 

these samples may be a result of differences in the polyplex concentration in the in vivo 

(200 µg/mL of plasmid VEGF) vs. in vitro (20 µg/mL of plasmid VEGF) studies that 

resulted in increased in vivo transfection using the higher polyplex concentration (99, 

100) and a corresponding masking of differences between samples. Alternatively, the 

different outcomes in vivo vs. in vitro could be due to the multiple cell types that are 

present in the in vivo environment (62, 101). Either of these effects, or combination of 

them both, could result in sufficient production of VEGF by both PEI VEGF-GAHCM 

and 50 CP VEGF-GAHCM to a level that exceeds a threshold for stimulating cells (102, 

103), resulting in similar healing responses. Regardless, the wound closure induced by 

VEGF-GAHCM was directly correlated with increased α-SMA expression and 

myofibroblast-like phenotypic feature, and application of 50 CP VEGF-GAHCM 

resulted in the most efficient wound closure, the highest sustained levels of α-SMA 
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expression, and collagen deposition with the most similar structural properties as native 

skin tissue. 

Altogether, these data demonstrate that the GAHCM induces not only efficient 

gene transfection but also enhanced pro-healing behaviors in fibroblasts for wound 

closure via the complementary effects of CMP gene delivery and HCM signaling. The 

CMP-gene delivery system controls the retention of polyplexes via CMP strand invasion 

with collagen. Furthermore, HCM-cell interactions facilitate cell mobility and ECM 

degradation, which triggers ECM-mediated endocytosis of CMP-polyplexes. Thus, 

harnessing CMP-HCM hydrogel interactions drives a sustained and efficient gene 

transfer process with a high degree of tunability based upon alteration of CMP 

modification. Despite the lower amounts of VEGF expressed versus the amount of 

rVEGF loaded in the HCM, the VEGF produced by cells in the VEGF-encoding 

GAHCM more effectively elicited cellular responses and sustained this activity for at 

least 7 days. These pro-healing responses successfully translated into more efficient 

wound repair in the in vivo wound healing model. The GAHCM thus has substantial 

promise for improved growth factor therapy in chronic wounds treatment with maximal 

cellular responses. 

3.5 Conclusion 

Despite the longstanding potential for growth factor treatment in wound repair, 

difficulties in controlling growth factor activity continue to limit the clinical translation 

of growth factor therapies. I developed a new strategy to exploit synergies in matrix-

mediated gene delivery and matrix-signaling to drive enhanced fibroblast regenerative 

responses for wound closure. In this study, owing to the critical roles of VEGF-A and 

HA in the wound healing process, I have successfully incorporated HA in polyplex-
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loaded collagen hydrogels (GAHCM) for an efficient gene transfer system to produce 

VEGF-A for wound repair. Although this study only focused on one of multifaceted 

roles of VEGF-A in the wound healing process, i.e., the healing responses driven by 

VEGF-A-triggered α-SMA expression and myofibroblast-like phenotype, the 

angiogenic effects of VEGF-A and TGF-β1 in our system also may benefit healing. 

Thus, our approaches may offer benefits to guiding multiple types of cells involved in 

wound healing, including not only fibroblasts, but also keratinocytes, endothelial cells, 

and leukocytes (5). Overall, this study provides further support recommending the use 

of ECM-based materials for long-term retention as well as efficient delivery of 

polyplexes to cells resulting in robust and localized gene transfer to stimulate wound 

healing. 
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VEGF-ENCODING, GENE-ACTIVATED COLLAGEN-BASED MATRICES 
PROMOTE BLOOD VESSEL FORMATION AND IMPROVED WOUND 

REPAIR 

Disruption in vascularization during wound healing can severely impair healing. 

Pro-angiogenic growth factor therapies have shown great healing potential; however, 

controlling growth factor activity and cellular behavior over desired healing time scales 

remains challenging. In this study, I evaluated collagen mimetic peptide (CMP) tethers 

for their capacity to control growth factor gene transfer and growth factor activity using 

our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). 

GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes retained on 

hyaluronic acid (HA)-collagen hydrogels using CMPs. I hypothesized that using CMP-

collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene 

delivery would provide a powerful strategy to modulate the pro-angiogenic behaviors 

of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound 

repair. Due to the ability of fibroblast remodeled collagen to induce tunable gene 

delivery in GAHCM with CMP modification, VEGF-A produced by fibroblast leads to 

the increased growth and persistent migration of ECs for at least 7 days, as compared to 

non-CMP modified GAHCM. Moreover, when ECs were exposed to fibroblast-

containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, 

or 50 CP), high CD31 expression was stimulated, resulting in formation of an 

interconnected EC network with a significantly higher network volume and a larger 

diameter network structure than controls. Application of VEGF-GAHCM with 50 CP 

in murine splinted excisional wounds facilitated prolonged pro-healing and pro-

angiogenic responses resulting in increased blood vessel formation, improved 

granulation tissue formation, faster re-epithelialization, and overall enhanced repair. 

Chapter 4 
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These findings suggest the benefits of CMP-collagen tethers as useful tools to control 

gene transfer and growth factor activity for improved treatment of wounds. 

4.1 Introduction 

Impaired revascularization in injury sites can ultimately impede healing and lead 

to chronic non-healing wounds, which are a persistent societal and economic burden (1, 

2). The estimated health care cost of chronic wounds in the U.S. alone is over $25 billion 

annually (3, 4), and inadequate healing in chronic wounds causes severe complications 

including limb amputations associated with elevated morbidity and mortality (5). Thus, 

enhancing vascularization is a major therapeutic target for developing new wound 

treatments.  

The formation of new blood vessels via angiogenesis is a critical first step 

towards revascularization. During normal wound healing processes, angiogenic 

capillary sprouts form by endothelial cell (EC) migration, proliferation, and enhanced 

endothelial cell-cell interactions to allow leukocyte infiltration, supply growth factors 

and oxygen, and aid granulation tissue formation (1, 6, 7). The dynamic angiogenesis 

process is highly regulated by interactions between ECs, angiogenic soluble factors, and 

surrounding extracellular matrix (ECM). The ECM components such as fibronectin, 

collagen, laminin, and proteoglycans are involved in both normal vessel growth and 

maintenance by providing a scaffold for EC migration, and acting as a reservoir and 

modulator for pro-angiogenic growth factors (8). Pro-angiogenic growth factors, 

including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), 

angiopoietins, and transforming growth factor (TGF-β) activate proangiogenic signals 

in ECs to stimulate angiogenesis and enhance wound healing (6, 8, 9). Hence, 
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manipulating ECM signaling and growth factor presentation offers a compelling 

strategy to regulate angiogenesis.       

The topical application of growth factors in the wound milieu has emerged as a 

promising strategy to stimulate angiogenesis and catalyze other aspects of wound 

healing. In particular, the VEGF protein family is of key interest due to the role of VEGF 

as an angiogenic mediator during granulation tissue formation (8). VEGF induces EC 

proliferation, migration, and sprouting for blood vessel formation, and it plays a 

significant role in regulating the permeability of blood vessels, vasodilation, and 

stabilization of new blood vessel growth (9-11). The topical application of recombinant 

human VEGF (Telbermin, 72 µg/cm2) three times a week for up to six weeks showed 

promising efficacy and tolerability in the treatment of diabetic foot ulcers during a phase 

I trial (12); however, Telbermin was discontinued following a phase II trial (13). 

Clinical studies of growth factor therapies in wound repair have demonstrated that the 

short half-life and instability of recombinant growth factors in the wound environment 

result in high required doses, correspondingly high costs, and off-target side effects that 

limit the success of existing formulations (14, 15). Thereby, strategies to better control 

growth factor activity and provide a cellular microenvironment that maximizes growth 

factor signaling are desirable to overcome current limitations. 

ECM-mimicking biomaterials including collagen, hyaluronic acid (HA), and 

fibrin have emerged as both delivery vehicles and cellular scaffolds that are able to 

control growth factor activity while providing a microenvironment conducive to cell 

recruitment and differentiation (16-24). For example, HA has been extensively utilized 

in wound healing to accelerate wound repair, decrease fibrosis, and improve the quality 

of healing by modulating inflammation, cellular recruitment, and angiogenesis (25, 26). 
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HA promotes angiogenesis via an interplay between two HA-specific receptors, 

CD44/PKCδ and RHAMM-ERK-TGFβRI, to induce PAI-1for MMP-2 expression, 

independent of proangiogenic factors (27, 28). This phenomenon has been leveraged in 

studies exploring the delivery of recombinant VEGF protein using HA-based hydrogels, 

which induced a synergistic angiogenic response that was greater than the sum of the 

separate responses produced by VEGF or HA hydrogel application individually (29). 

Our groups previously developed biomaterials that employed the ECM for 

growth factor delivery in a new way, harnessing collagen mimetic peptides (CMPs) to 

retain growth factor-encoding plasmid DNA polyplexes in collagen-based hydrogels. 

CMP tethering improved DNA availability/lifetime and resulted in cell-mediated 

growth factor gene delivery, triggered by matrix metalloproteinase (MMP)-mediated 

collagen remodeling (30-33). Moreover, CMP-modified collagen-fibrin hydrogels 

encoding PDGF-BB promoted robust and tunable PDGF-BB expression in vivo, and 

resulted in enhanced cellular recruitment and improved healing responses within in vivo 

murine wounds (33). I recently built on these findings to develop a gene-activated 

hyaluronic acid-collagen matrix (GAHCM) comprising CMP-linked pVEGF 

polyplexes, and I demonstrated the advantages of this GAHCM for both efficient gene 

transfer and pro-healing phenotype modulation in fibroblasts (Chapter 3). CMP tethers 

and HA-CD44 interactions together increased the efficiency and duration of VEGF 

production, while simultaneously reprogramming the cellular microenvironment to 

stimulate TGF-β1-induced myofibroblast differentiation to a pro-healing phenotype.  

Herein, I leveraged these materials to demonstrate the multifaceted and complex 

roles by which VEGF-A gene delivery via CMP tethering substantially improved wound 

healing by orchestrating the cellular processes underlying angiogenesis (34), including 
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pro-angiogenic behaviors in ECs as well as vessel maturation. Since fibroblasts are the 

primary cell type in skin dermis (35), and because our prior work showed that fibroblasts 

efficiently remodeled collagen to induce gene delivery in GAHCM (chapter 3), I 

assessed EC mechanistic responses in VEGF-A-encoding GAHCM that was pre-seeded 

with fibroblasts. I showed that CMP-collagen tethers in VEGF-A-encoding GAHCM 

sustained both mitogenic signaling and chemotactic signaling in ECs, resulting in 

increased EC growth and consistent EC migration for approximately one week of EC 

growth in GAHCM culture. Moreover, I showed that the prolonged VEGF activity 

induced by CMP-collagen tethering significantly improved the rate and extent of 

interconnected network formation in ECs, resulting in network structures at day 10 of 

fibroblast pre-incubation time, with a 4-fold larger volume and twice the network 

diameter as compared with the EC networks formed in rVEGF protein supplemented 

samples. Based on these promising findings, I applied VEGF-GAHCM topically in a 

murine splinted excisional wound model, and showed that VEGF-GAHCM with CMP 

modification triggered the development of a 1.7-fold greater number of mature blood 

vessels and a 3-fold higher quantity of granulation tissue formation after 7 days of 

treatment as compared to rVEGF treated wounds, resulting in robust wound repair. 

These findings strongly supported the potential of GAHCM as an effective treatment 

option to induce a comprehensive angiogenesis and wound healing response in poorly 

vascularized wounds. 
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4.2 Materials and Methods 

4.2.1 Materials 

FibriCol® (10 mg/mL) and Glycosil® were obtained from Advanced BioMatrix 

(San Diego, CA). pCMV3-VEGF-A plasmids were acquired from Sino Biological 

(Wayne, PA). Following the manufacturer’s protocols, pCMV3-VEGF-A plasmids 

were amplified in MAX EfficiencyTM DH5α competent Escherichia coli (Thermo 

Fisher, Waltham, MA) and purified using a Qiagen Maxiprep Kit (Germantown, MD). 

Murine recombinant VEGF-A was obtained from Pepro Tech. (Cranbury, NJ). CellTiter 

96® Aqueous One Solution Cell Proliferation Assay (MTS) was purchased from 

Promega (Madison, WI). GeltrexTM and Calcein-AM were acquired from 

ThermoFisher (Waltham, MA). Alexa Fluor® 555-conjugated Rabbit IgG-CD31 

polyclonal antibody (PECAM-1) and Alexa Fluor® 555-conjugated Rabbit IgG Isotype 

Control were purchased from Bioss Antibodies Inc. (Woburn, MA). Mouse IgG2a 

monoclonal α-SMA-FITC antibody and mouse IgG2a-FITC antibody were obtained 

from Sigma-Aldrich (St. Louis, MO). 

4.2.2 Animals 

BALB/cJ mice (8-week-old, male) were procured from Jackson Laboratory (Bar 

Harbor, ME, USA). All experiments were performed in accordance with protocols and 

guidelines approved and established by the University of Delaware’s Institutional 

Animal Care and Use Committee (IACUC). 
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4.2.3 Net growth of ECs treated with conditioned media from fibroblasts 

Fibroblasts cultured in VEGF-GAHCM were prepared as described in our 

previous studies (Chapters 2 and 3). Briefly, After CMP-PEI was prepared via covalent 

linkage between CMP and PEI using a sulfo-SMCC bifunctional linker, the CMP-PEI 

was mixed with PEI at various percentages, and the CMP-PEI/PEI solution was mixed 

with pVEGF in 20 mM HEPES at pH 6 to prepare pVEGF/PEI (PEI), pVEGF/20% 

CMP modified PEI (20 CP), or pVEGF/50% CMP modified PEI (50 CP) complexes 

(N:P = 8, 20 μg/mL of pVEGF) through the electrostatic interaction between CMP-

PEI/PEI and pVEGF. After the polyplexes were lyophilized with 20 mM sucrose, 

lyophilized pVEGF-A/PEI, pVEGF-A/20 CP, or pVEGF-A/50 CP polyplexes (20 

µg/mL of pVEGF) were mixed into neutralized collagen. As the control samples, HCM 

or rVEGF-containing HCM samples was prepared with either only neutralized collagen 

or rVEGF (10 ng/µL) mixed in neutralized collagen. Then, all samples were incubated 

at 4 °C for 2 h. Fibroblasts (100,000 cells/mL) suspended in 1× DPBS were added into 

the neutralized collagen mixture without/with either polyplex or rVEGF, and Glycosil® 

was mixed into the fibroblast/neutralized collagen. After gelation at 37 °C for 45 min, 

the VEGF-GAHCM was incubated in complete DMEM at 37 °C with 5% CO2 for 7 

days. The culture medium was collected and replaced with the fresh culture medium 

every two days. 

ECs (3B-11 cells; ATCC, Manassas, VA) were cultured in complete DMEM 

containing 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin-

streptomycin (P/S) at 37 °C with 5% CO2. Cells were passaged with 0.25% Trypsin 

containing 2.21 mM EDTA every 2-3 days. To evaluate the mitogenic effects of the 

conditioned media collected from fibroblasts cultured in VEGF-GAHCM, the net 

growth of ECs after treatment with the conditioned medium was determined. ECs  
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were plated at a density of 10,000 cells per cm2 for 7 h. ECs were treated with the 

conditioned medium collected from fibroblasts cultured in HCM, rVEGF-containing 

HCM, or VEGF-GAHCM (containing PEI polyplexes, 20 CP polyplexes, or 50 CP 

polyplexes) for 12h at 37 °C with 5% CO2. Then, conditioned media were removed, 

and ECs were washed and incubated with complete DMEM at 37 °C with 5% CO2 for 

24 h. The growth of ECs was determined using an MTS assay, following the 

Figure 4.1. Endothelial cell growth after 24 h treatment with different concentrations of 
recombinant VEGF-A. Each data point represents the mean  ±  standard 
deviation for n=4. 
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Figure 4.2. Endothelial cell growth on (A) tissue culture treated plate or (B) HCM 
hydrogel after 48 h treatment of different concentrations of recombinant 
VEGF-A. Each data point represents the mean  ±  standard deviation for 
n=4. 
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manufacturer’s procedure. Following the protocols above, the dependence of the growth 

of ECs on recombinant VEGF-A concentration (0, 5, 10, 20, and 40 ng/mL), incubation 

time, and culture in GAHCM vs. Tissue culture plates (TCPS) (Figures 4.1 and 4.2) 

were additionally investigated to expand our understanding of the effects of conditioned 

media treatment on the growth of ECs. 

4.2.4 Chemotactic effect on ECs of VEGF-GAHCM containing fibroblasts 

Prior to the study of EC invasion in fibroblasts cultured in VEGF-GAHCM, the 

chemotactic effects of VEGF-A-encoding polyplex-transfected fibroblasts on EC 

migratory behaviors were examined using an in vitro co-cultivation/invasion assays 

(Figure 4.3). Following the manufacturer’s protocols, silicon culture-inserts with 2 wells 

(Ibidi Inc. USA) were placed on the tissue culture treated dish. Fibroblasts (10,000 

cells/cm2) were seeded on one side of the well and ECs (10,000 cells/cm2) were seeded 

on the other side of the well. Fibroblasts were transfected with pVEGF/PEI, pVEGF/20 

CP, or pVEGF/50 CP polyplexes for 1.5 h while the ECs on the other side were stained 

with calcein-AM (2 µM).  Subsequently, the medium over both types of cells was 

removed and replaced with complete medium. After marking the outline of the culture 

insert on the dish with a permanent marker to define the initial gap between the ECs and 

the fibroblasts, the culture insert was carefully removed using tweezers. The cell 

invasion process to close the gap was monitored at 0, 6, 12, and 24 h after the removal 

of the culture insert using a Zeiss Axio Observer 7 inverted microscope with a 10× 

objective (Carl Zeiss Microscopy, LLC, White Plains, NY). The percentage of gap 

closure per time point for each group was analyzed manually using Fiji Image J software.   
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As described in our previous work (Chapters 2 and 3), VEGF-GAHCM was 

prepared and fibroblasts were cultured in the VEGF-GAHCM for 2, 4, or 6 days. 

Subsequently, ECs were added to the fibroblast-containing GAHCM, and the invasive 

behaviors of the ECs were examined during co-culture. Briefly, lyophilized VEGF-A-

encoding polyplexes (PEI, 20 CP, or 50 CP; 20 µg/mL of pVEGF-A) were mixed into 

0 
h

6 
h

12
 h

24
 h

NT rVEGF PEI 20 CP 50 CP(A)

(B)

Figure 4.3. Fibroblasts transfection by VEGF encoding polyplexes mediated 
endothelial cell migration. (A) Representative microscopic images for 
migration of both fibroblasts (grey) and calcein-AM pre-stained 
endothelial cells (green) at different time points, 0, 6, 12, and 24 hr. Scale 
bar is 200 µm. (B) Image quantification for percentage of area closure 
relative to 0 h by both fibroblasts and endothelial cells migration. Each 
data point represents the mean  ±  standard deviation for n=4. 
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neutralized collagen and incubated at 4 °C for 2 h. NIH/3T3 fibroblasts (100,000 

cells/mL) suspended in 1× DPBS were added into the polyplex/neutralized collagen 

mixture and then Glycosil® was mixed into the fibroblast/neutralized collagen. After 

gelation, VEGF-GAHCM was incubated in complete DMEM at 37 °C with 5% CO2 

for 2, 4, and 6 days. At each culture time point, calcein-AM (2 µM) pre-stained ECs 

(10,000 cells) were seeded on the top of the fibroblast-containing VEGF-GAHCM and 

incubated for an additional 24 hr. Calcein-AM-stained ECs were detected (λex. = 495 

nm) with z-stack imaging of the full height of each hydrogel using a Zeiss LSM 880 

confocal microscope with a EC Plan-Neofluar 10× objective (Carl Zeiss Microscopy, 

LLC, White Plains, NY). The mean intensity throughout the z-stack images was 

analyzed to determine the localization of ECs within the z-axis of each sample using 

Fiji ImageJ software. 
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4.2.5 Endothelial cell networks induced by growth in VEGF-GAHCM 
containing fibroblasts 

To evaluate pro-angiogenic potency, tube formation and EC reorganization into 

capillary-like structures were assessed in vitro following EC culture in VEGF-GAHCM 

containing fibroblasts. As described in previous literature (36-38), one day prior to the 

assay, ECs were starved in reduced serum DMEM containing 0.2% FBS and 1% P/S at 

37 °C with 5% CO2 for 12 h. ECs were pre-stained with calcein-AM (2 µM) for 40 min 

to enable visualization under the confocal microscope, and cells were filtered through a 

100 µm cell strainer to remove cell aggregates before seeding onto the hydrogels. In 

initial studies, the reduced growth factor basement membrane matrix GeltrexTM (12 

mg/mL, 250 µL) was used to investigate the angiogenic potential of the conditioned 

media collected from fibroblasts that were bolus transfected with VEGF-A encoding 

polyplexes (Figure 4.4). In addition to GeltrexTM samples, hydrogels (250 µL) were 

prepared for analysis by mixing neutralized bovine collagen type I (Fibricol (4 mg/mL)) 

and Glycosil® at various concentrations of Glycosil® (0 mg/mL (Collagen only), 2 

mg/mL (2HC = HCM), and 4 mg/mL (4HC)) to examine the effects of the hydrogel 

composition on EC network formation in conditioned media (Figure 4.5). After gelation 

at 37 °C on the 24-well plate, the ECs (75,000 cells) in 300 µL of conditioned media 
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Figure 4.4. Representative microscopic images for Calcein-AM pre-stained endothelial 
cells (green) networks on Geltrex after 4 h treatment with fibroblasts 
condition media (CM), PEI-polyplex transfected fibroblasts condition 
media (VEGF/PEI), 20 CP-polyplex transfected fibroblasts condition 
media (VEGF/20 CP), and 50 CP-polyplex transfected fibroblasts 
condition media (VEGF/50 CP). 
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were seeded on the top of the GeltrexTM or hydrogels and incubated at 37 °C with 5% 

CO2 for 4 h. Then, calcein-AM pre-stained EC networks on the GeltrexTM or hydrogels 

were visualized using a Zeiss LSM 880 confocal microscope with an EC Plan-Neofluar 

10× objective.  

As described in Section 2.4., fibroblasts (100,000 cells/mL) were cultured in an 

HCM hydrogel, HCM + rVEGF hydrogel, or VEGF-GAHCM with polyplexes (PEI, 20 

CP, or 50 CP) (10 µL of each sample) for 2, 4, 6, or 10 days. Samples were prepared in 

a µ-Slide Angiogenesis (Ibidi Inc. USA) to evaluate the pro-angiogenic effects via 

analysis of EC differentiation into capillary-like networks. Half of the culture medium 

was replaced with fresh culture medium every two days. After a 12 h i ncubation in 

reduced serum DMEM containing 0.2% FBS and 1% P/S at 37 °C with 5% CO2, 
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Figure 4.5. Representative confocal images of calcein-AM pre-stained endothelial cells 
(green) networks on collagen (0.4%), 2HC or HCM (0.2% HA + 0.4% 
Collagen), and 4HC (0.4% HA + 0.4% Collagen) after 4 h treatment with 
fibroblast culture condition media (CM), PEI-polyplex transfected 
fibroblast culture condition media (VEGF/PEI), 20 CP-polyplex 
transfected fibroblast culture condition media (VEGF/20 CP), and 50 CP-
polyplex transfected fibroblast culture condition media (VEGF/50 CP). 
Scale bar is 80 µm. 
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calcein-AM pre-stained and filtered ECs (10,000 cells) were seeded on the top of each 

sample and incubated at 37 °C under 5% CO2 for an additional 24 h. The EC networks 

were visualized with z-stack imaging using a Zeiss LSM 880 confocal microscope with 

an EC Plan-Neofluar 10× objective. In addition, the pro-angiogenic potency of HCM 

hydrogels or fibroblast-containing HCM hydrogels with or without rVEGF was 

examined to screen the effects of the various samples on EC network formation at each 

incubation time point (days 2, 4, 6, and 10) (Figure 4.6). Furthermore, the pro-

angiogenic potency of conditioned media from both fibroblasts that were bolus 

transfected with pVEGF/PEI polyplexes, and fibroblasts that were cultured in HCM 

hydrogels for 2, 4, 6, or 10 days of incubation was evaluated. The result showed that the 

presence of both fibroblast and rVEGF or VEGF in the condition media of fibroblast 

transfection exerted the greatest effects on EC network formation. The extent of EC 

network formation was different depending on the fibroblast culture time. But that at all 

incubation times, the samples with both fibroblast and rVEGF/VEGF showed greater 

EC network formation than the other samples. 

The z-stack images for each sample were imported into Imaris software (Oxfold 

instruments) for 3-D visualization and analysis using a Filament Tracer function to 

reconstruct the filamentous microstructures and volume of the EC networks (39, 40). 

The filamentous microstructures were quantified for the total volume of the network 

using an automated method with the selected intensity threshold; the average of a total 

of five replicates per sample was reported. The average diameter of the network was 

calculated using a manual distance measurement function to quantify the average of the 

diameters of the individual branches in each image. Since the number of branches varied 

from image to image, the number of manual distance measurements also was different 

for each image.  
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Figure 4.6. Representative confocal images of calcein-AM pre-stained endothelial cells 
(green) networks after 24 h incubation on HCM,  HCM with recombinant 
VEGF in the media (HCM + rVEGF), fibroblast cultured in HCM (HCM 
+ Fib.), fibroblast cultured in HCM with recombinant VEGF in the media 
(HCM + Fib. + rVEGF), and fibroblast cultured in HCM with VEGF/PEI 
polyplex transfected fibroblasts condition media (HCM + Fib. + CM) at 
days 2, 4, 6, and 10. Scale bar is 200 µm. 
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4.2.6 CD31 immunostaining and image analysis 

The expression of CD31 by EC networks cultured on HCM hydrogels, HCM + 

rVEGF hydrogels, or VEGF-GAHCM hydrogels equipped with PEI, 20 CP, or 50 CP 

polyplexes (where fibroblasts were pre-cultured for 6 days prior to EC seeding) was 

evaluated via immunostaining for CD31. After a 24 h incubation of ECs on the samples, 

both EC networks and fibroblasts were fixed with 4% paraformaldehyde for 30 minutes, 

permeabilized with 0.2% Triton X-100 for 45 min, and blocked with 3% BSA in PBS 

at room temperature overnight. Samples were incubated for 2 days to ensure the 

antibody penetration into antigen of the cells within in the hydrogel  at room temperature 

with Alexa Fluor® 555-conjugated Rabbit CD31 (PECAM-1) polyclonal antibody 

(1:100), Phalloidin-647 (1:100; Life Technologies), and the nuclear stain Hoechst 

33258 (1:500; Life Technologies) in a 1% BSA PBS solution at room temperature with 

shaking. For control samples, Alexa Fluor® 555-conjugated Rabbit IgG Isotype Control 

(1:100) with Phalloidin-647 and Hoeschst 33258 were added and incubated with the cell 

*, **, +, ++,+++
*, +, ++

+

Figure 4.7. Image quantification for CD31 expression on the endothelial cells 
normalized to F-actin expression. Each data point represents the mean  ±  
standard deviation for n=4. +P<0.05, ++P<0.001 compared to ECM, 
#P<0.05, ##P<0.001 compared to rVEGF, *P<0.05, **P<0.001 
compared to PEI 
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samples for 2 days. After incubation, the samples were rinsed by incubation in 3% BSA 

in 0.05% Tween-20 in PBS for 1 day, and cells were subsequently visualized by z-stack 

imaging using a Zeiss LSM 880 confocal microscope with a 10× objective. The z-stack 

images were analyzed as a z-projection with maximum intensity using Fiji ImageJ 

software. CD31 expression was quantified using the sum of the fluorescence intensity 

of CD31 and further normalization to the sum of the fluorescence intensity of F-actin in 

the same sample (Figure 4.7), with the same threshold setting for each channel to avoid 

complications from the background signal. 

4.2.7 Murine splinted excisional wound healing studies and histological analysis 

As described in our previous publication (Chapter 3), murine splinted excisional 

wound healing studies were performed to evaluate the capacity of VEGF-GAHCM to 

stimulate wound healing. Briefly, 8-week-old BALB/cJ mice were anesthetized using 

isoflurane and the fur on the back of each mouse was removed using an electric razor. 

After sterilizing the shaved regions, one wound per mouse was created at the mouse’s 

midline at the level of the shoulders using a biopsy punch (D = 5 mm). Then, the wound 

was treated by application of 35 µL of saline, HCM gel with/without rVEGF (1 µg per 

wound), or VEGF-GAHCM with/without CMP tethering (200 µg/mL of pVEGF per 

wound formulated into PEI or 50 CP polyplexes). Subsequent to treatment, a silicone 

splint (O.D. = 14 mm and I.D. = 6.35 mm) was attached onto the top of each wound by 

dropwise addition of Krazy Glue® (41, 42), such that the inside orifice of the silicon 

ring encircled the wound; OpSite wound dressing was applied on the top side of the 

attached silicone ring. To further secure the splint, 6 to 8 interrupted sutures (5-0 Vicryl 

Suture with Cutting Needle, Ethicon Inc.) were placed around the outer edge of the O-

ring. The splints were removed after 7 days, as mice typically self-remove the splints 

after this time period, which can result in secondary damage that complicates analysis 

of results (41). For the 7-day treatment groups, mice were euthanized immediately after 
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the splints were removed. Meanwhile, for the 14-day treatment groups, mice were 

monitored for an additional 7 days after splint removal, at which point they were 

euthanized (14 days after treatment). After the mice were euthanized, the wound skin 

tissue was collected using surgical scissors, and the tissue was fixed in 2% 

paraformaldehyde. For histology/immunohistochemistry analysis, the tissues were 

embedded in Tissue-Tek OCT compound for freezing and cut into 10 µm sections. 

Tissue sections on the glass slide were stained with Harris hematoxylin (Leica 

Biosystems, Deer Park, IL) and eosin (H&E) or Masson’s trichrome (Figure 4.8) to 

investigate re-epithelialization, granulation tissue formation, and collagen deposition 

for wound repair analysis.  
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Figure 4.8. In vivo wound healing evaluation using histological analysis of mouse 
splinted excisional wounds treated with saline, HCM hydrogel, 
rVEGF+HCM hydrogel, and VEGF-GAECM with PEI, 20 CP, and 50 CP 
after 7 and 14 days. The tiled images of Masson’s Trichrome stained mouse 
skin wound tissue section at 7 or 14 days of treatments and the zoom-in 
image of black-dotted box in the tiled images.  s = native skin and w = 
wound. Black arrow indicates the scab. Scale bar is 1.5 mm and scale bar 
for zoom-in image is 250 µm. 
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4.2.8 CD31/α-SMA immunostaining and blood vessel analysis 

To assess blood vessel formation in the mouse wound tissue sections, tissue 

sections were stained for CD31, ⍺-SMA, and nuclei as described in section 2.6. After 

permeabilization with 0.4% Triton X-100 in PBS and blocking with 5% goat serum, 

tissue section slides were incubated for 2 h with mouse anti-goat IgG (0.01 mg/mL, 

Sigma-Aldrich) in 1% goat serum in PBS at room temperature. After rinsing three times 

with PBS, tissue section slides were incubated with α-SMA-FITC antibody (1:250), 

Alexa Fluor®555-Conjugated Rabbit CD31(PECAM-1) polyclonal antibody (1:250), 
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Figure 4.9. The representative confocal microscope images of IgG control antibodies 
for CD31/⍺-SMA immunostained mouse skin wound tissue section after 
7 or 14 days of treatment with saline, HCM hydrogel, rVEGF+HCM 
hydrogel, and VEGF-GAECM with PEI, 20 CP, and 50 CP after 7 and 14 
days. (CD31 for red, ⍺-SMA  for green, and nuclei for blue). Scale bar is 
40 µm. 



 166 

and the nuclear stain Hoechst 33258 (1:500) overnight at 4 ºC (Figure 4.9). For control 

samples, tissue sections were incubated with mouse IgG2a-FITC control antibody 

(1:250), Alexa Fluor® 555-conjugated Rabbit IgG Isotype Control antibody (1:250), 

and the nuclear stain Hoechst 33258 (1:500) overnight at 4 ºC. After rinsing with PBS, 

the tissue sections were mounted with ProLongTM Gold Antifade mounting solution. 

The stained tissue sections were visualized using a Zeiss Axio Observer 7 inverted 

microscope with 10× objective. Using the tile function, entire tissue sections were 

analyzed for CD31/α-SMA expression to identify blood vessels in the wound tissue 

sections via Fiji ImageJ software. Five images per mouse (over the same area per mouse) 

were taken for each treatment group (N = 6 mice) to provide 30 images per group for 

analyzing the total number of blood vessels and the total number of mature blood vessels 

in each wound. As in the previous literature (43-45), the total number of blood vessels 

per image was manually counted based on the co-localization of signals for CD31 and 

nuclear stain to define a closed circle as an individual blood vessel. The number of 

mature blood vessels per image was manually counted based on the co-localization of 

CD31, α-SMA, and nuclear stain signals to identify vessels for which greater than half 

of the area in the closed circle was co-stained with CD31 and α-SMA. 

4.2.9 Statistical Analysis 

Unless indicated, all experimental data were expressed as the mean ± standard 

deviation of the mean. The statistical significance was analyzed using Origin 

(OriginLab Corporation). Sample groups were compared using either one-way (Figure 

4.16(B) and 4.18(B)) for one independent variable or two-way (Figure. 4.10,4.15, 4.18 

(A), and 4.19 (B-C)) for two independent variables analysis of variance (ANOVA) with 

a Tukey’s post-hoc test for multiple comparison with a significance of 0.05 



 167 

4.3 Results 

4.3.1 EC mitogenesis 

I predicted that the different levels of VEGF-A gene expression induced by the 

GAHCM biomaterials would result in EC mitogenic responses correlated with the level 

of gene expression. Therefore, I assessed the net growth of ECs stimulated by the 

conditioned medium collected from fibroblasts cultured in various biomaterial samples 

by measuring EC metabolic activity. Specifically, the conditioned medium was 

collected from fibroblasts cultured in VEGF-GAHCM hydrogels (containing PEI, 20 

CP, or 50 CP polyplexes), HCM hydrogels, or HCM + rVEGF hydrogels after 1, 3, 5, 

or 7 days of fibroblast culture. This experimental design enabled analysis of how both 

fibroblast culture time and the mechanism of VEGF-A delivery affected the net growth 

of ECs (Figure. 4.10). As predicted, the conditioned medium collected from fibroblast 

Figure 4.10. Endothelial cell net growth stimulated by the condition media collected 
from fibroblasts cultured in VEGF-GAHCM at days 1, 3, 5, and 7. The 
net growth (%) was normalized to the endothelial cell growth without the 
condition media treatment. Each data point represents the mean  ±  
standard deviation for n=4. The statistically significant differences state 
+P<0.05 compared to HCM and *P<0.05 compared to PEI. 
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culture induced the growth of ECs in all samples. The conditioned medium collected 

from fibroblasts cultured for one day in either of the control HCM hydrogels or HCM 

+ rVEGF hydrogels was pro-mitogenic, and stimulated the growth of the ECs by ~160%. 

Longer durations of fibroblast preculture in these control HCM or HCM + rVEGF 

hydrogels did not increase mitogenic activity, however, based on the lack of evolution 

in EC growth after stimulation with conditioned medium samples collected after 

extended preculture. Moreover, the lack of a significant difference in the activity of 

conditioned medium collected from fibroblasts grown with and without rVEGF 

stimulation indicated that the rVEGF protein lacked stability under the culture 

conditions. 

On the other hand, for the VEGF-GAHCM groups, the fibroblast preculture time 

clearly influenced the growth of ECs induced by conditioned medium collected, 

suggesting that the activity and/or amount of VEGF produced by fibroblast transfection 

using VEGF-GAHCM changed as a function of fibroblast culture time. The conditioned 

medium collected from fibroblasts cultured for one day in all three of the VEGF-

GAHCM samples was pro-mitogenic, and resulted in similar EC growth levels (~150%) 

as the conditioned medium collected from fibroblasts grown in HCM hydrogels and 

HCM + rVEGF hydrogels for one day. The growth of ECs induced by the conditioned 

medium from VEGF-GAHCM containing PEI polyplexes increased monotonically as 

the fibroblast preculture time was extended (e.g., there was a 5% increase in EC growth 

using conditioned medium collected after one day vs. five days of fibroblast preculture). 

Meanwhile, the growth of ECs induced by conditioned medium collected from VEGF-

GAHCM containing either 20 CP or 50 CP polyplexes consistently increased as the 

fibroblast preculture time was extended up to five days of preculture, when it reached a 
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maximal level. Specifically, ECs exhibited 20 % more growth in five-day vs. one-day 

20 CP precultured samples, and 15% more growth in five-day vs. one-day 50 CP 

precultured samples. Additionally, the growth of ECs induced by the day-3 conditioned 

medium from VEGF-GAHCM with 20 CP was significantly increased as compared to 

EC growth induced by day-3 conditioned medium from VEGF-GAHCM with PEI. This 

indicates that CMP modification enhanced VEGF gene transfer and/or the 

corresponding mitogenic activity of expressed VEGF. 

4.3.2 EC chemotaxis 

I predicted that the sustained VEGF production induced by GAHCM with CMP 

modification would result in prolonged VEGF activity resulting in EC chemotaxis. 

Therefore, I assessed VEGF-A stimulated EC chemotaxis by monitoring the migratory 

behaviors of ECs grown on the fibroblast-containing biomaterials. After I confirmed the 

chemotactic activity of the fibroblast-expressed VEGF gene product on ECs (Figure 

4.3), I applied ECs on the top of fibroblast-containing HCM hydrogels, HCM + rVEGF 

hydrogels, or VEGF-GAHCM hydrogels containing PEI, 20 CP, or 50 CP polyplexes. 

In all experiments, fibroblasts were pre-cultured in the hydrogels for 3, 5, or 7 days prior 

to the addition of ECs to enable analysis of the invasive behaviors of ECs as a function 

of fibroblast-mediated VEGF-A gene expression (Figure 4.11). Since the VEGF was 

produced by transfected fibroblasts within the VEGF-GAHCM samples, I expected that 

the fibroblast distribution within the samples would influence the migratory behaviors 

of the ECs. Fibroblast distribution in the matrices was therefore also characterized; 

based on the results of Figure 4.12, the schematics of fibroblast distribution within each 

sample at the various culture time points were placed on the EC migration plots for each 

group. Briefly, fibroblasts in the HCM hydrogel or in the rVEGF-HCM hydrogel were 
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dispersed uniformly in the z-direction of the gels over 5 days of culture, and then the 

fibroblasts gradually migrated to the top of the hydrogels by day 7. On the other hand, 

the fibroblast distribution in VEGF-GAHCM showed fibroblasts migrating toward the 

bottom of the hydrogel starting from day 3; in particular, approximately 90% of the 

fibroblasts were located on the bottom of the hydrogel in the 50 CP VEGF-GAHCM at 

day 7 of culture. 
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Figure 4.11. Endothelial cell invasion in fibroblasts cultured in HCM hydrogel, rVEGF-
HCM hydrogel, VEGF-GAHCM with PEI, 20 CP, or 50 CP at days 3, 5, 
and 7. The schematics in the graph are fibroblast location in VEGF-
GAHCM at days 3, 5, and 7. The red dotted line is the minimum threshold 
used to detect signal of calcein-AM pre-stained endothelial cells on the z-
stack images of full thickness of samples. Each data point represents the 
mean  ±  standard deviation for n=7. 
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ECs on both HCM and HCM + rVEGF hydrogels mostly were localized in the 

top portion of the hydrogels, consistent with the fact that the fibroblasts did not produce 

VEGF and they also were distributed near the top of the hydrogels throughout the 

preculture time, indicating that the ECs were less invasive in the HCM and HCM + 

rVEGF hydrogels. On the other hand, fibroblasts migrated towards the bottom of the 

VEGF-GAHCM hydrogels throughout the preculture time, and therefore the ECs on the 

VEGF-GAHCM groups similarly tended to migrate into the hydrogels. The invasive 

behavior of ECs into the 50 CP VEGF-GAHCM was persistent even at 7 days of 

fibroblast preculture, suggesting that not only that the location of the fibroblasts within 

the 50 CP VEGF-GAHCM, but also the VEGF amounts produced by the transfected 

fibroblasts, might guide the migratory behaviors of ECs within VEGF-GAHCM. 
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Figure 4.12. NIH 3T3 Fibroblast distribution within VEGF-GAHCM for 3, 5, or 7 days 
of culture at three different z-stack (30 µm) location (Top (Dotted), 
Center (Stripe), Bottom (Dark Grey)) using normalized to total fibroblast 
count. Each data point represents the mean ± standard deviation for n=4. 
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4.3.3 In vitro pro-angiogenic potency in ECs 

I predicted that the sustained VEGF production by fibroblasts cultured in VEGF-

GAHCM with CMP modification would support prolonged pro-angiogenic activity. 

Therefore, I analyzed EC network formation by seeding the ECs on the fibroblast-

containing matrices (HCM hydrogel, HCM + rVEGF hydrogel, or VEGF-GAHCM 

hydrogels with PEI, 20 CP, or 50 CP polyplexes) after fibroblasts were cultured in the 

matrices for 2, 4, 6, or 10 days. After 24 h of EC culture on the fibroblast-containing 

matrices, EC network formation was assessed (Figure 4.13). As predicted, the 
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Figure 4.13. Endothelial cellular networks on fibroblast cultured in HCM hydrogel, 
rVEGF-HCM hydrogel, VEGF-GAHCM with PEI, 20 CP, or 50 CP at 
days 2,4,6, and 10. The representative 3D plot of z-stack images for 
calcein-AM pre-stained endothelial cells (Green). Scale bar is 200 µm. 
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representative 3D plots of z-stack images demonstrated network formation by the ECs, 

with the extent of network formation dependent on the fibroblast culture time and type 

of matrix. On the fibroblast-containing HCM and HCM + rVEGF hydrogels, ECs 

formed mainly web-like clusters of connecting spindle-shaped cells, and the density of 

these web-like EC networks increased as a function of the fibroblast culture time. In 

contrast, ECs on fibroblast-containing VEGF-GAHCM hydrogels progressively formed 

networks as the fibroblast preculture time was lengthened (Figure 4.13). On all VEGF-

GAHCM matrices precultured for 2 days, ECs formed clusters of cobblestone-like cells, 

while on the VEGF-GAHCM matrices precultured for 4 days, ECs began to sprout and 

connect with neighboring cell clusters. On the VEGF-GAHCM matrices precultured for 

6 days, ECs formed a defined set of web-like clusters of connecting spindle-shaped cells, 

but the networks were visually different among the different VEGF-GAHCM groups 

(PEI, 20 CP, or 50 CP polyplexes). Lastly, on VEGF-GAHCM matrices precultured for 

10 days, VEGF-GAHCM with CMP modification (20 CP and 50 CP) continued to 

stimulate the formation of EC networks, indicating that the sustained production of 

VEGF by fibroblasts transfection using VEGF-GAHCM with CMP modification 

extended VEGF activity to stimulate the EC network formation (chapter 2).   

The EC networks shown in Figure 4.13 were analyzed via image quantification 

to determine the overall interconnected network volumes (38, 46, 47), identify the 

overall features of the network, and measure the average diameter of the tube-like 

structure (48, 49) (Figure. 4.14). The total volume of an EC network is defined as the 

sum of all volumes between two branch points or between a branch point and a terminal 

point. EC networks formed on fibroblast-containing hydrogel samples after 2 days of 

fibroblast preculture exhibited significantly larger network volumes in the HCM 
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hydrogel and the HCM + rVEGF hydrogel as compared with the VEGF-GAHCM 

hydrogel groups, presumably due to the smaller number of viable fibroblasts from the 

mild cytotoxic effects of polyplex present in the VEGF-GAHCM groups at the initial 

culture timepoint (chapter 2). After 4 days of fibroblast preculture, the total volume of 

the EC networks in the VEGF-GAHCM groups was increased by approximately 6-fold 

as compared to the EC network volume in the VEGF-GAHCM samples in which 

fibroblasts were precultured for 2 days; furthermore, at the 4 days preculture timepoint, 

EC network volumes in VEGF-GAHCM exhibited a similar size as the EC network 

volumes in HCM hydrogel and HCM + rVEGF hydrogel. Moreover, when fibroblasts 

were precultured for 6 days, the total EC network volumes consistently increased in all 

groups versus the EC network volumes on 4-day fibroblast precultured samples, and, in 

particular, VEGF-GAHCM with 50 CP polyplexes stimulated the most significantly 

increased total volume of EC network at this preculture timepoint, as compared to HCM 
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Figure 4.14. Image quantification for endothelial cellular networks on fibroblast 
cultured in HCM hydrogel, rVEGF-HCM hydrogel, VEGF-GAHCM with 
PEI, 20 CP, or 50 CP at days 2,4,6, and 10. (A) The total volume of 
capillary network. (B) The average diameter of capillary network. Each 
data point represents the mean  ±  standard deviation for n=5. +P<0.05, 
++P<0.001 compared to HCM, #P<0.05, ##P<0.001 compared to rVEGF, 
*P<0.05, **P<0.001 compared to PEI 
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hydrogel, HCM + rVEGF hydrogel, and VEGF-GAHCM with PEI polyplexes. In 

addition, fibroblast containing VEGF-GAHCM with CMP modification cultured for 10 

days sustained the formation of EC networks with significantly larger volumes than 

those observed for the HCM hydrogel, HCM + rVEGF hydrogel, and VEGF-GAHCM 

with PEI polyplexes. This quantification analysis agreed with our visual observation in 

Figure 4.13 that the sustained production of VEGF by fibroblasts in VEGF-GAHCM 

with CMP modification cultured for 6 and 10 days supported the formation of EC 

networks with a larger volume. Moreover, quantitative analysis of the average diameter 

of the EC networks indicated that the sustained VEGF activity by VEGF-GAHCM, 

especially with CMP modification (chapter 2), resulted in EC networks with larger 

diameters. For instance, the average diameters of EC networks on VEGF-GAHCM with 

50 CP after 24 h incubation of ECs on fibroblasts precultured for 4, 6, or 10 days were 

significantly larger than those in the HCM hydrogel, HCM + rVEGF hydrogel, and 

VEGF-GAHCM with PEI polyplexes. These data suggest that the sustained VEGF gene 

transfer to fibroblasts in the VEGF-GAHCM with 50 CP promoted the enhanced 

duration of VEGF activity (chapter 2) and stimulated the formation of EC networks with 

larger volumes and bigger diameters.  

To confirm the presence of EC intercellular connections in the observed EC 

networks, the networks formed on fibroblast-containing HCM hydrogels, HCM + 

rVEGF hydrogels, or VEGF-GAHCM hydrogels with PEI, 20 CP, or 50 CP polyplexes 

precultured for 6 days were evaluated to detect the expression of CD31 (PECAM-1), 

which is an EC cell-cell adhesion molecule and an important factor during angiogenesis 

(50) (Figure 4.15). The representative confocal images showed the CD31-labeling of 
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ECs and F-actin/Hoechst labeling of both fibroblasts and ECs within the samples. EC 

networks on VEGF-GAHCM with CMP modification demonstrated more positive 

CD31 signals in the formed networks as compared with other groups. Additionally, the 

quantification of CD31 expression on EC networks using the integrated density of 

fluorescence intensity calculation revealed that CD31 expression was greater for VEGF-

GAHCM with CMP modification. In particular, CD31 expression in 20 CP polyplex 

containing samples was not statistically different from expression in other groups; by 

contrast, CD31 expression in 50 CP polyplex containing samples was significantly 

greater as compared to expression in HCM hydrogel, HCM + rVEGF hydrogel, and 

VEGF-GAHCM with PEI polyplexes, suggesting that the networks formed on VEGF-

GAHCM with 50 CP occurred through the formation of stable intercellular connections 

between ECs. 
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Figure 4.15. CD31 immunostaining on the endothelial cells network formed on 
fibroblast cultured in HCM hydrogel, rVEGF-HCM hydrogel, VEGF-
GAHCM with PEI, 20 CP, or 50 CP at day 6. (A) The representative 
confocal microscope images of CD31 expressed endothelial cells within 
the capillary network. CD31 (Green) and F-actin (Red). Scale bar is 50 µm. 
(B) Image quantification for CD31 expression on the endothelial cells 
within the capillary network. Each data point represents the mean  ±  
standard deviation for n=4. +P<0.05 compared to HCM, #P<0.05 compared 
to rVEGF, and *P<0.05, compared to PEI 
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4.3.4 In vivo wound healing analysis 

To characterize possible VEGF-GAHCM-stimulated improvements in wound 

healing responses, I analyzed histological stained tissues which were harvested from 

murine excisional splinted skin wounds after 7 or 14 days of treatment with saline, HCM 

hydrogel, HCM + rVEGF hydrogel, or VEGF-GAHCM hydrogel with PEI, 20 CP, or 

50 CP polyplexes. Our previous studies (chapter 3) demonstrated that no adverse effects 

arose from the surgical procedure and materials, and the extended VEGF bioactivity 

induced by 50 CP VEGF-GAHCM treatment triggered sustained ⍺-SMA expression, 
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Figure 4.16. In vivo wound healing evaluation using histological analysis of mouse 
splinted excisional wounds treated with saline, HCM hydrogel, 
rVEGF+HCM hydrogel, and VEGF-GAHCM with PEI, 20 CP, and 50 
CP after 7 and 14 days. The tiled images of H&E stained mouse skin 
wound tissue section at 7 or 14 days of treatments and the zoom-in image 
of black-dotted box in the tiled images.  s = native skin and w = wound. 
Black arrow indicates the scab. Scale bar is 1.5 mm and scale bar for 
zoom-in image is 250 µm. 
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resulting in accelerated closure. Figure 4.16 shows representative images of H&E-

stained tissue sections after 7 or 14 days of treatment. At day 7, granulation tissue 

formation initiated to fill the wound in all groups, although scab formation (indicated 

by the black arrow) was evident in the saline group. Moreover, the wounds were 

completely closed in all groups at day 14, with granulation tissue formation. The 

formation of granulation tissue was further confirmed by Masson’s Trichrome staining, 

indicating collagen deposition in the healed wounds (Figure 4.8).  

Additionally, H&E-stained tissue sections were analyzed to quantify the area of 

granulation tissue after days 7 or 14 of treatments in each group (Figure 4.17(A)). The 

area of granulation tissue was greater at day 14 than at day 7 in the saline, HCM 
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Figure 4.17. In vivo wound healing evaluation using image analysis of histological 
stained mouse splinted excisional wounds treated with saline, HCM 
hydrogel, rVEGF+HCM hydrogel, and VEGF-GAHCM with PEI, 20 CP, 
and 50 CP. (A) Granulation tissue area quantification after 7 and 14 days of 
treatment. Each data point represents the granulation tissue area for each 
mouse per group. (B) Epidermal thickness measurements after 14 days of 
treatment. Each data point represents the average of epidermal thickness in 
the wound per field of image for three images per each mouse. The 
horizontal line represents the mean ± standard deviation for total 6 mouse 
per group. The statistically significant differences state %P<0.05 for samples 
relative to Native, &P<0.05 for samples relative to Saline, +P<0.05 for 
samples relative to HCM, and #P<0.05 for samples relative to rVEGF. 



 179 

hydrogel, and HCM + rVEGF hydrogel treatment groups. On the other hand, the area 

of granulation tissue was decreased from day 7 to day 14 in the VEGF-GAHCM with 

PEI and 50 CP polyplex groups. The area of granulation tissue formed for the 50 CP 

VEGF-GAHCM at day 7 was significantly larger than that in the saline, HCM hydrogel, 

and HCM + rVEGF hydrogel treatment groups, but there was no statistically significant 

difference relative to the PEI VEGF-GAHCM group. At day 14, there was no 

statistically significant difference in the extent of granulation tissue formation between 

any of the groups.  The thickness of the epidermal layer formed at day 14 was also 

determined to evaluate the re-epithelialization of the healed wounds (Figure 4.17(B)). 

The epidermis of wounds treated with 50 CP VEGF-GAHCM was thicker than that 

observed for the other groups, and the epidermis in this sample was also significantly 

thicker than the native epidermis of skin tissue, consistent with the normal morphology 

in newly formed epidermis. Altogether, 50 CP VEGF-GAHCM induced both a larger 

area of granulation tissue formation at the initial stage of healing and a reduction in the 

area of granulation tissue at the later stage of healing to support improved re-

epithelialization, indicative of the improved wound repair. 

4.3.5 In vivo angiogenesis analysis 

To evaluate correlations between blood vessel formation and wound healing, the 

blood vessels in the healed wounds after 7 or 14 days of treatment with saline, HCM 

hydrogel, HCM + rVEGF hydrogel, or VEGF-GAHCM hydrogel with PEI, 20 CP, or 

50 CP polyplexes were determined with immunostaining for CD31 (PECAM-1) to 

detect ECs and staining of ⍺-SMA to detect vascular smooth muscle cells on the blood 

vessel walls within the tissue sections. Figure 4.18(A) shows representative images of 
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CD31- and ⍺-SMA-positive tissue sections for each group after 7 or 14 days of 

treatment. At day 7, interconnected EC networks with positive CD31 and ⍺-SMA 

staining were observed in the wounds treated with VEGF-GAHCM with PEI or 50 CP 
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Figure 4.18. Blood vessels formation analysis of mouse wounds treated with saline, 
HCM hydrogel, rVEGF+HCM hydrogel, and VEGF-GAHCM with PEI, 
20 CP, and 50 CP after 7 and 14 days. . (A) The representative confocal 
microscope images of CD31/⍺-SMA Immunostained mouse skin wound 
tissue section after 7 or 14 days of treatment (CD31 for red, ⍺-SMA  for 
green, and nuclei for blue). Scale bar is 40 µm. The white dotted circles 
indicate blood vessels on the images. (B) Total blood vessels counts per 
field of image. (C) The number of matured blood vessels within the total 
blood vessels counts per field of image.  Each data point represents the 
average of number of blood vessels in the wound per field of image for 
five images per each mouse. The horizontal line represents the mean ± 
standard deviation for total 6 mouse per group. The statistically 
significant differences state &P<0.05 for samples relative to Saline, 
+P<0.05 for samples relative to HCM, and #P<0.05 for samples relative to 
rVEGF. 
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polyplexes, and the signals from CD31 and ⍺-SMA were visually more intense at day 

14. As a result of the poor structural integrity of the frozen tissue compared to paraffin-

processed tissue (51, 52), individual blood vessels in the image were identified in 

regions where CD31 and Hoeschst 33258 signals were colocalized within both enclosed 

circular and circular-like shapes on the representative images (53-55). Individual blood 

vessels (that met either of these criteria) in the field of the image were counted and the 

total blood vessels per area were determined for each group (Figure 4.18(B)). At day 7, 

a greater number of blood vessels were formed in the wounds treated with 50 CP VEGF-

GAHCM than for the other groups, with a statistically significant increase versus the 

saline group. At day 14, the overall number of blood vessels was increased for all of the 

groups. The increase in the total number of blood vessels formed in wounds treated with 

50 CP VEGF-GAHCM was statistically significant relative to the saline, HCM hydrogel, 

and HCM + rVEGF hydrogel groups, but not statistically significant relative to the PEI 

VEGF-GAHCM group. Mature blood vessels were defined as those in which greater 

than half of the detected ⍺-SMA was co-localized with the CD31 and nuclear stains (Fig. 

4.18(C)) (56). This observed trend in the formation of mature blood vessels was similar 

to that observed in the quantitation of total blood vessels. The number of mature blood 

vessels increased from day 7 to day 14 of treatment for all groups. At day 14, a 

significantly greater number of mature blood vessels was measured for the 50 CP 

VEGF-GAHCM than in the other groups (with the exception of the PEI VEGF-

GAHCM). 

4.4 Discussion 

Despite the great potential for pro-angiogenic growth factor therapy, limitations 

in growth factor stability and activity continue to limit clinical translation. To further 
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evaluate a CMP-mediated gene delivery approach, I assessed the ability our 

multifunctional therapeutic biomaterial, VEGF-A-encoding GAHCM (VEGF-GAHCM) 

to control VEGF production and activity and to enhance pro-healing and pro-angiogenic 

effects mediated by fibroblasts and ECs both in vitro and in vivo.   

It is well recognized that the both VEGF-A and fibroblasts play a key role in 

physiological and pathological angiogenesis (57); in response to angiogenic stimuli 

mediated by VEGF-A and fibroblasts, ECs proliferate, migrate, and interconnect to 

form tubular networks. As a heparin-binding polypeptide mitogen, VEGF-A is an 

essential regulator of vessel formation and function by mediating EC survival, 

proliferation, adhesion, and migration (58, 59). Fibroblasts secrete various collagens, 

heparin sulfate proteoglycans, matricellular proteins (e.g., SPARC [secreted protein 

acidic and rich in cysteine] and tenascin), connective tissue growth factors, and 

angiogenic growth factors (e.g.,VEGF, TGF-β, and PDGF) involved in EC 

tubulogenesis (60-63). Both VEGF-A and other fibroblast-derived factors are critically 

involved in stimulating the proangiogenic response of ECs. 

I observed maximal growth for ECs cultured on fibroblast-containing, VEGF-

encoding GAHCM with CMP modification, at all of fibroblast culture time points, 

versus all other groups (Figure. 4.10), indicating the enhanced mitogenic effects of the 

conditioned media collected from the cultured fibroblasts. In particular, the conditioned 

media from fibroblasts precultured for three or five days in 20 CP VEGF-GAHCM 

induced more EC growth than the conditioned media from fibroblasts precultured in 50 

CP VEGF-GAHCM, due to the too high amounts of VEGF-A in 50 CP VEGF-GAHCM 

than 20 CP VEGF-GAHCM which might be above the threshold concentration of 

VEGF-A for its activity. In our previous studies, I have determined the VEGF-A 
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amounts produced by fibroblast cultured in VEGF-GAHCM with and without CMP 

modification for 7 days of culture and I have observed that the VEGF-A amount 

produced by each fibroblast (pg/cell)  in 50 CP VEGF-GAHCM after three or five days 

of pre-culture was higher than the VEGF-A production by fibroblasts precultured in the 

50 CP VEGF-GAHCM (Figure 3.7).  The VEGF-A concentration in the conditioned 

media collected from fibroblasts cultured in 50 CP VEGF-GAHCM might exceed the 

threshold concentration at which VEGF-A activity is known to peak. In particular, 

multiple studies have reported the presence of a threshold VEGF concentration that 

maximizes EC proliferation, migration, and angiogenic network formation, and 

decreased EC proliferation at VEGF concentrations higher than the threshold can occur 

due to the loss of detectable spatial differences in cytokine concentration (64-66). The 

phenomenon of decreased EC proliferation at high VEGF concentrations also agreed 

with our observation that rVEGF at a concentration of 10 ng/mL stimulated maximal 

EC proliferation, but proliferation was lower at concentrations above 10 ng/mL (Figure. 

4.1 and 4.2(A)). Altogether, the conditioned media from fibroblasts cultured in CMP-

modified, VEGF-encoding GAHCM effectively triggered the growth of ECs.  

Moreover, I observed enhanced persistence of EC migratory behavior with 

sustained VEGF production by fibroblasts cultured in VEGF-encoding GAHCM with 

greater CMP modification (50 CP) (Figure. 4.11). Cells typically migrate either 

randomly or directionally toward a chemotactic stimulus (67).  Most growth factors such 

as VEGF, platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) 

stimulate directional cell migration, with VEGF serving as a chemoattractant that directs 

EC migration along a gradient (68). Consistent with this phenomenon, I observed 

limited EC migratory behaviors in the rVEGF hydrogel group (Figure. 4.11), likely 
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because rVEGF was homogeneously distributed in these hydrogels during sample 

preparation. On the other hand, in all of the VEGF-GAHCM groups, VEGF was 

gradually produced by transfected fibroblasts, such that the directionality of EC 

migration depended directly on fibroblast location within the hydrogels. Because 

fibroblasts in the 50 CP VEGF-GAHCM sample, in particular, exhibited sustained 

VEGF production for 7 days and were located near the bottom of the hydrogel (Figure 

3.7], ECs exhibited the most invasive behavior in the 50 CP VEGF-GAHCM. In 

agreement of our result, the sustained VEGF presence via covalently conjugation into 

PEG hydrogel promoted the 2-fold higher expression of activated c-Src, protein kinase 

involved in cell migration, in ECs as compared to the non-sustained VEGF control 

sample (69).  

I also observed that the pro-angiogenic signaling of VEGF produced by 

fibroblasts cultured in VEGF-encoding GAHCM with CMP modification stimulated 

robust network formation resulting in stably interconnected ECs (Figure. 4.13, 4.14, and 

4.15). While ECs typically exhibit a cobblestone morphology during in vitro culture, 

increased concentrations of angiogenic signals can trigger EC proliferation, migration, 

and differentiation leading to the formation of EC networks or capillary-like tubes in 

Matrigel, fibrin, or collagen (37, 38, 70). Due to the sustained and enhanced production 

of VEGF by fibroblasts cultured in 50 CP VEGF-GAHCM, the formation of EC 

networks showed 20-fold and 14-fold increases in total volume and average diameter, 

respectively, as a function of fibroblast preculture time from day 2 to day 10 (Figure. 

4.14). These findings are consistent with prior studies from the Hughes group, which 

reported that VEGF concentration regulated the diameter of vessels formed by human 

umbilical vein ECs in fibrin gels (48). For instance, long and thin vessels were formed 
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at low concentrations of VEGF, whereas vessels with a larger diameter were formed at 

higher concentration of VEGF. Increased vessel diameters were linked to MEK1-

mitogen activated protein kinase (MAP Kinase)/extracellular regulated kinase 

(ERK)1/2-triggered cell proliferation and migration. Other studies have shown that 

myofibroblasts stimulate angiogenic signaling leading to vascular network development. 

For example, Moulin and co-workers demonstrated that human dermal microvascular 

ECs developed significantly more capillary networks when they were co-cultured with 

myofibroblasts as compared with fibroblasts (71). Although there was no difference in 

secretion of VEGF and bFGF by the myofibroblasts vs. fibroblasts in their study, 

myofibroblast co-culture induced decreased matrix metalloproteinase activity and 

increased tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-3 activity, leading 

to more capillary-like network formation. Our results are aligned with this report, in that 

larger-volume EC networks were formed in 50 CP VEGF-GAHCM in which high levels 

of fibroblast-to-myofibroblast differentiation were observed (Figure. 3.8].  

Although the EC networks formed by fibroblasts cultured in 50 CP VEGF-

GACHM exhibited a larger volume and diameter, lumen formation was not clearly 

defined. Vascular lumen formation by ECs is critical for the transformation of EC cords 

into perfusable vascular tubes during the angiogenic process (72-74). Vascular lumen 

formation is regulated by complex cellular processes including angiogenic sprouting 

and intracellular vacuolation that relies on the expression of multiple molecules such as 

integrins, cdc42 and Rac, and proteinase (72). In particular, the activities of MMPs 

including MT1-MMP, TIMP-2, and TIMP-3, have been involved in the lumen 

expansion (75, 76). During vascular network development and lumen formation in 

wound healing, myofibroblasts have shown to lead a more favorable environment for 
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angiogenic development than fibroblasts (71, 77). This could be different levels of MMP 

activities such as TIMPs-1 and -3 in myofibroblasts vs. fibroblasts to stabilize the 

vascular network for the lumen formation (71, 76). I previously reported myofibroblast 

differentiation by fibroblasts cultured in VEGF-GAHCM, with increased myofibroblast 

signaling stemming from VEGF-GAHCM with greater CMP modification (Chapter 3). 

While increased myofibroblast signaling would be expected to stabilize lumen 

formation and expansion in these materials, 24 h might be a relatively short incubation 

time period to enable ECs to respond to the effects of the myofibroblasts  (76, 78, 79).   

Splinted murine excisional wound healing studies demonstrated a direct 

correlation between wound healing, EC activation, and blood vessel formation in the 

healed wounds (Figure. 4.16, 4.17, and 4.18). During wound healing, the proliferation 

phase mainly encompasses coverage of the wound via formation of granulation tissue 

and restoration of the vascular network (80). Granulation tissue formation is a 

particularly critical step that generates new connective tissue and microscopic vessels 

via a complex interplay between multiple cell types such as fibroblasts, keratinocytes, 

and ECs at the wound site (81). Thicker granulation tissue is typically present at earlier 

time points and reduced at later time points to trigger re-epithelialization and wound 

closure (33, 82, 83). In agreement with this phenomenon, I observed that VEGF-

GAHCM stimulated increased granulation tissue formation in wounds at day 7, as 

compared to other groups, and the area of granulation tissue decreased by day 14 

consistent with the kinetics of wound closure (Figure. 4.16 and 4.17) (33, 82, 83). 

Granulation tissue also supports the recruitment of keratinocytes for re-epithelialization 

(84), resulting in newly formed epidermis that is typically relatively thicker and flatter 

than the epidermis of normal skin (85). Our findings also mirrored this phenomenon, as 



 187 

I observed significantly enhanced thickness in the epidermal layer 14 days after wound 

treatment with VEGF-GAHCM with 50 CP, indicating freshly formed epidermis.  

Moreover, angiogenesis plays an important role in wound healing via angiogenic 

capillary sprouting, capillary invasion of the fibrin/fibronectin-rich wound clot, and 

organization of a microvascular network to support newly formed granulation tissue (6). 

In response to angiogenic stimuli such as VEGF, ECs proliferate, migrate, and coalesce 

to form primitive vascular labyrinths that undergo maturation by recruitment of smooth 

muscle cells to form mature blood vessels. Although previous studies reported that 

topical treatment of rodent skin wound models with rVEGF protein or VEGF-encoding 

DNA resulted in increased healing, these studies did not demonstrate a significant 

increase in vessel formation following treatment (86-88). On the other hand, in our study, 

I demonstrated that application of VEGF-GAHCM with 50 CP increased both the total 

number of blood vessels and the number of mature blood vessels in the wound, 

presumably due to the capacity of these materials to sustain VEGF production for 

extended time periods. However, the enhancement of 50 CP VEGF-GAHCM in in vivo 

healing and angiogenesis evaluations was not statistical significantly different from 

VEGF-GAHCM with no CMP modification, despite the significant differences 

observed between these samples based on in vitro EC networks formation experiments. 

Similarly, I have observed this outcome for wound closure and ⍺-SMA expression in in 

vitro vs. in vivo our previous studies (Chapter 3). I explained that the 10-fold higher 

polyplex concentration in the in vivo than in vitro studies (43) and the presence of 

multiple cell types in vivo environment (89) might result in the production of VEGF by 

PEI VEGF-GAHCM and 50 CP VEGF-GAHCM, which exceeds a threshold for 

stimulating cells and similar proangiogenic and prohealing responses (66). Overall, the 
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increased wound healing resulting from 50 CP VEGF-GAHCM correlated with 

increases in the total number of blood vessels and mature blood vessels, along with 

corresponding changes to granulation tissue formation and re-epithelialization. 

4.5 Conclusion 

Due to the difficulties in controlling growth factor activity and corresponding 

cellular signals in the wound microenvironment, growth factor therapies have 

historically results in insufficient healing outcomes. Our recent design employs 

synergies in CMP-collagen tether-mediated growth factor gene delivery and matrix 

signaling to improve cellular responses for wound repair. In this study, VEGF-A activity 

controlled by fibroblasts cultured in VEGF-GAHCM with CMP modification stimulates 

both mitogenic and chemotactic responses to ECs for proliferation and migration. 

Additionally, the pro-angiogenic effects of sustained VEGF production directly on ECs, 

coupled with its synergistic effects on fibroblasts (including myofibroblast 

differentiation that improves EC network formation), resulted in the formation of large-

diameter and large-volume networks of stably interconnected ECs. These pro-

angiogenic responses monitored in vitro also translated into more efficient blood vessel 

formation and wound repair in an in vivo wound healing model. Therefore, VEGF-

GAHCM is a potential therapeutic option for chronic wound treatment to improve 

vascularization and wound healing. This study suggests the broad benefits of using 

CMP-collagen tethers to regulate the efficient transfer of genes for a variety of growth 

factors, which could serve to orchestrate improved cellular healing signals for the 

treatment of chronically impaired wounds. 
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CONTROLLED DELIVERY OF VANCOMYCIN FROM COLLAGEN-
TETHERED PEPTIDE VEHICLES FOR TREATMENT OF WOUND 

INFECTIONS 

Despite the great promise for antibiotic therapy in wound infections, antibiotic 

resistance stemming from frequent dosing diminishes drug efficacy and contributes to 

recurrent infection. To overcome the limitations of current antibiotic therapies, it would 

be useful to develop new antibiotic delivery systems that maximize pharmacological 

activity and minimize side effects. In this study, I developed elastin-like peptide and 

collagen-like peptide (ELP-CLP) nanovesicles (ECnVs) tethered to collagen-containing 

matrices to control vancomycin delivery and provide extended antibacterial effects 

against methicillin-resistant Staphylococcus aureus (MRSA). I observed that ECnVs  

showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to 

liposome formulations. Additionally, ECnVs enabled the controlled release of 

vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited 

first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin 

(co-gel) matrices and collagen-only matrices, with differential retention on the two 

biomaterials resulting in different local concentrations of released vancomycin. Overall, 

the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen 

more effectively inhibited the growth of MRSA for 18 h and 24 h, respectively, even 

after repeated bacterial inoculation as compared to matrices containing free vancomycin, 

which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery 

system exhibited distinct advantages for controlled vancomycin delivery and prolonged 

antibacterial activity relevant to the treatment of wound infections. 

Chapter 5 
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5.1 Introduction 

Wound infection is one of the major healing impediments in chronic wounds, 

leading to serious life-threatening complications such as tissue necrosis, hemorrhage, 

and low-extremity amputations (1-3). Wound infection is usually characterized by an 

excessive inflammatory response involving immune cells, which are recruited by the 

release of toxins from bacteria colonizing the wound (4, 5). Further, colonies of 

pathogenic bacteria, including the Gram-negative bacterium Pseudomonas aeruginosa 

and the Gram-positive bacterium Staphylococcus aureus, form fibrous biofilms, which 

make it more challenging for host clearance mechanisms to eradicate bacterial colonies 

from the wound and stimulate wound repair (6-8). Thus, approaches to inhibit the 

growth of the bacterial populations in wound beds has been a target of drug delivery 

therapies for the treatment and prevention of wound infection while promoting wound 

healing.  

Numerous topical formulations for wounds have been developed to manage and 

prevent wound infection (9-11). Synthetic and natural materials-based wound dressings 

in the form of hydrogels and films have been applied on the wound site to provide a 

moist environment, maintain the tissue temperature, and aid the wound healing process 

(12-14). Wound dressings containing antimicrobial/antibacterial agents enable control 

over local infections in situations where high concentrations of antibiotics are required, 

although the use of high antibiotic concentrations can lead to adverse effects such as 

renal toxicity and antibiotic resistance (15, 16).  In addition, the presence of multidrug-

resistant microorganisms (e.g., methicillin-resistant Staphylococcus aureus, or MRSA) 

in the wound diminishes the efficacy of common antibiotics, leading to infection 

recurrence and antibiotic resistance (17). Thus, the sustained local delivery of the 

minimum inhibitory concentrations (MIC) of antibiotics against MRSA is necessary to 

actively eradicate bacterial populations while minimizing adverse effects. 

Nanoscale particles have been widely employed to encapsulate small-molecule 

therapeutics and control the release of these molecules over extended time periods. Due 

to the advantages of liposomes as a drug delivery system, including improved 
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pharmacokinetics and biodistribution, liposomes have demonstrated their effectiveness 

in antibiotic delivery and bacterial growth inhibition for a number of decades (18-22). 

Indeed, liposomes have shown a capacity to enhance the efficacy of antibiotics through 

their ability to fuse with the bacterial cell membrane and thereby increase the local 

concentration of antibiotics within the bacterial cells (23-25). As a result, antibiotics 

delivered by liposomes have shown efficacy against antibiotic-resistant microorganisms 

(26, 27). For example, liposomal delivery has been shown to increase the amount of 

intracellular methicillin accumulation and reduce bacterial populations by 96%, as 

compared to 40% for free methicillin (28). Likewise, liposomal delivery has also been 

shown to reduce the MIC of vancomycin against MRSA to 2- to 4-fold lower than that 

of free vancomycin (29, 30). Moreover, vancomycin-loaded liposomes have been 

shown to significantly reduced MRSA populations in a mouse surgical wound model 

relative to that of free vancomycin at the end of the 9th and 14th days of treatment (31).  

Owing to the effectiveness of liposomes for antibiotic delivery to inhibit MRSA 

growth, our group previously demonstrated the potential utility of employing collagen-

like peptide (CLP; also known as collagen-mimetic peptide or CMP)-modified 

vancomycin-liposomes, tethered to collagen/fibrin hydrogels (co-gels), for the 

treatment of MRSA-infected wounds in vivo (32). CLPs, composed of (GXY)n units, 

can fold into triple-helix structures at temperatures below their melting temperature, Tm, 

but disassemble into single strands above their Tm (33, 34), which enables them to 

hybridize with native collagen molecules through strand invasion at temperatures below 

the CLP Tm (35). I demonstrated that CLP modification of liposomes improved 

liposome retention on the co-gels, enhancing the sustained release of vancomycin and 

providing robust antibacterial effects against MRSA, as compared to liposome-

containing co-gels without CLP modification (32). At the same time, the bioactivity of 

the co-gels stimulated cellular healing responses and improved the wound repair process 

in an in vivo murine wound model (36). While these results are promising, liposomal 

antibiotic delivery systems suffer limitations such as a short shelf-life and low 
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encapsulation efficiency (ca. 2.7-5.7%) for hydrophilic antibiotics (19, 37, 38), which 

motivated our evaluation of alternative collagen-binding carriers.   

In this study, I employed the thermoresponsive assembly/disassembly of 

extracellular-matrix (ECM)-inspired elastin-like peptide and collagen-like peptide 

(ELP-CLP) nanovesicles (ECnVs) to improve the encapsulation efficiency of 

hydrophilic drugs, and to leverage the ability of ECnVs to tether to collagen-based 

matrices to extend the controlled delivery of vancomycin for prolonged antibacterial 

effects. Our group developed ELP-CLP conjugates whose design facilitated the triple 

helical assembly of CLPs, as well as corresponding reductions in the inverse transition 

temperature of the short ELP. This design approach resulted in assembly of stable 

vesicle-like nanostructures above the inverse transition temperature of the ELP domain 

(Tt), and disassembly above the Tm of the CLP domain (39-45). Our previous studies 

demonstrated that the ECnVs induced a minimal inflammatory response from 

macrophages, exhibited high cytocompatibility for murine fibroblasts, offered the 

ability to hybridize with collagen, and thermally controlled the delivery of a model drug 

(40). Thus, ECnVs offer significant potential owing to their high biocompatibility, 

tunable properties, and bioactivity of the peptide building blocks. 

The overall goal of this study was to evaluate improvements in the efficacy of 

ECnVs tethered to collagen-containing matrices (collagen and co-gel) for vancomycin 

delivery and antibacterial activity against MRSA. ECnVs controlled vancomycin 

release at a constant rate to maintain the drug concentration within the therapeutic 

window for an extended period. Moreover, the different retention of ECnVs on collagen 

vs. co-gel affected the rates of ECnVs release from the matrices, leading to variations 

in the rate of biphasic vancomycin release depending on the matrix. The sustained 

release of vancomycin from the matrix-bound ECnVs extended the duration of 

antibacterial activity of vancomycin against MRSA, even with re-inoculation. Our 

finding suggests the potential for ECnVs in collagen-containing matrices as a potential 

treatment option for wound infections to prevent recurrence of infection and aid wound 

repair. 



 209 

5.2 Materials and Methods 

5.2.1 Materials 
Low loading (LL) Rink Amide ProTide® Resin, ethyl 

cyanohydroxyiminoacetate (Oxyma), and diisopropylcarbodiimide (DIC) were 

procured from CEM Corporation (Matthews, NC). Fmoc-protected amino acids 

including 4-azidobutyric acid and Fmoc-propargylglycine-OH, as well as O-

benzotriazole-N,N,N′,N′-tetramethyl-uronium-hexafluoro-phosphate (HBTU) were 

purchased from ChemPep Inc. (Wellington, FL). trifluoroacetic acid (TFA), N,N-

dimethyl formamide (DMF), acetonitrile, methanol, and anhydrous ethyl ether were 

acquired from Fisher Scientific (Fairlawn, NJ). Piperidine, N,N-diisopropylethylamine 

(DIPEA), ethanethiol, triisopropylsilane, and tris-hydroxypropyltriazolylmethylamine 

(THPTA), (+)-sodium L-ascorbate, and copper (II) sulfate were procured from Sigma 

Aldrich (St. Louis, MO). Cy3 maleimide was obtained from Click Chemistry Tools LLC 

(Scottsdale, AZ).  1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene 

glycol)−2000-maleimide] (DSPE-PEG-Mal), and cholesterol were procured from 

Avanti Polar Lipids, Inc. (Alabama, USA), Sigma Aldrich (St. Louis, MO, USA), and 

Nanocs Inc. (New York, USA), respectively. Type I bovine collagen (10 mg/mL) was 

obtained from Advanced BioMatrix (San Diego, CA). A luminescent strain of 

Staphylococcus aureus (SAP231, luminescent version of USA300 MRSA strain 

NRS384) was a kind gift from Dr. Roger Plaut (42). All experiments using MRSA 

culture were performed in accordance with biosafety level 2 practices. The proper 

laboratory PPE and BSL-2 operation practices were carefully used to avoid any potential 

MRSA infection. Vancomycin, tryptic soy broth, tryptic soy agar, and chloramphenicol 

were purchased from Sigma Aldrich (St. Louis MO, USA). 
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5.2.2 Synthesis of ELP-CLP conjugates 

 

Figure 5.1. LC-MS of the purified (GPO)8GC: (A) UPLC trace; (B) ESI-MS spectra. 
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Figure 5.2. LC-MS of the purified F6: (A) UPLC trace; (B) ESI-MS spectra for peak 
3.66. 



 212 

 

Figure 5.3. LC-MS of the purified azide-(GPO)8GC: (A) UPLC trace (2.47 peak is pure 
CLP and 2.80 peak is a mixture of monomer CLP with dimer CLP); (B) 
ESI-MS spectra for peak 2.80; (C) ESI-MS spectra for peak 2.47. 
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Figure 5.4. LC-MS of the purified azide-(GPO)8GG: (A) UPLC trace; (B) ESI-MS 
spectra. 
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Figure 5.5. LC-MS of the purified F6-(GPO)8GG: (A) UPLC trace (3.42 peak is pure 
CLP and 3.58 peak is a mixture of monomer ELP-CLP with trimer ELP-
CLP); (B) ESI-MS spectra for peak 3.42; (C) ESI-MS spectra for peak 
3.58. 
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Figure 5.6. LC-MS of the purified F6-(GPO)8GC: (A) UPLC trace; (B) ESI-MS spectra. 
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The peptides [CLP (G8): (GPO)8GG, (GPO)8GC, ELP (F6): (VPGFG)6G’ (G’ = 

propargyl glycine)] were synthesized via standard Fmoc solid-phase peptide synthesis 

using a Liberty Blue Automated Microwave Peptide Synthesizer (CEM Corporation, 

Charlotte, NC) as described in our previous reports (41). Briefly, each amino acid (4 

molar equivalents) was added by double coupling at 90 ºC for 10 min with Oxyma (4 

molar equivalents) and DIC (12 molar equivalents). For azido functionalization of the 

CLP, 4-azidobutyric acid (6 molar equivalents) was coupled to the N-terminus of the 

CLP on resin via a 2 h reaction with HBTU (6 molar equivalents) and DIPEA (12 molar 

equivalents). The peptides were cleaved from the resin after 2 h by incubation in 

95:2.5:2.5 TFA:TIS:water (v:v:v). The crude peptides were purified via reverse-phase 

HPLC (Waters Inc., Milford, MA) on a Waters XBridge BEH130 Prep C-18 column 

using a linear gradient mixture of water (0.1% TFA) and acetonitrile (0.1% TFA) with 

ultraviolet detection at 214 nm. The molecular weights and purities of each of the 

purified peptides were confirmed via ultra-performance liquid chromatography, in line 

with electrospray ionization mass spectrometry (Xevo G2-S QTof mass spectrometer; 

Waters Inc., Milford, MA) (Figure 5.1-5.4). The purified CLP (6 µmol) and ELP (3 

µmol) were conjugated via the copper (I)-mediated azide-alkyne cycloaddition reaction 

as described in our previous papers (39). Briefly, ELP, CLP, Cu (II) sulfate (6 µmol), 

THPTA ligand (35.1 µmol), and (+)-sodium L-ascorbate (400 µmol) in 70:30 

water:DMSO (v:v) were incubated for 1 h with stirring at 70 ºC. Then, the ELP-CLP 

conjugate (F6-G8GG) was purified via HPLC at 70 ºC and confirmed by UPLC-MS 

(Figure 5.5&5.6). 

5.2.3 Characterization of ELP-CLP conjugates 

The melting temperature (Tm) of the ELP-CLP F6-G8GG (Tm = 57.9 ºC; Figure 

5.7A) and the transition temperature (Tt) of the same ELP-CLP (Tt = 21.20 ºC) were 

identified in previous study (41). ELP-CLP conjugate dissolved in water (1 mg/mL) was 

incubated at 37 ºC overnight after 30 min of heating the solution at 80 ºC to completely 

dissociate the ELP-CLP conjugate (Figure 5.7B). The resulting ELP-CLP nanovesicles 



 217 

sizes were analyzed via DLS on a ZetaSizer Nano Series (Nano ZS, Malvern 

Instruments, UK) at 173 º as a scattering angle. The cumulant method was used for data 

fitting. The cross-sectional morphology of the ELP-CLP nanovesicles was evaluated via 

Thermo ScientificTM TalosTM -TEM (Thermo Fisher scientific, Waltham, MA) 

operated at 200 kV. The ELP-CLP sample (5 µL) was drop-casted onto the carbon-

coated copper grids (CF300-Cu, Electron Microscopy Sciences Inc.) and blotted after 1 

min. Samples were stained using 1% PTA at pH 7 (3 µL) for 10 s and blotted. Then, 

samples were air-dried for at least 2 h before TEM imaging. 

5.2.4 Vancomycin encapsulation in ECnVs 

First, the ELP-CLP conjugate (dissolved in water) was heated at 80 ºC for 30 

min to completely disassemble the ELP-CLP conjugate. Vancomycin (1 molar ratio to 

ELP-CLP conjugate) in PBS at pH 7 was added to the solution of ELP-CLP conjugate. 

Vancomycin and the ELP-CLP conjugate were then mixed with a vortex mixer and 

incubated at 37 ºC overnight to enable loading of vancomycin into the ECnVs during 

A B 

Figure 5.7. Circular dichroism measurement of F6-(GPO)8GG (A) Variable 
temperature measurement at 225 nm for Tm determination (B) Spectra 
measurement from 205 to 250 nm at 37 ºC and 80 ºC. 
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nanovesicle formation. Then, 10x PBS (Corning®, Corning, NY) was added to yield a 

final 1x PBS solution. For determining the encapsulation efficiency (EE) and loading 

capacity (LC) of vancomycin (van) in the ECnVs, each nanovesicle sample was 

centrifuged at 15K rpm for 10 min to separate the vancomycin loaded ECnVs from any 

unencapsulated vancomycin in the supernatant; subsequently, the ECnVs were 

resuspended in PBS.  The concentration of unloaded vancomycin in the collected 

supernatant was determined using absorbance measurements on the collected 

supernatant. Comparison of the concentration of vancomycin in the supernatant to the 

initial concentration of vancomycin in solution yielded an assessment of the 

concentration of vancomycin encapsulated in the ECnVs. The EE of vancomycin (van) 

in ECnVs was calculated using the following formula:  

𝐸𝐸 = !van loaded in ECnVs
!van initial

	× 	100                                   (1) 

 

where Mvan loaded in ECnVs = mass of vancomycin-loaded in ECnVs, and M van initial  = initial 

mass of vancomycin added to the ELP-CLP solution for encapsulation.  

The LC of vancomycin (van) in ECnVs was calculated using the following formula:

  

𝐿𝐶 = !van loaded in ECnVs
!ECnvs

	× 	100                                   (2) 

where Mvan loaded in ECnVs = mass of vancomycin-loaded in ECnVs, and M ECnvs  = mass of 

ECnVs.   
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5.2.5 Vancomycin encapsulation in liposomes 

The liposomes were prepared by a traditional thin-film dehydration-rehydration 

protocol, followed by sequential extrusion through membrane filters with pore sizes of 

200 nm and 100 nm, respectively (47). Lipids with a molar ratio of 73:24:3 

(DPPC:Cholesterol:DSPE-PEG-Mal) were mixed in 4:1 chloroform and methanol (v:v) 

and added into a round-bottom flask. The lipid film was formed after evaporation of the 

organic solvent for at least 2 h via rotary evaporation at 40 ºC and 400 psi. The 

vancomycin in PBS at pH 7 was added to the flask at a 3-fold excess of vancomycin:total 

mass of lipids, and the flask was rotated for 15 min at 60 ºC for rehydration. The samples 

were then sonicated for 2 min before extrusion. The lipid and vancomycin suspension 

was first extruded through a polycarbonate membrane with a pore size of 200 nm (15 

times), and subsequently, through a membrane with pore size of 100 nm (10 times). The 

diameters of the vancomycin-loaded liposomes were evaluated via DLS with a 

ZetaSizer Nano Series (Nano ZS, Malvern Instruments, UK) with a scattering angle of 

173º (Figure. 5.8). In order to determine the encapsulation efficiency (EE) and loading 

capacity (LC) of vancomycin in the liposomes, the sample was centrifuged at 15 K rpm 

for 10 min for precipitation of vancomycin-loaded liposomes to remove any 

unencapsulated vancomycin, and the concentration of the unencapsulated vancomycin 
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Figure 5.8. Size measurement of vancomycin loaded liposome using dynamic light 
scattering. 
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was determined via evaluation of the absorbance of the supernatant. The EE and LC of 

vancomycin in the liposomes was calculated using Formula 1 and 2 above. The 

vancomycin-loaded liposomes were re-suspended in PBS, and lyophilized with 20 mM 

sucrose prior to incorporation into collagen-containing matrices. 

5.2.6 Vancomycin release kinetics from nanocarriers 

Vancomycin release rates from vancomycin-loaded liposomes and vancomycin-

loaded ELP-CLP nanovesicles were evaluated using Slide-A-LyzerTM Mini dialysis 

device with 10K molecular weight cutoff (Thermo ScientificTM, Waltham, MA), using 

the rate of free vancomycin transport across the dialysis membrane as a control. 100 µL 

aliquots of each formulation (free vancomycin, vancomycin-loaded liposomes, and 

vancomycin-loaded ELP-CLP) were placed in the dialysis cup and immersed in 2 mL 

of PBS buffer in a glass vial. The samples were incubated at 37 ºC with a shaking at 225 

rpm. The PBS, containing released vancomycin (400 µL) was collected and replaced 

with fresh PBS at 2, 4, 8, 24, 48, 72, 96, 120, 144, and 168 h. At 168 h, the samples 

were incubated at 80 ºC for 30 min to recover the vancomycin from the disassembled 

ELP-CLP (Figure 5.7B) and liposome and collected as the 168.5 h time point. The 

concentrations of released vancomycin in PBS were determined using an absorbance 

measurement at 280 nm on a Nanodrop spectrometer (Thermo ScientificTM, Waltham, 

MA), and the cumulative percentage release of vancomycin per sample was calculated 

using the following equation (44): 

𝑃 = 	 "%∑ $&%	"'()*
* $(

!+,()-.,/%/
	× 	100%                                   (3) 

Where Mvan-loaded represents the amount of vancomycin encapsulated in ELP-CLP or 

liposome, V0 is the total volume of the release media, Ve is the volume of each sample 

that is being collected at each time point, Ci is the concentration of vancomycin 

measured by UV absorbance in the ith sample, and Cn represents the concentration of 

vancomycin in nth sample.  
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In order to assess the diffusion of any free vancomycin, that remained in the 

encapsulated samples, across the dialysis membrane, free vancomycin controls were 

formulated based on the calculation of encapsulation efficiency (EE) for the liposome 

and ECnVs.  Because the EE for the liposomes was 15.2% of the initial vancomycin 

employed during formulation, free vancomycin controls with 84.8% of the initial 

vancomycin were employed for the liposome.  And, free vancomycin controls with 51.8% 

of the initial vancomycin were employed for ECnVs since the EE for the ECnVs was 

48.2 % of the initial vancomycin employed during formulation. Then, the release 

profiles of free vancomycin were subtracted from the data in Figure 5.12A to acquire 

the data presented in Figure 5.12B. 

5.2.7 Collagen and co-gel matrix retention and release of nanovesicles 

First, ECnVs were labelled with Cy3-Maleimide using a Michael-type addition 

reaction (Figure. 5.9). Briefly, a 1:9 (VPGFG)6-(GPO)8GC:(VPGFG)6-(GPO)8GG mass 

ratio in PBS was heated at 80 ºC to completely dissociate the ELP-CLP assembly, and 

the heated samples were subsequently mixed thoroughly. Then, the ECnVs were 

allowed to form by incubation at 37 ºC overnight. Cy3-Maleimide (10 molar equivalents 

as compared to (VPGFG)6-(GPO)8GC) was added into the ECnV solution and the 

mixture was rotated at 50 rpm for 2 h at 37 ºC. The unreacted Cy3-Malemide was 

removed by centrifugation at 15K rpm for 10 min, and the labeled ECnVs were 

suspended in PBS. The Cy3-labeled ECnVs were lyophilized with 20 mM sucrose. For 

Particle formation
At 37 ºC

SH

TCEP 
(10 eq. molar) 

Cy3-Maleimide 
(10 eq. molar) 

At 37 ºC

SH

F6-G8-GG (9)
F6-G8-GC(SH) (1)

Figure 5.9. The reaction schematic for Cy3 labeled ECnVs. 



 222 

the control experiment, fluorescently labeled liposomes were prepared (DPPC : 

Cholesterol : DSPE-PEG-Maleimide : NBD-PC (72.6:24:3:0.4)) as described in our 

previous work (49). Additionally, CLP-functionalized, fluorescently labeled liposomes 

were prepared through one of two methods: post-surface modification with CLP, or pre-

surface modification with CLP. For post-surface modification, CLP was added to the 

fluorescently labeled liposome using a Michael-type addition reaction between DSPE-

PEG-Maleimide of the fluorescently labeled liposome and thiol groups on the cysteine 

residue of the CLP ((GPO)8GC). For pre-surface modification, prior to liposome 

formulation, CLP ((GPO)8GC)) was conjugated with DSPE-PEG-Maleimide lipid to 

prepare DSPE-PEG-CLP lipid, which was confirmed by MALDI-ToF (Fig. S10), as 

described in the literature (50, 51). CLP functionalized, fluorescently labeled liposomes 
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were prepared (DPPC : Cholesterol : DSPE-PEG-CLP : NBD-PC (72.6:24:3:0.4)) 

following the same protocol to prepare fluorescently labeled liposome. 

The pre-gel mixtures of collagen or co-gel were prepared separately. The pre-

gel collagen was composed of 4 mg/mL neutralized bovine collagen type I (Fibricol®) 

with 10X PBS and 0.1N NaOH, and the pre-gel co-gel was composed of 4 mg/mL 

neutralized bovine collagen type I in PBS, 1.25 mg/mL fibrinogen in 20 mM HEPES 

pH 6, and 0.156 IU/mL thrombin in 20 mM HEPES pH 6. The lyophilized Cy3-labeled 

Figure 5.10.  MALDI-ToF with a linear mode of A. (GPO)8GC B. DSPE-PEG-
Maleimide C. DSEP-PEG-(GPO)8GC. 
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ECnVs or fluorescently labeled liposomes were suspended in the pre-gel mixtures of 

collagen or co-gel. Then, samples were added to a microscope slide for gelation 

overnight. The Cy3 labelled ECnVs (λex 532 nm and λem 568 nm) or fluorescently 

labeled liposomes (λex 564 nm and λem 531 nm) and autofluorescence of collagen fibers 

(reflected light at 405 nm) within the matrices were visualized both before and after 

washing (with PBS overnight at 37 ºC) using a Zeiss LSM 880 confocal microscope 

with C-Apochromat 40x water objective. The 3D image plot and image analysis were 

performed using Volocity Imaging software (Quorum Tech. Inc., Canada). In addition, 

in vitro Cy3-labeled ECnV release from the matrices (collagen vs. co-gel) was measured 

for matrix samples containing Cy3-labeled ECnVs. Lyophilized Cy3-labeled ECnVs 

were suspended and mixed well into the pre-gel mixture, and 100 µL samples were 

transferred into non-coated 48-well plate wells for gelation at 37 ºC overnight. Then, 

500 µL of PBS was added to visually turbid hydrogel samples in each well to initiate 

the release experiments with the (unloaded) ECnV-loaded matrices. The release samples 

(100 µL) were collected at 0.5, 1, 2, 4, 8, 24, 48, 72, and 96 h at 37 ºC. The cumulative 

ECnVs release was determined using fluorescent measurements at λex 532 nm and λem 

568 nm using a SpectraMax i3x multi-mode microplate reader (Molecular Devices, 

LLC. San Jose, CA) and using equation (3). 

5.2.8 Vancomycin release kinetics from matrices 

Similar to the study of Cy3-labeled ECnVs release from matrices, in vitro 

vancomycin release from the matrices (collagen vs. co-gel) was measured for matrix 

samples containing free vancomycin, vancomycin-loaded liposomes, and vancomycin-

loaded ECnVs. Collagen matrices were prepared with a neutralized 4 mg/mL bovine 

type I collagen, and co-gels were prepared by mixing 4 mg/mL neutralized bovine type 

I collagen, 1.25 mg/mL fibrinogen in 20 mM HEPES at pH 6, and 0.156 IU/mL 

thrombin in 20 mM HEPES at pH 6. In these pre-gel mixtures of collagen or co-gel, the 

lyophilized free vancomycin, vancomycin-loaded liposomes, or vancomycin-loaded 

ELP-CLP ECnVs were suspended and mixed well. Then, 100 µL samples were 
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transferred into non-coated 48-well plate wells before gelation by incubation at 37 ºC 

overnight. After overnight gelation, 500 µL of PBS at 37 ºC was added to visually turbid 

hydrogel samples in each well to initiate vancomycin release. The released samples 

were collected at 0.5, 1, 2, 4, 8, 24, 48, 72, and 96 h at 37 ºC. After the last time point 

of release, samples were heated at 80 ºC for 30 min to completely dissolve the matrices 

for the recovery of remaining vancomycin, and these samples were collected as the 96.5 

h time point. The cumulative vancomycin release was determined using absorbance 

measurements at 280 nm using a Nanodrop spectrophotometer (Thermo ScientificTM, 

Waltham, MA) and using equation (3). 

5.2.9 Antibacterial activity of vancomycin-loaded in ECnVs in matrices 

Similar to the re-inoculation protocols employed in our previous study (32), 

collagen gel or co-gel (100 µL) was loaded with free vancomycin or vancomycin-loaded 

ECnVs at concentrations of 4, 7, or 10 µg/mL vancomycin per gel. Gels were added to 

the wells of black 96-well plates. The plates were incubated at 37 ºC overnight for 

gelation. After gelation, samples of the luminescent MRSA strain (SAP231, 

luminescent version of USA300 MRSA strain NRS384) were diluted in tryptic soy 

broth with chloramphenicol (10 µg/mL) to prepare solutions of 5 ✕ 105 cfu/mL of 

MRSA. 200 µL of MRSA (5 ✕ 105 cfu/mL) were added to each well of a 96-well plate; 

the final concentrations of vancomycin in the MRSA cultures were 1, 2, and 3 µg/mL. 

The plate was incubated at 37 ºC with shaking at 150 rpm for 16 h, and the optical 

density (O.D.) at 600 nm and luminescence of luminescent MRSA with no excitation 

set-up were measured using absorbance module and photomultiplier tubes (PMT) 

detector of luminescence modules, respectively, of a SpectraMax i3x multi-mode 

microplate reader (Molecular Devices, LLC. San Jose, CA) every two hours. Sixteen 

hours after the first inoculation, the bacterial cultures were removed from the wells and 

the wells were rinsed with the culture broth. Then, a fresh aliquot of 200 µL of MRSA 

(5 ✕ 105 cfu/mL) was added into each well of the 96-well plate for re-inoculation. The 
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bacterial growth was evaluated using O.D. and luminescence measurements every 2 h 

for an additional 16 h. 

5.2.10 Mathematical model fitting and statistical analysis 

The vancomycin or ECnV release profiles were analyzed using the fitting 

functions BoxLucas1 for first-order release and Allometric2 for Korsmeyer-Peppas 

kinetics with the max number of iterations set to 500 and the tolerance set to 1-6 in 

OriginLab (Northampton, MA).  

Unless indicated, all experimental data were expressed as the mean ± standard 

deviation of the mean. The statistical significance was analyzed using OriginLab 

software (Northampton, MA). Sample groups were compared using a Student’s t-test 

with a significance level of 0.05. 

 

5.3 Results 

5.3.1 Characterization of vancomycin- loaded ELP-CLP 

To evaluate whether the loading of vancomycin in ECnVs influenced the 

physical properties of the ECnVs, the diameters and morphology of ECnVs before and 

after vancomycin encapsulation were examined using DLS and TEM imaging, 

respectively. The ECnVs (Dh = 157.0 ± 5.0 nm) exhibited a decreased diameter (Dh = 

122.3 ± 6.2 nm) after the loading of vancomycin (Figure. 5.11A), which was similar 

behavior to that of liposomes after vancomycin loading (32), and also similar behavior 

to that of ECnVs after hydrophobic fluorescein loading (40). Furthermore, the 

morphology of the ECnVs was similar before and after loading of vancomycin (Figure. 
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5.11B), indicating that the encapsulation of vancomycin in the nanovesicles did not 

disrupt ELP-CLP assembly. 

5.3.2 Vancomycin release kinetics from nanocarriers 

To determine the release kinetics of vancomycin from ECnVs, in vitro 

vancomycin release studies were conducted using a dialysis method under 

physiologically relevant conditions. The release kinetics of vancomycin from ECnVs 

Figure 5.11. Characterization of vancomycin loaded ECnVs (A) Size measurements of 
ECnVs using DLS (number percentage and volume percentage) before and 
after vancomycin loading and after lyophilization. (B) Representative 
TEM images of ECnVs before and after Vancomycin loading. Scale bar is 
500 nm. 
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were calculated as the cumulative release percentage over a period of 7 days. As a 

control, vancomycin-loaded liposomes (Dh = 136.6 ± 1.0 nm) of similar diameter as the 

vancomycin-loaded ECnVs (Figure. 5.8) were used. The vancomycin release data from 

the liposomes and ECnVs is presented in Figure. 5.12A; it is obvious from the data that 

the release of vancomycin from ECnVs was much slower than the release of 

vancomycin from the liposomes. The data were fit to a Korsmeyer-Peppas model, and 

the numeric coefficient (n) from this model (which describes the mechanism of release), 

was less than 0.45 for both nanocarriers, indicating a similar mechanism of release of 

vancomycin from the ECnVs and liposomes (Figure. 5.12A). The release kinetics of 

Figure 5.12. Vancomycin release from nanocarriers (A) without removing or (B) with 
mathematically removing the unloaded Vancomycin at 37 ºC. The release 
profiles were fitted with Korsmeyer-Peppas model. (C) Table for 
encapsulation efficiency (E.E.), loading capacity (L.C.) of vancomycin in 
liposome and ELP-CLP and constants for Korsmeyer-Peppas model 
fitting. Kkp indicates Korsmeyer release rate constant and n indicates 
diffusional exponent. Each data represents mean ± standard deviation for 
n=6. 
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free vancomycin were also determined and mathematically subtracted from the overall 

release profiles to account for the diffusion of vancomycin across the dialysis membrane 

and to allow a more direct comparison of the release rates and mechanisms of the 

carriers (Figure. 5.12B and 5.12C). To better capture the mechanism of vancomycin 

release from ECnVs and liposomes, the Korsmeyer-Peppas model was then utilized to 

characterize the release kinetics of these corrected release profiles (Figure. 5.12B). And, 

since the initial three data points at 2h, 4h, and 8h for ECnVs represented no vancomycin 

release from ECnVs during the lag-time, these three data points were excluded for fitting 

with Korsmeyer-Peppas model. Based on the data in Figure. 5.12B, the vancomycin was 

released from liposomes largely via diffusion (n < 0.45), whereas the release of 

vancomycin from ECnVs occured mainly via both diffusion and dissolution 

mechanisms (0.45 < n <  0.8) (Figure. 5.12C). These data confirm not only that the 

release kinetics of vancomycin can be controlled by the type of nanocarriers, but the 

release mechanism is also depending on the types of nanocarriers. 

5.3.3 ELP-CLP retention and release on/from matrices 

In order to characterize the retention of ECnVs on collagen-containing matrices, 

fluorescently labeled ECnVs in collagen vs. co-gel matrices were detected using 

confocal microscopy via comparison of the fluorescence before and after rinsing the 

ECnV-loaded matrices with PBS at 37 ºC. Prior to conducting these experiments, I 

confirmed via TEM imaging that the addition of the fluorescent label, Cy3, did not 

Figure 5.13. TEM images of Cy3 labeled ECnVs at 
37 ºC 
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disturb the assembly of the ECnVs (Figure. 5.13). Additionally, I prepared liposomes 

and CLP-liposomes to enable evaluation of the effect of the CLP on 

hybridization/matrix retention, since such studies to directly probe the effect of the CLP 

could not be conducted with ECnVs as ECnVs cannot be prepared in the absence of 

CLP. The diameters of the lyophilized liposomes and CLP-liposomes were assessed 

after resuspension in PBS using dynamic light scattering, which confirmed that the 

liposomes and CLP-liposomes were not aggregated before incorporation in the matrices 

(Figure. 5.14). The fluorescence retained after washing the ECnV in co-gel samples 

(36.0 ± 4.0 %) was significantly greater than the fluorescence observed for collagen 

hydrogels (14.2 ± 3.3 %) (Figure. 5.15), which agrees with the observation that CLP-

liposomes incorporated in both collagen and co-gel matrices showed slightly greater 

retention of CLP-liposome in co-gels than collagen gels (Figure. 5.16). Since I have 

demonstrated that the shear storage moduli of the two hydrogel matrices were similar 

(G’Collagen+ELP-CLP = 40.5 ± 5.8 Pa and G’Co-gel+ELP-CLP = 47.3 ± 2.4 Pa as determined via 

Figure 5.14. Size measurement of F-liposome (A) before and after CLP conjugation 
and (B) before and after lyophilization using dynamic light scattering. 
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oscillatory rheology (Figure. 5.17), the difference in retention of ECnVs in collagen vs 

co-gel most likely resulted from differences in the interactions of the ECnVs with the 

collagen in these substrates. Additionally, the lower retention of liposomes within and 

on the of surfaces of the matrices, as compared with CLP-liposomes (Figure. 5.16 and 

5.18), confirmed that the retention of both ECnVs and CLP-liposomes likely occurred 

via triple helix formation with collagen of the matrices. Thus, these results suggest that 

Figure 5.15. ECnVs retention on matrices at 37 oC. (A) Representative 3D plotted 
confocal images of ECnVs-Cy3 (Red) and collagen (Grey) in Collagen 
matrix or Co-gel matrix before and after wash. 1 unit is 25 µm. (B) Image 
quantification for fluorescent intensity of ECnVs after wash normalized to 
the intensity before wash. Each data represents mean ± standard deviation 
for n=6. An unpaired student’s t-test with equal variance was used to detect 
statistical significance. *p<0.0001 for co-gel relative to collagen. 



 232 

triple helix formation of the CLPs with collagen is more facile in the co-gel than the 

collagen.  

 

Figure 5.16. Fluorescently labeled liposome with/without CLP modification retention 
in collagen/co-gel matrices. (A) Representative 3D plot of confocal 
images of F-liposome and CLP conjugated F-liposome (green) and 
collagen (grey). (B) Liposome retention quantification. Each data 
represents mean ± standard deviation for n=4. 
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Moreover, to understand how ECnV release from the matrices influenced 

vancomycin release from the ECnVs-containing matrices, the cumulative release 

profiles of Cy3-labeled ECnVs from collagen vs. co-gel were determined using 

fluorescent measurements (Figure. 5.19). Mathematical fitting of the cumulative release 

over 96 h with the Korsmeyer-Peppas model suggested that the overall rate of release 

of ECnVs from the co-gel (Kkp = 29000) was 1.6-fold slower than the rate of release 

from collagen (Kkp = 46500), indicating that ECnV sequestration in the co-gel was 

significantly greater than on collagen gels, likely due to a different extent of CLP 

hybridization based on the different physical features of collagen fibers in co-gels vs. 

collagen gels (52, 53). 

Figure 5.17. Mechanical properties of Collagen, Co-gel, ECnVs (1 mg/mL) loaded 
collagen and ECnVs (1 mg/mL) loaded co-gel. (A) Time sweep of 
rheological measurement of collagen and co-gel, (B) ECnVs loaded 
collagen and ECnVs loaded co-gel. Each data represents mean ± standard 
deviation for n=3. 
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Figure 5.18. Fluorescently labeled liposome with/without CLP modification retention 
on collagen/co-gel matrices. A) CLP was functionalized after fluorescently 
labeled liposome was formulated B) The liposome was formulated using 
pre-CLP functionalized lipid (DSPE-PEG-CLP). Each data represents 
mean ± standard deviation for N=3. One way-ANOVA was used to detect 
statistical significance. *p<0.05 for CLP-liposome relative to liposome. 

Figure 5.19. ECnVs release from matrices at 37 oC for 96 h. Release profile were 
fitted Kormeyer-Peppas model. Each data represents mean ± standard 
deviation for n=3. 
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5.3.4 Vancomycin release from ELP-CLP tethered in matrices 
The cumulative release of vancomycin from vancomycin-loaded ECnVs 

tethered in the matrices was determined. Mathematical fitting of the cumulative release 

with either the Korsmeyer-Peppas (fitting failed) or 1st order release models (Figure. 

5.20) alone yielded poor fits to the data, suggesting that there could be multiple 

behaviors mediating vancomycin release. The initial burst release of vancomycin from 

ECnVs in the matrices was fit with high fidelity to the 1st order release model up to 8 h 

(Figure. 5.21); subsequently, data were fit to the Korsmeyer-Peppas model from 8 h to 

day 4, with the expectation that release in this window would be dominated by the 

vancomycin release from the ECnVs tethered in the matrices. The cumulative release of 

Figure 5.20. Vancomycin release from ECnVs tethered in (A) collagen or (B) co-gel 
matrix. Release profiles of free vancomycin (black line (solid and dotted)) 
and vancomycin in ECnVs (green line (solid line and dotted) were fitted by 
first-order kinetics. 
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free vancomycin from the matrices was close to 70-80% at the initial 8 h time point, 

similar to observations of vancomycin release profiles from collagen-based scaffolds in 

the literature (32, 54, 55). In contrast, the vancomycin release from ECnVs, over the 

initial 8 hours, from both collagen (Ki = 0.61) and co-gel (Ki = 0.57) matrices was 

significantly slower than free vancomycin release from the matrices (collagen (Ki = 0.80) 

and co-gel (Ki = 0.68)). These data suggest that the early release of the vancomycin 

from the loaded ECnVs likely resulted from non-tethered vancomycin-loaded carriers 

Figure 5.21. Vancomycin release from ECnVs tethered in (A) collagen or (B) co-gel 
matrix. (C) Release profile were fitted by first-order kinetics from 0 to 8 
h (solid line) and Kormeyer-Peppas model from 8 h to 96 h (dotted line). 
Ki = first order constant, Kkp = Korsmeyer release rate constant, and n = 
diffusional exponent. Each data represents mean ± standard deviation for 
n=4. The statistical difference of Ki states *p<0.05. 
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on matrices rather than from the presence of free vancomycin. In addition, after the 

initial burst release of vancomycin from the released ECnVs from the matrices, the 

cumulative release of vancomycin from the vancomycin-loaded ECnVs in the co-gel  

(63%) at the 8 h time point was significantly less than that observed from the collagen 

gel (83%). However, I have observed that the release of vancomycin at 8 h time point 

from non-tethered liposomes loaded in the collagen gel (67%) and co-gel (69%) was 

nearly identical (Figure. 5.22). Thus, the results indicate slower vancomycin release 

from the vancomycin-loaded ECnVs in the co-gel matrices relative to that from collagen 

gels was likely due to a greater retention and slower release of ECnVs in the co-gel 

(Figure. 5.15 and 5.19).  

After the initial 8 h release, the data from 8 h to day 4 were fit to the Korsmeyer-

Peppas model with the expectation that release in this time period was mainly from the 

vancomycin release from the ECnVs tethered in the matrices. The diffusional exponent 

(n) of the Korsmeyer-Peppas model fitting revealed differences in the release 

mechanism, with n < 0.45 indicating diffusion-controlled release, 0.45 < n < 0.8 

indicating both diffusion- and dissolution-controlled release, and 0.8 < n indicating 

dissolution-controlled release. Vancomycin release from ECnVs in collagen gels (n = 

0.679) was classified as both diffusion- and dissolution-controlled, and vancomycin 

release from co-gels (n = 0.387) was classified as diffusion-controlled. Altogether, the 

data indicate that ECnVs enable the delay of vancomycin release, while the different 

retention of ECnVs on different collagen-containing matrices can also be leveraged to 

fine tune release profiles.  
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Figure 5.22. Vancomycin release from liposome in (A) collagen or (B) co-gel matrix. 
(C) Release profile were fitted by first-order kinetics from 0 to 8 h (solid 
line) and Kormeyer-Peppas model from 8 h to 96 h (dotted line). Ki = first 
order constant, Kkp = Korsmeyer release rate constant, and n = diffusional 
exponent. 
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5.3.5 Antibacterial effect of vancomycin-loaded ECnVs tethered matrices 

against MRSA 

To evaluate possible improvements in the antibacterial activity of vancomycin when 

delivered from ECnVs tethered to collagen or co-gel matrices, the growth of 

luminescent MRSA cultured on vancomycin-loaded ECnV-tethered matrices was 

monitored for 16 hours post-inoculation. To simulate a recurrent bacterial infection (1, 

56), an additional inoculation of MRSA was made at the 16 h timepoint, and bacterial 

growth monitored after an additional 16 h of culture. Vancomycin-loaded ECnVs were 

tethered in the collagen or co-gel matrices at a final vancomycin concentration of 2 

µg/mL, which is the minimum inhibitory concentration (MIC) for MRSA (5 ✕ 105 

cfu/mL) (32). The vancomycin-loaded ECnVs matrices inhibited the growth of MRSA 

for 14 h (collagen) and 10 h (co-gel) after the first inoculation, while free vancomycin 

Figure 5.23. Anti-bacterial activity of vancomycin loaded ECnVs tethered collagen/co-
gel matrices against MRSA . Optical density measurement of MRSA 
cultures grown in blank collagen/co-gel (black circle), vancomycin (1 or 2 
µg/mL) loaded collagen/co-gel (grey square), and vancomycin (1 or 2 
µg/mL) loaded ECnVs tethered collagen/c-gel (white triangle) with a total 
of two bacterial inoculations (16 h per inoculation). Each data represents 
mean ± standard deviation for n = 9. 
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in either matrix failed to inhibit MRSA (Figure. 5.23 & 5.24). Increasing the 

concentration of tethered, vancomycin-loaded ECnVs (in collagen and in the co-gel) to 

3 µg/mL extended the antibacterial effects to inhibit the growth of MRSA (Figure. 5.25), 

although free vancomycin at this concentration also delayed (but did not halt) MRSA 

growth. The vancomycin-loaded ECnVs in the collagen matrix completely inhibited the 

growth of MRSA for 16 h with the first inoculation and an additional 8 h after the second 

inoculation (for a total time of 24 h). Vancomycin-loaded ECnVs in the co-gel matrix 

also completely inhibited the growth of MRSA for 16 h with the first inoculation and 

delayed the growth of MRSA additional 2 h after the second inoculation (for a total 18 

Figure 5.24. Anti-bacterial activity of vancomycin loaded ECnVs tethered collagen/co-
gel matrices against MRSA . Luminescence measurement of MRSA 
cultures grown in blank collagen/co-gel (black circle), vancomycin (1, 2, 
3 µg/mL) loaded collagen/co-gel (grey square), and vancomycin (1, 2, 3 
µg/mL) loaded ECnVs tethered collagen/co-gel (white triangle) with a 
total of two bacterial inoculations (16 h per inoculation). Each data 
represents mean ± standard deviation for n = 9. 



 241 

h). This study indicated that the ECnVs, both released and tethered in matrices, 

maintained a sufficiently high local concentration of vancomycin to inhibit the growth 

of MRSA, as compared to release of free vancomycin from matrices. In addition, the 

different release kinetics of vancomycin from ECnVs in collagen vs. co-gel controlled 

the duration of the antibacterial effect. 

 

Figure 5.25. Anti-bacterial activity of vancomycin loaded ECnVs tethered collagen/co-
gel matrices against MRSA . Optical density measurement of MRSA 
cultures grown in blank collagen/co-gel (black circle), vancomycin (3 
µg/mL) loaded collagen/co-gel (grey square), and vancomycin (3 µg/mL) 
loaded ECnVs tethered collagen/c-gel (white triangle) with a total of two 
bacterial inoculations (16 h per inoculation). Each data represents mean ± 
standard deviation for n = 3. 
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5.4 Discussion 
The eradication of MRSA populations from the wounds using commercially 

available antibiotics is a persistent challenge, leading to incomplete wound healing and 

potential risks of further antibiotic resistance.  As a potential approach to improve 

antibiotic efficacy, I developed a peptide-based nanocarrier, ECnVs, taking advantage 

of the stability and specific interactions of these nanoparticles with native collagen as a 

means to control the delivery of vancomycin for inhibition of MRSA growth at the first 

time.  

The peptide-based nanocarrier enabled improved encapsulation efficiency and 

controlled delivery of vancomycin in solution when compared with liposome 

nanocarriers, suggesting that physical chemistry between drugs and nanocarriers is a 

key factor in determining encapsulation efficiency and release kinetics from the carriers. 

ECnVs encapsulated a greater amount of vancomycin (EE = 48.2% and LC = 144.6%) 

and facilitated both dissolution and diffusion mediated sustained delivery of 

vancomycin; in contrast, the liposome nanocarrier encapsulated significantly less cargo 

(EE = 15.2% and LC = 45.6%) and delivered vancomycin with more rapid first-order 

kinetics with diffusion mechanism. Generally speaking, encapsulation of drugs in 

nanocarriers protects the drug against degradation and enhances sustained drug release, 

resulting in improved pharmacokinetics (57, 58). However, the high water solubility of 

hydrophilic drugs makes it difficult to encapsulate/sequester hydrophilic drugs in 

liposomes, hydrogels, nanoparticles, and/or fiber-based carriers, thus resulting in 

undesired and rapid burst release (59-62). In addition, the steric hindrance from the 

inclusion of cholesterol in liposomal carriers (which is necessary to improve liposome 

stability for use in vivo), can result in low encapsulation efficiency of hydrophilic cargo. 

These general difficulties are reproduced in our control studies, in which low E.E. of 

vancomycin in the liposome is observed (EE = 15.2% and LC = 45.6%) along with rapid 

first-order diffusive release of the vancomycin cargo (n = 0.1) (Figure. 5.12) (19, 37, 38, 

63).  
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The use of our peptide-based ECnV carriers, in contrast, enabled efficient 

encapsulation of vancomycin, by exploiting the thermal responsiveness of these carriers 

as a mechanism for loading. Vancomycin can be solubilized at elevated concentrations 

along with the monomeric ELP-CLP above its Tm; thermally-induced assembly of ELP-

CLP into vesicles upon cooling leads to high efficiency of drug loading, which is one 

of advantages of peptide self-assembled nanocarriers (64, 65). For example, elastin-

based protein diblock copolymer nanoparticles achieved approximately 50% of 

encapsulation efficiency for the anti-proliferative hydrophobic drug, rapamycin, for 

cancer treatment (66). In addition, the nanoparticles formed by the conjugate of low 

molecular weight polylactide and the self-assembled lipid-like V6K2 peptides enabled 

the efficient encapsulation of both hydrophilic doxorubicin (44 ± 9%) and hydrophobic 

paclitaxel (>90%) in the nanoparticles (67). The additional barrier from the attractive 

interactions between V6K2 peptide and drugs delayed the release of doxorubicin and 

paclitaxel from V6K2 peptide assembled polylactide nanoparticles as compared with 

the release from ethylene glycol polylactide nanoparticles. Similarly, the hydrophobic 

coacervation of ELP block in the ECnVs could behave as an additional barrier for 

vancomycin release. Due to the hydrophobic interaction with the addition of pi-pi 

stacking, hydrogen bonding, and charge-charge interaction from the side chains of the 

ELP sequence, the ELP block has been shown to collapse tightly to reduce the pore size 

within the ELP block, which is able to effectively shed water (68-70). On the other hand, 

only hydrophobic interactions of alkyl chains and cholesterol form the hydrophobic 

barriers in liposome bilayers to reduce water penetration (71, 72). Thus, the 

coacervation of the ELP layer in the vesicle bilayer provides a more stable barrier to 

diffusion relative to the liposome bilayer, supporting sustained vancomycin release with 

both diffusion and dissolution mechanisms as compared to with mainly diffusion 

mechanisms for vancomycin release from the liposome. Such sustained release behavior 

of drug from ECnVs could expand the performance of therapeutics by minimizing 

adverse off-target effects and the toxicity with burst release of high concentrations of 

cargo (73).   
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Next, I observed that different levels of ECnV retention on the different matrices, 

which might influence the release kinetics of vancomycin from ECnVs-loaded matrices. 

ECnVs tended to be retained to a greater extent on the co-gel compared to the collagen 

matrix (Figure. 5.15 and 5.19), suggesting that the collagen in the co-gel may be more 

accessible for triple helix formation with the CLPs that are on the exterior of the ECnVs. 

Both collagen and fibrin contribute to hydrogel formation via fibrillogenesis driven by 

physico-chemical interactions between peptide chains that can be triggered with stimuli 

such as pH, temperature, and ionic strength (74). The Barocas group reported a related 

collagen-fibrin co-gel with high concentrations of collagen (68-83%) that comprised 

two interpenetrating but non-interacting networks (e.g., ‘parallel networks’); the 

reported conditions in those studies are similar to those of our co-gels in this report (76% 

collagen in our co-gel) (53). The mechanical properties of the parallel co-gel networks 

were driven by the competition between the extensibility of fibrin and stiffness of 

collagen. For example, although the tangent modulus of fibrin gel alone was much 

smaller than that of the co-gel, the tangent moduli of co-gel and collagen with the same 

collagen concentration were similar, consistent with our observation of similar shear 

storage moduli for the co-gel and collagen matrices (Figure. 5.17) (52). SEM and 

confocal imaging analysis revealed that the morphological structure of collagen fibrin 

networks were altered to have the average collagen fiber diameters smaller in the co-gel 

than pure collagen gels, and this physical feature alone would be expected to provide 

more sites for interaction, on a surface area-per-volume basis, with the collagen in the 

co-gel formulations (Figure 5.16 and 5.18) (32, 36), consistent with our observations of 

significantly greater ECnVs retention on the co-gel than collagen gel (Figure. 5.15 and 

5.19).  

In addition, ECnVs retention on matrices would be necessary to support 

controlled release of vancomycin from either matrix, and enhanced retention on the co-

gel would be expected to reduce vancomycin release from the co-gel versus the collagen 

matrix (Figure. 5.21). The pore sizes of both collagen and fibrin gels have been reported 

to be on the micron length scale, which is much larger than the nanometer-scale of 
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ECnVs (75, 76). Thus, the initial burst release of vancomycin likely results from the 

rapid release of non-tethered ECnVs from the matrices (Figure. 5.19). Moreover, our 

previous studies showed that the CLP-modification of liposomes, and their 

incorporation into co-gel matrices, enhanced the sustained release of vancomycin, as 

compared to non-CLP liposomes in the same matrices (32). After the initial burst release 

of vancomycin, the release of vancomycin from ECnVs in collagen and co-gel matrices 

was sustained, although via different release mechanisms (Figure. 5.21). These different 

mechanisms might result from differences in vancomycin release from either tethered 

van-loaded ECnVs in collagen and in co-gel or from the released van-loaded ECnVs 

from the matrices over the incubation time.  

The release kinetics of vancomycin from ECnVs in the matrices regulated the 

duration of antibacterial effects against MRSA. Vancomycin is one of the most effective 

options for treatment of MRSA infections, which is one of the major Gram-positive 

microorganisms found in chronic wounds (77). However, wound infections by MRSA 

are often recurring, leading to the critical need for the better antibiotic delivery systems 

to enhance the prolonged duration of its antibacterial effect against MRSA (78, 79). A 

biphasic drug-release profile has been reported to have significant practical advantages 

in managing MRSA infections, including implant-associated infections (80, 81), bone 

infection (82), and wound infection (83). The biphasic drug-release profiles demonstrate 

an initial 10 h burst release of vancomycin at least above its MIC to completely eradicate 

bacterial colonies, followed by a sustained release of 0.36% per h for 24 h, a prolonged 

period to eliminate any remaining bacteria (84, 85). In agreement of this observation, I 

demonstrated that vancomycin release profile from ECnV-tethered both collagen and 

co-gel followed the biphasic drug-release profiles; an initial 8 h burst release of 

vancomycin followed by a sustained release of vancomycin. The released vancomycin-

loaded ECnVs from matrices during the initial burst release would result in the localized 

high concentration of vancomycin, entrapped in the released ECnV, near to the MRSA, 

leading to more efficient inhibition of the MRSA growth than freely diffused 

vancomycin from matrices.  
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I observed that the difference in the duration of MRSA inhibition by vancomycin 

release from ECnV-tethered collagen vs. co-gel. In fact that the maintenance at the 

infection site, of antibiotic above its MIC (2 µg/mL for MRSA (5 ✕ 105 cfu/mL)), is a 

key factor in mediating antibacterial effects. Due to the slower release of ECnVs from 

co-gel than collagen-gel, the local concentration of vancomycin was not maintained 

above the MIC (~60% cumulative release at 8 h = 3 µg/mL × 0.6 = ~1.8 µg/mL, which 

is less than the reported MIC), resulting in the incomplete eradication of MRSA at the 

initial time and a shorter duration of the inhibition of MRSA growth than for the 

vancomycin-loaded ECnVs released from the collagen matrix (~81% cumulative 

release at 8 h = 3 µg/mL × 0.83 = ~2.43 µg/mL, which is more than the reported MIC) 

(Figure. 5.21 and 5.25). In addition, the sustained release of vancomycin both with 

released ECnVs and from ECnVs tethered matrices (0.0024 µg/mL release per h for 

collagen and 0.006 µg/mL release per h for co-gel from 8 h to 32 h) further extended 

the duration of antibacterial effects even after a MRSA re-inoculation.  

Moreover, I have demonstrated that antibiotic delivery using ECnVs performed 

the pro-longed antibacterial effects as effective as the liposomal delivery system. As 

compared to freely applied antibiotic, antibiotic delivery using liposome has been 

reported their effectiveness to inhibit MRSA growth [28-31] and their effectiveness 

were further enhanced by CMP-collagen tether strategies in the system. For example, 

vancomycin-loaded CMP-modified liposome tethered co-gel in the previous study 

facilitated the inhibition of MRSA growth at least 36 h even with the third inoculation, 

while vancomycin loaded liposome incorporated in co-gel inhibited the MRSA growth 

at least 26 h [32]. Similarly, I have observed the prolonged duration of antibacterial 

activities at least 18 h by vancomycin-loaded ECnVs tethered co-gel against MRSA, as 

compared to the antibacterial duration at least 8 h with free vancomycin loaded co-gel. 

However, the duration of antibacterial activities by vancomycin-loaded ECnVs tethered 

co-gel (at least 18h) were shorter than vancomycin-loaded CMP-modified liposome 

tethered co-gel (at least 36 h) [32]. This can be the fact that the different levels of 

retention of CMP-liposome (95% after 24 h) vs. ECnV (60% after 24 h) on co-gel 
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because of different CMP sequences in CMP-liposome vs. ECnV. Thus, as similar with 

liposomal delivery system, ECnVs improved the antibacterial activity, and its duration 

can be potentially tuned by the level of CLP-collagen tethers. 

Altogether, these results demonstrated that the combination of peptide-based 

nanocarriers and their interaction with collagen-containing matrices manipulated the 

delivery of vancomycin for its extended efficacy in inhibiting MRSA growth. Non-

cytotoxic ECnVs (Figure. 5.26) improved not only entrapment efficiency of 

vancomycin but also resulted in release kinetics using a zero-order mechanism. The 

ability of ECnVs to be retained on collagen-containing matrices facilitates sustained 

release of vancomycin and its antibacterial effects against MRSA for a prolonged period. 

Thus, the delivery of vancomycin with an optimal concentration using ECnVs, collagen-

based matrices has a great potential for the effective treatment of wound infections. 
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5.5 Conclusion 

To overcome the prolonged challenge in treatment of wounds infections by 

MRSA, I developed a novel antibiotic delivery system using the combination of ELP-

CLP self-assembled nanovesicles and collagen-containing matrices for the topical 
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Figure 5.26. The viability of NIH 3T3 cells in [F6-G8] tethered collagen gel (4 mg/mL) 
after 2 days of culture. (A) Representative confocal microscope images 
of Calcein AM stained live cells (Green) and Ethidium homodimer-
stained dead cells (Red). Scale bar is 150 µm. (B) Image quantification 
to determine viability of fibroblast. Each data represents mean ± standard 
deviation for n=8. 
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delivery of antibiotic with controlled release. This ECM-based material system exploits 

synergies in peptide nanocarriers and their interaction with the scaffold to improve the 

efficacy of the commercially available antibiotic, vancomycin, and the extended 

duration of its antibacterial effects against MRSA after repeated inoculation. Our system 

may offer benefits to manage chronic wound infections while stimulating wound-

healing potency. 
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CONCLUSIONS and FUTURE PERSPECTIVE 

6.1 Conclusions 
Due to the enormous economic and societal burdens associated with the 

management of chronic wounds, there is a critical need for better approaches to engineer 

the wound microenvironment to promote the improved healing. The primary factors to 

develop chronic wounds are the lack of growth factors activity, as well as the wound 

infection caused by inefficiently clearance of microorganism from the wound site. 

Current treatments such as wound dressings, topical application of growth factors or 

antibiotics, and the combination approaches enable the increased accessibility of growth 

factors while eradicating microorganisms in the wound bed. However, the topically 

administered therapeutics often fail to reach the sufficient local concentration in harsh 

wound environment, leading to the reduced overall effectiveness of therapeutics. In this 

dissertation, to overcome the limitation of topically applied therapeutics in harsh wound 

environment, I have utilized CMP-collagen tethers to control the delivery of 

therapeutics and extend the duration of therapeutic effects.   

In Chapter 2 and 3, GAHCM composed of CMP modified DNA/PEI polyplex 

and hyaluronic acid and collagen matrix was developed to improve the efficiency of 

growth factor gene transfer and maximize the growth factor activities to regulate cellular 

phenotypes for the improved wound repair. Both CMP modification to improve the 

retention of polyplex on GAHCM and HA-CD44 cellular interaction increased the gene 

transfer to fibroblasts. The sustained VEGF production by fibroblast transfection using 

VEGF encoding GAHCM stimulated not only pro-healing myofibroblasts 

differentiation and but also pro-angiogenic endothelial cellular network formation in 

vitro. Moreover, application of VEGF encoding GAHCM promoted the robust repair on 

Chapter 6 
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murine splinted excisional wounds through increased the myofibroblast differentiation 

and more numbers of blood vessel formation in the healed wounds.  

In Chapter 4, ELP-CLP nanovesicle tethered collagen containing matrices 

(either collagen or collagen-fibrin (Co-gel)) were utilized to improve the control 

delivery of vancomycin and extend the duration of antibiotic effects against MRSA for 

wound infection treatment.  As compared to liposome formulations, ELP-CLP enabled 

more efficient encapsulation of vancomycin and better control over the release profile 

of vancomycin as a zero-order kinetics. And, ELP-CLP had a different level of affinity 

to collagen vs co-gel and release rate from collagen vs co-gel. Due to the enhanced 

retention and slower release of ELP-CLP with co-gel than collagen, the vancomycin 

release from ELP-CLP with co-gel were more sustained than with collagen. 

Additionally, the biphasic release profiles of vancomycin from ELP-CLP tethered 

collagen/co-gel more effectively inhibited and delayed the growth of MRSA even after 

repeated bacterial inoculation for pro-longed duration as compared to free vancomycin 

loaded matrices. 

In conclusions, CMP-collagen tethers approach has demonstrated tremendous 

potential in overcoming the limitations of topically administrated therapeutics for 

wound management.  Overall, this dissertation provides further support recommending 

the use of CMP-collagen tethers approach to extend the duration and level of therapeutic 

effects for regenerative medicine and tissue engineering applications.   

 

6.2 Future perspective 

6.2.1 GAHCM – Multi-therapeutics delivery approach depending on the wound 

phases 

Throughout the wound healing phases, multiple growth factors are present in the 

various processes to regulate interactions between cells, soluble cytokines, blood 

elements, and the extracellular matrix (1). The application of a single growth factor may 



 267 

have only a temporary effect in enhancing wound healing, rather than a terminant 

solution. The proper growth factors must be available at the correct time and in effective 

concentrations to achieve favorable outcomes. Thus, strategies to deliver multiple 

growth factors to support cellular behaviors during the corresponding phase of wound 

healing cascade are needed. 

Previous studies have demonstrated the benefits of delivering multiple growth 

factors, proteins, or genes, in which there is acceleration of wound repair seen through 

in vivo diabetic animal models (2-5). In details, sequential delivery of multiple 

angiogenic growth factors, including VEGF, PDGF, bFGF, and EGF, in diabetic rats 

revealed accelerated wound closure rate and increased collagen deposition and vessel 

maturation (6). Based on these findings, which validate advantages of sustained and 

sequential delivery of multiple growth factors in chronic wound repair, I propose to 

engineer the delivery of PDGF-BB and VEGF-A genes using the combined pPDGF-BB 

encoding PEI polyplex and pVEGF encoding CMP modified polyplex to prepare 

GAHCM for the precise control of their signaling times. PDGF-BB activity in early 

proliferation phase using pPDGF-BB PEI polyplex to proliferate fibroblasts to 

maximize transfection capacity to increase concentration of VEGF in the middle 

proliferation phase using pVEGF encoding CMP modified polyplex within GAHCM 

will help facilitate angiogenesis and wound healing. 

6.2.2 GAHCM – Controlling the collagen degradation to extend the gene 
transfer profile 
During chronic wound healing, the imbalance of proteases in the prolonged 

inflammatory phase delays the healing process via de-regulating essential growth 

factors including PDGF, VEGF, and FGF (7-9). Due to the high degradation rate and 

rapid clearance of growth factors in chronic wounds, the approach to improve the 

duration of growth factors activity is a key question to be addressed (10).  

In my dissertation works, I have observed CMP modification on GAHCM 

enabled the extension of both duration and level of gene transfer due to the retention of 
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CMP modified polyplex on HCM hydrogel. Additionally, the previous work by our 

groups reported that CMP modified on polyplex tethered collagen containing matrices 

were released as CMP modified polyplex tethered collagen fragments in response of 

matrix metalloproteinase activity and delivered into cells using collagen cellular 

receptor mediated more efficient caveolae endocytic pathway(11, 12). Thus, the 

manipulating collagen matrix degradation rate would control the gene transfer kinetics. 

And the degradation rate of collagen can be delayed by addition of chemical crosslinks. 

In details, the various chemical crosslinks include carbodiimide coupling between -NH2 

group and -COOH group in native collagen molecule(13) and photo-crosslink with 

collagen with additional methacrylate/acrylate groups modification(14). Thus, I propose 

to control the gene transfer kinetics of CMP modified polyplex via manipulating 

collagen matrix degradation rate using addition of chemical crosslink. This study will 

be beneficial to apply the temporal delivery of multiple growth factors depending on the 

wound healing phase. The combination of collagen and slow degrading collagen can be 

utilized to deliver different growth factor encoding CMP polyplexes depending on 

growth factor activity during the healing time frame. For example, the sustained activity 

of PDGF-BB throughout the entire healing phases can be regulated by PDGF-BB 

encoding CMP-polyplex tethered slow degrading collagen while the VEGF activity 

during the proliferation phase can be controlled by VEGF encoding CMP-polyplex 

tethered collagen formulation. Thus, the manipulating collagen degradation for CMP-

collagen tether system would be a great potential to control the temporal delivery of 

multiple growth factor gene. 

 

6.2.3 ELP-CLP nanovesicle collagen tether system to target intracellular 
bacterial 
Staphylococcus aureus (S. aureus) is predominantly found in bacteria isolation 

from multiple patients with chronic wounds(15-18). Recurrence of S. Aureus infection 

may result from less effective antibiotic action due to the lack of access of the antibiotic 



 269 

to the site of infection, especially, to the intracellular niche. Several studies have 

reported ability of S. aureus to adhere to, invade into, and grow on mammalian cells 

including macrophages, keratinocytes, endothelial cells, and fibroblasts(19-22). These 

intracellular forms of S. aureus have been shown to become resistant to antibiotic action 

(ex. Methicillin-resistant S. aureus (MRSA))(23, 24). Thus, the strategy to localize 

antibiotic agents into the intracellular sites where MRSA inhabit will effectively 

eradicate MRSA population to treat wound infection and prevent the recurrence of 

wound infection. The proposed strategy utilizes the CMP-collagen interaction mediated 

intracellular pathway via elastin like peptides and collagen like peptides (ELP-CLP) 

nanocarrier for the delivery of antibiotics to enhance the efficacy of antibiotics through 

targeting the intracellular bacterial population. I hypothesize that the manipulating ELP-

CLP sequence, in particularly CLP sequence, to control the level of collagen tether of 

ELP-CLP nanocarriers enable the control of intracellular delivery of antibiotics. As the 

length of CLP repeat unit is increased, the melting temperature of CLP is increased, 

which means that the triple helix formation of CLP is more stable and CLP hybridization 

with collagen would be more enhanced. Thus, the comparison of ELP-CLP (Tm > 37º) 

vs. ELP-CLP (Tm < 37º) incorporated collagen-based hydrogel systems would explain 

the advantage of cellular uptake pathway and antibiotic effectiveness of ELP-CLP and 

collage tether (Tm > 37º) vs. ELP-CLP (Tm < 37º) at physiological condition. Through 

this study, I expect establish the ELP-CLP nanovesicles to improve the effectiveness of 

antibiotic through the CLP hybridization to collagen mediated intracellular localization 

and release of the antibiotics in its active concentration for the potential control of 

intracellular bacterial population. 
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REAL-TIME ELASTIC MODULUS MEASUREMENTS OF HYALURONIC 
ACID AND COLLAGEN-BASED HYDROGEL DEGRADATION USING 

ATOMIC FORCE MICROSCOPY 

The mechanical property of hydrogel, which provides microenvironment for cell 

growth, is important contributing factor to modulate the cellular functions. The study to 

determine the mechanical property of local cellular microenvironment is desired to 

understand better control over cellular behaviors using biomaterials. I have applied the 

atomic force microscope (AFM) to leverage its ability to detect the mechanical stiffness 

properties on the local surface of soft hydrogel. I have recently developed gene-

activated hyaluronic acid (HA) and collagen matrix (GAHCM) containing collagen 

mimetic peptide (CMP) modified VEGF encoding polyplex and hyaluronic acid and 

collagen matrix (HCM), which has the bulk storage modulus as below 100 Pa. Whereas 

the oscillatory rheology measured the bulk mechanical stiffness of GAHCM samples, 

AFM technique enable the detection of difference in the mechanical stiffness depending 

on the local surface on GAHCM, where collagen/HA might be heterogeneously 

distributed. Moreover, I have demonstrated at the first time utilizing the AFM to 

measure the real-time change in the local elastic modulus of HCM sample during its 

degradation process by collagenase. These finding suggests that the potential advantage 

of AFM technique to understand the mechanical property of local cellular 

microenvironment for gene/drug delivery and tissue regeneration applications. 

The mechanical properties of native extracellular matrix mimicking polymeric 

hydrogel have significantly contributed with the fate of cellular behaviors in the broad 

range of biomedical applications (1, 2). In details, the varying the mechanical stiffness 

Appendix A 

A.1 Introduction 
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of hydrogel guides cellular spreading (3), migration (4, 5), proliferation (6, 7), and 

differentiation (8, 9). Additionally, the cellular microenvironment modulated by 

mechanical stiffness of hydrogel regulates cellular uptake behavior of therapeutics 

loaded nanoparticles within the hydrogel (10, 11). Thus, the study to determine the local 

mechanical stiffness within the hydrogel will be desired to modulate sophistically the 

local cellular microenvironment to maximize the delivery efficiency of therapeutics.  

However, due to the low rigidity of hydrogel with a typical elastic modulus as 

<1 kPa to mimic the mechanical property of the natural soft tissue (12), the detecting 

the local mechanical stiffness of the hydrogel is more challenging using typical traction 

or bending assays. Meanwhile, oscillatory rheological measurements allow the 

characterization of bulk mechanical properties of in situ fabricated hydrogel, but this 

technique has difficulty in measurements for the mechanical properties of the local 

spatial variation within hydrogel (13). On the other hand, atomic force microscope 

(AFM) can be equipped with nano- or micro- sized probe to determine the local surface 

modulus of hydrogel using the force versus distance data at specific point on the surface 

of hydrogel (14). Moreover, AFM technique enables the measurement of change in the 

modulus on the surface of the local spatial variable hydrogel over the time. This would 

be a significant tool to investigate the progression of change in mechanical properties 

of hydrogel by cellular secreted enzymes or growth factors.   

I recently developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) 

comprising collagen mimetic peptide (CMP) functionalized pVEGF polyplexes 

tethering natural polymeric HCM hydrogel to study cellular gene transfer kinetics and 

produced VEGF mediated cellular behaviors (chapter 3). However, the correlation 

between these studies and the impact of microenvironmental mechanical cues of 

GAHCM is still unexplored.    

Herein, I leveraged AFM technique to investigate the local mechanical 

properties of GAHCM samples and their change in local mechanical properties during 
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collagenase triggered degradation process. These findings show great potential of AFM 

applications on the study of soft hydrogels and cellular interaction in the future. 

 

 

 

A.2 Results and Discussion 

A.2.1 Bulk mechanical stiffness of sample 
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Figure A.1. The mechanical properties of measurements of bulk GAHCM using 
oscillatory shear rheology. Time sweep of (A) Storage modulus (G’) and 
(B) Loss modulus (G”) measurements. (C) Frequency sweep and (D) 
strain sweep measurements. 
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In order to investigate whether the presence of recombinant protein or polyplex 

nanoparticles influences on the overall bulk mechanical properties of HCM hydrogel, 

the bulk mechanical modulus of samples was determined using an oscillatory rheology 

(Figures A.1 and A.2). The average of storage modulus of both HCM hydrogel (80 Pa), 

which was 4-fold larger value than GAHCM samples (~ 20 Pa), indicating that the 

sucrose treated polyplex nanoparticles in GAHCM might interrupt the stiffness of HCM 

hydrogel (Figure A.3). Also, I have examined that the presence of sucrose in HCM 

hydrogel reduced the storage modulus (50 Pa) by 1.6-fold lower than HCM hydrogel 

without sucrose, but it did not reduce completely 4-fold lower as GAHCM than HCM 

hydrogel (Figure A.2). This suggested that the presence of polyplex within HCM 

hydrogel also contributed with the decreasing the modulus of HCM hydrogel. On the 

other hand, I have observed the similar average storage moduli of HCM + rVEGF 

hydrogel with no sucrose presence (~80 Pa), as HCM hydrogel.  

The HCM hydrogel is formed by fibrillogenesis of acid solubilized collagen 

molecules via physical driver forces including physiological temperature, neutral pH, 

and ionic strength (15) and the disulfide bond cross-linked between thiol functionalized 

hyaluronic acid molecules via air oxidation (16). The mass ratio of Polyplex: HCM: 
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Figure A.2. The mechanical properties of measurements of bulk HCM hydrogel with 
and without sucrose using oscillatory shear rheology. (A) Time sweep of 
Storage modulus (G’) and Loss modulus (G”) measurements. (B) The 
average of storage modulus of HCM hydrogels. Each data represents 
mean ± standard deviation for n=3. 
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Sucrose (1: 12.5: 171.25) indicated that the mass composition of poly-plex and sucrose 

was occupied the 14-fold larger portion than HCM, which might significantly influence 

on the physical property of HCM hydrogel. In particular, sucrose has been reported as 

an inhibitor for collagen fibrillation even if it preserved the triple helical structure of 

collagen molecules (17). Thus, the sucrose treated polyplex might prevent collagen 

fibrillation process, which remarkably contributes on the mechanical properties of HCM 

hydrogel, leading to the decreased bulk modulus of HCM hydrogel. 

 

In order to evaluate the comparison between bulk and local mechanical stiffness 

of samples, the local surface modulus of samples was determined via the contact mode 

A.2.2 Local mechanical stiffness of sample 
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Figure A.3. The bulk mechanical properties of GAHCM using oscillatory shear 
rheology. (A) Storage modulus (G’) measurements. (B) Expected 
young’s modulus calculated using 2G’(1 + 𝜈)	=	E,	𝜈	=	Poisson	ratio,	
assuming	0.5.	Each	data	represents	mean	±	standard	deviation	for	
n=3	 
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measurement using AFM. As compared to the expected young’s modulus based on the 

bulk storage modulus of samples under the assumption of poisson ratio of sample as 0.5 

(Figure A.3), the overall local young’s modulus for local surface of samples was 

enhanced by twice but following with the same trend (Figure A.4). However, 

unexpectedly, the young’s modulus for local surface of HCM hydrogel with rVEGF 

samples (100 Pa) was lower than HCM hydrogel (480 Pa) and the expected bulk young’s 

modulus of HCM hydrogel with rVEGF (280 Pa). Due to the fact that AFM 

measurement was performed under the fluidic condition, the typical fast release profile 

of rVEGF, physically entrapped in the HCM hydrogel (30% of rVEGF was released 

from HA/collagen gel within 1 h (18) might influence on the mechanical stiffness in the 

local surface of HCM hydrogel, resulting in this unexpected young’s modulus value. 

These results suggested that the bulk and local mechanical stiffness cannot be 

comparable. 

I have observed that young’s modulus values were varied depending on the 

location on the surface of HCM hydrogel (Figure A.5). This could be the fact that the 

different physical structure of hydrogel depending on the local area caused by the 

heterogenous distribution of HA-SH along with collagen fibers in HCM hydrogel. 

Kaufman and coworker demonstrated that HA in HA/collagen gels can both deposit on 

Figure A.4. Young’s modulus measurements of GAHCM using atomic force 
microscopy. Each data represents mean ± standard deviation for three 
samples (N > 20 measurements per each sample). 
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collagen fibrils and disperse throughout the medium (19). Moreover, when the more 

amounts of HA were located on the collagen fibrils with temperature control during the 

gelation process, the collagen fibril diameter was decreased, leading to the reduced 

elastic modulus. Thus, the locally variable physical structure of HCM hydrogel might 

explain our observation on the larger variation in young’s modulus of local surface of 

each sample. 

To evaluate the ability of AFM technique to monitor the progress of change in 

the local mechanical properties of samples in response to the external cues, I have 

determined the young’s modulus of a specific point on the surface of HCM sample 

during degradation by collagenase. Only HCM hydrogel sample was selected in this 

study because of the highest young’s modulus among samples that could behave the 

broad range of change in the young’s modulus. First, I have demonstrated young’s 

modulus measurements of HCM sample for 30 min (Figure A.6(A)) to confirm that the 

change in Young’s modulus of HCM sample after collagenase treatment was not from 

the deformation of hydrogel during the overtime measurements on one particular 

A.2.3 Change in local stiffness of sample during degradation 

Figure A.5. The local young’s modulus measurements of different area (displacement 
as 2 mm) on the surface of HCM hydrogel using atomic force microscope. 
(A) HCM sample #1. (B) HCM sample #2. Each data represents mean ± 
standard deviation for n>9 measurements per the location. 



 282 

location of sample (Figure A.6(B)). As expected, due to the variation in young’s 

modulus from the difference in the local physical structure of HCM sample, each HCM 

sample showed the different initial young’s modulus value before degradation (Figure 

Figure A.6. Real-time young’s modulus measurements using Atomic force microscopy 
of (A) HCM hydrogels (#1-5) for three samples and (B) HCM hydrogels 
with collagenase (100 unit/mL) for five samples. (C) The change in 
young’s modulus of HCM which normalized to the initial, over time after 
collagenase treatment at 0 min. The data was fitted with mathematical 
exponential function to determine the rate of the change in young’s 
modulus of HCM 
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A.6(B)). However, I represented the wide range of the change in young’s modulus of 

HCM hydrogel, normalized to the initial young’s modulus, over the time (4.02 ± 

2.9 %/min) during degradation (Figure A.6(C)). The reason why I have observed such 

a large variation could be the local point that I probed might be composed of different 

portion of collagen fibers and HA-SH. In fact, collagenase only degrades collagen in 

HCM hydrogel, which have shown the main structure within HA/collagen mixed gel 

(20). If the local point has rich HA-SH, it will additionally require more time for the 

diffusion of collagenase to the collagen surrounding the local point to trigger the 

complete degradation. Otherwise, if the local point has rich collagen, it will take 

relatively shorter time to break down the collagen structure by collagenase, resulting in 

the faster rate of change in young’s modulus over time.   

Taken together, these data demonstrate that the advantages of using the contact 

mode of AFM technique to determine the local mechanical property of soft hydrogels, 

which is not comparable to the bulk mechanical property. And our work is the first time 

to utilize the AFM to monitor the change in the local mechanical properties of soft 

hydrogel during the degradation by enzyme in real-time. Thus, the technique and 

method I present in here would be potentially beneficial to evaluate the mechanical 

property of local cellular microenvironment for gene/drug delivery and tissue 

regeneration applications. 

As described in a-SMA paper, VEGF encoding polyplexes (20 µg/mL of 

pVEGF) with PEI, 20% collagen mimetic peptides (CMP) modified PEI (20 CP), or 50% 

CMP modified PEI (50 CP) were lyophilized with 20 mM sucrose to stabilize polyplex 

during freezing. The lyophilized VEGF-encoding polyplexes or Murine recombinant 

VEGF-A (10 ng/mL) (Pepro Tech., NJ) were mixed into neutralized Type I bovine 

collagen (8 mg/mL) (Advanced BioMatrix, CA) and incubated at ice bath for 1 h. 1× 

A.3 Methods 

A.3.1 Sample preparation 
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DPBS were added into the polyplex/neutralized collagen mixture, and Glycosil® (HA-

SH, 20 mg/mL) (Advanced BioMatrix, CA was mixed into the polyplex/neutralized 

collagen. The final concentrations of collagen and Glycosil® in the pre-gel mixture 

were 4 mg/mL and 2 mg/mL, respectively. For atomic force microscope (AFM) samples 

preparation, the pre-gel mixture were placed within the silicon chamber (10 mm 

diameter and 2 mm thickness) on the glass slide and proceed the gelation with moisture 

chamber at 37 °C overnight. 

The oscillatory rheology experiments were conducted on an DHR3 rheometer 

(TA Instruments, New Castle, DE) with a 20 mm diameter stainless steel parallel-plate 

geometry. The 160 μL of pre-gel mixture was placed on the quartz rheometer stage, and 

the geometry was set at a 500 μm gap. Mineral oil was used to seal the geometry and 

prevent the dehydration of the hydrogel during the measurement. The mechanical 

properties of the hydrogels were measured in the linear viscoelastic regime where the 

modulus is independent of the level of applied stress or strain, confirmed with a 

frequency sweep from 0.1 to 10 rad/s at 1% strain and amplitude sweep from 0.1% to 

10% strain at 6.25 rad/s (Figure A.1). The gelation of hydrogels was monitored using a 

time sweep conducted in the linear viscoelastic regime at 1% strain and an angular 

frequency of 6.25 rad/s for 90 min (Figures A.1 and A.2). 

 

The samples were additionally hydrated with applying PBS on the top of 

samples before/during AFM measurement. Operating under the assumption that the 

hydrogels are linear elastic materials, the Young’s moduli of hydrogels were measured 

using a Bruker Catalyst atomic force microscope (AFM). I used a relatively large AFM 

probe with a 10 micron diameter tip and spring force constants measured by the 

manufacturer (Bruker, SAA-SPH-10UM, nominal k = 0.200 N/m). Typical 

A.3.2 Oscillatory rheology measurements 

A.3.3 AFM measurements 
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measurements consisted of taking multiple force-extension measurements at a rate of 2 

μm/s, arranged in a 5-by-5 grid with 10 micron spacing between measurements, on at 

least two distant regions of the hydrogel (Figure A.4). For the collagenase degradation 

study, collagenase (1000 unit/mL) (Advanced BioMatrix, CA) in PBS was added on the 

PBS on the top of samples to make the final collagenase concentration as 100 unit/mL, 

without disrupting the AFM probe. The measurement consisted of taking one force-

extension measurement at a rate of 2 μm/s per every one minute within the identical 

location until the measurement was failed due to the degradation of hydrogel by 

collagenase. The Young’s modulus was approximated from fits of the approach curve 

with force boundaries of 10-70% of the maximum using a spherical Hertzian model 

curve fits with R2<0.98 were excluded from analysis. All fits were per-formed in the 

NanoScope Analysis software package (v1.5) provided by the manufacturer. 
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IN SITU ASSESSMENT OF TISSUE REMODELING WITH COLLAGEN 
MIMETIC PEPTIDE (CMP) MODIFIED POLYSTYRENE PARTICLES 

The overall goal of this appendix is to demonstrate the application of CMP 

functionalized polystyrene particles to localize on the tissue remodeling site for the 

potential targeted drug delivery and imaging tool. In this study, I have prepared CMP 

modified polystyrene particle (PS-CMP), through NHS chemistry between N-terminus 

of (GPO)7-GG and carboxylic acid group on the surface Nile red fluorescent 

encapsulated polystyrene nanoparticles, to investigate the binding of PS-CMP on the 

mouse tail tendon and human cholesteatoma tissues.  

Both tissue types contain collagen, in particular, the major component of mouse 

tail tendon is collagen Type I. The mouse tail tendon tissue was further physically 

damaged using a surgical scalpel to mimic collagen denaturation during the tendon 

injury. I have optimized the condition for PS-CMP to apply on tissue for detecting the 

specific binding to damaged tendon vs. healthy tendon. The study revealed that PS-CMP 

localized more on the damaged tendon at both 4 ºC and 37 ºC incubation than the healthy 

tendon. In addition, the heating PS-CMP to disassemble the triple helix of CMP to single 

strand, prior to adding into tissue, did not necessary for the localization of PS-CMP 

more on the damaged tendon than the healthy tendon. Altogether, this result 

demonstrated the specific localization of PS-CMP on the tissue with denatured collagen, 

leading to the potential use of PS-CMP to target tissue remodeling sites. 

Next, I have applied PS-CMP to the human cholesteatoma tissue, abnormal skin 

growth in the middle ear, to evaluate the potential use of PS-CMP as the imaging tool 

to identify cholesteatoma during the surgical removal of cholesteatoma and drug 

delivery vehicle to prevent the re-growth of cholesteatoma. I have investigated the 

presence of collagen in human cholesteatoma tissue from six patients and correlation 

Appendix B 
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with the localization of PS-CMP within the cholesteatoma tissue. The results showed 

that cholesteatoma tissues contained the different levels of collagen and keratin 

depending on the patient and PS-CMP tended to localize more on the cholesteatoma 

tissue with a rich collagen. Moreover, PS-CMP had less tendency to bind to the 

cholesteatoma surrounding collagen rich tissues such as ossicle, mucosa membrane, and 

nerve, indicative of the specific targeting of PS-CMP to cholesteatoma. In addition, I 

have evaluated the presence of microorganisms on the cholesteatoma tissues 

characterized with inflamed and infected using gram staining, revealing that all of 

cholesteatoma tissue had gram-positive microorganisms accumulated on the keratin of 

cholesteatoma. This study suggests that the potential of use PS-CMP as a delivery 

system for antibiotic, which enable the localization on cholesteatoma residual and 

eradication of the microorganisms in cholesteatoma to prevent the recurrence of 

cholesteatoma. 
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Figure B.1. Circular dichroism (CD) spectra wavelength measurement of CMP, 
(GPO)7GG, at 4 ºC (Black diamond) and 80 ºC (Red square) to evaluate 
the ability of CMP for thermal responsive triple helix assembly and 
single strand disassembly. (GPO)7GG (150 µM) in PBS were incubated 
at 4 ºC overnight prior to CD measurement. The maximal peak at 225 
nm indicated the triple helix assembly of CMP at 4 ºC, while the lack 
of peak at 225 nm suggested the thermally disassembly into a single 
strand of CMP at 80 ºC. 
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Figure B.2. Schematic of CMP, (GPO)7GG, conjugation on carboxylic group 
functionalized Nile red encapsulated polystyrene nanoparticle (d = 300 
nm). The carboxylic group functionalized Nile red encapsulated 
polystyrene (PS) nanoparticle were suspended in 0.1 M MES buffer at 
pH 5. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (8 eq.) in 
MES was added into PS nanoparticle and incubated at RT for 15 min 
while rotating to activate the carboxylic acid groups on PS. Then, CMP 
(7 eq.) and Sulfo-NHS (7 eq.) were added into EDC and PS mixture and 
incubated at RT for 2 h while rotating. CMP conjugated PS nanoparticle 
were purified by centrifugation method for two runs with TE and 0.02% 
tween 20 in TE. CMP-PS nanoparticles were stored in isotonic buffered 
saline (IBS) at 4 ºC for future use. 

Figure B.3. Dynamic light scattering measurements to confirm the CMP 
functionalization on PS nanoparticles. (A) Size measurement of z-average 
diameter of PS nanoparticle before and after CMP conjugation. Z-average 
diameter was enhanced for CMP functionalized PS nanoparticle than PS 
nanoparticle. (B) Zeta-potential measurement to demonstrate the change 
in surface charge before and after CMP conjugation. Due to the presence 
of carboxylic acid on the surface of PS nanoparticle, PS nanoparticle 
exhibited -45 mV as zeta potential. After CMP conjugation on the surface 
of PS nanoparticle, zeta potential of CMP functionalized PS nanoparticle 
was closed to 0 mV. 
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After CMP functionalized PS nanoparticles (PS-CMP) in deionized water (0.1 

mg/mL) was heated at 65 ºC for 5 min or non-heated, PS-CMP was applied on the 

tissue and was incubated at either 4 ºC or 37 ºC overnight. PS-CMP solution was 

removed from the tissue and the tissue was rinsed with 0.05% Tween-20 in PBS for 

three times at room temperature. To detect the PS-CMP binding on the tissue, the 

multi-photon microscope was used with both reverse and forward second harmonic 

generation (SHG) signals generated from collagen fibers in tissue using a 400 ± 10 nm 

emission filter and two-photon excited fluorescence (TPEF) of PS-(GPO)7GG (Nile 

red) was detected using 550 ± 50 nm emission filter at 800 nm as an excitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.1 Protocol for CMP functionalized PS nanoparticles binding on tissue and 
detection using the multi-photon microscope 
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Figure B.4. The representative images of in situ binding of CMP functionalized PS 
nanoparticle (PS-CMP, red) on healthy, or physically damaged mouse 
tail tendon (collagen, grey) to mimic the denatured collagen during the 
tendon remodeling process. The figure showed more tendency of PS-
CMP binding to physically disrupted collagen in mouse tail tendon and 
no binding of PS-CMP to healthy mouse tail tendon. PS-CMP were 
applied to the mouse tail tendons after heating at 65 ºC for 5 min to make 
sure CMP disassembled to single strand, or no heating. Although PS-
CMP with heating showed more binding signal than PS-CMP without 
heating on the physically damaged tail tendon, PS-CMP without heating 
had still more affinity to the damaged tendon than healthy tendon. 
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Figure B.5. The representative images of in situ binding of CMP functionalized PS 
nanoparticle (PS-CMP, red) on healthy or physically damaged mouse 
tail tendon (collagen, grey). CMP functionalized PS nanoparticles were 
applied to the mouse tail tendons and incubated at 37 ºC for binding to 
mimic the physiological condition. The figure showed similar as 
binding at 4 ºC, PS-CMP bound more on the physically damaged tail 
tendon than the healthy even at physiological condition. This suggested 
that the potential for PS-CMP to use as drug delivery systems to localize 
the tendon for repair. 
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Figure B.6. The representative images of cholesteatoma tissue sections from six human 
patients. Each tissue was characterized by Doctor’s observation during 
the removal surgery. Masson’s trichrome staining (Blue-Collagen and 
Red- Keratin) and SHG imaging (grey) were used to evaluate the presence 
of collagen in cholesteatoma. The collagen signals were correlated with 
the localization of PS-CMP (red) signals within the cholesteatoma tissue. 
PS-CMP signals were low for the tissue with less collagen composed 
(Patient #2 and #6), while the PS-CMP signals were stronger where the 
collagen present on the tissue. 
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Figure B.7. The representative images of tissues sections (mucous membrane, 
ossicle, and nerve) surrounding the cholesteatoma to evaluate PS-CMP 
for specific targeting the cholesteatoma. Each tissue was composed of 
collagen but different types (1-3). Masson’s trichrome staining (Blue-
Collagen and Red- Keratin) and SHG imaging (grey) were used to 
confirm the presence of collagen in cholesteatoma. The collagen signals 
were correlated with the localization of PS-CMP (red) signals within the 
different types of tissues. Overall, PS-CMP signals were minimum for 
all of the testing tissue types, indicating that the potential use of PS-
CMP to localize the collagen rich cholesteatoma. 
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Figure B.8. The representative gram staining images of Cholesteatoma tissues sections 
with inflamed and infected (Patient #1,2,3, and 4) to detect the presence 
of microorganism (Gram-positive (dark blue-violet) and gram-negative 
(red)). All of tissue sections where Keratin were located, were stained 
positive for gram-positive. This result suggest that the potential use of 
PS-CMP as a delivery vehicle for antibiotic to eradicate the 
microorganism on cholesteatoma, leading to the prevention of the 
recurrence of cholesteatoma growth. 
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Figure 1.2(B) 

 

 

Figure 1.2(C) 
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Figure. 1.3(A) 

Figure. 1.3 (B) – Open access 
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Figure 1.4(B) 

 

Figure 1.5(A) 
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Figure 1.5(D) 
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Figure 1.5(C) 
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