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ABSTRACT 

Monsoon crops play a critical role in Indian agriculture, hence, monitoring these crops 

is vital for supporting economic growth and food security for the country. However, 

monitoring these crops is challenging due to limited availability of optical satellite 

data due to cloud cover during crop growth stages, landscape heterogeneity, and small 

field sizes. In this work, our objective is to develop a robust methodology for high-

resolution (10 m) monsoon cropland mapping appropriate for different agro-ecological 

regions (AER) in India. I adapted a synergistic approach of combining Sentinel-1 

Synthetic Aperture Radar (SAR) (also called as radar) data with Normalized 

Difference Vegetation Index (NDVI) derived from Sentinel-2 optical data using 

Machine Learning algorithms of Random Forest (RF) and Support Vector Machine 

(SVM) within the Google Earth Engine platform. I developed a new technique, Radar 

Optical cross Masking (ROM), for separating cropland from non-cropland by masking 

out forest, plantation, and other non-dynamic features. The methodology was tested 

for five deferent AERs in India, representing a wide diversity in agriculture, soil, and 

climatic variations. Our findings indicate that the overall accuracy obtained by using 

the radar-only approach is 90% and 80 % whereas that of the combined approach is 

93% and 90% using RF and SVM respectively It is also observed that overall RF 

outperformed SVM, however SVM showed improved performance when optical 

datasets are combined with radar data Our proposed methodology is particularly 

effective in regions with cropland mixed with tree plantation/mixed forest, typical of 

smallholder dominated tropical countries. The proposed agriculture mask, ROM, has 
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high potential to support the global agriculture monitoring missions of Geo Global 

Agriculture Monitoring (GEOGLAM) and Sentinel-2 for Agriculture (S2Agri) project 

for constructing a dynamic monsoon cropland mask 
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Chapter 1 

INTRODUCTION 

1.1 Background 

The world population is expected to reach more than nine billion by 2050 and 

with increasing population, the demand for food will grow throughout the world (FAO 

2017, Van der Mensbrugghe et al.2009) (Figure 1.1). The constant growing population 

will pose major challenges in future actions for food suppliers, policy makers and 

researchers. The food production are also affected by climate variability, extreme 

weather events characterized by less frequent and more intense rain/drought, pest 

infestation and many others (Rosenzweig et al. 2001). These food security concerns 

are more relevant for developing countries where population is projected to grow 

faster than their current ability of food production. The food demand is expected to 

increase by 70% of the current scenario until 2050 and the major increase of food 

production (almost double) is expected to occur in developing countries. This 

increasing demand of food production can only be achieved by taking necessary steps 

by increasing agriculture production both in developed and developing world (FAO 

2017). 
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Figure 1.1:Population growth rate of the World from 1900 to 2050 scenarios 

(Source:FAOSTAT 2017, Van der Mensbrugghe et al. 2009) 

Most of the farmers in the developing world are smallholders that own or 

cultivate less than 2 hectares of lands (Lowder et al. 2016, FAO 2015-2). The 

smallholder farmers constitute 475 million population with 28-31% of food production 

and constitute 24% of the gross agriculture area of the world (Ricciardi et al. 2018) 

(Figure 1.2). Almost 80% of the croplands in developing countries of Asia and Africa 

are managed by smallholder farmers (Lowder et al 2016, FAO 2015). These farmers 

are mainly concentrated in rural and diverse landscapes in their countries and play a 

vital role in livelihood creation amongst the rural population and for maintaining 

household food security. Their cropping intensity or yields are higher is somewhat 

higher than the medium and large size farms (Ricciardi et al. 2018). There is a need to 

support the increasing food demand by maintaining constant supply through crop 
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production and protecting the crops grown by smallholder farmers from extreme 

weather events with more focus on the countries of Asia and Africa. 

 

Figure 1.2:Arable land and land under permanent crops: past as percentage of total 

land cover (Source:FAOSTAT) 

`Among the regions dominated by smallholder agriculture, India is one of the most 

important countries because it supports the largest agriculture population in the world 

and has potential to increase crop productivity (World Bank 2012). The smallholder 

farmers (farm size/cropland of < 2 ha or less) comprise of more than 80% of the 

country’s farmers, but they own only approximately 25% of the total cultivated land 

and produce 40% of the country’s food grains production (FAO 2015-2, Grain). It is 

estimated that as the population of the country increases the number of small farm 

holdings will increase throughout the country. These smallholders mainly practice 

rainfed agriculture and depends heavily on monsoon/wet season rainfall, thus are more 

vulnerable to erratic monsoon rainfall patterns. 
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In order to increase the crop productivity of the smallholder farmers, the first 

step is to understand the spatial extent of current crop cultivation area and to 

characterize their spatial/temporal variability across the region (Jain et al. 2013). This 

process will assist in generating reliable agriculture statistics and will help planning 

for better strategy to alleviate poverty in the region. However, these agriculture lands 

are changing rapidly over time and space due to anthropogenic and natural causes, 

which makes it very difficult to produce precise cropland maps and its geographical 

variations across large area (Timmermans 2017). In addition, the ground survey of 

these agricultural lands to generate crop estimates is not cost- or time-effective. Often 

these surveys do not meet the requirement of the decision-making management 

(Handique et al 2017).There is always a great uncertainty in generating quality 

cropland products, which in turn affects the local and global food security 

assessments. This challenge requires the need to develop new and effective methods to 

map and monitor the distribution of agricultural lands and crop types (crop mapping). 

Remote Sensing technology can be used to extract information on the 

cultivated crops and cropland area in a rapid and timely manner (Debats et al. 2016). 

With the increasing number of earth observation satellites, the potential of remote 

sensing data for agriculture monitoring is increasing. New and automated remote 

sensing satellite-based methods are being evolved to provide agriculture related 

statistics (Delrue et al. 2013). Remote Sensing data has shown its importance in 

extracting different crop characteristics, including cropped area, crop yield, and crop 

damage assessment due to floods or drought, and has reduced the associated cost in 
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conducting large field surveys (FAO 2014). These satellite-derived data products are 

particularly important as they can link cropping activities to the environmental factors 

such as soil, topography, and weather variability (Mondal et al. 2014, 2015, Qadir and 

Mondal 2020). With the increase in the spatial, spectral and temporal coverage of the 

satellites, the crop mapping products are also improved over time (Jin et al. 2019). 

However, in tropical countries like India, crop monitoring during the monsoon season 

is still a challenging task as cloud free optical scenes are difficulty to get to generate 

reliable crop statistics (Qadir and Mondal 2020, Singha et al. 2019). Moreover, the 

field sizes are very small to be efficiently mapped by existing methods (Jain et al. 

2013). 

1.2 Cropland mapping using remote sensing 

Historically, earth observation using remote sensing been used for crop 

mapping and area assessment since the launch of Landsat satellite in 1972 

(MacDonald et al.1975, Wulder et al. 2019).With the advancement of technology and 

sensor development, satellite remote sensing has become a stronger player in many 

countries for operational crop monitoring work. Initially, US organizations including 

United States Department of Agriculture (USDA), National Aeronautics and Space 

Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), 

United States Department of Commerce (USDC) coordinated to carry out a joint 

“Large Area Crop Inventory Experiment” program (MacDonald et al. 1975). New 

programs were started not only to map major food crops (wheat, rice, soy) but also to 

assess the crop production estimation of major crop producing countries of the world. 
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Initially, the satellite data from Advanced Very High Resolution Radiometer 

(AVHRR) and Landsat was the main source to generate agriculture statistics by using 

vegetation indices in the USA (Khamala 2017). New models for estimating crop 

condition and biomass were then developed by using remote sensing and 

meteorological data as collaborative work between the European Unions and the USA 

(Fritz et al. 2019).Other countries followed to start their own program for crop 

mapping and production estimation including India. However, most of the prior case 

studies at the national or global scale were implemented using coarser satellite data 

such as Moderate Resolution Imaging Spectroradiometer (MODIS) or AVHRR (Jiang 

et al. 2003).  

Methodologies involving such coarser data, when applied to small-scale 

agriculture (farm sizes/cropland less than 2 hectares), common among transitioning 

economies, result in mixed pixel issues where one aggregated grid-cell value is 

assigned to many fields with varying cropping practices (Qadir and Mondal 2020). 

Using coarse resolution data is not efficient in making accurate classification of all 

land uses including croplands with the required standard of accuracy (Handique et al 

2016). With the availability of large amount of satellite data, improvement in 

resolution of the available satellite imagery (radiometric, temporal and spatial), and 

advancement in machine learning techniques, regular cropland mapping and 

monitoring are becoming more common in both science and policy sectors (Mtiba and 

Irie 2016). 
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For efficient cropland monitoring, the timing or schedule of crop area 

estimation depends on how early and efficiently the planted crop can be detected by 

satellite sensors.  As crop growth is dynamic, it was demonstrated that multi-temporal 

data could significantly improve the crop mapping accuracy (Sun et al. 2019). It also 

depends on the field sizes, the spatial variability of the growing crops and the timing 

of the crops grown. For example, in India where the rainfed crops are grown in 

monsoon (wet) season, obtaining cloud free optical data is challenging, resulting in 

severe limitation in monsoon crop mapping. With the availability of synthetic aperture 

radar (SAR) sensors such as Sentinel-1 and ALOS-PALSAR, monsoon crops can now 

be monitored throughout the crop growth season (Van Tricht et al. 2018). However, 

from the operational monitoring context, these new mapping techniques must be 

replicable over different agro-ecological regions covering large geographic extent and 

should be robust enough to be applicable for different years for the same crop-growing 

season.  

1.3 Cropland mapping using remote sensing: Indian scenario 

India is a primarily agrarian economy with 17% of the national Gross 

Domestic Product (GDP) contributed by agriculture and approximately 50% of the 

population supported by agricultural activities (Madhusudhan 2015). The remote 

sensing activities in country began with the study of root-wilt disease in coconut 

plantation in Kerala (Dadhwal et al 2002). National level crop area estimation 

programs such as Crop Acreage and Production Estimation (CAPE) and Forecasting 

Agricultural Output using Space, Agro-meteorology and Land based Observations 
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(FASAL) also became operational (Parihar et al. 2016).The aim of FASAL program 

was to generate crop forecast using remote sensing data at an early stage of crop 

development and to regularly update the existing forecast regularly to improve the 

ground based crop forecasting (Moorthi et al. 2014). The FASAL procedure is now 

operationally used by Mahalanobis National Crop Forecast Centre (MNCFC) for 

national level crop area estimates. In FASAL, cloud free multi-spectral optical remote 

sensing data from medium resolution satellites such as Wide Field Sensor (WiFS) and 

Advanced Wide Field Sensor (AWiFS) are used for crop monitoring over large 

regions for both winter/dry (Rabi) and monsoon/wet (Kharif) crops. These mapping 

activities include: (1) extracting spectral signatures and indices including Normalized 

Difference Vegetation Index (NDVI) using optical satellite data, and (2) assessing 

temporal evolution of various crops and other land cover features using sample 

segments collected from the ground. Based on these sample segments, a classifier 

model would generally be used at the district and state level. These state level statistics 

were combined to provide national level statistics. Also, India is one of the few 

countries who have initially used SAR data for operational monsoon (Kharif) crop 

mapping for selected crops when optical data availability is limited. India launched its 

own C- band SAR satellite Radar Imaging Satellite (RISAT-1) in April 2012 for 

boosting its FASAL and monsoon crop mapping program (Chakraborty et al. 2014). 

Before RISAT-1, temporal C-band Radarsat-1 & 2 were explored for water intensive 

rainfed monsoon crops, such as rice and jute. Before RISAT-1, temporal C-band 
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Radarsat-1 & 2 were explored for water intensive rainfed monsoon crops, such as rice 

and jute. 

However, most of the studies conducted in India on small farms using 

moderate–high resolution satellite data such as Landsat and Sentinel-2 mainly focus 

on winter crops when sufficient cloud free optical data are available during the crop-

growing season (Whitcraft et al. 2015)  However, optical satellite data are insufficient 

for operational monsoon cropland mapping as the wet (monsoon) season coincides 

with the crop growing duration, thus, providing an insufficient number of images for 

mapping monsoon cropland over a large scale. Even when optical satellite data are 

available during the peak growth stages of the crops such as rice, the spectral 

signatures of the crops are often mixed with that of plantation, grassland, or forested 

regions (Mercier et al.2019), thus making it challenging to segregate croplands with 

monsoon crops from other vegetation covers. 

1.4 Machine learning based classification for cropland mapping 

Classification of satellite imagery is an important component for land cover 

studies comprised of change detection analysis, management of resources and crop 

damage preparedness. Up-to-date information of land cover is required for policy 

implementation for future conservation projects (Roy and Inamdar 2019). Cropland 

classification can be performed by either using pixel-based information such as those 

used in supervised/unsupervised classification algorithms or by clustering similar 

objects together in an object-based classification. Pixel-based classification algorithm 

is easier to implement as it requires less computational resources compared to object-
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based classifications (Quynh Trang et al. 2016). In supervised classification, the 

classifier is calibrated based on the initial training values and the selected algorithm, 

whereas in unsupervised classification, an algorithm is selected that will find pre-

specified number of clusters within the input image based on statistical analysis 

(Macedo-Cruz et al. 2011). Unsupervised classification doesn’t require prior ground 

information for generating land cover classes.  More recently, with the advancement 

of computation power and development of new algorithms, satellite image processing 

using machine learning has evolved as the demand has increased to have a smart tools 

and software to detect the hidden pattern behind the satellite images (Debats et al. 

2016).These algorithms range from Artificial Neural Networks (ANN), k-Nearest 

Neighbors (kNN), Decision Trees (DT), Classification and Regression Trees (CART), 

Support Vector Machines (SVM), and Random Forest (RF) (Qian et al. 2014, Salah 

2017, Okwuashi et al.2012). A comparison of commonly used Machine learning 

techniques is given in the table below 1.2 below 

Machine learning which uses statistical learning to train the model having a set 

of features or attributes differ from Deep Learning (DL) which is a subset of Machine 

learning such that it extracts features or attributes from raw data (Table 1.1). Deep 

learning is characterized by neutral networks generally involving more than two 

hidden layers, hence the term deep learning which require powerful computational 

resources. Some of the widely used deep learning models are Convolution neutral 

Network (CNN) and Recurrent Neural Network (RNN) (Ma et al. 2019). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Macedo-Cruz%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22163940
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Table 1.1:Comparison of Machine Learning (ML) vs Deep Learning (DL) 

Factors Machine Learning Deep Learning 

Data Structure Always require structured 

data 

Uses layers of neural 

networks 

Data size Can train on lesser data Require large data 

Execution time Less time compared to DL More time compared to 

ML based on number of 

parameters used 

Accuracy Less accurate Provides high accuracy 

Hardware Can be trained on Central 

Processing Unit (CPU)  

Requires high quality 

Graphics Processing Unit 

(GPU) 

Though the machine learning classifiers are widely gaining acceptance due to 

their high accuracy, their potential for mapping small-scale farms/croplands are still 

not explored properly. Very few studies have been conducted, but none of them 

explores its potential for monsoon cropland mapping. There has been limited amount 

of research to compare and evaluate the performance of machine learning algorithms, 

such as RF and SVM with combination of radar and optical data for monsoon 

cropland mapping. Previous studies have shown that these algorithms are very 

sensitive to the training dataset and the algorithms parameters used (Thanh Noi and 
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Kappas 2018). For example, decision trees are too sensitive to small changes in the 

training dataset and occasionally it is unstable and tend to overfit the model 

(Topaloglu et al 2016). Studies have also shown that SVM and RF are insensitive to 

noise or overtraining, which shows their ability in dealing with unbalanced data 

(Breiman 2001).  

With the availability of cloud computing platform such as Google Earth 

Engine (GEE), and accessibility to several in-built machine learning algorithms, it has 

now become easier to analyze large number of satellite imagery (Gorelick et al. 2017). 

GEE supports more than 15 classification techniques including machine learning 

algorithms such as SVM, RF and CART. Two of the algorithms (SVM and RF) 

supported by GEE and used for this study are explained in detail below. GEE supports 

more than 15 classification techniques including machine learning algorithms such as 

SVM, RF and CART. Two of the algorithms (SVM and RF) supported by GEE and 

used for this study are explained in detail below. 

1.4.1 Support Vector Machine (SVM) 

SVM is a supervised, non-parametric machine-learning algorithm that can be used for 

both regression and classification. The popularity of SVM has increased recently in 

the classification of satellite images. In SVM, a hyper-plane is found and fit on the 

data set in N-dimensional space (where N is number of features) that separates the 

training classes in feature space (Figure 1.4). In SVM, the training points play an 

important role in generating highly accurate classification. The easiest way to train the 
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SVM is by using linearly separable classes. According to (Mountrakis 

et.al.2011,Thanh Noi and Kappas 2018) if the training data with k number of samples 

is represented as {Xi, Yi}, i =1, 2,..., k where X € Rn is an n-dimensional space and y 

€ {−1, +1} is a class label, then these classes are considered linearly separable if there 

exists a vector W perpendicular to the linear hyper-plane (which determines the 

direction of the discriminating plane) and a scalar b showing the offset of the 

discriminating hyper-plane from the origin. For the 2 classes, i.e. class 1 represented 

as −1 and class 2 represented as +1, 2 hyper-planes can be used to discriminate the 

data points in the respective classes. These are expressed as; 

WXi + b ≥ +1 for all y = +1, i.e. a member of class 1 

WXi+b ≤ −1 for all y =−1, i.e. a member of class 2 
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Figure 1.3:The basic principle for Linear Support Vector Machine Classifier  (Source: 

Mountrakis et.al.2011) 

 

In some cases, the classes might not be linearly separable which is often the case in 

land cover studies. In the case of non-linearly separable classes, to find the optimal 

boundary, the training points are to be projected in a higher dimensional space where 

the data points become linearly separable (Huang et al. 2002). For these kind of 

classification tasks, kernel representations offer a solution in locating complex 

boundaries between the classes. There functions (kernels) take into account the low 

dimensional input space and convert it into high dimensional space. The SVM 

classifier provides four types of kernels: linear, polynomial, radial basis function 
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(RBF), and sigmoid. SVM is regularly used for agriculture mapping at a larger scale, 

such as for the Sen2Agri project, where the automated crop type mapping was 

performed over 12 sites across the world using time series optical images coupled with 

RBF kernel based SVM classification (Inglada et al. 2015). 

1.4.2 Random Forest (RF) 

RF is another classification algorithm, which follows the decision tree 

approach. In RF, randomly selected results from multiple decision trees are combined 

together to obtain highly accurate and stable classification results (Breiman 2001) 

(Figure 1.5). Similar to SVM, RF can also be used for both classification and 

regression problems. According to (Thanh Noi and Kappas 2018) in order to 

implement the RF, two parameters need to be set up: the number of trees and the 

number of variables per split. GEE default values for the above two parameters (i.e. 

number of trees equal to 1 and number of variables per split is equal to square root of 

the number of variables) optimum results can be achieved (Pal 2005, Liaw et al.2002), 

whereas changing the two parameters may or may not improve the performance of the 

classification accuracy depending on the input image and the training points used for 

the algorithm. 

Some studies have shown that by increasing the number of trees to 200, RF 

could achieve accurate results (Feng et al. 2015, Inglada et al. 2015, The objectives of 

this study is to evaluate the performance of the supervised classifiers, RF and SVM, 
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when applied to a Sentinel-1 radar and combination of Sentinel-1 radar and Sentinel-2 

optical satellite image and to assess the accuracy of the classification results. 

 

Figure 1.4:Methodological framework for Random Forest classifier depicting the 

internal structure of a Random Forest (Source: Mondal et al. 2020) 

1.4.3 Artificial Neural Network (ANN)  

Artificial Neural Network (ANN) is a technique, which imitate the power of human 

brain to perform tasks such as pattern recognition, image classification etc (Maxwell et 

al. 2018). It differs from Random Forest or other conventional satellite image 

classifiers, as it is not based on decision rules (Lange and Sippel, 2020). Previous 

studies have shown considerable advantages of ANNs over the conventional methods 

for satellite image classification due to its ability to learn complex patterns taking into 

account any non-linear complex relationship between the dependent and independent 

variables. ANN also take into account any prior knowledge while gained while 

training the classifiers. In ANN, the neuron forms the basis of an ANN where each 

neuron is connected and require certain weight for activation or inhibition of the 
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neuron The efficiency of the neural networks is based on the optimization of the 

learning algorithm, the parameters chosen for training and the quality of the data used. 

ANNs is now been applied to image classification, feature extraction, data fusion and 

other similar tasks. Nowadays, Neural Network has gain popularity for satellite image 

classification due to improvement in the algorithms and the processing systems  

Table 1.2:Comparison of the three algorithms: Support Vector Machine (SVM), 

Random Forest (RF) and Neural Networks (NNs) 

Algorithms Advantages Disadvantages User defined 

parameters 

Support 

Vector 

Machines 

 Order of the 

instances doesn’t 

matter. 

 Overfitting rarely a 

issue 

 

 Processing time 

increases 

exponentially as the 

classes increases 

 Choosing appropriate 

hyper parameter is 

tough 

 

 Cost parameter 

 Kernel type : linear, 

polynomial, radial 

Random 

Forest 
 Order of the 

instances doesn’t 

matter 

 Tolerate complex 

data 

 Easy to optimize 

 

 Good for classification 

task but not for 

regression 

 Overfitting problem 

 

 Number of trees 

 Number of 

variables per split 

Neural 

Network 
 Tolerate noisy data 

 Able to represent 

Boolean functions 

 May lead to overfitting 

 Structure of the 

algorithm is complex 

and not easy to 

understand 

 Activation function 

 Number of hidden 

layers 

 Learning rate 

 Pruning parameter 
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1.4.4 Crop monitoring using multi-temporal radar data 

The radar data operates on low frequency (1-10 GHz) enabling penetration of the 

cloud cover and solar independence (Woodhouse 2006). The radar observations in this 

frequency range are also sensitive to soil moisture content and roughness, vegetation 

size, shape, orientation and biomass. Hence, the low frequency, along with the 

sensitivity to soil moisture and plant structural properties make the radar sensor more 

suitable for crop monitoring. Previous studies have shown that utilizing single SAR 

scene at a given frequency or polarization is often inadequate to achieve the desired 

classification accuracy (Skriver et al. 2011). Studies have also shown how temporal 

backscattering can efficiently differentiate crops based on their canopy and other 

physical attributes. (Shang et al. 2009). 

Multi-temporal SAR images improve the crop classification accuracy and 

capture the variation in growth process (Larrañaga and Álvarez-Mozos 2016). 

Chakraborty et al. 1997 has documented the use of multi-temporal SAR data for 

classifying agricultural lands and monitoring crop growth. Skakun et al. 2016 has 

shown how multi-temporal SAR images can effectively produce the equivalent 

classification accuracy as optical images during the cloudy seasons. Studies have also 

shown that multi-temporal SAR images (>10 scenes) can increase the classification 

accuracy obtained from optical images (2 or 3 scenes) by 5% (Kussul et al.2018). 

Skriver et al.2011 has shown that multi-temporal, multi-polarization SAR images 

perform better compared to single date multi-polarization or multi-date single 

polarization radar images. Hence, the temporal information from SAR, combined with 
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multi-polarization, provide better information of crop conditions.  Nowadays, open 

source Sentinel-1 radar data with high spatial resolution of 10m, high temporal revisit 

frequency (10 days) and C- band in dual polarimetry is widely used for crop 

monitoring. Studies have shown that C-band interact more efficiently with crops due 

to its lower penetration capability compared to L-band and less canopy scattering as 

compared to X-band (Inoue et al. 2002). Wide range of studies are performed for 

cropland monitoring and yield estimation by utilizing backscattering values of single 

or dual polarimetric Sentinel-1 radar data. Currently, water intensive crops, such as 

rice, are widely monitored by radar data (Haldar et al. 2014, Mansaray et al. 2017, 

Rakwatin et al. 2014, Singha et al 2016, 2019). However, few studies have utilized 

radar data for dryland crops grown during wet season. Previous studies utilizing radar 

have been confined to examining croplands dominated by specific water intensive 

monsoon crops such as rice or jute which are easier to detect due to their distinct 

backscattering signatures compared to dryland monsoon crops (Wang et al. 2015). 

Hence, these radar-based methods need to be evaluated or revised in the context of 

diverse cropping practices, especially for rainfed monsoon crops grown in dryland 

regions. The hindrance in using optical satellite data for intra-seasonal monsoon 

cropland monitoring over large region requires the remote sensing community to 

develop new methods, especially for countries with heterogeneous landscapes, such as 

India. 
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1.4.5 Synergy of radar and optical data for crop monitoring 

Multi-sensor combination of satellite data capturing different parts of 

electromagnetic radiation provides us the possible strategies to reduce the effect of 

cloud covers. Many of the operating microwave satellites such as Sentinel-1, ALOS 

PALSAR operates in C-band (3.75-7.5 cm), L-band (15-30 cm) wavelengths 

respectively which are not affected by clouds and heavy rainfall. Hence, they are ideal 

for crop monitoring during the monsoon season in India. However, these satellites 

have their limitation of interpretation and speckle effects. In addition, interaction of 

radar with dryland regions is limited. By combining radar and optical data for the crop 

growing season, advantages of both sensors can be maximized, while limiting the 

drawbacks in using data from either of these sensors as a single input. Moreover, by 

using the time series imagery, the temporal variations of the crop growing cycle can 

easily be captured and data gaps resulting from non-availability of satellite data are 

avoided. McNairn et al. 2009 integrated the Landsat TM with Radarsat and ENVISAT 

in Canada and concluded that if even one optical images are combined with temporal 

radar images than acceptable accuracy of (>85%) can be achieved for operational 

purposes. Previous study conducted by (Inglada et al. 2016) has shown that there is 

significant improvement in classification accuracy early in crop growing season by 

fusing time series of Landsat and Sentinel-1 radar data. 

Similarly Shang et al. 2008 achieved acceptable accuracy (>85%) in early 

growing season by using Landsat data complemented by multi-polarization (VV/VH) 

ENVISAT Advanced Synthetic Aperture Radar (ASAR) images. Studies have shown 
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that there is always an increase in classification accuracy ranging from 5% to 25% 

when the two data sources are combined (e.g. Kussul et al. 2018; Skakun et al 2016). 

Recently, during monsoon crop growing season, studies have emerged to 

combine radar and optical data for predicting yields of several monsoon crops 

including rice, soybean, and cotton (Ranjan et al. 2019, Kumari et al. 2019). These 

studies either focused on water intensive monsoon crops or over small regions where 

obtaining a few optical image snapshots was possible during the monsoon season. 

However, no studies thus far integrated radar and optical data for quantifying monsoon 

cropland over a large area in different agro-ecological regions with diverse agriculture 

systems. 

1.5 Research Objectives 

This study intends to fill the gap in monsoon cropland mapping by combining radar 

and optical data and has the following objectives: 

(1) Evaluating Sentinel-1 (S1) radar and a combination of radar and Sentinel-2 (S2) 

optical data in terms of providing greater accuracy for monsoon cropland mapping 

using machine learning algorithms. 

(2) Developing a high resolution, all weather applicable non-crop mask for 

segregating monsoon cropland from forested and agro-forested (plantation) lands with 

similar signatures. 

The above research objectives can be achieved by addressing the following research 

questions:  
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 How well do the in-built machine learning methods of GEE such as RF and 

SVM perform on multi-temporal satellite images for monsoon cropland 

mapping? 

 How do radar data alone and combination of radar with optical data perform 

across different AERs by using RF and SVM classification?  

 How well do these two classifiers perform with respect to each other and what 

is the pixel level agreement (PLA)  between RF and SVM classified images? 
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Chapter 2 

STUDY AREA & DATASETS USED 

2.1 Study Area 

The study area comprises of ten sub-regions within five agro-ecological regions 

(AER) covering the Indian states of Uttar Pradesh, Madhya Pradesh, Chhattisgarh, 

Maharashtra, Andhra Pradesh, and Karnataka (Figure 2.1) (Gajbhiye and Mondal 

2000). The study area covers approximately 604,615 sqkm and is surrounded by the 

alluvial Gangetic plains in the north and the Bay of Bengal in the south. It borders the 

Western Ghats in the west and Chota Nagpur plateau in the east. The region is mostly 

undulating with the elevation ranging between 0–1560 m (Figure 2.1). The region is 

irrigated by many rivers including the major rivers such as Narmada, Godavari and 

Krishna (Khullar 2008). The study region has varying elevation from the lowlands in 

the coastal plains to the plateau in the central to highlands on the northern side. This 

study area was selected as the farmers mainly practice rainfed monsoon crops and it 

contains great diversity of agricultural landscapes and characterized by different agro-

ecological regions. 
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Figure 2.1:Maps of the study area showing: (a) Agro-Ecological Regions (AER) 

selected for this study; (b) ten AER sub-regions within five AER; (c) 

spatial variation in annual mean precipitation from the year 2000 to 2018, 

derived from the Climate Hazards Group InfraRed Precipitation with 

Station (CHIRPS) data; and (d) Digital Elevation Model (DEM) obtained 

from the Shuttle Radar Topography Mission (SRTM) dataset. 
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2.1.1 Climate 

The geography and the topography of India strongly influence its climate. The 

climate of the region is mainly characterize by wide range of weather conditions and 

topographical variations. The Himalayas in the north, the Thar Desert in the west and 

the oceans, the Indian Ocean, the Bay of Bengal and Arabian Sea has a great role in 

influencing its climate.  The region has a tropical monsoon climate (Am) as per the 

Koppen-Geiger climate classification system (Beck et al. 2018). The mean monthly 

rainfall for the study region is shown in Figure 2.1c and mean monthly temperature 

(calculated from MODIS) and rainfall (calculated from Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS)) for the whole of India is shown in 

Figure 2.2, for 2000–2018. 

 

Figure 2.2:Average precipitation and rainfall for part of the study region over a year 
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 In India there are four climatological seasons as declared by the Indian 

Meteorological Department (Attri and Tyagi, 2010) 

 Winter, occurring between January and March.  

 Summer or pre-monsoon season, lasting from March to June  

 Monsoon or rainy season, lasting from June to September. This season brings 

the summer monsoon rainfall over India  

 Post-monsoon season, lasting from October to December. cloudless. 

2.1.2 Monsoon season 

Monsoon season is the main crop-growing season in India and runs for four 

months from June to September and dominates by massive convective thunderstorm 

(Parthasarathy et al. 1994, Prasanna 2014). During the monsoon season, large area of 

western and Central India receives more than 90% and southern and eastern India 

receives almost 50%-75% of their total precipitation during the period (Halpert and 

Bell 1996). Monsoon is derived from the word “Mausam” meaning seasonal rain 

bearing winds (Zhisheng et al. 2015). The monsoon season is caused by the difference 

in temperature over the land and the ocean resulting in difference in pressures: low 

pressure over land surface and high pressure over the oceans. This give rise to 

movement of moisture-laden trade winds from ocean to land surface and termed as 

monsoon (Gallup and Riker-Coleman 2001). By first week of July the wind covers the 

whole of India experiencing the monsoonal rainfall. By the last week of August/first 

week of September, the monsoon wind starts retreating from mainland India. It further 
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weakens by the end of September/early October and leaves the entire country by the 

end of November. 

During the months from October to December, the monsoon winds become 

weaker and starts retreating. This retreating monsoon carries wind that has already lost 

their moisture while crossing land and brings with it the cool, dry air masses to large 

part of India (Galvin 2008). 

2.1.3 Agro-ecological regions 

Agro-ecological regions (AER) is extracted from Agro-climatic regions by 

overlaying landforms and soils on climatic regions based on length of agricultural 

growing period (Gajbhiye and Mondal 2000).(Table 2.1) The AER is designed to 

attaining the optimum production potential of a crop and crop variety. The latest AER 

map available for India was prepared from using the soil resource data acquired from 

1:1 million-scale soil map and climate data from 600 weather stations spread across 

the country. The soils in the region are influenced by the rainfall, the existing parent 

rock material and topography. The AER regions used in this study were prepared by 

laying emphasis on soil quality parameters to prepare accurate agricultural land use 

plans. 
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Table 2.1:Primary characteristics of the study region showing agro-ecological regions 

and sub-regions, climate and the soil types 

 Agro-ecological 

region 

Sub-region Climate 

type 

Soil type 

1 Northern plain (and 

central highlands) 

including Aravallis, 

hot semi-arid eco-

region 

Madhya Bharat 

plateau and 

Bundelkhand 

uplands 

Hot 

moist 

semi-arid 

deep loamy and 

clayey mixed red 

and black soils 

2 Central Highlands 

(Malwa and 

Bundelkhand), hot 

subhumid (dry) eco-

region 

Vindhyan scarpland 

and Baghelkhand 

plateau 

Hot dry 

subhumid 

deep loamy to 

clayey mixed red 

and black soils 

3 Central highlands 

(Malwa and 

Bundelkhand), hot 

subhumid (dry) eco-

region 

Malwa plateau, 

Vindhyan scarpland 

and Narmada valley 

Hot dry 

subhumid 

medium and deep 

clayey black soils 

(shallow loamy 

black soils as 

inclusion) 

4 Central highlands 

(Malwa and 

Bundelkhand), hot 

subhumid (dry) eco-

region 

Satpura range and 

Wainganga Valley 

Hot 

moist 

sub-

humid 

shallow to deep 

loamy to clayey 

mixed red and 

black soils 

5 Central highlands 

(Malwa and 

Bundelkhand), hot 

subhumid (dry) eco-

region 

Satpura and eastern 

Maharastra plateau 

Hot dry 

sub-

humid 

shallow and 

medium laomy to 

clayey black soils 

(deep clayey black 

soils as inclusion 

6 Deccan plateau, hot 

semi-arid eco-region 

Eastern Maharastra 

plateau 

Hot 

moist 

semi-arid 

medium and deep, 

clayey black soils 

(shallow loamy, to 

clayey black soils 

as inclusion 

7 Deccan plateau, hot 

semi-arid eco-region 

Central and western 

Maharastra plateau 

and north Karnataka 

plateau and north 

western Telangana 

plateau 

Hot 

moist 

semi-arid 

shallow and 

medium loamy to 

clayey black soils 

(medium to deep 

clayey black soils) 
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8 Deccan plateau 

(Telangana) and 

eastern ghats, hot 

semi-arid eco-region 

North Telangana 

plateau 

Hot 

moist 

semi-arid 

deep loamy and 

clayey mixed red 

and black soils 

9 Deccan plateau 

(Telangana) and 

eastern ghats, hot 

semi-arid eco-region 

Eastern ghat (south) Hot 

moist 

semi-

arid/dry 

subhumid 

medium to deep 

loamy to clayey 

mixed red and 

black soils 

10 Eastern coastal plain, 

hot subhumid to 

semi-arid eco-region 

Andhra plain Hot dry 

subhumid 

deep, clayey 

coastal and deltaic 

alluvium-derived 

soils 

 

2.1.4 Major crops 

Most of the farmers in the study region are smallholders with limited 

landholdings; they grow crops during three seasons: monsoon (kharif) during June-

November, winter (rabi) during December-April, and summer (zaid) during April–

June (NFSM Report). The major monsoon crops grown in the study region are rice, 

soybean, black gram (locally known as Urad), cotton, maize, and groundnut (Land 

Use Report). The monsoon crop sowing date varies across the study region, starting in 

the month of June with the onset of monsoon, up to August/September in low-lying 

regions. The harvesting of the crops widely varies as well and may range from 

September for soybean and black gram to November for rice. The details regarding the 

AERs considered for this study and the major monsoon crops grown according to the 

latest government statistics available are listed in Table 2.2. For further analysis, we 

have combined AER-5 with AER-4, as AER-5 has negligible cropped area to be 
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analyzed as separate unit. Diverse monsoon crops are grown in the AERs comprising 

of both water intensive monsoon crops and rainfed-dryland crops. 

 

Table 2.2:Agro-Ecological regions and the major crops grown 

 Agro-Ecological Region Major Crops 

1 
Northern Plain 

black gram, millet, sesame, rice 

2 
Central Highlands 

soybean, rice, cotton 

3 
Deccan Plateau 

cotton, soybean, sorghum 

4 Deccan Plateau and Eastern Ghats, Eastern 

Coastal Plains 

rice, cotton, chili, maize 

 

2.2 Datasets used 

2.2.1 Sentinel-1 radar data 

Sentinel-1 radar data is part of Global Monitoring of Environment and Security 

(GMES), a combined initiative of European Commission and European Space Agency 

and also part of Copernicus program. Sentinel-1 consists of constellation of two 

satellites Sentinel-1A launched on April 3rd, 2014 and Sentinel-1B launched on April 

25th, 2016. Sentinel-1 operates on C-band at dual polarization 10m spatial resolution 

and 12- days repeat cycle. It has four modes of imaging: strip map (SM), 

interferometric wide swath (IW), extra wide swath (EW) and wave (WV) mode. 

Sentinel-1 radar data is collected with several different resolutions, polarization 

combination during both ascending and descending orbits. For this study, I have used 

C-band, dual-polarization VV (Single co-polarization, vertical transmit/vertical 
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receive) and VH (Dual-band cross-polarization, vertical transmit/horizontal receive) 

dataset for the Interferometric Wide Swath (IWS) mode in descending look angle 

accessed and processed on the Google Earth Engine (GEE) platform. The dataset 

includes the Sentinel-1 ground range and ortho-rectified product processed using the 

sentinel-1 toolbox and converted to backscattering coefficient in decibel (dB) scale. I 

filtered the data, restricted the processing and data analysis to Level-1 GRD products 

and sorted by dates within the crop growing monsoon season from June to November. 

Pre-processing included the steps for thermal noise removal, radiometric calibration 

and ortho-rectification of the dataset. The ortho-rectification was performed using the 

Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) within 

the GEE environment (Qadir and Mondal 2020). Using temporal VH and VV 

polarization, radar monthly composite images were created by considering median 

values. I also used these monthly median composite images to create False Color 

Composite (FCC) to aid in visual interpretation of the images for training and testing 

data collection (Figure 2.5).  A total of 516 Sentinel-1 radar images were used for the 

entire monsoon crop-growing season of 2018. 

2.2.2 Sentinel-2 optical data 

The Sentinel-2 (S2) mission is a constellation of two polar-orbiting satellites 

similar to Sentinel-1. Sentinel -2 is wide swatch (290 km), high spatial resolution 

(10m) and high revisit time (10 days at the equator) data provided by ESA and 

supporting Copernicus Land monitoring programs. I have used the S2 level 1-C, 

ortho-rectified and geo-referenced top-of-atmosphere (TOA) reflectance data product 
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(Gati and Bertolini 2015) within the GEE platform. The collection contains Multi 

Spectral Instrument (MSI) bands with a scaling factor of 10,000. To maintain the 

quality of the data analysis and products during the monsoon season, I considered 

Sentinel-2 images with cloud cover of 5% or less. On these filtered images, I applied 

an automated cloud masking algorithm using quality assessment band (band QA60) to 

mask both opaque and cirrus clouds (Carrasco et al. 2019). The images acquired after 

the month of November were not considered as I assumed that crops grown after this 

month are not monsoon crops, based on existing literature (Jain et al 2013). A total of 

1734 S2 images were used for the entire monsoon crop-growing season of 2018. 

2.2.3 Training and Testing the Classifiers  

I collected a total of 1500 reference points required for training and testing the 

classifiers for the five broad land use land cover (LULC) classes: monsoon crop, bare 

soil, water, vegetation, and urban (Figure 2.4). I defined bare soil as any land cover 

feature, which is devoid of vegetation, either a barren land, fallow land with no crop, 

or any region with exposed soil. I collected these points through a combination of field 

visits, high-resolution google earth imagery and visual interpretation of Sentinel-1 

radar and Sentinel-2 optical satellite imagery using the method similar to those 

explained in Singha et al. 2019 and De Alban et al. 2018 and demonstrated in Figure 

2.4. Using multiple datasets to generate the training and testing points ensures that 

only land cover features, which have the high probability of belonging to the actual 

land cover class on the ground, are selected for training and testing. During field visits, 

information on land covers along with their geographic coordinates Ire collected using 
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a handheld Global Positioning System (GPS) device. Field visits were conducted at 

four agro-ecological sub-regions: 1) Madhya Bharat Plateau and Bundelkhand 

Uplands, 2) Vindhyan Scarpland and Baghelkhand Plateau, 3) Eastern Ghats (South), 

and 4) Andhra Plain (Figure 2.1a, Table 2.1). I collected a total of 500 points for 

monsoon crops, 300 points each for bare soil and vegetation, and 200 points each for 

water and urban, using stratified random sampling approach. The number of points 

collected for each land cover was decided based on the relative dominance of these 

land covers in the study landscape.  

 

Figure 2.3:Workflow detailing the steps for collecting the training and testing points 

and the classes used for set-1 and set-2 using ground truth, google earth, 

Sentinel-1 (S1) False Color Composite and Sentinel-2 (S2) False Color 

Composite (FCC) 
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First, the field data points were imported on GEE platform and were overlaid on the 

Sentinel-1 (S1) radar and Sentinel-2 (S2)  optical False Color Composite (FCC) 

images. Using this ground truth data, the extracted features were used to identify 

similar LULC features in other regions using visual interpretation techniques on FCC 

of S1 and S2. The extracted features were verified using the high-resolution google 

earth imagery. Extracting training points for water, forest/plantation and urban is 

straightforward in S1 as they are not dynamic over time and have very distinct 

temporal backscattering signatures compared to crops and bare soil as shown in Figure 

3.2 and explained in Section 3.2.4. I only assigned a reference point to a particular 

LULC, if the corresponding LULC class was confirmed in all three layers (S1 FCC, 

S2 FCC, and high-resolution google earth imagery). Finally, the field data points and 

points generated through visual interpretation were merged together to be used for 

training and testing on GEE platform (Figure 2.5a). Representative reference points 

for monsoon crop and bare soil are shown in Figure 2.5b,c. I randomly identified 70% 

of the 1500 reference points as ‘training points’ using the ‘randomColumn’ function in 

GEE and used those for training the  
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Figure 2.4:(a) Spatial distribution of training and testing points across the agro-

ecological regions (AER). The five land use/cover classes used for this 

study are vegetation (forest/plantation/grass), urban, water, bare soil, and 

monsoon crop; (b) Representative reference points on the high resolution 

google earth imagery for monsoon crop (white hollow circle) and bare 

soil (white solid circle); (c) The same representative reference points as 

shown in (b) confirmed using Sentinel-1 monthly median false color 

composite imagery (red—June, green—July, and blue—August). 

random forest (RF) classifier. The rest of the reference points (30%) was used as 

‘testing points’, i.e., for post-classification accuracy assessment. To avoid any biases 

in selecting the training and testing points, I performed the classification and accuracy 

assessment iteratively for 20 times by randomly dividing training and testing points in 

70:30 ratio. 

2.2.4 Google Earth Engine platform 

Google Earth Engine (GEE) is a cloud-computing platform, which combines 

open source large peta-byte scale geospatial datasets for planetary scale analysis 
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(Figure 2.6). It assist the scientists, researchers and developers to detect changes, 

perform trend analysis and quantify the differences for natural resource management 

over large area without going into the background of the processing. The open source 

datasets provided by USGS, ESA, and other organizations are available in ready to use 

format.  It allows scientists to collaborate using datasets, algorithms and visualization 

tools. It has a repository of vast functions for pre-processing, performing logical and 

mathematical operations, machine learning algorithms, sampling etc. to perform 

operations on images. It has the capability of both raster and vector data analysis. The 

platform uses Python and JavaScript application programming interfaces for making 

requests to the servers. It also allows users to integrate additional functions using 

Python and Java script API. Due to its immense capability it has now being used by 

various organizations such as WRI managing Forest Watch program and integrated in 

academic curriculum by many educational institutions. 
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Figure 2.5:The Earth Engine Code Editor at code.earthengine.google.com 

  



 38 

Chapter 3 

SMONSOON CROPLAND MAPPING USING RADAR DATA 

3.1 Introduction 

Synthetic aperture Radar (radar) imagining is an active remote sensing which 

has the capability to collect earth information at all weather capacity (Woodhouse 

2006). Radar sensors are influenced by both target and sensor parameters. Radar 

backscattering are sensitive to the dielectric and geometric characteristics of target 

features (Sivasankar et al. 2018-1). The radar backscattering signals are also function 

of sensor parameters such as wavelength of operational, polarization and the angle of 

incidence (Lone et al. 2017). The different combination of radar sensor parameters 

produces different results for agriculture monitoring. Hence, appropriate radar sensor 

parameters are required for to increase the sensor efficiency. radar data helps in 

distinguishing crops from other land cover classes due to its unique radar 

backscattering of dynamic agriculture fields. The radar backscattering signal from 

agriculture fields are combination of crop growth parameters and the underneath soil 

moisture. 

Monsoon cropland, which is the rainfed and major crop-growing season in 

India, offers more potential to be monitored by radar data. The cropland area, surface 

roughness and soil moisture are some of the parameters, which can efficiently be 

extracted using radar data. Using temporal radar data, the change is soil moisture and 

crop biomass can easily be related to cropland compared to other land cover types. As 
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the crop vegetation grows, the contribution of vegetation in radar backscattering 

increases and hence are easily observed by radar sensors. The type of crop vegetation, 

the geometric structure of the plant, height and growth variation and moisture content 

also have effect on the radar backscattering. 

Multi-temporal radar images improve the crop classification accuracy and 

capture the variation in growth process (Singha et al. 2016, Larrañaga et al. 2016). 

When the temporal information from radar is combined with multi-polarization then 

better information of crop conditions are achieved.. Yet, previous studies utilizing 

radar have been confined to examining croplands dominated by specific water 

intensive monsoon crops such as rice or jute which are easier to detect due to their 

distinct backscattering signatures compared to dryland monsoon crops (Sun et al. 

2019, Wang et al. 2015). Hence, these radar-based methods need to be evaluated or 

revised in the context of diverse cropping practices, especially for rainfed monsoon 

crops grown in dryland regions.  Hence, the objective of this study was to Evaluating 

Sentinel-1 (S1) radar data for monsoon cropland mapping using Machine Learning 

algorithms. 

3.2 Methodology 

3.2.1 Overall Workflow 

The flowchart for the methods used for this study is outlined in Figure 3.1. In 

the first step, S1 radar time series images were loaded on Google Earth Engine (GEE) 

platform using ‘ImageCollection’ function (Google). These images were then filtered 

based on time (June-November 2018) and study region boundary. For S1 radar, I used 
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images from June to November. Further image classification was performed on S1 

radar (Figure 3.1), using pixel-based machine learning classifier (random forest and 

SVM) on GEE. I have used pixel-based classifier instead of object-based classifier for 

large monsoon cropland mapping, as the latter requires high computation time and has 

complicated intermediate steps including the segmentation where specific parameter 

tuning is needed (Memarian et al. 2013, Liu et al. 2010). Even though object-based 

classifiers might improve the classification accuracy in some landscapes, this 

performance improvement is not always evident in complex heterogeneous landscapes 

such as the one showed in this study. I further performed accuracy assessments for the 

four AERs (Table 2.2). I calibrated and validated the algorithms using 1500 reference 

points collected using high-resolution images. I further re-ran 10 iterations for each 

algorithm, utilizing unique subsets of the initial training data. Training and testing of 

the classified images are performed according to the procedure detailed in Figure 2.4 

and Section 2.2.3. 
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Figure 3.1:Workflow for performing the classification using set-1 reference data to 

obtain Radar Optical cross Masking (ROM) and using set-2 reference 

data to obtain crop map for Random Forest (RF) classifier  

3.2.2 Accuracy Assessment 

Classification outputs obtained from Sentinel-1 radar was evaluated and 

compared using the standard count-based accuracy assessment methods of overall 

accuracy (OA) and kappa coefficients obtained from the confusion matrix (Congalton 

1991) using 20 different iterations. User’s accuracy (UA) and producer’s accuracy 

(PA) were calculated using 30% testing points that were not involved in training the 

classifiers.  UA measures the error of commission, i.e., the proportion of pixels that 
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were incorrectly included in a class that is being evaluated. PA measures the error of 

omission, i.e., the proportion of pixels in a certain class that is being evaluated that 

were incorrectly classified in another category, and were omitted from the ‘truth’ class 

as identified by the test points.  I further calculated the F-score to determine the degree 

of discrimination among the five LULC classes obtained from the radar-derived 

classification and the radr based binary crop vs non-crop classification. The F-score 

ranges between 0 and 1, with higher values denoting better discriminating power 

among the classes. The F-score is calculated using Equation (1) mentioned below 

(Powers 2011):  

                           F − score = (
(UA × PA)

(UA + PA)
) × 2                                                               (1) 

I did not compare the accuracy of the results obtained with the crop estimates provided 

by government due to non-availability of crop census data for the monsoon crop 

season 2018–2019. 

3.2.3 Satellite Data Pre-preprocessing 

The GEE platform provides Sentinel-1 radar data pre-processed with thermal 

noise removal, radiometric calibration and ortho-rectification using the Sentinel-1 

toolbox resulting in ground-range detected images with backscattering coefficients in 

decibel (dB) scale. Using temporal VH and VV polarization, radar monthly composite 

images were created by considering median values. I also used these monthly median 

composite images to create False Color Composite (FCC) to aid in visual 

interpretation of the images for training and testing data collection as explained 
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previously in Section 2.2.3. The images acquired after the month of November were 

not considered as I assumed that crops grown after this time are not monsoon crops, 

based on existing literature (Land Use). A total of 516 Sentinel-1 images and 1734 S2 

images were used for the entire monsoon crop-growing season of 2018. I have used 

multi-temporal stack instead of single images as first, the “median” image shows 

much lower speckle than the individual images, which improves classification 

accuracy. Second, different land cover classes show specific behavior over the crop 

growth period, which are well represented by “standard deviation” of the stack.  

3.2.4 Radar Temporal Backscattering 

Temporal backscattering profiles were obtained using C-band VH polarization 

Sentinel-1 imagery from monsoon crops (rice and black gram/soybean), bare soil, 

urban, water and vegetation (forest/plantation/grass) features shown in Figure 3.2a, 

similar to what obtained by Singha et al.2019. The backscattering profiles were 

generated by taking the mean of 10 sample points for each class spread across the 

study area. The sample points for each class along with their geolocations are shown 

in Figure 3.2b.  Vegetation is defined as land surface with plants and includes 

plantation, grass and forest. The contrasting nature of backscattering from vegetation 

and monsoon crops forms the basis of utilizing the temporal Sentinel-1 backscattering 

signatures for Radar Optical cross Masking (ROM) as backscattering signatures are 
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effective in separating crops (rice, black gram, and soybean) from water, urban and 

vegetation.  

 

Figure 3.2:(a) Sentinel-1 (S1) mean temporal backscattering profile with VH 

polarization obtained from 10 points each for land cover features, 

collected from monsoon crops and other land use/cover classes during the 

monsoon season (June–November, 2018). Urban and vegetation class 

shows constantly high backscattering intensities throughout the monsoon 

season, water shows very low backscattering intensities and monsoon 

crops and bare soil has backscattering values between urban/vegetation 

and water; (b) Representative reference points along with its coordinates 

on the high-resolution google earth imagery. 
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However, these signatures are mixed with bare soil during the crop-growing 

season. So, it becomes difficult to segregate crops from bare soil with very high 

accuracy using only Sentinel-1 radar data. Hindrance in segregating crops from bare 

soil forms the basis of integrating optical data with radar as bare soil is very distinct in 

optical data compared to crops and other vegetation due to its lack of ‘greenness’ 

reflected in low Normalized Difference Vegetation Index (NDVI) values(Scanlon et 

al. 2002). In the study region, the radar backscattering signatures obtained from 

vegetation (forest/plantation/grass) and urban class are non-dynamic throughout the 

monsoon season, and have nearly constant high backscattering values (~−16 dB to −10 

dB) compared to other LULC features. During the time of classification, there is high 

probability of vegetation class being mixed with urban and vice versa. Monsoon crops 

and bare soil have dynamic backscattering throughout the crop-growing season. For 

crops such as black gram and soybean, the land preparation starts from first week of 

June and last until mid-July based on the onset of the monsoon. For these monsoon 

crops, the backscattering is initially low due to land preparation in June and increases 

with time as the crop grows. For rice, land preparation starts in the July/August when 

the fields have sufficient amount of water as rice is a water intensive crop (Singha et 

al. 2019). Rice shows very low backscattering during the land 

preparation/transplanting stage. During the time of maturity, the backscattering 

increases for both black gram/soybean and rice. The backscattering is high for rice 

compared to black gram/soybean due to high biomass content resulting in high volume 

scattering from the rice fields. For bare soil, the initial backscattering is similar to that 
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obtained from black gram/soybean due to the presence of exposed soil with no crop 

cover. It can be seen that bare soil signature can get mixed with that from rice in the 

month of July. Hence, overall it is very difficult to segregate monsoon crops from bare 

soil with very high accuracy. For water, the backscattering is very low (< −25 dB) 

throughout the monsoon season, hence it is easily segregated from monsoon crops. 

3.2.5  Cropland Classification using Sentinel-1 radar data 

3.2.5.1 RF based classifier 

I considered a monthly composite of radar data using both VH and VV (VH + VV) 

polarization, instead of a single date image for radar based classification, as previous 

studies have shown that multi-temporal radar data perform far better than single radar 

image for crop classification (Clevers et al.1996, Skriver et al. 2011) . Considering 

multi-temporal radar data becomes even more important for diversified cropping 

pattern in India as such data are able to take into account the variation of crops grown 

in different time of the season. Using the training dataset, the RF classifier was run on 

monthly median composite of June–November, 2018. The RF is an ensemble classifier 

that follows the decision tree approach in which randomly selected results from 

multiple decision trees are combined together to obtain highly accurate and stable 

classification results (Breiman 2001, Tian et aal. 2019). RF algorithm can handle large 

quantity of complex multi-source data and is robust against overfitting. For initiating 

RF classifier, the user must define two parameters, the number of trees to grow and the 

number of variables used to split each node. In this work, the number of decision trees 
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used are 100 and the variables used to split each node was set to square root of the 

number of overall variables. For this study, radar-based classification was performed 

using two different output criteria: one with a classified map with five classes and the 

other with only two classes – cropland and non-cropland (obtained by combining non-

cropland classes, i.e., bare soil, water, vegetation and urban) (Figure 3.1). In addition, 

I calculated the classification accuracy for each AER separately. The classification and 

accuracy assessments were performed 20 times using unique set of training and testing 

data. 

3.2.5.2 SVM based classifier 

SVM is another widely used classifier, which look for optimum hyperplane to 

separate different classes. The criteria of selecting the support vector depends on the 

choice of cost parameter C, Gamma and kernel functions. Cost parameter decides the 

level of punishment for a misclassified data. For SVM classification, the kernel type of 

linear, polynomial, Radial Basis Function (RBF) and sigmoid function is used. For 

this study, preliminary analysis was performed using all four kernel type and it was 

observed that linear function outperforms others and hence linear function was used 

for further analysis. The gamma function represents the reciprocal of number of 

classes used. For this analysis, I had two sets, one with five classes and other with two 

classes and hence Gamma function selected was 0.2 and 0.5 respectively. As for linear 

kernel, the Gamma value has no significance hence it was dropped for further analysis. 
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3.3 Results 

3.3.1 Radar only classification for five major land cover classes 

3.3.1.1 RF based classifier 

The classification accuracy obtained from Sentinel-1-derived radar 

classification using training and testing set-1 for RF is shown in Table 3.1. The OA 

obtained after 20 iterations is 80.0%. The kappa coefficient obtained is 0.74 (Table 

3.1). The results indicate that the water class was easily identified (F-score = 0.96) 

using radar data among the five LULC classes. The low F-score obtained for urban 

(0.64) class indicates that the Sentinel-1 radar data has the least discriminative 

capability to segregate urban from other classes. radar data was moderately successful 

in discriminating monsoon crops from other land cover classes (F-score = 0.84).  

Table 3.1:Accuracy assessment for land cover classes obtained from radar only 

classification using RF algorithm and VH+VV polarization and training 

and testing set-1. 

Land Cover Type 
Radar Only (VH + VV) 

UA PA F-Score 

Water 0.96 0.96 0.96 

Bare soil 0.79 0.8 0.79 

Urban 0.78 0.54 0.64 

Vegetation 0.68 0.75 0.71 

Monsoon cropland 0.81 0.87 0.84 

OA 0.80 

Kappa 0.74 



 49 

3.3.1.2 SVM based classifier  

The classification accuracy obtained using SVM classifier along with training 

and testing set-1 is shown in Table 3.2. The OA obtained after 20 iterations is 77 %. 

The kappa coefficient obtained is 0.70 (Table 3.2). It can be observed that urban class 

has the least F-score followed by bare soil. The highest F-score obtained from water 

body shows that SVM classifier has the highest discriminative capability to segregate  

water from other classes followed by monsoon cropland. radar data was moderately 

successful in discriminating vegetation (F-score = 0.75).  

Table 3.2:Accuracy assessment for land cover classes obtained from Radar only 

classification using SVM algorithm and VH + VV polarization and 

training and testing set-1. 

Land Cover Type 
Radar Only (VH + VV) 

UA PA F-Score 

Water 0.92 0.91 0.92 

Bare soil 0.73 0.67 0.70 

Urban 0.72 0.54 0.62 

Vegetation 0.70 0.81 0.75 

Monsoon cropland 0.80 0.84 0.82 

OA 0.77 + 0.011 

Kappa 0.70 + 0.014 

 

3.3.2 Radar only classification for cropland mapping using RF and SVM 

classifier 

The comparison of accuracy assessment obtained from radar only using 

training and testing data set-2 for both RF and SVM are displayed in Table 3.3. The 
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crop vs. non-crop overall classification accuracy obtained by Sentinel-1 satellite data 

is 90% for RF classifier and 80 % for SVM classifier. The Overall accuracy’s standard 

deviation of kappa values while randomly changing the training and testing points for 

20 classifier iterations are equal for both the classifiers. There was a large difference in 

F-score obtained in cropland discrimination compared to non-cropland while using RF 

and SVM classifier. The F-score for non-cropland shows high discriminative 

capability for both RF and SVM classifier compared to cropland mapping. 

Table 3.3:Accuracy assessment for crop vs non-crop mapping obtained from Sentinel-

1 radar data and training and testing data set-2 

Radar Only 

Classification 
 

User’s 

Accuracy 

Producer’s 

Accuracy 

Overall 

Accuracy 
Kappa 

F-

Score 

RF 

cropland 0.82 0.88 
0.90+0.01

7 

0.77+

0.039 

0.85 

non-

cropland 
0.94 0.91 0.92 

SVM 

cropland 0.74 0.55 
0.80 + 

0.017 

0.50 + 

0.04 

0.63 

non-

cropland 
0.81 0.91 0.86 

3.4 Discussions 

The low accuracy obtained with the SVM and linear kernel compared to RF can 

be due to the fact that for this kind of study area having large diversity in agriculture 

results in diverse training and testing sets which in turn affect the SVM classification 

accuracy. In addition, the SVM classifiers require the proper optimization of tuning 

parameters, which becomes difficult to achieve for diversified agriculture systems. In 

this study, even the other kernels such as polynomial, Gaussian did not produced 

productive accuracy compared to what I achieved using the linear kernel. The high F-
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score (>85%) for both cropland and non-cropland shows the high performance of RF 

based classification on Sentinel-1 dataset compared to SVM classification which has 

low accuracy in discriminating croplands. In addition, I can observe that RF 

outperforms SVM in dealing with multi-temporal radar data also. Hence, it can be 

seen that RF is more robust and less time consuming compared to SVM for monsoon 

cropland mapping. 

3.5 Conclusions 

It can be concluded that for monsoon land cover classification and for only monsoon 

cropland mapping, RF performs better than SVM. Also, both RF and SVM shows 

almost similar performance for monsoon cropland for User’s accuracy and Urban for 

producer’s accuracy. 
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Chapter 4 

MONSOON CROPLAND MAPPING USING RADAR AND OPTICAL DATA 

4.1 Introduction 

The hindrance in using optical satellite data for intra-seasonal monsoon cropland 

monitoring over large region requires the remote sensing community to develop new 

methods, especially for countries with heterogeneous landscapes, such as India. These 

methods should take into account the variations in cropping practices across different 

agro-ecological regions (AER). Crop monitoring using optical data has come a long 

way from the launch of Landsat series satellite data from 1970s onwards. With the 

advancement of technology and the improvement of spatial, temporal and spectral 

resolution, the classification results have improved drastically. With the freely 

availability of Landsat and the launch of Sentinel-2 optical satellite through 

Copernicus mission by ESA, there is a large utilization of these satellites for crop 

monitoring.  The dependency of optical satellite data on solar energy restricted image 

acquisition during cloudy conditions. Optical images acquired during this season 

suffers from cloud cover, haze conditions, and are of limited or of no use. Cloud and 

cloud shadow remains a major drawback in optical data acquisition and leads to gaps 

in optical imagery and missing data in time series analysis. Agriculture monitoring in 

rainfed monsoon cropland are hampered as crop-growing season coincides with the 

peak monsoon season and hence image acquisition and image classification is 
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hampered as there are no or very limited in-season images available for monsoon 

cropland mapping over large regions. 

To overcome the cloud and haze issues, the multi-sensor combination offers one 

of the solutions by exploiting different parts of electromagnetic spectrum which are 

not affected by clouds. Microwave radiations offers one of the solution as these 

radiations are not attenuated by cloud cover (Woodhouse 2006, Sivasankar et al. 2018-

2, 2019). Satellites sensors exploiting the use of electromagnetic radiation in the 

microwave portion and sending their own energy pulse and measuring the reflected 

pulse from the target on the ground are known as radar. radar uses the motion of the 

instrument for image acquisition at satisfactory resolution (Woodhouse 2006). 

Owing to the difference in image acquisition, satellite data from radar and optical 

imagery are found to be complementary. The synergy of radar and optical sensor open 

new arenas for the development of new classification methodology that can exploit the 

advantages of both sensors.  Previous studies across the world has shown the 

importance of combining both the sensors data to improve the cropland mapping, crop 

type identification and classification. Studies have reported an increase of atleast 5% 

improvement from using optical alone and combining optical with radar imagery. 

However, despite the increasing efforts to combine optical and radar imagery, very 

few studies has been done to monitor monsoon cropland over large region using 

combination of optical and radar imagery. There are very few studies, which combine 

radar and optical data for monsoon crop mapping, but these studies are restricted both 

spatially and temporally to be used only for a small region. These studies either 
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focused on water intensive monsoon crops or over small regions where obtaining a 

few optical image snapshots was possible during the monsoon season (Verma et al. 

2019, Kumari et al 2019). However, there are no studies performed by using radar data 

alone or by integrating radar and optical data for extracting monsoon cropland over a 

large area in different agro-ecological regions practicing diverse agriculture systems. 

This study intends to fill the gap in monsoon cropland monitoring by combining radar 

and optical data and evaluate the combination of radar and Sentinel-2 (S2) optical data 

in terms of providing greater accuracy for monsoon cropland mapping. 

4.2 Methodology 

4.2.1 Overall workflow 

The flowchart for the methods used in this study is outlined in Figure 4.1. In 

the first step, Sentinel-1 (S1) radar and Sentinel-2 (S2) optical time series images were 

loaded on Google Earth Engine (GEE) platform using ‘ImageCollection’ function 

(Google). These images were then filtered based on time (June-November 2018) and 

study region boundary. For Sradar, I used images from June to November, but for S2 

optical data, I considered images from July to November. The month of June was not 

considered for S2 optical data as summer crops were still at their peak growth stage in 

some regions and the land 
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Figure 4.1:Overall workflow followed For radar (S1)+optical (S2) combined 

classification using set-2 reference data using the Random Forest 

classifier. 

preparation and sowing of monsoon crops were in the initial stages. A ’cropped field’ 

in June would thus be an indication of summer crops, and not monsoon crops. Further 

image classification was performed on radar+optical combined (Figure 4.1), using 

pixel-based machine learning classifier (RF and SVM) on GEE. I have used pixel-

based classifier instead of object-based classifier for large monsoon cropland mapping, 

as the later requires high computation time and has complicated intermediate steps 

including the segmentation where specific parameter tuning is needed (Liu and Xia, 

2010). Even though object-based classifiers might improve the classification accuracy 

in some landscapes, this performance improvement is not always evident in complex 

heterogeneous landscapes such as the one showed in this study. I further performed 
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accuracy assessments for the four AERs (Table 2.2). Training and testing of the 

classified images were performed according to the procedure detailed in Figure 2.4 

and Section 2.2.3. I calibrated and validated the algorithms using 1500 reference 

points collected using high-resolution images. I further re-ran 20 iterations for each 

algorithm (RF and SVM), utilizing unique subsets of the initial training and testing 

datasets. 

4.2.2 Accuracy Assessment 

Classification outputs obtained from S1 radar data was evaluated and 

compared using the standard count-based accuracy assessment methods of overall 

accuracy (OA) and kappa coefficients obtained from the confusion matrix  using 20 

different iterations. User’s accuracy (UA) and producer’s accuracy (PA) were 

calculated using 30% testing points that were not involved in training the classifiers.  

UA measures the error of commission, i.e., the proportion of pixels that were 

incorrectly included in a class that is being evaluated. PA measures the error of 

omission, i.e., the proportion of pixels in a certain class that is being evaluated that 

were incorrectly classified in another category, and were omitted from the ‘truth’ class 

as identified by the test points.  

I further calculated the F-score to determine the degree of discrimination 

among the five LULC classes obtained from the S1-derived classification and the S1 

based binary crop vs non-crop classification. The F-score ranges between 0 and 1, 

with higher values denoting better discriminating power among the classes. The 
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F-score is calculated using Equation (1)  I did not compare the accuracy of the results 

obtained with the crop estimates provided by government due to non-availability of 

crop census data for the monsoon crop season 2018–2019. 

4.2.3 Pre-processing of Sentinel-2 data 

Sentinel-2, Multi-spectral level 1-C processing provided by GEE were used 

(Sentinel 2 Handbook). These data have been ortho-rectified and radio-metrically 

corrected atmosphere (TOA) reflectance data product. The radiometric and geometric 

corrections were performed according to the method demonstrated in the Sentinel-2 

User Handbook (Sentinel-2). I used the GEE function “ee.ImageCollection” to filter 

the time series imagery according to the required dates and the selected study region. 

As we were interested to extract only the variation in Normalized Difference 

Vegetation Index (NDVI) in the region, I selected only the 10m spatial resolution, Red 

and NIR band for this study. The TOA reflectance data product generally contains 

considerable atmospheric signals, hence the data has to be corrected for atmospheric 

signals. Automatic cloud and cloud shadow masking algorithm was used for reducing 

the atmospheric effects on the reflectance data. Also, I considered the images having 

cloud cover of 5% or less to reduce the atmospheric affects further. For performing 

temporal aggregation to generate max NDVI, each pixels will be containing varying 

number of images based on cloud free image availability. For S2 optical data, I 

considered images from July to November. The month of June was not considered for 

S2 optical data as summer crops were still at their peak growth stage in some regions 
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and the land preparation and sowing of monsoon crops were in the initial stages. The 

images acquired after the month of November were not considered as I assumed that 

crops grown after this time are not monsoon crops, based on existing literature 

(NSFM). A total of 1734 S2 images were used for the entire monsoon crop-growing 

season of 2018.  

4.2.4 Seasonal Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is a widely used remote 

sensing measure to assess the health of the vegetation and to differentiate crops, and 

other vegetation (forest, plantation, grass) from bare soil, water and urban (Tucker 

1979). NDVI is a unit less measure and ranges between -1 and 1. Healthy vegetation 

typically has higher NDVI values compared to non-vegetated surfaces. For calculating 

NDVI, I require the red and near-infrared (NIR) reflectance bands (Equation 2): 

NDVI = (NIR-Red)/(NIR+Red) (2) 

In S2 imagery, I used band 4 and band 8, respectively, for red and NIR in the above 

equation. I calculated NDVI for all the available cloud free pixels in the image as main 

focus was on cropped field identification, especially since previous studies have 

shown high correlation between NDVI and photosynthetic activities of the cropped 

fields (Benedetti and Rossini 1993). To generate the seasonal maximum value of 

NDVI (maxNDVI), I performed temporal aggregation of NDVI from July to 

November (Figure 4.2). Temporal aggregation is an approach to perform pixel-based 

analysis over a period of time using metrics (i.e., mean, median, maximum etc.) from 

satellite derived reflectance or satellite-derived indices (e.g. NDVI, Enhanced 
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Vegetation Index (EVI), etc.)(Carrasco et al 2019). The aggregation addresses the 

problem of lack of continuity in the optical data due to cloud cover and reduces the 

volume of data for further processing (Pericak et al. 2018). During monsoon season, 

optical satellite images in India contain considerable amount of cloud patches, which 

affects the radiometric quality of the images, thus limiting intra-seasonal crop 

monitoring capability. I calculated maxNDVI in order to fill this data gap and to 

capture the crop heterogeneity, i.e., considering all monsoon crops with different 

intra-seasonal phenology. 

 

Figure 4.2:Temporal aggregation of normalized difference vegetation index (NDVI) 

derived from seasonal sentinel-2(S2) data to obtain the maxNDVI during 

the monsoon season. 

4.2.5 Otsu thresholding 

MaxNDVI generated using S2 NDVI contains both vegetation and non-

vegetation features such as Urban, Water, bare soil which has very low pixel DN 
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values compared to vegetative maxNDVI. The segregate vegetation from non-

vegetation both supervised and automatic thresholding based techniques can be used. 

However, using supervised based techniques offer another challenge as it requires 

training data before hand to run the classification. Hence, in such situation many times 

automatic methods are preferred. Unsupervised classification techniques and other 

decision rule based techniques are preferred, as they do not require any training points. 

Otsu thresholding used in this work is one of the method, which is clustering based 

thresholding method to automatically find optimum thresholding to separate two 

different kind of pixels, by performing the histogram analysis on the observed pixel 

values. Using Otsu thresholding, I can easily segregate two types of relatively 

homogenous land cover features such as water vs land, vegetation vs land etc. Otsu 

method assumes that the two classes are separated by a bimodal histogram of the 

digital values. Otsu thresholding had gained popularity especially in image processing 

techniques and in satellite image analysis for detecting flooded areas in radar imagery 

as radar imagery offers a better potential for discriminating water features from other 

land cover features due to low backscattering from water bodies in the radar imagery. 

In this maxNDVI dataset, both crops and vegetation (forest/plantation) have higher 

values compared to water, urban and bare soil. I further utilized the Otsu’s 

thresholding approach in GEE, to differentiate between the crops/vegetation (forest, 

plantation) from non-vegetative features with low NDVI values (bare soil, urban and 

water) (Liu et al. 2002). This approach is an automated way of finding an optimal 

global threshold based on the observed distribution of pixel values. Based on the pixel 
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value distributions for the LULC classes considered in this study, the Otsu’s 

thresholding value obtained for maxNDVI is 0.36. 

4.2.6 Radar Optical cross Masking (ROM) 

It was not possible to differentiate between crop and vegetation within the 

maxNDVI dataset, which is an important step for a crop mapping procedure involving 

optical data. Due to non-availability of high-resolution (10m) non-crop mask for the 

region, I developed a method of masking non-crop vegetation from maxNDVI using 

classified radar imagery (Figure 4.1). From the S1 radar-derived classified map with 

five LULC classes, vegetation (forest/plantation/grass) and urban classes were further 

combined together as a non-dynamic class to obtain the non-crop mask and to 

segregate crops from vegetation in maxNDVI imagery. I combined vegetation and 

urban as one class, instead of considering only vegetation, since these two classes have 

similar backscattering signatures and are difficult to segregate in S1 radar-derived map 

as described previously (Section 3.2.4, Figure 3.2). Moreover, combining urban and 

vegetation to obtain the non-crop mask is less likely to affect the outputs, as urban 

class is already masked out from the maxNDVI data due to the application of Otsu’s 

thresholding. I coined this technique as Radar Optical cross Masking (ROM) where I 

used the non-dynamic, non-crop (urban + vegetation) mask to separate vegetation 

from crops resulting in crop only maxNDVI dataset (NDVImask; Figure 4.1) 
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4.2.7 Classification based on combined radar and optical data 

In this step, the S1 radar data and NDVImask (optical) were combined for pixel-

based classification to examine if adding NDVImask imagery will result in improved 

monsoon crop mapping accuracy compared to using radar only classified map. 

Combining S1 and NDVImask will also address some of the limitations of using only 

radar data for monsoon crop mapping (Section 3.2.4, Figure 3.2). The monthly median 

radar composites from June to November were stacked together with NDVImask data 

obtained after using ROM. The RF classifier was run on the combined dataset with the 

number of trees set as 100 and the variables to split each node set to square root of the 

number of overall variables. The output from this classification is a binary crop/non-

crop map using training and testing set-2 (Figure 4.1). Similar to the radar-based 

classification, the combined radar and optical-based classification and accuracy 

assessment were repeated for 20 times to avoid any biases in the classification 

accuracy. 

4.3 Results & Discussions 

4.3.1 Cropland mapping based on combined radar and optical data 

The per class accuracies both producer’s and user’s accuracy and kappa 

coefficient obtained from radar+optical (S1+S2) combination using training and 

testing data set-2 is displayed in Table 4.1 using the RF and SVM based classifier. The 

crop vs. non-crop overall classification accuracy obtained by radar + optical 

combination is approximately 3% higher than obtained by using radar only dataset 
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(Table 4.1). The standard deviation of kappa values while randomly changing the 

training and testing points for 20 classifier iterations are slightly higher for radar only 

compared to radar + optical classification. The F-score shows high discriminative 

capability (> 0.85). Moreover, the F-score for the combined radar + optical is higher 

compared to radar only classification for both crop and non-crop class. Also, the 

classification accuracy obtained for the combined approach is very high (~10%) in 

SVM compared to using only radar only data. While both the classifiers show high 

performance  
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Figure 4.3:Steps for obtaining high-resolution (10m) non-crop mask using the ROM 

technique (a) High-resolution google earth imagery showing forest class 

mixed with monsoon crops in white square box and plantation mixed 

with monsoon crops in yellow square box; (b) False Color Composite 

VH polarization Sentinel 1 (S1) radar imagery for the same region; (c) 

maxNDVI for plantation region before applying ROM; (d) NDVImask 

obtained after applying ROM for plantation; the plantation regions are 

masked out from monsoon crop and is shown in the dark grey color; (e) 

maxNDVI for forest region before applying ROM; and (f) NDVImask 

obtained after applying ROM for forest region. It can be observed that 

regions of hill shadows are not masked completely. 
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(>90%), the resulting variations in accuracy (standard deviation) shows more 

variations in RF compared to SVM whereas it was not the case for SVM classifier for 

Sentinel-1 datasets. This may be due to high performance of SVM classifiers for 

optical datasets as compared to radar datasets. 

 

Figure 4.4:Monsoon cropland map obtained using radar+optical (S1+S2) combination 

and training and testing set-2. 
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NDVImask image obtained after applying ROM on maxNDVI is shown in 

Figure 4.3. It can be seen that non-dynamic forest/plantation regions can be effectively 

separated from crops using ROM. In the figure, regions with forest and plantation 

(casuarina and eucalyptus) are masked out using ROM to obtain NDVImask image 

with crops only. The crop map generated using combined radar+optical data is shown 

in Figure 4.4. Detailed zoom-in views for selected locations using the combined 

radar+optical classification and its comparison with high-resolution imagery are also 

shown (Figure 4.5). It can be observed that the combined approach is efficient in 

differentiating monsoon cropland from plantation (such as 

mentha/casuarina/eucalyptus) in AER-1 (Figure 4.5a) and AER-4 (Figure 4.5c). 

4.3.1.1 Accuracy of combined radar and optical data based cropland map using 

RF and SVM based based classifier 

Table 4.1:Accuracy assessment for crop vs non-crop mapping obtained from radar 

and optical data and training and testing data set-2 for Random Forest 

(RF) and Support Vector Machine (SVM) classifier 

Radar+Opti

cal 

Classificatio

n 

 
User’s 

Accurac

y 

Producer’

s 

Accuracy 

Overall 

Accuracy 
Kappa F-Score 

RF 

cropland 0.88 0.9 
0.93+0.01

5 

0.83+ 

0.033 

0.89 

non-

cropland 
0.95 0.94 0.95 

SVM 

cropland 0.81 0.88 
0.90 + 

0.012 

0.78 +  

0.026 

0.84 

non-

cropland 
0.94 0.91 0.92 
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4.3.2 Accuracy of Binary Crop Maps for each AER  

The comparison of accuracy assessments obtained from radar only and radar + 

optical combination using training and testing data set-2 for the selected AER regions 

are shown in the Table 4.2 & 4.3. I found that for all of the AERs, OA obtained from 

radar + optical combination outperformed the one obtained from radar only 

classification and the improvement varies across the AERs. Also, the OA obtained by 

the combined radar + optical was greater than 90% for all of the AERs. The OA 

difference between radar + optical and radar only was the lowest for the AER-3 (Table 

4.2 & 4.3), whereas it was greater than 4% for the other three selected AERs. For 

AER-1, which is dominated by rainfed-dryland crops (90%) with some rice-growing 

regions (10%), there is a 4% improvement in classification accuracy from radar to 

radar + optical.  
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Figure 4.5:Zoom-in view of the monsoon cropland map generated from the 

combination of radar+optical (S1+S2) for the agro-ecological regions 

(AER) at various scales and its comparison with high resolution imagery: 

(a) Northern Plain (AER-1); (b) Deccan plateau (AER-3); (c) Central 

Highlands (AER-2); and (d) Deccan Plateau, Eastern Ghats and Eastern 

coastal plains (AER-4 and 5). 

For the S1 radar dataset, low classification accuracy of AER-2 and AER-4 and 

5 compared to the other two AERs is due to the fact that these two regions are 

dominated by vegetation mixed with crops and have hilly undulating terrain which 

may have reduced the radar only classification accuracy. AER-2 hosts Vindhyachal 
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and Satpura range whereas AER-4 and 5 are dominated by Eastern Ghats and 

fragmented vegetation. For both these regions, classification accuracy improved by 

5% when radar data is combined with optical data. In addition, late maturity crops 

such as rice or cotton dominate these two regions. Hence, contribution from S2 data 

towards classification accuracy increases in these regions with increasing availability 

of cloud free optical data towards the end of the monsoon season. For AER-3, it was 

observed that combined radar + optical dataset shows no major improvement over 

radar only classification. This region is mainly a plateau with less variation in 

elevation and negligible forested land. Hence, the mixing of crops with natural 

vegetation is limited resulting in no major inaccuracy in radar-derived classification 

due to terrain or vegetation. 

Table 4.2:Classification accuracy for different AERs obtained from S1 radar and 

combined radar+optical classified maps using RF classifier. 

Radar only Classification 

 

Radar+Optical Classification 
 OA Kappa  OA Kappa 

AER-1 0.90 0.81 AER-1 0.94 0.88 

AER-2 0.89 0.76 AER-2 0.94 0.86 

AER-3 0.92 0.79 AER-3 0.93 0.83 

AER-4 and 

5 
0.85 0.67 

AER-4 and 

5 
0.90 0.77 

 

Table 4.3:Classification accuracy for different AERs obtained from radar only and 

combined radar+optical classified maps using SVM classifier 

Radar only Classification 

 

Radar+Optical Classification 
 OA Kappa  OA Kappa 

AER-1 0.84 0.68 AER-1 0.88 0.76 

AER-2 0.79 0.47 AER-2 0.89 0.74 

AER-3 0.84 0.58 AER-3 0.91 0.78 
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AER-4 and 

5 
0.79 0.50 

AER-4 and 

5 
0.90 0.78 

 

4.4 Conclusions 

Overall, it can be observed that RF outperforms SVM in the combined approach 

of using radar+optical dataset. However, it was also observed that the performance of 

SVM increases at higher rate compared to RF in the combined approach. In addition, 

the SVM shows more robustness and fewer variations in the accuracy using the 

combined approach compared to the RF classifier. It can be inferred that for monsoon 

cropland for smallholder farmers study RF outperforms SVM not only for the overall 

study but also even for each AER of the study.  
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Chapter 5 

DISCUSSIONS 

5.1 Monsoon Crop Mapping by Combining radar and optical data 

Due to the lack of free time-series of radar data until recently, previous studies 

mostly focused on using medium resolution Landsat data (30m) or MODIS data (250 

m) over large geographic region for monsoon cropland mapping (Pittman et al. 2010, 

Granados Ramirez et al. 2004). However, using MODIS or Landsat might not be the 

best approach for monsoon cropland mapping due to frequent cloud cover (Jain et al. 

2013, Whitcraft et al. 2015). The spatial resolution of these coarse resolution satellites 

is not suitable either to capture the small field sizes or mixed agriculture landscapes, 

thus limiting their usage for preliminary assessment and understanding of croplands 

over large region. Relying on cloud free optical data alone is not always viable for 

studying monsoon crops as most of the crops are harvested before cloud free scenes 

become available in the late monsoon season. Using radar data during the monsoon 

season can address this issue. However, radar data suffers from speckle effects, which 

makes it difficult to use radar data alone for generating reliable crop statistics across 

large regions (Tian et al. 2019). Both optical and radar sensors have limitations for 

monsoon crop study, but a synergistic approach of combining these data can improve 

the crop mapping for small-scale farmers at high resolution (Figures 4.4 and 4.5). The 

technique used in this study differ from other published literature as I propose a new 

way of pixel-based combination of radar data with temporal aggregation of optical 
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data (maxNDVI) using ROM. Previous studies for monsoon crop monitoring using 

combination of radar and optical data were limited to water-intensive rice crops and/or 

small geographic regions where it was possible to obtain at least one cloud free optical 

image. The results presented in this work are important, as this will provide the first 

high-resolution (10 m) monsoon cropland map generation, and can also be transferred 

to other agro-ecoregions. This method shows an improvement over existing methods 

that are primarily focused on non-monsoon/winter cropland mapping at 30 m or coarse 

resolution (Becker-Reshef et al. 2010). 

The ROM generated from radar data, addresses the issue of miss-classification 

of spectrally similar plantation and forested vegetation with monsoon crops as visually 

interpreted (Figure 4.3). During the monsoon season, optical datasets are only 

available towards the end of season when crops have already been harvested or are in 

their peak growth stages (Whitcraft et al. 2015). During the peak-growth stage, the 

spectral signatures of these crops are similar to plantation or other non-crop 

vegetation, thus making it difficult to segregate the monsoon crops from natural 

vegetation (Singha et al. 2019, Mercier et al. 2019). The usage of temporal radar-based 

phenology to generate five land cover classes to produce ROM, masks out the 

vegetation from monsoon cropland, and improves the classification accuracy (Figures 

4.3 and 4.5). ROM helps in segregating monsoon cropland from plantation and natural 

vegetation (forest/grassland) and can be utilized for large regions, as it is not affected 

by clouds. The ROM produced here is dynamic and can be regularly updated based on 
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the available radar images. The ROM may also have applications in LULC change 

monitoring and segregation of non-dynamic LULC features from dynamic croplands. 

Overall, this method of integrating radar composite with seasonal NDVImask 

for monsoon cropland mapping overcomes four main challenges of mapping 

smallholder agriculture across large spatio-temporal scales: (i) the method works well 

in different agro-ecological regions as it takes into consideration of the crop planting 

time and duration, (ii) it can be used in regions with high cloud cover, such as most 

tropical countries, (iii) it reduces the sub-pixel heterogeneity in mapping monsoon 

cropland as the resolution of the output cropland map (10 m) better matches the small 

farm/cropland sizes in most developing countries, and (iv) it helps in distinguishing 

between monsoon cropland areas from plantation/natural vegetation which has similar 

signatures during the peak crop growing season. The high-resolution monsoon 

cropland map produced in this work has the potential to assist government agencies, 

landscape managers, and researchers in monitoring monsoon crops, which in turn 

would help us to better understand the factors influencing the production of these 

crops. Currently, it takes more than a year to make these crop estimates available for 

decision makers and researchers. This study also has the potential to support global 

agriculture monitoring missions of Sen2Agri and Geo Global Agriculture Monitoring 

(GEOGLAM). The objective of GEOGLAM is to provide timely, easily accessible 

scientifically validated remotely sensed data and derived products for crop-condition 

monitoring and production assessment. Also, one of the requirements of Sen2Agri 

mission is to produce national scale dynamic cropland masks other than producing 
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cloud free composites, crop type maps and to indicate the status of current vegetation 

at 10 m resolution (Becker-Reshef et al. 2010, Defourny et al.2019) Previous research 

conducted for Sen2Agri mission to generate dynamic cropland was limited in scope in 

tropical regions as they relied only on optical datasets (Defourny et al.2019, Inglada et 

al. 2015). This work supports the GEOGLAM and Sen2Agri mission as it produces 

high-resolution monsoon cropland map over large region comprised of different crop-

growing regions. The methodology developed here is also suitable for generating 

national level dynamic cropland masks. 

5.2 Performance of Machine Learning classifier 

The classification results obtained by using the machine learning classifiers are 

impacted by many factors. One of the factors is the accuracy of training and validation 

dataset used in the study. Same classifier may produce different results on varying the 

training and testing datasets (Mondal et al. 2019). Hence, the cross-validation 

technique used here by using 20 different sets of training and validation datasets and 

averaging them together to generate the results is robust. This also avoids 

inconsistency in classification and false positives. It was also observed that overall RF 

outperformed SVM for this study. One of the reasons may be that RF can handle large 

quantity of complex multi-source data from combination of radar and optical data 

compared to SVM. RF can handle large database of temporal images and requires less 

training time. In addition, the number of user-defined parameters required in RF is less 

and easier to define compared to SVM (Kamusoko et al. 2014, Toosi et al. 2019). In 
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addition, RF performs better if there are sufficient amount of training dataset similar to 

what I have in this study. Previous studies have also shown that the accuracy of RF 

increases compared to SVM as the training sample increases and SVM shows better 

accuracy in limited training dataset. This may be due to the underlying behavior of 

SVM as it uses smaller subset of training sets even if the training sample is high. SVM 

is more sensitive to the choice of training data as compared to RF. In addition, SVM 

are more sensitive to the choice of Cost and kernel parameters and in turn effect the 

classification results. For this study, linear kernel was used on complex radar dataset 

hence the SVM classification accuracy may be reduced. Further tuning of cost 

parameters accompanied by varying kernel might help achieve better results for SVM 

in higher sample size. 

5.3 Error source in the results 

Several sources of error might have affected the results from the radar+optical 

combined methodology presented in this study. One of the reasons may be due to the 

lack of cloud free S2 pixels during the crop growing season. It is possible that in some 

regions the classification results were solely generated from radar data due to the non-

availability of a single cloud-free S2 image, and could result in inconsistencies in 

accuracy. The quality of training and validation samples may also affect the 

classification results. As majority of the training and validation samples for this study 

was chosen using the satellite imagery without ground verification over large region, 

this might introduce a possible source of error in the classification results. There might 
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be errors while training the model and/or due to mixed pixels which may reduce the 

classification accuracy. The study area is complex with varying farming practices 

which may result in misclassification of land cover classes in radar data. Also, the 

variations in radar backscattering due to geometric errors (layover, shadow) over hilly 

terrain affects the accuracy (Singha et al. 2019). Using temporal radar data, along with 

stratified random sampling and running multiple iterations of the RF classifier reduces 

the biases, however, does not completely eliminate it. Using the automatic Otsu 

thresholding method to extract vegetation cover and segregate vegetation from low 

NDVI values representing soil, water, and other non-vegetated regions in optical data 

reduces the overall uncertainty as well. 

5.3.1 Pixel Level Agreement between the RF and SVM classifiers 

The Pixel Level Agreement (PLA) between the RF and SVM shows that both 

the classifier performs with high accuracy in the region On visual inspection, it was 

observed that the main difference between the two classifier primarily occurs in the 

region where there is close juxtaposition from cropland to non-cropland or vice-versa. 

For example, in the Figure 5.1 shown below, the Pixel level dis-agreement is 

dominated in the region where is transition happening from dense urban to cropland in 

AER-4 showing Guntur city. It may be because while RF is more robust in identifying 

both monsoon cropland and non-cropland, SVM is not comparably effective (Table 

4.1, 4.2). RF is also successful in discriminating classes with similar characteristics 

such as natural vegetation (forest) and cropland during the peak growth stage (Akar 
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and Gungor 2012). Due to the nature of SVM, it has more affinity to boundary pixels 

and hence there are more issues in SVM data in the transition or boundary pixels from 

cropland to non-cropland or vice versa. The PLA map generated for the two classifier 

gives us the confidence in the results and shows us the region where  there is 

disagreement and hence more focus has to be given while implementing the results on 

the ground. 

 

 

Figure 5.1:Pixel Level Agreement map for the RF and SVM classifier (b) in 

comparison to the Google Earth imagery for part of AER-4 region (a). 

5.3.2 ROM Uncertainty 

In this study, radar-based classification was performed using the RF classifier 

and training and testing data set-1 for generating ROM. The accuracy of ROM and in 

turn NDVImask depends on how accurately the non-dynamic land use/cover classes 

are classified. Based on the classification accuracy (Table 3.1, 3.2), it was observed 

that the producer’s accuracy (PA) was the lowest for the urban class. There were many 

instances where urban area on the ground was misclassified as other classes including 

vegetation, likely due to the presence of tree canopy cover in urban centers. The 
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accuracy of ROM will vary depending on whether these omitted ‘urban’ points are 

being classified as ‘vegetation’ or other classes. The results indicate that the user’s 

accuracy (UA) was the lowest for vegetation class (Table 3.1, 3.2) which shows that 

points from other classes were committed to the vegetation class. The overall accuracy 

of the classification will also affect the performance of ROM. The F-scores for urban 

(0.64) and vegetation (0.71) show low discriminative capability compared to the water 

(0.96) and monsoon crop (0.84) classes (Table 3.1, 3.2). Thus, this may also have 

affected the accuracy of ROM. Visual inspection of the output maps revealed that the 

classification accuracy of radar data to obtain ROM was high for plantation compared 

to forested regions (Figure 4.3 c–f). This is due to the fact that in the study region, 

forested regions are mainly found in hilly and mountainous regions, which are affected 

by geometric errors such as layover or shadow and thus affect the classification 

accuracy. Also, the forested regions in this part of India is either open forest or 

scrubland which has open spaces or bare soil in between the canopies, affecting the 

accuracy of ROM (Roy et al. 1996, Mondal et al. 2020). 

To improve the classification accuracy of radar data for ROM generation, 

second order texture measures, which involves using Grey-Level Co-occurrence 

Matrices (GLCM), can be included for improving the classification accuracy of radar 

data, especially for discriminating forest and plantation regions. In addition, with 

advancement in technology and availability of large amount of satellite data, more 

powerful deep learning methods such as long short-term memory (LSTM), which 

efficiently handles time series data, may be utilized for improving the overall 
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classification accuracy and in producing ROM in particular (Massey et al. 2018, 

Rubwurn and Korner 2017). 
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Chapter 6 

CONCLUSIONS 

This study presents a synergistic approach of combining radar with optical data 

for monsoon cropland mapping over different agro-ecological regions in India 

utilizing the GEE platform. Achieving high classification accuracy over large region is 

a complex task and it requires highly stable and robust computational resources for 

image processing and running the machine learning algorithms. GEE not only made 

the task easier by handling the requirement for high computational performance but 

also by providing ready to use advance machine learning algorithms which have their 

own challenges in other platforms while utilized for satellite image analysis. One of 

the current limitations of GEE is for preparing ready-to-use map composition and 

handling vector analysis as performed by external commercial platforms such as 

ArcGIS. 

High-resolution monsoon cropland maps are very important to provide 

accurate monsoon crop location information for assessing the crop condition and 

possible policy intervention in case of crop failure. The overall accuracy of 93% 

achieved in this study, for the binary cropland/non-cropland map, suggests that the 

combined approach introduced in this research is reliable for monsoon cropland 

mapping and outperforms that of using only Sentinel-1 radar images, especially in 

regions dominated by rainfed-dryland crops. The combined approach provides 

classification accuracy of 90% or more in different agro-ecological regions dominated 
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by diverse crops. There is overall 3% increase in classification accuracy from radar 

only to radar and optical combined for RF whereas the same for SVM increases from 

80% to 90 % for monsoon cropland mapping. The performance of both RF and SVM 

increases across the AER’s. For both RF and SVM, the classification accuracy 

improved the most for AER-2 and AER-4&5 whereas it has increased the least for 

AER-2. Overall, the performance of RF was better than SVM. The performance of 

SVM decreased mainly in the transition regions from cropland to non-cropland and 

vice versa.  

The ROM proposed here has overcome the challenge of differentiating natural 

vegetation from monsoon cropland mapped during the peak growth stages in monsoon 

season. Thus, it has applications for segregating cropland from vegetation cover, and 

may assist in generating a non-crop mask in regions affected by cloud cover. This 

study can provide important information for decision makers and researchers as 

monitoring these crops is a challenging task due to small farm/cropland size and 

frequent cloud cover during the crop-growing season. 

The primary objectives of this study are to fill the gap in monsoon cropland 

monitoring by:  

(1) evaluating Sentinel-1 (S1) radar and a combination of Sentinel-1 (S1) radar and 

Sentinel-2 (S2) optical data in terms of providing greater accuracy for monsoon 

cropland mapping. 
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(2) developing a high resolution, all weather applicable non-crop mask for segregating 

monsoon cropland from forested and agro-forested (plantation) lands with similar 

signatures. 

The study shows that there is overall 3% increase in classification accuracy from 

radar (S1) to radar+optical (S1+S2) for RF whereas the same for SVM increases by 

10% from 80% to 90% for monsoon cropland mapping. The performance of both RF 

and SVM increases across the AER’s. For both RF and SVM, the classification 

accuracy improved the most for AER-2 and AER-4&5 whereas it has increased the 

least for AER-2 using both the classifiers. Overall, the performance of RF was better 

than SVM. The performance of SVM decreased specifically in the transition regions 

from cropland to non-cropland and vice versa.  

6.1 Future Research 

This work has shown promising results for smallholder cropland mapping in 

major rainfed region in India. However, the spatial and temporal transferability of the 

developed methodology needs to be tested. While this method was developed for 

monsoon cropland mapping, it is likely that this method can be used to map 

smallholder cropland affected by cloud cover in Africa and other regions of the world. 

Future research will include evaluating the performance of this method for other 

monsoon years with different weather conditions. 
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