ZINC-CATALYZED ALKYNYLATION OF ACETALS VIA OXOCARBENIUM ION INTERMEDIATES

by

Tatsiana Haidzinskaya

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Chemistry and Biochemistry

Spring 2012

© 2012 Tatsiana Haidzinskaya All Rights Reserved

ZINC-CATALYZED ALKYNYLATION OF ACETALS VIA

OXOCARBENIUM ION INTERMEDIATES

by

Tatsiana Haidzinskaya

Approved:	
	Mary P. Watson, Ph.D.
	Professor in charge of thesis on behalf of the Advisory Committee
Approved:	
	Klaus Theopold, Ph.D.
	Chair of the Department of Chemistry and Biochemistry
Approved:	
	George H. Watson, Ph.D.
	Dean of the College of Arts and Sciences
Approved:	
	Charles G. Riordan, Ph.D.
	Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Mary Watson for her help, support, and guidance throughout the years. The skills and knowledge that I acquired working in her laboratory allowed me to be where I am now.

I would like to thank Professor Joseph Fox for believing in me, helping me on various issues, and recommending me for an industrial position which I successfully acquired.

I would like to thank my husband Dr. Peter DeMatteo for his insight on problems in my research and his advice how to fix them.

I would like to thank the fellow group members Danielle Shacklady-McAtee and Dr. Prantik Maity for their knowledge and wisdom that they shared with me during my work in the laboratory.

I would like to thank my aunt Tatjana Karoly for her moral and financial support. Without her I would not be able to afford my undergraduate degree and move forward in my career.

I would like to thank my parents Halina Haidzinskaya and Valiantsin Haidzinski for their constant encouragement on the phone. I would also like to thank them for their courage in fighting the U.S. Visa Office for the right to see their daughter (me) for the first time in six years and attend my graduation ceremony. After multiple visa denials for no reason they did not lose hope that they would be allowed to visit me and my husband in the United States. No matter how desperate the situation is, there should be hope.

TABLE OF CONTENTS

LIST (LIST (LIST (ABST)	OF TABLE OF FIGURI OF SHEME RACT	S ES ES	v vi vii ix
Chapte	er		
1	ENANTIO NUCLEO	DSELECTIVE ADDITIONS OF CARBON PHILES TO OXOCARBENIUM IONS	1
	Reference	s	15
2	ALKYNY	LATION OF CHROMAN ACETALS	
	Reference	s	38
3	ALKYNY	LATION OF NONBENZOPYRANYL SUBSTRATES	40
	3.1 3.2	Alkynylation of 2-Acetoxytetrahydropyran Diastereoselective Alkynylation of Tetrahydrofuranyl	41
	3.3	Acetals Diastereoselective Alkynylation of 2-Acetoxy-	47
	3.4	3-Bromotetrahydropyran Preliminary Results for Alkynylation of Acyclic Acetals.	52 57
	3.5	Conclusion and Future Work	58
	Reference	S	60
Appen	dix		
А	EXPERIM	IENTAL	65
	Reference	s	84
В	SPECTRA	AL DATA	86

LIST OF TABLES

Table 2.1	Catalyst Screen for Alkynylation of 2-Acetoxychroman	26
Table 2.2	Lewis Acid Screen for Alkynylation of 2-Acetoxychroman	27
Table 2.3	Lewis Acid Screen for Alkynylation of 2-Acetoxychroman under Modified Conditions	28
Table 2.4	Comparison of Zinc Salts	29
Table 2.5	Effect of Leaving Group on Reactivity	31
Table 2.6	Scope of Alkyne	32
Table 3.1	Initial Screening for Alkynylation of 2-Acetoxytetrahydropyran	42
Table 3.2	Catalyst Screen for Alkynylation of 2-Acetoxytetrahydropyran	44
Table 3.3	Solvent Screen for Alkynylation of 2-Acetoxytetrahydropyran	45
Table 3.4	Base Screen for Alkynylation of 2-Acetoxytetrahydropyran	46
Table 3.5	Solvent Screen for Alkynylation of Tetrahydropyranyl Acetal 3-21	51
Table 3.6	Solvent Screen for Alkynylation of 2-Acetoxy- 3-Bromotetrahydropyran	53
Table 3.7	Preliminary Alkyne Scope	54
Table 3.8	Solvent Screen for Alkynylation of Secondary Acyclic Acetals	58

LIST OF FIGURES

Figure 1.1	Biologically Active and Natural Oxygen Heterocycles with α-Stereocenters	2
Figure 2.1	Oxocarbenium Ions for Enantioselective Additions	24
Figure 2.2	Representative Results with Chiral Amino Alcohol, Diol, and Diamine Ligands	34
Figure 2.3	Bis(Oxazoline) Ligands Screen	35
Figure 2.4	Chiral Ligands Screen	36

LIST OF SCHEMES

Scheme 1.1	Scheme 1.1 Hoveyda's Copper-Catalyzed Conjugate Addition		
Scheme 1.2	Braun's Allylation of Dihydropyranyl Acetal	4	
Scheme 1.3	Thiourea-Catalyzed Addition of Silyl Ketene Acetals to 1- Chloroisochromans by Jacobsen	5	
Scheme 1.4	Addition of Vinyl- and Aryl-Based Nucleophiles to Oxocarbenium Ions	6	
Scheme 1.5	Proposed Mechanism of Schaus' Reaction	6	
Scheme 1.6	Enantioselective Alkynylation of Isochroman Acetals	7	
Scheme 1.7	Proposed Catalytic Cycle	8	
Scheme 1.8	Enantioselective Alkynylation of Chromene Acetals	9	
Scheme 1.9	Enantioselective Orthoester Alkylation of N-Acylthiazolidinethiones by Evans	0	
Scheme 1.10	Enantioselective Aldol-Type Reaction with Acetals by Sodeoka	1	
Scheme 1.11	Carreira's Enantioselective Alkynylation of Aldehydes 12	2	
Scheme 1.12	Cozzi's Enantioselective Alkynylation of Ketones 12	3	
Scheme 1.13	Schreiber's Alkynylation of Isolated Isoquinolinium Ions	3	
Scheme 2.1	Alkynylation of 2-Methoxychroman	5	
Scheme 2.2	Synthesis of Chroman Acetals	0	
Scheme 3.1	Cyclic Aliphatic Oxocarbenium Ions as Intermediates for Enantioselective and Diastereoselective Alkynylation of Acetals	1	
Scheme 3.2	Synthesis of 2-Acetoxytetrahydropyran Model Substrate	2	

Scheme 3.3	Proposed Diastereoselective Alkynylation of Tetrahydropyranyl Acetals	48
Scheme 3.4	Substrate Synthesis. Route A.	49
Scheme 3.5	Substrate Synthesis. Route B	49
Scheme 3.6	Substrate Synthesis. Route C	50
Scheme 3.7	Alkynylation of Tetrahydropyranyl Acetal 3-16	51
Scheme 3.8	Synthesis of 2-Acetoxy-3-Bromotetrahydropyran	52
Scheme 3.9	Neighboring Group Participation in Alkynylation of 2-Acetoxy-3 Bromotetrahydropyran	- 53
Scheme 3.10	Alkynylation of Dihydropyran via Bromonium Ion	54
Scheme 3.11	Proposed Functionalization of Glucals	56
Scheme 3.12	Alkynylation of Primary Acetals	57

ABSTRACT

Reactions that allow the conversion of a simple achiral or racemic starting material into an enantiomerically pure product are of great importance. Such processes are particularly advantageous when they are combined with the formation of a carbon–carbon bond. In the large majority of such reactions, stereoselectivity is controlled by enzymes, chiral auxiliaries, organocatalysts, or transition metal catalysts. In particular, enantioselective transition metal catalysis is a powerful tool in the synthesis of enantioenriched products. The M. Watson group has recently demonstrated a new enantioselective metal-catalyzed strategy for the addition of terminal alkynes to racemic isochroman and chromene acetals. This thesis describes my progress towards establishing this alkynylation strategy for a much broader class of cyclic acetal substrates.

The first chapter reviews developments in enantioselective additions of carbon nucleophiles to prochiral cyclic oxocarbenium ions using both organocatalysis and transition metal catalysis. The chapter briefly discusses the addition of carbon nucleophiles to aldehydes and ketones catalyzed by transition metals, as well as enantioselective alkynylation of iminium ions.

The second chapter of this thesis describes my work on alkynylation of chroman acetals through cyclic oxocarbenium ions, specifically optimization of reaction conditions and my progress towards an asymmetric version of this reaction.

The third chapter discusses diastereoselective alkynylation reactions. In addition to the routes for substrate synthesis for these studies, the alkynylation of

several nonbenzopyranyl substrates through aliphatic oxocarbenium ion intermediates has been achieved.

This work establishes that the alkynylation strategy previously used for the addition of terminal alkynes to racemic isochroman and chromene acetals can be applied to a much broader class of cyclic acetal substrates, in particular chroman, tetrahydrofuran, and tetrahydropyran acetals.

Chapter 1

ENANTIOSELECTIVE ADDITIONS OF CARBON NUCLEOPHILES TO OXOCARBENIUM IONS

 α -Substituted oxygen heterocycles constitute the framework of many biologically active molecules, as well as synthetic and semisynthetic compounds of interest (Figure 1.1).¹⁻¹² The development of highly efficient methods for the enantioselective synthesis of such compounds would contribute greatly to the fields of medicinal, agricultural, and material sciences.

Multiple routes for the enantioselective preparation of α -substituted cyclic ethers have been reported. In many of these methods, the formation of the stereogenic center occurs before cyclization.¹³⁻²² Other strategies, such as hetero-Diels–Alder reactions, Wacker-type cyclizations, and intramolecular conjugate additions rely on simultaneous formation of the stereocenter with the cyclization.²³⁻³¹ In addition to the above-mentioned strategies, several enantioselective substitution reactions of oxygen heterocycles have been described.³²⁻³⁶ Most notably, in 2005, Hoveyda reported examples of enantioselective copper-catalyzed conjugate addition of dialkylzinc reagents to unsaturated furanones and pyranones. α -Substituted cyclic ether **1-3** was formed enantioselectively from chromenone **1-1** (Scheme 1.1). However, the application of this methodology to other substrates to make α -substituted oxygen heterocycles was not investigated.

Figure 1.1. Biologically Active and Natural Oxygen Heterocycles with α -Stereocenters

Scheme 1.1. Hoveyda's Copper-Catalyzed Conjugate Addition

Nucleophilic additions to oxocarbenium ion intermediates would provide a powerful method for the synthesis of α -substituted cyclic ethers. However, controlling enantioselectivity of these additions is not trivial. The high reactivity of oxocarbenium ions as well as the E1 elimination pathway make the uncatalyzed addition reaction problematic. The enantioselective addition to oxocarbenium ion intermediates is vastly under-developed, and only a few examples of enantioselective catalytic additions to prochiral cyclic oxocarbenium ions have been reported to date.³⁷⁻⁴⁰

Braun reported the first example of enantioselective additions to cyclic oxocarbenium ions in 2004. In his report, Braun described a titanium(IV)-catalyzed asymmetric allylation of alcohols, silyl ethers, and acetals.³⁸ The majority of reactions did not utilize cyclic acetal substrates. However, Braun showed that a single example of cyclic acetal **1-4** underwent allylation (Scheme 1.2). This allylation is proposed to proceed via dynamic kinetic resolution of the diastereomeric acetal-catalyst complexes **1-7** and **1-9**, which interconvert via prochiral oxocarbenium ion **1-8**. Notably, a stoichiometric amount of chiral Lewis acid was required to achieve good enantioselectivity in this transformation.

Scheme 1.2. Braun's Allylation of Dihydropyranyl Acetal

In 2008, Jacobsen reported the thiourea-catalyzed addition of silyl ketene acetals to 1-chloroisochromans to give esters (Scheme 1.3).³⁷ 1-Chloroisochroman 1-14 was prepared in situ from methyl acetal 1-10 by treatment with BCl₃. The catalyst 1-11 promoted the substitution to generate ester 1-13. The chiral thiourea catalyst was used to control stereochemistry by inducing chloride dissociation to generate a reactive oxocarbenium-chloride-thiourea complex 1-15.⁴¹ A wide variety of substituted isochromans were prepared using this method. Jacobsen's work proved that prochiral oxocarbenium ions were viable substrates for asymmetric catalysis.

Scheme 1.3. Thiourea-Catalyzed Addition of Silyl Ketene Acetals to 1-Chloroisochromans by Jacobsen

In 2010, Schaus described the enantioselective addition of boronic esters such as **1-17** to chromene acetals **1-16** catalyzed by a chiral Brønsted acid/Lewis acid system to generate chiral chromene products **1-19** (Scheme 1.4).^{39,42-43} A wide variety of vinyl boronic esters was tolerated under optimized reaction conditions, but aryl boronates proved to be less reactive and required electron-donating substituents on the aromatic ring, such as methoxy groups. The proposed mechanism is presented in Scheme 1.5. The boronic ester **1-17** and tartaramide acid **1-18** first form dioxoborolane **1-20**. With the addition of metal Lewis acid (M) and chromene acetal

1-16, boronate complex **1-21** is generated. The addition of the chiral nucleophile to the oxocarbenium ion furnished product **1-19** in 87% yield and 97% ee. According to the authors, Lewis acid alone provided none of the desired product, while chiral Brønsted acids gave only moderate yields and enantioselectivites. A combination of the two afforded a chiral Brønsted acid/metal triflate Lewis acid/vinyl boronate catalytic complex **1-21** that led to the products in high yields and enantioselectivities.

Scheme 1.4. Addition of Vinyl- and Aryl-Based Nucleophiles to Oxocarbenium Ions by Schaus

Scheme 1.5. Proposed Mechanism of Schaus' Reaction

Most recently, Watson et al. developed an enantioselective, copper(I)catalyzed alkynylation of racemic isochroman acetals **1-22** (Scheme 1.6).⁴⁰ Use of a chiral catalyst derived from copper (I) and bis(oxazoline) ligand **1-23** gave 1-alkynyl isochromans **1-24** in good yields and high enantioselectivities.

Scheme 1.6. Enantioselective Alkynylation of Isochroman Acetals

The proposed catalytic cycle is shown in Scheme 1.7. Chiral copper acetylide **1-26** is formed by combination of $[Cu(MeCN)_4]PF_6$, chiral ligand **1-23**, phenyl acetylene, and diisopropylethylamine. In the presence of TMSOTf, isochroman acetal **1-22** is converted in situ to the corresponding oxocarbenium ion. A minor byproduct, silylacetylene **1-27**, is generated from the reaction of TMSOTf and copper acetylide. However, use of 1.2 equiv of alkyne enables high yields of desired product. Ligand dissociation from the 18-electron copper acetylide complex likely occurs to enable the interaction with the oxocarbenium ion intermediate. The authors propose that formation of the carbon-carbon bond occurs either directly from trivalent **1-28** or via π -complexation of the oxocarbenium ion to copper forming intermediate **1-29** or **1-30**. The authors proposed a preliminary model for enantioselectivity based on analysis of molecular models. They suggest that steric interactions between the benzyl group of the chiral copper acetylide and oxocarbenium ion disfavors transition state **TS-b**.⁴⁰ However, several experimental details suggest that the factors that control enantioselectivity are more complicated than this simple model depicts. Certainly, extending the asymmetric alkynylation to other classes of oxocarbenium ions will test this stereochemical model.

Scheme 1.7. Proposed Catalytic Cycle

The authors also reported the alkynylation of chromene acetals such as 1-32 to afford chromene products such as 1-33 in good yields and high enantioselectivities under modified conditions (Scheme 1.8).⁴⁰

Scheme 1.8. Enantioselective Alkynylation of Chromene Acetals

Compared to the organocatalytic enantioselective additions of carbon nucleophiles to prochiral oxocarbenium ions reported by Jacobsen and Schaus, this method was the first approach that uses a transition metal catalyst and proceeds through organometallic intermediates. This work demonstrated that transition metals can be used for the enantioselective addition of carbon nucleophiles to cyclic oxocarbenium ions.

All above-mentioned methodologies to prepare enantioenriched α -substituted cyclic ethers involve nucleophilic additions to prochiral cyclic oxocarbenium ion intermediates. However, enantioselective reactions of prochiral nucleophiles and achiral oxocarbenium ions have also been disclosed. In 2005, Evans reported a nickel-catalyzed enantioselective orthoester alkylation of *N*-acylthiazolidinethiones (Scheme 1.9).⁴⁴ According to Evans, the high observed enantioselectivity can be explained by

the formation of Ni-enolate **1-38**, which then reacts with achiral oxocarbenium ion **1-39**. In this reaction, the stereocenter emerges from the prochiral nucleophile, instead of a prochiral oxocarbenium ion.

Scheme 1.9. Enantioselective Orthoester Alkylation of N-Acylthiazolidinethiones by Evans

Scheme 1.10. Enantioselective Aldol-Type Reaction with Acetals by Sodeoka

In 2008, Sodeoka reported an enantioselective catalytic aldol-type reaction of β -ketoesters such as **1-40**, with acetals **1-41** (Scheme 1.10).⁴⁵ In this reaction Pd complex **1-42** acts as an acid/base catalyst, simultaneously activating both the nucleophile and the electrophile. The Pd catalyst assists the formation of enolate **1-44** while in situ generated proton activates the acetal to give oxocarbenium ion intermediate **1-45**. This reaction employs a prochiral nucleophile and a prochiral electrophile; strereocenters emerge on both the β -ketoester and acetal.⁴⁶⁻⁴⁷

The only example of an enantioselective transition metal-catalyzed addition to cyclic oxocarbenium intermediates has been reported by Watson et. al.⁴⁰ However, multiple cases of transition metal-catalyzed additions of carbon nucleophiles to similar systems – aldehydes and ketones – have been described. In this thesis, I will limit my

discussion to enantioselective transition metal-catalyzed alkynylation for the synthesis of chiral propargylic alcohols.⁴⁸⁻⁶⁶

In 2001, Carreira described a zinc-catalyzed enantioselective addition of terminal alkynes to aldehydes (Scheme 1.11).⁶⁷ These additions proceed through chiral zinc-acetylide intermediates, which add to aldehydes to give chiral alcohols in high enantioselectivities. Both the Zn(II) salts and ligands are commercially available. Further, the reaction can tolerate air and moisture and can be conducted at temperatures as high as 100 °C, affording products in excellent yields and high enantioselectivities.

Scheme 1.11. Carreira's Enantioselective Alkynylation of Aldehydes

The first general method that allowed the enantioselective addition of acetylenes to ketones was described by Cozzi in 2003 and utilized zinc/salen catalysis (Scheme 1.12).⁴⁸ Since 2003, many articles have been published in the field of enantioselective alkynylation of aldehydes and ketones.⁴⁹⁻⁶⁷

Scheme 1.12. Cozzi's Enantioselective Alkynylation of Ketones

Alkynylation of oxocarbenium ions is also similar to alkynylation of iminium ions. Enantioselective copper-catalyzed coupling reactions of alkynes with iminium ions are well known.⁶⁸⁻⁷¹ In 2006 Schreiber published the asymmetric alkynylation of alkylisoquinolinium and alkyldihydroisoquinolinium ions, such as **1-52** in the presence of triethylamine, catalytic copper bromide, and QUINAP (**1-53**) (Scheme 1.13). These conditions tolerated a variety of alkynes and furnished propargylic amines in high yields and enantioselectivities. Ma and Arndtsen later demonstrated that Cu catalysts also enable enantioselective alkynylation of pyridinium ions.^{70,72}

Scheme 1.13. Schreiber's Alkynylation of Isolated Isoquinolinium Ions

Despite the recent advances in many areas of asymmetric catalysis, the development of new methodologies for enantioselective nucleophilic additions to oxocarbenium intermediates is still in demand. The new methods for enantioselective synthesis of α -substituted oxygen heterocycles are indispensable. α -Substituted oxygen heterocycles represent a promising class of biologically active compounds, and highly efficient strategies for the synthesis of these compounds would make a great contribution to the development of new medicines.

The successful enantioselective additions of carbon nucleophiles to benzylic and vinylogous oxocarbenium ions create a platform for further exploration of asymmetric additions to oxocarbenium ions. Enantioselective addition to aliphatic oxocarbenium ions still represents a major synthetic challenge. My preliminary results towards alkynylation of aliphatic oxocarbenium ions will be discussed in the following chapters. This work is significant as it will change the way chiral ethers are prepared.

REFERENCES

(1) Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.; Müller,
W.; Bayer, M.; Lin, W.; Wu, J.; Proksch, P. "Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata" *Bioorg. Med. Chem.* 2009, *17*, 7362.

(2) Stambasky, J.; Hocek, M.; Kocovsky, P. "C-Nucleosides: Synthetic Strategies and Biological Applications" *Chem. Rev.* **2009**, *109*, 6729.

(3) Trost, B.; Toste, F. "A Catalytic Enantioselective Approach to Chromans and Chromanols. A Total Synthesis of (–)-Calanolides A and B and the Vitamin E Nucleus" *J. Am. Chem. Soc.* **1998**, *120*, 9074.

(4) Wang, L. J.; Carter, J. S.; Springer, J. R.; Limburg, D. C.; Aston, K.W.; Pharmacia and Upjohn Co., LLC: 2006.

(5) Kool, E. "Replacing the Nucleobases in DNA with Designer Molecules" *Acc. Chem. Res.* **2002**, *35*, 936.

(6) Storck, P.-H.; Piettre, A. M. P.; Ermert, P.; Schoentjes, B.; Poncelet, V.S.; Csoka, I. C. F.; Janssen Pharmaceutica NV: USA, 2010.

(7) Alberts, A.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.;
Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; Patchett, A.; Monaghan, R.; Currie, S.;
Stapley, E.; Albers-Schonberg, G.; Hensens, O.; Hirshfield, J.; Hoogsteen, K.; Liesch,
J.; Springer, J. "Mevinolin: a highly potent competitive inhibitor of
hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent" *Proc. Natl. Acad. Sci.* 1980, 77, 3957.

(8) Albrecht, U.; Lalk, M.; Langer, P. "Synthesis and structure-activity relationships of 2-vinylchroman-4-ones as potent antibiotic agents" *Bioorg. Med. Chem.* **2005**, *13*, 1531.

(9) TenBrink, R.; Bergh, C.; Duncan, J.; Harris, D.; Huff, R.; Lahti, R.;
Lawson, C.; Lutzke, B.; Martin, I.; Rees, S.; Schlachter, S.; Sih, J.; Smith, M. "(S)(-)-4-[4-[2-(Isochroman-1-yl)ethyl]piperazin-1-yl]benzenesulfonamide, a Selective Dopamine D4 Antagonist" *J. Med. Chem.* **1996**, *39*, 2435.

(10) Xu, J.; Stevenson, J. "Drug-like Index: A New Approach To Measure Drug-like Compounds and Their Diversity" *J. Chem. Inf. Comput. Sci.* **2000**, *40*, 1177.

(11) Ghose, A.; Viswanadhan, V.; Wendoloski, J. "A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases" *J. Comb. Chem.* **1999**, *1*, 55.

(12) Belliotti, T.; Brink, W.; Kesten, S.; Rubin, J.; Wustrow, D.; Zoski, K.; Whetzel, S.; Corbin, A.; Pugsley, T.; Heffner, T.; Wise, L. "Isoindolinone enantiomers having affinity for the dopamine D-4 receptor" *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1499.

(13) Bagnoli, L.; Scarponi, C.; Rossi, M.; Testaferri, L.; Tiecco, M. "Synthesis of Enantiopure 1,4-Dioxanes, Morpholines, and Piperazines from the Reaction of Chiral 1,2-Diols, Amino Alcohols, and Diamines with Vinyl Selenones" *Chem. Eur. J.* **2011**, *17*, 993.

(14) Lian, Y.; Hinkle, R. J. "BiBr3-Initiated Tandem Addition/Silyl-Prins Reactions to 2,6-Disubstituted Dihydropyrans" *J. Org. Chem.* **2006**, *71*, 7071.

(15) Hinkle, R. J.; Lian, Y.; Speight, L. C.; Stevenson, H. E.; Sprachman,
M. M.; Katkish, L. A.; Mattern, M. C. "Synthesis of 2,6-disubstituted dihydropyrans
via an efficient BiBr3-initiated three component, one-pot cascade" *Tetrahedron* 2009,
65, 6834.

(16) Alvarez, E.; Candenas, M.-L.; Perez, R.; Ravelo, J.; Delgado Martin, J.
"Useful Designs in the Synthesis of Trans-Fused Polyether Toxins" *Chem. Rev.* 1995, 95, 1953.

(17) Boivin, T. "Synthetic routes to tetrahydrofuran, tetrahydropyran, and spiroketal units of polyether antibiotics and a survey of spiroketals of other natural products" *Tetrahedron* **1987**, *43*, 3309.

(18) Patil, N.; Yamamoto, Y. "Coinage Metal-Assisted Synthesis of Heterocycles" *Chem. Rev.* 2008, *108*, 3395.

(19) Volz, F.; Krause, N. "Golden opportunities in natural product synthesis: first total synthesis of (-)-isocyclocapitelline and (-)-isochrysotricine by gold-catalyzed allene cycloisomerization" *Org. Biomol. Chem.* **2007**, *5*, 1519.

(20) Hodgetts, K. "Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones" *Tetrahedron* **2005**, *61*, 6860.

(21) Noda, Y.; Watanabe, M. "Synthesis of Both Enantiomers of Flavanone and 2-Methylchromanone" *Helv. Chim. Acta* **2002**, *85*, 3473.

(22) Rao, A.; Gaitonde, A.; Prakash, K.; Rao, S. "A concise synthesis of chiral 2-methyl chroman-4-ones : Stereo selective build-up of the chromanol moiety of anti-HIV agent calanolide A" *Tetrahedron Lett.* **1994**, *35*, 6347.

(23) Terada, M.; Mikami, K. "Periselective and enantioselective carbonylene reaction of isoprene with fluoroalkyl glyoxylate catalysed by modified binaphtholtitanium complex: asymmetric catalytic synthesis of enantiomerically pure ipsdienol" *J. Chem. Soc., Chem. Commun.* **1995**, 2391.

(24) Wender, P.; Hegde, S.; Hubbard, R.; Zhang, L. "Total Synthesis of (-)-Laulimalide" J. Am. Chem. Soc. 2002, 124, 4956. (25) Uozumi, Y.; Kato, K.; Hayashi, T. "Catalytic Asymmetric Wacker-Type Cyclization" *J. Am. Chem. Soc.* **1997**, *119*, 5063.

(26) Biddle, M.; Lin, M.; Scheidt, K. "Catalytic Enantioselective Synthesis of Flavanones and Chromanones" *J. Am. Chem. Soc.* **2007**, *129*, 3830.

(27) Son, S.; Fu, G. C. "Copper-Catalyzed Asymmetric [4+1] Cycloadditions of Enones with Diazo Compounds To Form Dihydrofurans" *J. Am. Chem. Soc.* 2007, *129*, 1046.

(28) Zhang, Z.; Widenhoefer, R. A. "Gold(I)-Catalyzed Intramolecular Enantioselective Hydroalkoxylation of Allenes" *Angew. Chem., Int. Ed.* **2007**, *46*, 283.

(29) Dittmer, C.; Raabe, G.; Hintermann, L. "Asymmetric Cyclization of 2'Hydroxychalcones to Flavanones: Catalysis by Chiral Brønsted Acids and Bases" *Eur. J. Org. Chem.* 2007, 2007, 5886.

(30) Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. "Asymmetric Intramolecular Oxa-Michael Addition of Activated α,β -Unsaturated Ketones Catalyzed by a Chiral N,N'-Dioxide Nickel(II) Complex: Highly Enantioselective Synthesis of Flavanones" *Angew. Chem., Int. Ed.* **2008**, *47*, 8670.

(31) Wang, H.-F.; Cui, H.-F.; Chai, Z.; Li, P.; Zheng, C.-W.; Yang, Y.-Q.; Zhao, G. "Asymmetric Synthesis of Fluorinated Flavanone Derivatives by an Organocatalytic Tandem Intramolecular Oxa-Michael Addition/Electrophilic Fluorination Reaction by Using Bifunctional Cinchona Alkaloids" *Chem. Eur. J.* **2009**, *15*, 13299.

(32) Brown, M.; Degrado, S.; Hoveyda, A. "Highly Enantioselective Cu-Catalyzed Conjugate Additions of Dialkylzinc Reagents to Unsaturated Furanones and Pyranones: Preparation of Air-Stable and Catalytically Active Cu–Peptide Complexes" *Angew. Chem., Int. Ed.* **2005**, *44*, 5306. (33) Hodgetts, K.; Maragkou, K.; Wallace, T.; Wootton, R. "Conjugate addition to 3-arylsulfinylchromones as a synthetic route to homochiral 2-substituted chromanones: scope and limitations" *Tetrahedron* **2001**, *57*, 6793.

(34) Chen, J.; Chen, J.; Lang, F.; Zhang, X.; Cun, L.; Zhu, J.; Deng, J.; Liao,
J. "A C2-Symmetric Chiral Bis-Sulfoxide Ligand in a Rhodium-Catalyzed Reaction: Asymmetric 1,4-Addition of Sodium Tetraarylborates to Chromenones" *J. Am. Chem. Soc.* 2010, *132*, 4552.

(35) Han, F.; Chen, G.; Zhang, X.; Liao, J. "Chiral Heterodisulfoxide Ligands in Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Chromenones" *Eur. J. Org. Chem.* **2011**, *2011*, 2928.

(36) Korenaga, T.; Hayashi, K.; Akaki, Y.; Maenishi, R.; Sakai, T. "Highly Enantioselective and Efficient Synthesis of Flavanones Including Pinostrobin through the Rhodium-Catalyzed Asymmetric 1,4-Addition" *Org. Lett.* **2011**, *13*, 2022.

(37) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions" *J. Am. Chem. Soc.* **2008**, *130*, 7198.

(38) Braun, M.; Kotter, W. "Titanium(IV)-Catalyzed Dynamic Kinetic Asymmetric Transformation of Alcohols, Silyl Ethers, and Acetals under Carbon Allylation" *Angew. Chem., Int. Ed.* **2004**, *43*, 514.

(39) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" *Angew. Chem., Int. Ed.* **2010**, *49*, 7096.

(40) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" *J. Am. Chem. Soc.* **2011**, *133*, 17142.

(41) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. "Enantioselective Pictet–Spengler-Type Cyclizations of Hydroxylactams: H-Bond Donor Catalysis by Anion Binding" *J. Am. Chem. Soc.* **2007**, *129*, 13404.

(42) Harrity, J. P. A.; La, D. S.; Cefalo, D. R.; Visser, M. S.; Hoveyda, A.
H. "Chromenes through Metal-Catalyzed Reactions of Styrenyl Ethers. Mechanism and Utility in Synthesis" *J. Am. Chem. Soc.* 1998, *120*, 2343.

(43) Wipf, P.; Weiner, W. S. "Enantioselective Synthesis and Photoracemization Studies of (+)-2-Cyclopropyl-7,8-dimethoxy-2H- chromene-5- carboxylic Acid Methyl Ester, an Advanced Intermediate of a Dihydrofolate Reductase Inhibitor" *J. Org. Chem.* **1999**, *64*, 5321.

(44) Evans, D.; Thomson, R. "Ni(II) Tol-BINAP-Catalyzed Enantioselective
Orthoester Alkylations of N-Acylthiazolidinethiones" *J. Am. Chem. Soc.* 2005, *127*, 10506.

(45) Umebayashi, N.; Hamashima, Y.; Hashizume, D.; Sodeoka, M.
"Catalytic Enantioselective Aldol-type Reaction of β-Ketosters with Acetals" *Angew*. *Chem., Int. Ed.* 2008, 47, 4196.

(46) Terada, M.; Tanaka, H.; Sorimachi, K. "Enantioselective Direct Aldol-Type Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral Brønsted Acid Catalyst" *J. Am. Chem. Soc.* **2009**, *131*, 3430.

(47) Kobayashi, S.; Arai, K.; Yamakawa, T.; Chen, Y.-J.; Salter, M. M.; Yamashita, Y. "Lewis Acid-Mediated Acetal Substitution Reactions: Mechanism and Application to Asymmetric Catalysis" *Adv. Synth. Catal.* **2011**, *353*, 1927.

(48) Cozzi, P. G. "Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes" *Angew. Chem., Int. Ed.* **2003**, *42*, 2895.

(49) Cozzi, Pier G.; Hilgraf, R.; Zimmermann, N. "Acetylenes in Catalysis:
 Enantioselective Additions to Carbonyl Groups and Imines and Applications Beyond"
 Eur. J. Org. Chem. 2004, 2004, 4095.

(50) Lin, P. "Asymmetric alkynylzinc additions to aldehydes and ketones" *Tetrahedron* **2003**, *59*, 9873.

(51) Frantz, D. E.; Fässler, R.; Carreira, E. M. "Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes" *J. Am. Chem. Soc.* **2000**, *122*, 1806.

(52) Anand, N. K.; Carreira, E. M. "A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes" *J. Am. Chem. Soc.* **2001**, *123*, 9687.

(53) Boyall, D.; Frantz, D. E.; Carreira, E. M. "Efficient Enantioselective Additions of Terminal Alkynes and Aldehydes under Operationally Convenient Conditions" *Org. Lett.* **2002**, *4*, 2605.

(54) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. "Asymmetric Alkynylation of Aldehydes Catalyzed by an In(III)/BINOL Complex" *J. Am. Chem. Soc.* **2005**, *127*, 13760.

(55) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. "Enantioselective Addition of Terminal Alkynes to Aldehydes Catalyzed by a Cu(I)–TRAP Complex" *Org. Lett.* **2007**, *9*, 3901.

(56) Koyuncu, H.; Dogan, Ö. "Fam–Ti Catalyzed Enantioselective Alkynylation of Aldehydes" *Org. Lett.* **2007**, *9*, 3477.

(57) Yang, F.; Xi, P.; Yang, L.; Lan, J.; Xie, R.; You, J. "Facile, Mild, and Highly Enantioselective Alkynylzinc Addition to Aromatic Aldehydes by BINOL/N-Methylimidazole Dual Catalysis" *J. Org. Chem.* **2007**, *72*, 5457.

(58) Asano, Y.; Ito, H.; Hara, K.; Sawamura, M. "Enantioselective Addition of Terminal Alkynes to Aromatic Aldehydes Catalyzed by Copper(I) Complexes with Wide-Bite-Angle Chiral Bisphosphine Ligands: Optimization, Scope, and Mechanistic Studies" *Organometallics* **2008**, *27*, 5984.

(59) Ito, J.-i.; Asai, R.; Nishiyama, H. "Asymmetric Direct Alkynylation Catalyzed by Chiral Ru–Bis(oxazolinyl)phenyl Complexes" *Org. Lett.* **2010**, *12*, 3860.

(60) Trost, B. M.; Chan, V. S.; Yamamoto, D. "Enantioselective ProPhenol-Catalyzed Addition of 1,3-Diynes to Aldehydes to Generate Synthetically Versatile Building Blocks and Diyne Natural Products" *J. Am. Chem. Soc.* **2010**, *132*, 5186.

(61) Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. "Low Ligand Loading, Highly Enantioselective Addition of Phenylacetylene to Aromatic Ketones Catalyzed by Schiff-Base Amino Alcohols" *Org. Lett.* **2006**, *8*, 2277.

(62) Zhou, S.; Chen, C.-R.; Gau, H.-M. "Highly Enantioselective 3-Furylation of Ketones Using (3-Furyl)titanium Nucleophile" *Org. Lett.* **2009**, *12*, 48.

(63) Reynolds, T. E.; Bharadwaj, A. R.; Scheidt, K. A. "Stereoselective
 Lewis Acid-Catalyzed α-Acylvinyl Additions" J. Am. Chem. Soc. 2006, 128, 15382.

(64) Unger, R.; Weisser, F.; Chinkov, N.; Stanger, A.; Cohen, T.; Marek, I.
"Enantio- and Diastereoselective Tandem Zn-Promoted Brook
Rearrangement/Ene–Allene Carbocyclization Reaction" *Org. Lett.* 2009, *11*, 1853.

(65) Corey, E. J.; Cimprich, K. A. "Highly Enantioselective Alkynylation of Aldehydes Promoted by Chiral Oxazaborolidines" *J. Am. Chem. Soc.* **1994**, *116*, 3151.

(66) Usanov, D. L.; Yamamoto, H. "Enantioselective Alkynylation of Aldehydes with 1-Haloalkynes Catalyzed by Tethered Bis(8-quinolinato) Chromium Complex" *J. Am. Chem. Soc.* **2011**, *133*, 1286.

(67) Anand, N.; Carreira, E. "A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes" *J. Am. Chem. Soc.* **2001**, *123*, 9687.

(68) Taylor, A. M.; Schreiber, S. L. "Enantioselective Addition of Terminal Alkynes to Isolated Isoquinoline Iminiums" *Org. Lett.* **2005**, *8*, 143.

(69) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. "Enantioselective Addition of Activated Terminal Alkynes to 1-Acylpyridinium Salts Catalyzed by Cu–Bis(oxazoline) Complexes" *J. Am. Chem. Soc.* **2007**, *129*, 9300.

(70) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. "Copper-Catalyzed Coupling of Pyridines and Quinolines with Alkynes: A One-Step, Asymmetric Route to Functionalized Heterocycles" *J. Org. Chem.* **2008**, *73*, 1906.

(71) Ahamed, M.; Todd, M. H. "Catalytic Asymmetric Additions of Carbon-Centered Nucleophiles to Nitrogen-Containing Aromatic Heterocycles" *Eur. J. Org. Chem.* **2010**, *2010*, 5935.

(72) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. "Enantioselective addition of activated terminal alkynes to 1-acylpyridinium salts catalyzed by Cu-bis(oxazoline) complexes" *J. Am. Chem. Soc.* **2007**, *129*, 9300.

Chapter 2

ALKYNYLATION OF CHROMAN ACETALS¹

As discussed in chapter 1, there are only four methods for the enantioselective addition to cyclic oxocarbenium ion intermediates.²⁻⁵ Three of these (Jacobsen,² Schaus,³ Watson⁴) are limited to fairly stable benzylic or aromatic oxocarbenium ions **2-1** or **2-2** (Figure 2-1). Braun's allylation of a single dihydropyranyl acetal⁵ represents the only example to date of enantioselective nucleophilic addition to a less stable aliphatic cyclic oxocarbenium ion **2-4**.

Figure 2.1. Oxocarbenium Ions for Enantioselective Additions

In an effort to extend the enantioselective Cu-catalyzed alkynylation to less stable oxocarbenium ions such as 2-3, I investigated the alkynylation of chroman acetal $2-5^6$ (Scheme 2-1), which was easily prepared from 2-hydroxychroman using methanol and trifluoroacetic acid.³ The application of the optimized reaction conditions for the chromene and isochroman acetals failed to give any product with substrate 2-5. Catalyst screening was required to identify an effective catalyst for alkynylation.

Scheme 2.1. Alkynylation of 2-Methoxychroman

I initiated a catalyst screen and investigated the ability of various copper and zinc salts to perform the addition of terminal alkynes to chroman $2-7^7$ (Table 2-1). I hypothesized that a better leaving group was required for alkynylation, as it would assist the oxocarbenium ion formation. 2-Acetoxychroman 2-7 was chosen as a model substrate. Diethyl ether and dichloromethane were tested as solvents for the reaction. I discovered that copper(I) and copper(II) salts were ineffective catalysts for the alkynylation, and the formation of the desired product was not observed in diethyl ether or dichloromethane (entries 1-2, 5-8, 11-12). In comparison, zinc salts provided promising results (entries 3-4, 9-10). Zinc bromide furnished the product in higher yields than zinc triflate. Zinc bromide furnished the product in 59% yield in diethyl ether. Alkene by-product $2-8^{7-8}$ formed through an E1-elimination pathway was observed in entries 2-4 and 11. Starting material was present in all cases except entries 6 and 12.

	2-7	1.2 equiv === PF 10 mol% catalyst 1.3 equiv <i>i</i> -Pr₂NEt 1.3 equiv <i>i</i> -Pr₂NEt 1.1 equiv TMSOT DAc 1.1 equiv TMSOT solvent, r.t., 24 h 1.1 equiv r.t., 24 h	f	2-6	+ `Ph	2-8
-	Entry	Catalyst	Solvent	Yie	$Id(\%)^a$	
	Liiti y	Catalyst	Solvent	2-6	2-8	
-	1	CuI	Et ₂ O	0	0	
	2	Cu(MeCN) ₄ PF ₆	Et ₂ O	0	4	
	3	Zn(OTf) ₂	Et ₂ O	11	28	
	4	ZnBr ₂	Et ₂ O	59	8	
	5	$CuSO_4$	Et ₂ O	0	0	
	6	Cu(OTf) ₂	Et_2O	0	0	
	7	CuI	DCM	0	0	
	8	Cu(MeCN) ₄ PF ₆	DCM	0	0	
	9	Zn(OTf) ₂	DCM	36	0	
	10	$ZnBr_2$	DCM	53	0	
	11	$CuSO_4$	DCM	0	20	
	12	Cu(OTf) ₂	DCM	0	0	

 Table 2.1. Catalyst Screen for Alkynylation of 2-Acetoxychroman

a) Yields determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as internal standard.

To determine the best Lewis acid for the transformation, I investigated various silyl triflates and $BF_3 \cdot OEt_2$ (Table 2.2). $BF_3 \cdot OEt_2$ provided significantly lower yield of the desired product compared to silyl triflates (entry 4). TESOTf was the best Lewis acid for the transformation, increasing the yield of the alkynylated product to 78% (entry 2).⁹ No desired product was observed in the absence of Lewis acid.
2-7	$\begin{array}{c} 1.2 \ \text{equiv} & \longrightarrow & \text{Ph} \\ 10 \ \text{mol}\% \ \text{ZnBr}_2 \\ 1.3 \ \text{equiv} \ i \cdot \text{Pr}_2 \text{NEt} \\ \hline \end{array}$		+ 2-6 Ph	2-8
Enters	Lauria Aaid		Yield $(\%)^a$	
Entry	Lewis Acid	2-6	2-8	2-7
1	TMSOTf	64	10	30
2	TESOTf	78	2	20
3	TIPSOTf	71	Trace	15
4	$BF_3 \cdot OEt_2$	18	0	90

 Table 2.2. Lewis Acid Screen for Alkynylation of 2-Acetoxychroman

a) Yields determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as internal standard.

The presence of unreacted starting material suggested that not all acetal was ionizing to the oxocarbenium ion. Based on this hypothesis, I increased the amounts of base and Lewis acid. The quantity of Lewis acid was increased from 1.1 to 1.3 equivalents. The amount of base was increased to 1.5 equivalents due to the possibility of triflic acid formation in the presence of trace amounts of water. I repeated the Lewis acid screen under these new conditions (Table 2.3). Silyl triflates, AlCl₃, and FeCl₃ were investigated as Lewis acids. AlCl₃ furnished the product in low yield (entry 5). FeCl₃ provided only trace amounts of desired product (entry 6), and silyl trilates (entries 1-3) gave comparable results with the yields of **2-6** close to 90%.

	0 OAc 2-7	1.2 equiv	+ 2-6 Ph	2-8
Entry	Lewis Acid		Yield $(\%)^a$	
	Lewis Aciu	2-6	2-8	2-7
1	TMSOTf	89	8	2
2	TESOTf	88	12	0
3	TIPSOTf	90	0	12
4	TBSOTf	16	18	27
5	AlCl ₃	14	2	0
6	FeCl ₃	Trace	n.d. ^b	n.d. ^b

Table 2.3. Lewis Acid Screen for Alkynylation of 2-Acetoxychroman under Modified Conditions

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) n.d. = not determined.

As the final step of optimization, different zinc salts were investigated with TMSOTf, TESOTf, and TIPSOTf (Table 2.4). From the results of the screening, I concluded that $ZnBr_2$ was the most efficient catalyst and TESOTf was the best Lewis acid for the transformation. With freshly distilled TESOTf and $ZnBr_2$ as catalyst, quantitative conversion of the starting material to the desired product was observed (entry 6).

	1.2 equiv ≡ 10 mol% Z 1.5 equiv <i>i</i> -P	$\stackrel{=}{} Ph$ $\stackrel{\text{in}X_2}{}$ $\stackrel{r_2\text{NEt}}{}$	
2	OÓOAc 1.3 equiv Lew Et ₂ O, r.t., 2 - 7	vis Acid 24 h 2-6	Ph
Entry	Catalyst	Lewis Acid	Yield $(\%)^a$
1	$ZnCl_2$	TMSOTf	47
2	$ZnBr_2$	TMSOTf	60-90
3	Zn(OTf) ₂	TMSOTf	14
4	ZnI_2	TMSOTf	37
5	$ZnCl_2$	TESOTf	94
6	ZnBr ₂	TESOTf	99
7	Zn(OTf) ₂	TESOTf	31
8	ZnI_2	TESOTf	51
9	$ZnCl_2$	TIPSOTf	92
10	ZnBr ₂	TIPSOTf	81
11	Zn(OTf) ₂	TIPSOTf	48
12	ZnI_2	TIPSOTf	57

Table 2.4. Comparison of Zinc Salts

a) Yields determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as internal standard.

I also investigated the effect of the leaving group on reactivity. A variety of chroman acetals were prepared from dihydrocoumarin and tested under the alkynylation conditions. The synthesis of chroman acetals is presented in Scheme 2.2. Dihydrocoumarin **2-9** was reduced to lactol **2-10** with DIBAI-H.^{7,10} Lactol **2-10** was then converted to the acetals **2-5**, **2-7**, **2-11**, **2-12** and **2-13**. The results of the screening are presented in Table 2.5. The hydroxy and methoxy groups (entries 1-2) were not

suitable leaving groups for the transformation. The bulky OPiv, OBoc, and OBz groups furnished the product in low yields (entries 4-6). Acetate was the optimal leaving group for the reaction (entry 3).

Scheme 2.2. Synthesis of Chroman Acetals

C OR	1.2 equiv = Ph 10 mol% ZnBr₂ 1.3 equiv <i>i</i> -Pr₂NEt 1.1 equiv TESOTf		+
	Et ₂ O, r.t., 24 h	2-6	2-8
Entry	D	Yield	$(\%)^a$
Entry	К	2-6	2-8
1 ^b	Н	2	0
2	Me	0	0
3	Ac	78	2
4	Piv	21	Trace
5	Boc	20	18
6	Bz	3	0

Table 2.5. Effect of Leaving Group on Reactivity

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) 2.5 equiv of *i*-Pr₂NEt and 2.5 equiv of TESOTf were used.

With optimized reaction conditions in hand, I determined the preliminary alkyne scope. I discovered that aromatic, aliphatic, and silyl alkynes are viable in the alkynylation, providing excellent yields of the desired products (Table 2.6).

 Table 2.6. Scope of Alkyne^a

a) Conditions: Acetal **2-7** (0.30 mmol, 1.0 equiv), $ZnBr_2$ (0.030 mmol, 10 mol %), alkyne (0.39 mmol, 1.3 equiv), i-Pr₂NEt (0.45 mmol, 1.5 equiv), TESOTF (0.39 mmol, 1.3 equiv), Et₂O, r.t., 24 h. b) Isolated yields.

Having determined optimized reaction conditions for the nonasymmetric reaction, I tested various chiral ligands for an asymmetric version of this reaction. Initial screening was performed with chiral amino alcohols, diols, and diamine ligands and zinc bromide or zinc triflate (Figure 2.2). No enantiomeric enrichment was observed in all cases. The same results were obtained with stoichiometric quantities of diethyl zinc and chiral ligands. I then investigated bis(oxazoline) ligands. I noticed that $Zn(OTf)_2$ provided higher ee compared to other zinc sources. Enantiomeric enrichment was detected with ligands 2-32, 2-34, 2-35, 2-36, and 2-37 (Figure 2.3). The highest ee of 42% was observed with ligand 2-35. However, significant reduction in yield of the desired product was observed with only 10-20% of 2-6 formed. Attempts to further increase ee by reducing temperature to -27 °C were unsuccessful and no product formation occurred. Chiral NHC, phosphine, and phosphoramidite ligands were also investigated (Figure 2.4). All these ligands furnished products in low no enantioselectivity. These results indicate that the development of to enantioselective alkynylation of chroman acetals is workable and further screening of chiral ligands will be required to improve the yield and enantioselectivity.

Figure 2.2. Representative Results with Chiral Amino Alcohol, Diol, and Diamine Ligands

Figure 2.3. Bis(Oxazoline) Ligands Screen

Figure 2.4. Chiral Ligands Screen

In conclusion, we have developed a zinc-catalyzed alkynylation of chroman acetals through oxocarbenium ion intermediates. Key to achieving high yields in this reaction were (1) identification of acetate as the best leaving group; (2) identification of ZnBr₂ as catalyst; and (3) using increased equivalents of Lewis acid and base. Aromatic, aliphatic, and silyl acetylenes were viable partners in the reaction and produced alkynylated products in excellent yields. From the preliminary screening of chiral ligands, promising enantioselectivities have been achieved; my best result to date is 42% ee, which was observed with bis(oxazoline) ligand **2-35**. This promising result shows the potential of developing an asymmetric variant of this reaction. Further screening of chiral ligands will be necessary to identify a catalyst able to furnish the product in excellent yield and high enantioselectivity.

REFERENCES

(1) This work was performed in collaboration with Dr. Prantik Maity.

(2) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions" *J. Am. Chem. Soc.* **2008**, *130*, 7198.

(3) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" *Angew. Chem., Int. Ed.* **2010**, *49*, 7096.

(4) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" *J. Am. Chem. Soc.* **2011**, *133*, 17142.

(5) Braun, M.; Kotter, W. "Titanium(IV)-Catalyzed Dynamic Kinetic Asymmetric Transformation of Alcohols, Silyl Ethers, and Acetals under Carbon Allylation" *Angew. Chem., Int. Ed.* **2004**, *43*, 514.

(6) Wulff, G.; Wolf, G. "Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole" *Chem. Ber.* **1986**, *119*, 1876.

(7) Parham, W. E.; Huestis, L. D. "The Reaction of Dichlorocarbene with 2,3-Chromene and 3,4-Chromene" *J. Am. Chem. Soc.* **1962**, *84*, 813.

(8) Clark-Lewis, J.; McGarry, E. "Hydroboration of chromenes, flav-2enes, flavylium salts, and flavones" *Aust. J. Chem.* **1973**, *26*, 819.

(9) Fujioka, H.; Okitsu, T.; Ohnaka, T.; Sawama, Y.; Kubo, O.; Okamoto,K.; Kita, Y. "Reaction of Tetrahydropyranyl Ethers with TriethylsilylTrifluoromethanesulfonate-2,4,6-Collidine Combination: Speculation on the

Intermediate, Efficient Deprotection, and Application to Efficient Ring-Closing Metathesis as a Tether" *Adv. Synth. Catal.* **2007**, *349*, 636.

(10) Yates, P.; Macas, T. S. "Tandem Wessely oxidation and intramolecular Diels–Alder reactions. III. Synthesis of isotwistanes" *Can. J. Chem.* **1988**, *66*, 1.

Chapter 3

ALKYNYLATION OF NONBENZOPYRANYL SUBSTRATES

The reactions of oxocarbenium ion intermediates play a significant role in the synthesis of various complex natural products and in the chemistry of carbohydrates.¹ Tetrahydrofuran and tetrahydropyran structural motifs are present in many bioactive molecules and other synthetic targets.² Given the importance of α -substituted tetrahydropyrans and tetrahydrofurans, the development of metal-catalyzed alkynylation of their oxocarbenium ion precursors would be of great advantage. We have begun to extend our metal-catalyzed alkynylation strategy³ to aliphatic oxocarbenium ions such as 3-4, 3-5, and 3-6 derived from acetals 3-1, 3-2, and 3-3 respectively (Scheme 3.1). For oxocarbenium ions with stereocenters such as 3-4, we envisioned the opportunity for diastereoselective alkynylation via a substratecontrolled reaction. For oxocarbenium ions 3-5 with no stereocenters, we envisioned the opportunity for enantioselective catalysis to control the stereoselectivity of nucleophilic addition. We proposed that oxocarbenium ions 3-6 would have little stereochemical bias in the addition of terminal alkynes. In this case, we envisioned catalyst control of diastereoselectivity. In this chapter, I present the development of zinc-catalyzed alkynylations of each of these types of oxocarbenium ions.

Scheme 3.1. Cyclic Aliphatic Oxocarbenium Ions as Intermediates for Enantioselective and Diastereoselective Alkynylation of Acetals

3.1 Alkynylation of 2-Acetoxytetrahydropyran

2-Acetoxytetrahydropyran **3-8** was selected as a model substrate for my initial investigations of the alkynylation of non-benzopyranyl acetals. Pyran **3-8** was prepared from dihydropyran **3-7** in 84% yield using acetic acid and pyridinium *p*-toluenesulfonate⁴ (Scheme 3.2). The application of the optimized reaction conditions for benzopyranyl substrates (Chapter 2) furnished the product in only 7% yield (Table 3-1, entry 1). Increasing the catalyst loading did not improve the yield of the alkynylation product (entry 2). With stoichiometric quantities of ZnBr₂, still only 17% yield of the product was observed (entry 3). With BF₃·OEt₂ as Lewis acid, the yield was 19% (entry 4). With no Lewis acid present, only trace amount of the product **3-9** was detected. In all these reactions, no starting material was recovered, suggesting a

competitive decomposition pathway for acetal **3-8**. Because no byproducts were observed by NMR, I propose that the mass balance is likely due to competitive E1 elimination of the acetal, leading to volatile pyran **3-7**. With this hypothesis in mind, I analyzed the reaction parameters in an effort to optimize the yield of ether **3-9**.

Scheme 3.2. Synthesis of 2-Acetoxytetrahydropyran Model Substrate

(.OOAc 	1.3 equiv = x mol% ZnBr 1.5 equiv DIF 1.3 equiv Lewis Et ₂ O, r. t., 24	$= -Ph$ $\xrightarrow{f_2} PEA$ \xrightarrow{O} \xrightarrow{Acid} $4h$ $3-9$	Ph + 0 3-7
	Entry	X mol %	Lewis	Yield of 3-9 $(\%)^a$
		OI ZIIDI?	Aciu	(/0)
	1	10	TESOTf	7
	2	20	TESOTf	8
	3	100	TESOTf	17
	4	10	$BF_3 \cdot OEt_2$	19
	5	10	-	trace
a)	Vields d	letermined b	hv ¹ H NMR g	nalvsis using

Table 3.1. Initial Screening for Alkynylation of 2-Acetoxytetrahydropyran

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard.

Catalyst screening was performed to identify an effective catalytic system for the alkynylation (Table 3.2). Copper (I) and zinc (II) salts were investigated with Lewis acids $BF_3 \cdot OEt_2$ and TMSOTf. Et_3N and *i*- Pr_2NEt were evaluated as bases for the reaction. Supporting ligands were evaluated for both copper and zinc (enries 2, 4, 9). No product formation or very low yield of the desired product was observed in all cases. With stoichiometric quantities of $ZnEt_2$ and TMSOTf, the yield of the desired product was 30% (entry 7).

	_OOAc	1.3 equiv ===- x mol% catalys 1.5 equiv base	-Ph st 0	Ph	
	3-8	equiv Lewis A Et ₂ O, r.t., 24 h	Acid 3-9		
Entry	Catalyst	Mol% of Catalyst	Lewis Acid	Base	Yield $(\%)^a$
1	CuI	20	$BF_3 \cdot OEt_2$	Et ₃ N	4
2	$CuI + L^b$	20	$BF_3 \cdot OEt_2$	Et ₃ N	1
3	[Cu(MeCN) ₄ PF ₆]	20	$BF_3 \cdot OEt_2$	DIPEA	0
4	[Cu(MeCN) ₄ PF ₆]				
4	$+ L^{b}$	20	$BF_3 \cdot OEt_2$	DIPEA	0
5	CuOTf·PhMe	20	TMSOTf	Et ₃ N	0
6	CuOt-Bu	20	TMSOTf	Et ₃ N	Trace
7	$ZnEt_2$	100	TMSOTf	DIPEA	30
8	$ZnEt_2$	20	TMSOTf	DIPEA	7
9	$ZnEt_2 + L_1^c$	20	TMSOTf	-	0
10	Zn(OTf) ₂	20	TMSOTf	DIPEA	1
11	ZnBr ₂	20	TMSOTf	DIPEA	1

Table 3.2. Catalyst Screen for Alkynylation of 2-Acetoxytetrahydropyran

 $^{1}\mathrm{H}$ determined by NMR a) Yields analysis using 1,3,5trimethoxybenzene as internal standard. b) L = 1,10-phenanthroline (24 mol %). c) L₁ = N-methylephedrine (24 mol %).

A solvent screen was conducted with both copper(I) and zinc(II) catalysts (Table 3.3). Under all conditions examined, copper(I) salts were ineffective catalysts for alkynylation (entries 2, 4, 6, and 8). In comparison, ZnBr₂ provided promising results in polar solvents – dichloromethane, tetrahydrofuran, and dioxane (entries 1, 7,

9-11). In these solvents, decreasing catalyst loading to 10 mol% did not reduce the yield of the cross-coupling product. The highest yield of 50% was observed with $ZnBr_2$ in dioxane (entry 10).

Table 3.3. Solvent Screen for Alkynylation of 2-Acetoxytetrahydropyran

0_0	x mol% catalyst Ac 1.5 equiv base	Ph
3-8	1.3 equiv BF_3 · OEt ₂ solvent, r. t., 24 h	3-9

Entry	Catalyst	X mol % of catalyst	Base	Solvent	Yield $(\%)^a$
1	ZnBr ₂	20	DIPEA	DCM	33
2	CuI +L ^b	20	Et ₃ N	DCM	0
3	ZnBr ₂	20	DIPEA	PhMe	8
4	CuI +L ^b	20	Et ₃ N	PhMe	3
5	ZnBr ₂	20	DIPEA	MeCN	5
6	CuI +L ^b	20	Et ₃ N	MeCN	0
7	ZnBr ₂	20	DIPEA	dioxane	45
8	CuI +L ^b	20	Et ₃ N	dioxane	0
9	ZnBr ₂	10	DIPEA	DCM	28
10	ZnBr ₂	10	DIPEA	dioxane	50
11	ZnBr ₂	10	DIPEA	THF	39

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) L = 1,10-phenanthroline (24 mol %).

Next, I screened a variety of soluble organic bases (Table 3.4). From the results of the screening, I concluded that a non-nucleophilic, hindered base proved to be optimal for the reaction (entries 1, 3, and 4). Less hindered Et₃N and DBU prevented product formation (entries 2 and 5). Our hypothesis that the addition of pyridine in the reaction mixture could increase yield by stabilization of the oxocarbenium ion intermediate was disproved. With the addition of pyridine, the yield of the desired cross-coupling product decreased to 4% (entry 6).

 Table 3.4. Base Screen for Alkynylation of 2-Acetoxytetrahydropyran

OOAd 3-8	1.3 equiv \implies Ph 10 mol% ZnBr ₂ 1.5 equiv base 1.5 equiv BF ₃ · OEt ₂ dioxane, r. t., 24 h	Ph 3-9
Entry	Base	Yield $(\%)^a$
1	DIPEA	50
2	Et ₃ N	0
3	PMP	48
4	Cy ₂ NEt	40
5	DBU	0
6	DIPEA + Pyridine	e ^b 4

a) Yields determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as internal standard. b) 1.0 equiv of pyridine was used.

In conclusion, using 2-acetoxytetrahydropyran as the model substrate, I obtained useful data about the conditions required for alkynylation of aliphatic cyclic acetals. I discovered that $ZnBr_2$ was an efficient catalyst for alkynylation, while

copper(I) catalysts provided no product or gave very low yields of the desired product. I concluded that $BF_3 \cdot OEt_2$ was an optimal Lewis acid for the reaction, and a non-nucleophilic base such as DIPEA was required for the alkynylation. The choice of solvent was of great importance. Polar solvents such as dioxane, tetrahydrofuran, and dichloromethane provided the product in higher yields. These requirements were considered in the development of the alkynylation of other cyclic acetals.

3.2 Diastereoselective Alkynylation of Tetrahydrofuranyl Acetals

In addition to enantioselective catalysis, catalyst control of diastereoselectivity in the addition of carbon nucleophiles to racemic oxocarbenium ions remains challenging. We proposed to examine cyclic acetals that have little stereochemical bias towards the incoming nucleophile and identify a catalyst that is capable of controlling the stereochemistry of the addition. The precedent in the literature suggested that five-membered cyclic acetals would be stereochemically unbiased towards the incoming nucleophile.^{2,5-6} Thus, catalyst-controlled stereoselective additions may be possible, and the cis or trans products could be formed selectively (Scheme 3.3).

Scheme 3.3. Proposed Diastereoselective Alkynylation of Tetrahydropyranyl Acetals

I decided to examine the racemic five-membered oxocarbenium ions first to confirm that the tetrahydrofuranyl acetals were stereochemically unbiased towards the addition of terminal alkynes. Three different routes for the substrate synthesis were proposed, and the desired acetal was prepared using these methods. The first route involved gold-catalyzed homogeneous oxidative carboheterofunctionalization of 4-pentenoic acid **3-13** with phenylboronic acid to give lactone **3-14**⁷ (Scheme 3.4). The subsequent reduction of the lactone with DIBAI-H and the acylation of the lactol **3-15** produced acetal **3-16** in 90% yield as a 1:1 ratio of diastereomers. Route B started with zinc-catalyzed coupling of acrolein **3-17** with acetyl bromide to give alkene **3-18** as a mixture of *E*- and *Z*-isomers (Scheme 3.5).⁸ Alkene **3-18** underwent chromium-catalyzed homoaldol coupling (Nozaki-Hiyama-Kishi reaction) with benzaldehyde to give vinyl acetate **3-19**.⁹ After the basic hydrolysis of intermediate **3-19**, lactol **3-20** was formed. Subsequent acylation produced desired acetal **3-21** as a 1.15:1 ratio of diastereomers. Route C started with 4-bromo-1-butene **3-22**, which was converted to

the Grignard reagent and phenylacetaldehyde was added to provide secondary alcohol **3-23** (Scheme 3.6).¹⁰ Ruthenium-catalyzed oxidative cleavage of **3-23** gave lactol **3-15**.¹¹ Subsequent acylation provided desired acetal **3-16** in a 1:1 ratio of diastereomers. Via these three routes, both phenyl- and benzyl acetals **3-16** and **3-21** were prepared efficiently.

Scheme 3.5. Substrate Synthesis. Route B.

Scheme 3.6. Substrate Synthesis. Route C

With the substrates in hand, I investigated the use of polar solvents under the previously optimized alkynylation conditions for model substrate **3-8** and determined the diastereomeric ratio of products. For acetal **3-21**, product formation was observed in good yields in dioxane, dichloromethane, and tetrahydrofuran in a 2:1 ratio of diastereomers (Table 3.5).

When the best conditions for acetal **3-21** were applied to acetal **3-16**, the desired product was formed in 81% yield in a 3:2 ratio of diasteremers (Scheme 3.7). Using 1D NOE experiments, I determined that the major diastereomer was the transproduct. Substrates **3-16** and **3-21** are slightly biased towards the addition of a terminal alkyne. However, we are optimistic that this slight stereochemical bias may be overcome by identification of the proper chiral catalyst.

Ph0 3-2	1.3 equiv ≡ 10 mol% Zr 1.5 equiv D 2.0 equiv BF solvent, r.t.	$= -Ph$ BF_2 $IPEA$ $f_3 \cdot OEt_2$ $, 24 h$ $3-24$	Ph
Entry	Solvent	Yield, $(\%)^a$	d. r. ^b
1	DCM	69	2:1
2	dioxane	84 (68) ^c	2:1
3	THF	76	2:1

Table 3.5. Solvent Screen for Alkynylation of Tetrahydropyranyl Acetal 3-21

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) The diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture. c) Isolated yield in parenthesis.

Scheme 3.7. Alkynylation of Tetrahydropyranyl Acetal 3-16

Within this project, I have developed efficient routes for the preparation of racemic acetal starting materials and demonstrated that zinc-catalyzed alkynylation occurs with little stereochemical bias. The future work on this project will include identification of a chiral catalyst capable of controlling the stereochemistry of the alkyne addition. This effort will require preparation of enantiopure tetrahydrofuranyl acetals. By using opposite enantiomers of the chiral catalyst, we anticipate that both

cis and trans products can be prepared in high enantioselectivity. Methoxy will also be investigated as a leaving group in addition to acetate.

3.3 Diastereoselective Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

To investigate six-membered cyclic acetals in the zinc-catalyzed alkynylation, I prepared 2-acetoxy-3-bromotetrahydropyran 3-26 from dihydropyran 3-7 using acetic acid and N-bromosuccinamide (Scheme 3.8).¹² I conducted a solvent screen this substrate under previously optimized conditions (Table with 3.6). Dichloromethane was the optimal solvent providing 75% yield of desired product 3-27 (entry 1). A single diastereomer formed in the reaction under all conditions examined. The anti diastereoselectivity can be explained by neighboring group participation of the bromine substituent, which ensures delivery of the alkyne nucleophile from the opposite face of the bromine (Scheme 3.9). Neighboring group participation of bromine is well precedented.¹³⁻²⁵ However, the only reported alkynylations of a bromonium ion derived from enol ether described with 2,3were dibromotetrahydropyran and trimethylsilyl lithium acetylide or ethynyl magnesium bromide.²⁶ Our route is more synthetically attractive, as the metal acetylide is catalytically formed in situ. This difference will enable greater functional group tolerance in our alkynylation.

Scheme 3.8. Synthesis of 2-Acetoxy-3-Bromotetrahydropyran

	1.3 equ 10 mol ⁴ 1.5 equ 1.5 equ 2.0 equu solvent	$ \begin{array}{c} JV = -Ph \\ \% \ ZnBr_2 \\ \text{tiv DIPEA} \\ \hline v \ BF_3 \ OEt_2 \\ t, r.t., 24 \ h \end{array} $	Ph
	(rac) -3-26	(rac) -3-27	
Entry	Solvent	Yield $(\%)^a$	d.r. ^b
1	DCM	75	1:0
2	Et ₂ O	31	1:0
3	dioxane	38	1:0
4	THF	12	1:0

Table 3.6. Solvent Screen for Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

a) Yields determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) The diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture.

Scheme 3.9. Neighboring Group Participation in Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

I also investigated the possibility of a one-pot bromination/alkynylation sequence (Scheme 3.10). However, the one-pot bromoalkynylation of dihydropyran **3-7** did not provide desired product. The lack of desired reaction may be due to the

reaction of *N*-bromosuccinimide with the alkyne or zinc acetylide. A possible solution for this problem would be to premix **3-7** and *N*-bromosuccinamide to form the bromonium ion before the addition of the alkyne.

Scheme 3.10. Alkynylation of Dihydropyran via Bromonium Ion

Preliminary investigation of alkyne scope of this reaction suggests that a wide variety of alkynes can be used. Aromatic, aliphatic, and silyl acetylenes underwent the alkynylation in moderate to good yields (Table 3.7). The reaction can tolerate ester and amide functional groups (entries 3 and 5). A single trans diastereomer was formed in all cases.

a) Conditions: Acetal **3-26** (0.30 mmol, 1.0 equiv), $ZnBr_2$ (0.030 mmol, 10 mol %), alkyne (0.39 mmol, 1.3 equiv), i-Pr₂NEt (0.45 mmol, 1.5 equiv), BF₃·OEt₂ (0.60 mmol, 2.0 equiv), DCM, r.t., 24 h. b) Isolated yields. c) The diastereomeric ratio was determined ¹H NMR analysis of the crude reaction mixture. d) 3.0 equiv of BF₃·OEt₂ was used. e) 4.0 equiv of BF₃·OEt₂ was used.

The products shown in Table 3.6 are useful intermediates in organic synthesis, as they contain both an alkyne and bromide for further functionalization.¹⁶

Halogenosugars serve as starting materials in the synthesis of other carbohydrate derivatives, including naturally occurring and synthetic deoxysugars, since the halogen can be easily removed by reducing agents²⁷ and photolysis.²⁸ Secondary bromide can also be functionalized using cross-coupling reactions.²⁹⁻³⁷ Halogenosugars also represent valuable precursors in synthesis of non-sugar natural products.¹⁶ For example, the products in Table 3.6 can react with *n*-BuLi to give cis and trans enynes.²⁶ This motif is present in natural products such as histrionicotoxin,³⁸ Laurencin,³⁹ and (-)-laurenine.⁴⁰

The future work on this project will include further optimization of reaction conditions to increase the reaction yields. The alkynylation of 2-acetoxy-3-chlorotetrahydropyran and 2-acetoxy-3-iodotetrahydropyran in a similar diastereoselective manner will be investigated. This methodology will be applied to functionalize glucals such as **3-42** using substrate-controlled stereoselective formation of bromoacetate **3-43** and then substrate-controlled alkynylation to give pyran **3-44** in high diastereoselectivity (Scheme 3.11). This strategy will constitute a powerful procedure for the construction of multi-substituted pyrans.

Scheme 3.11. Proposed Functionalization of Glucals

3.4 Preliminary Results for Alkynylation of Acyclic Acetals

To confirm that our alkynylation methodology can be applied to aliphatic acyclic oxocarbenium ions in the same manner, primary and secondary acetals were tested in the alkynylation reaction. The application of the optimized conditions for alkynylation did not produce desired product with primary acetals **3-45** and **3-47** (Scheme 3.12). In comparison, alkynylation of secondary acetal **3-49** furnished desired product **3-50** in 79% yield in Et₂O (Table 3.8). Thus, secondary acyclic acetals were good substrates for the alkynylation, affording products in good yields, while primary acetals did not react under the optimized reaction conditions. We hypothesize that this reactivity difference is due to the greater stability of the secondary oxocarbenium ion; with primary acetals **3-45** and **3-47**, the oxocarbenium ion may not form under these conditions.

Scheme 3.12. Alkynylation of Primary Acetals

OMe	1.3 equiv. \longrightarrow Ph 10 mol% ZnBr ₂ 1.5 equiv. BF ₃ · OEt ₂	Ph
о́Ме 3-49	1.5 equiv. DIPEA solvent, r. t., 24h	О́Ме 3-50
Entry	Solvent	Yield, $(\%)^a$
1	dioxane	53
2	Et ₂ O	79 (41) ^b
3	DCM	67
4	THF	65

 Table 3.8. Solvent Screen Alkynylation of Secondary Acyclic Acetals

a) Yields determined by ¹H NMR analysis using 1,3,5trimethoxybenzene as internal standard (0.10 mmol scale). b) Isolated yield in parenthesis (0.30 mmol scale).

3.5 Conclusion and Future Work

I have developed efficient conditions for the zinc-catalyzed alkynylation of cyclic nonbenzopyranyl acetals. Studying 2-acetoxytetrahydropyran as a model substrate, I obtained useful data regarding the conditions required for alkynylation. I discovered that zinc bromide was an efficient catalyst for alkynylation and $BF_3 \cdot OEt_2$ was a suitable Lewis acid for the reaction. I concluded that a hindered base such as DIPEA was required for alkynylation and that the choice of solvent had a major effect on the reaction. Acetate was chosen as the leaving group for the reaction based on previous results with chroman acetals. I also prepared tetrahydrofuranyl acetals which were tested under the optimized alkynylation conditions. Product formation was observed in good yields. I determined that substituted tetrahydrofuranyl acetals were

slightly stereochemically biased towards the addition of zinc acetylides. In the case of six-membered rings, the alkynylation of 3-bromo-2-acetoxypyran was performed in moderate to good yields, and a single diastereomer was formed in these reactions. The stereoselectivity can be explained by the participation of the neighboring bromine substituent via formation of a bromonium ion. The preliminary alkyne scope of this reaction is very promising.

Working with acyclic acetals, I discovered that secondary acyclic acetals underwent alkynylation in good yields, while primary acetals did not react under the optimized alkynylation conditions. This reactivity difference is likely due to the differing stabilities of their respective oxocarbenium ions.

These studies established several exciting directions for the future studies. For five-membered acetals, future work will include preparation of enantiomerically pure substrates and identification of a chiral catalyst that is capable of forming selectively a single cis or trans diastereomer. For six-membered acetals, the future work will include the functionalization of glucals using substrate-controlled stereoselective formation of bromoacetate and subsequent substrate-controlled alkynylation to give multisubstituted pyrans in high diastereoselectivity.

REFERENCES

(1) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective Thiourea-Catalyzed Additions to Oxocarbenium Ions" *J. Am. Chem. Soc.* **2008**, *130*, 7198.

(2) Stambasky, J.; Hocek, M.; Kocovsky, P. "C-Nucleosides: Synthetic Strategies and Biological Applications" *Chem. Rev.* **2009**, *109*, 6729.

(3) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" *J. Am. Chem. Soc.* **2011**, *133*, 17142.

(4) Iwanami, K.; Aoyagi, M.; Oriyama, T. "Iron(III) triflate-catalyzed onepot synthesis of acetal-type protected cyanohydrins from carbonyl compounds" *Tetrahedron Lett.* **2006**, *47*, 4741.

(5) Hainke, S.; Singh, I.; Hemmings, J.; Seitz, O. "Synthesis of C-Aryl-Nucleosides and O-Aryl-Glycosides via Cuprate Glycosylation" *J. Org. Chem.* 2007, 72, 8811.

(6) Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N.; Hocek, M. "Modular Synthesis of 5-Substituted Thiophen-2-yl C-2'-Deoxyribonucleosides" *J. Org. Chem.* **2008**, *73*, 3798.

(7) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. "Homogeneous Gold-Catalyzed Oxidative Carboheterofunctionalization of Alkenes" *J. Am. Chem. Soc.* **2010**, *132*, 1474.

(8) Lombardo, M.; Morganti, S.; Trombini, C. "3-Bromopropenyl Esters in
 Organic Synthesis: Indium- and Zinc-Mediated Entries to Alk-1-ene-3,4-diols[†]" J.
 Org. Chem. 2003, 68, 997.

(9) Kang, J. Y.; Connell, B. T. "Chromium-Catalyzed Homoaldol Equivalent Reaction Employing a Nucleophilic Propenyl Acetate" *J. Am. Chem. Soc.* **2010**, *132*, 7826.

(10) Voelker, T.; Xia, H.; Fandrick, K.; Johnson, R.; Janowsky, A.; Cashman, J. R. "2,5-Disubstituted tetrahydrofurans as selective serotonin re-uptake inhibitors" *Bioorg. Medicinal Chem.* **2009**, *17*, 2047.

(11) Yang, D.; Zhang, C. "Ruthenium-Catalyzed Oxidative Cleavage of Olefins to Aldehydes" *J. Org. Chem.* **2001**, *66*, 4814.

(12) Shelton, J. R.; Cialdella, C. "Reaction of N-Bromosuccinimide with Dihydropyran" *J. Org. Chem.* **1958**, *23*, 1128.

(13) Segan, D.; Vukicevic, R. D.; Segan, S.; Sojic, N.; Buriez, O.; Manojlovic, D. "Kinetic investigations of the electrochemical bromination of peracetylated d-glucal in organic solvents" *Electrochim. Acta* **2011**, *56*, 9968.

(14) Boschi, A.; Chiappe, C.; De Rubertis, A.; Ruasse, M. F. o. "Substituent Dependence of the Diastereofacial Selectivity in Iodination and Bromination of Glycals and Related Cyclic Enol Ethers" *J. Org. Chem.* **2000**, *65*, 8470.

(15) Čolović, M.; Vukićević, M.; Šegan, D.; Manojlović, D.; Sojic, N.;
 Somsák, L.; Vukićević, R. D. "Electrochemical Bromination of Peracetylated Glycals"
 Adv. Synth. Catal. 2008, 350, 29.

(16) Damljanovic, I.; Stevanovic, D.; Vukicevic, M.; Vukicevic, R. D.
"Electrochemical bromochlorination of peracetylated glycals" *Carbohydr. Res.* 2011, 346, 2683.

(17) Damljanovic, I.; Vukicevic, M.; Manojlovic, D.; Sojic, N.; Buriez, O.;
 Vukicevic, R. D. "Electrochemical bromination of peracetylated d-glucal: Effect of
 DMSO on chemoselectivity" *Electrochim. Acta* 2010, *55*, 965.

(18) Denmark, S. E.; Burk, M. T.; Hoover, A. J. "On the Absolute Configurational Stability of Bromonium and Chloronium Ions" *J. Am. Chem. Soc.* **2010**, *132*, 1232.

(19) Gautier, F. o.-M.; Djedani-Pilard, F.; Grandjean, C. "The iodosulfonamidation of peracetylated glycals revisited: access to 1,2-di-nitrogenated sugars" *Carbohydr. Res.* **2011**, *346*, 577.

(20) Gomez, A. M.; Pedregosa, A.; Valverde, S.; Lopez, J. C. "A synthetic route to pyranoid epoxy-exo-glycals from D-glucose" *Arkivoc* **2011**, 33.

(21) Nagorski, R. W.; Brown, R. S. "Electrophilic addition of bromine to olefins in the presence of nucleophilic trapping anions. Implications for the lifetimes of bromonium ion intermediates produced from electrophilic bromination of olefins in methanol" *J. Am. Chem. Soc.* **1992**, *114*, 7773.

(22) Qian, Y.; Feng, J.; Parvez, M.; Ling, C.-C. "Unexpected Anomeric Selectivity of a 1-C-Arylglycal Donor in Kdo Glycoside Synthesis" *J. Org. Chem.* **2011**, 77, 96.

(23) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. "New method for chloroamidation of olefins. Application in the synthesis of N-glycopeptides and anticancer agents" *Org. Lett.* **2007**, *9*, 5171.

(24) Sels, B.; Levecque, P.; Brosius, R.; De Vos, D.; Jacobs, P.; Gammon,
D. W.; Kinfe, H. H. "A New Catalytic Route for the Oxidative Halogenation of Cyclic
Enol Ethers using Tungstate Exchanged on Takovite" *Adv. Synth. Catal.* 2005, *347*, 93.
(25) Yousuf, S. K.; Hussain, A.; Sharma, D. K.; Wani, A. H.; Singh, B.; Mukherjee, D.; Taneja, S. C. "Stereoselective Conversion of Dihydropyran and Glycals to 1-Azido-2-halo Derivatives Using NIS/NBS-TMSN(3)" *J. Carbohydr. Chem.* **2011**, *30*, 61.

(26) Karadogan, B.; Edwards, N.; Parsons, P. J. "A novel synthesis of transenynes from substituted tetrahydropyrans" *Tetrahedron Lett.* **1999**, *40*, 5931.

(27) Bermejo Gonzalez, F.; Lopez Barba, A.; Ruano Espina, M. "Efficient Preparation of a Valuable Intermediate in the Synthesis of (−)-Swainsonine" *Bull. Chem. Soc. Jap.* **1992**, *65*, 567.

(28) Binkley, R. W.; Bankaitis, D. "Photochemically Based Synthesis of Deoxy Sugars. Synthesis of 2-Deoxy-D-Arabino-Hexopyranose (2-Deoxy-D-Glucose) and Several of Its Derivatives from 3,4,6-Tri-O-Acetyl-D-Glucal" *J. Carbohydr. Chem.* **1982**, *1*, 1.

(29) Li, Z.; Jiang, Y.-Y.; Fu, Y. "Theoretical Study on the Mechanism of Ni-Catalyzed Alkyl–Alkyl Suzuki Cross-Coupling" *Chem. Eur. J.* **2012**, *18*, 4345.

(30) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. "Alkylboronic Esters from Copper-Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides" *Angew. Chem., Int. Ed.* **2012**, *51*, 528.

(31) Glasspoole, B. W.; Crudden, C. M. "Cross-coupling: The final frontier" *Nat Chem* **2011**, *3*, 912.

(32) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X. "Cross-Coupling of Nonactivated Alkyl Halides with Alkynyl Grignard Reagents: A Nickel Pincer Complex as the Catalyst" *Angew. Chem., Int. Ed.* **2011**, *50*, 11777.

(33) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. "Nickel-Catalyzed Negishi Cross-Coupling Reactions of Secondary Alkylzinc Halides and Aryl Iodides" *Org. Lett.* 2011, *13*, 1218.

(34) Saito, B.; Fu, G. C. "Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Halides at Room Temperature" *J. Am. Chem. Soc.* 2007, *129*, 9602.

(35) Strotman, N. A.; Sommer, S.; Fu, G. C. "Hiyama Reactions of Activated and Unactivated Secondary Alkyl Halides Catalyzed by a Nickel/Norephedrine Complex" *Angew. Chem., Int. Ed.* **2007**, *46*, 3556.

(36) González-Bobes, F.; Fu, G. C. "Amino Alcohols as Ligands for Nickel-Catalyzed Suzuki Reactions of Unactivated Alkyl Halides, Including Secondary Alkyl Chlorides, with Arylboronic Acids" *J. Am. Chem. Soc.* **2006**, *128*, 5360.

(37) Powell, D. A.; Maki, T.; Fu, G. C. "Stille Cross-Couplings of Unactivated Secondary Alkyl Halides Using Monoorganotin Reagents" *J. Am. Chem. Soc.* **2004**, *127*, 510.

(38) Carey, S. C.; Aratani, M.; Kishi, Y. "A total synthesis of d,1histrionicotoxin" *Tetrahedron Lett.* **1985**, *26*, 5887.

(39) Murai, A.; Murase, H.; Matsue, H.; Masamune, T. "The synthesis of (±)-Laurencin" *Tetrahedron Lett.* 1977, *18*, 2507.

(40) Overman, L. E.; Thompson, A. S. "Total synthesis of (-)-laurenyne. Use of acetal-initiated cyclizations to prepare functionalized eight-membered cyclic ethers" *J. Am. Chem. Soc.* **1988**, *110*, 2248.

Appendix A

EXPERIMENTAL

Reactions were performed either in a N₂-atmosphere glovebox in oven-dried 1dram vials with Teflon-lined caps or in oven-dried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N₂. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63µm, 60Å). Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories and used as received with the following exceptions: toluene, dioxane, CH₂Cl₂, THF and Et₂O were dried by passing through drying columns.¹ Toluene and dioxane were then degassed by sparging with N2. Toluene was stored over activated 4Å MS in a N2-atmosphere glovebox. MeCN, Et₃N, (*i*-Pr)₂NEt, PMP, Cy₂NEt, pyridine, and DBU were distilled from CaH₂. TMSOTf, TESOTf, TIPSOTf, and TBSOTf were distilled before use and stored under N₂. CDCl₃ was stored over oven-dried potassium carbonate. Alkynes were degassed before use by either freeze-pump-thaw cycles or sparging with N2. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 400 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.16). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded

onto a NaCl plate. The mass spectral data were obtained at the University of Delaware spectrometry facility. Known lactone **3-14**,² lactols **2-10**³⁻⁴ and **3-20**,⁵ and acetals **3-8**,⁶ **3-26**,⁷ and **3-49**⁸ were prepared as described in the literature.

Preparation of Chroman Acetal Substrates

2-Methoxychroman⁹

This procedure was adopted from that reported in the literature.¹⁰ The solution of **2-9** (5.0 g, 33.7 mmol, 1.0 equiv) in toluene (0.6 M, 60 mL) was cooled to -78 °C and DIBAI-H (1.2 M, 36.5 mL, 43.8 mmol, 1.3 equiv) was added slowly via syringe. The reaction mixture was stirred for 4 hours at -78 °C and then allowed to warm to 0 °C and stirred for 15 min. The reaction was diluted with EtOAc (150 mL) and quenched with H₂O (150 mL) and vigorously stirred and filtered through Celite. The layers were separated and the aqueous layer was extracted with EtOAc (2 x 150 mL). The organic layers were combined and washed with brine (100 mL) and then dried with MgSO₄, filtered, and concentrated. This material was taken forward without purification.

The crude **2-10** was redissolved in MeOH (60 mL, 0.6 M). Trifluoroacetic acid (77 μ L, 1.0 mmol, 0.03 equiv) was added, and the reaction was stirred for 3 h at room temperature. The reaction was quenched with K₂CO₃ (233 mg, 1.7 mmol, 0.05 equiv), filtered and concentrated under reduced pressure. Crude product was purified by silica gel chromatography (2 - 5% EtOAc in hexanes) to give 2-methoxychroman **2-5** (2.50 g, 63%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, *J*=7.6 Hz, 1 H), 7.03 (d, *J*=7.6 Hz, 1 H), H), 6.92 - 6.87 (m, 2 H), 5.15 (t, *J*=2.7 Hz, 1 H), 3.50 (s, 3 H), 3.02 - 2.90 (m, 1 H), 2.69 - 2.60, (m, 1 H), 2.11 - 1.90 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃)

δ 152.0, 129.4, 127.4, 122.7, 120.8, 117.1, 98.2, 55.8, 26.4, 20.4; FTIR (NaCl/thin film) 2936, 1583, 1488, 1458, 1374, 1275, 1213, 1184, 1106, 1060, 999, 910, 755cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₀H₁₂O₂: 164.0832, found: 164.

2-Acetoxychroman

This procedure was adopted from that reported in the literature.¹¹ Pyridine (1.2 mL, 14.9 mmol, 2.0 equiv) was added to a solution of 2-hydroxychroman (**2-10**, 1.12 g, 7.46 mmol, 1.0 equiv) in acetic anhydride (4.0 mL, 42.4 mmol, 5.7 equiv). The reaction mixture was stirred at 100 °C for 3 hours and then cooled to room temperature. H₂O (5 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with Et₂O (5 mL×3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. The crude product was purified by silica gel chromatography (10% Et₂O/hexanes with 2% Et₃N) to give 2-acetoxychroman **2-7** (1.08 g, 75%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, *J*=7.6 Hz, 1 H), 7.08 (d, *J*=7.6 Hz, 1 H), 6.96 - 6.85 (m, 2 H), 6.53 (t, *J*=2.3 Hz, 1 H), 2.99 (ddd, *J*=16.9, 12.6, 6.1 Hz, 1 H), 2.71 (ddd, *J*=15.8, 6.1, 2.9 Hz, 1 H), 2.17 – 1.97 (m, 5 H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 151.6, 129.4, 127.7, 121.8, 121.5, 117.2, 90.3, 25.1, 21.4, 19.7; FTIR (NaCl/thin film) 2939, 2853, 1751, 1491, 1458, 1244, 1207, 1174, 1119, 1049, 1004, 955, 916, 757 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₁H₁₂O₃: 192.0781, found 192.

Pivaloyl chloride (2.5 mL, 20 mmol, 2.0 equiv) was added to a solution of 2hydroxychroman (**2-10**, 1.5 g, 10 mmol, 1.0 equiv) in pyridine (3 mL, 3.3 M). The reaction mixture was stirred at 100 °C for 3 hours and then cooled to room temperature. H₂O (10 mL) was added. The layers were separated and the aqueous layer was extracted with Et₂O (10 mL×3). Combined organic layers were dried with MgSO₄, filtered, and concentrated. Crude product was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give 2-pivaloyloxychroman **2-11** (1.21g, 52%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.16 - 7.04 (m, 2 H), 6.95 - 6.83 (m, 2 H), 6.55 - 6.47 (t, *J*=0.6 Hz, 1 H), 2.98 (ddd, *J*=16.4, 12.9, 6.3 Hz, 1 H), 2.72 (ddd, *J*=16.4, 15.8, 2.5 Hz, 1 H), 2.18 - 1.97 (m, 2 H), 1.15 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 151.7, 129.3, 127.7, 121.8, 121.4, 117.2, 90.2, 39.1, 27.1, 25.2, 19.9; FTIR (thin film) 2973, 2935, 1743, 1585, 1492, 1481, 1459, 1275, 1227, 1181, 113, 1114, 1048, 1033, 944, 914, 755 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₄H₁₈O₃: 234.1251, found: 234.

2-Benzoyloxychroman

Pyridine (120 μ L, 1.47 mmol, 2.0 equiv) and DMAP (8.9 mg, 0.073 mmol, 0.10 equiv) were added to a solution of 2-hydroxychroman (**2-10**, 110 mg, 0.733 mmol, 1.0

equiv) in CH₂Cl₂ (2 mL, 0.4 M). The reaction mixture was cooled to 0 °C in an ice-water bath and BzCl (102 μ L, 0.88 mmol, 1.2 equiv) was added via syringe. The reaction was warmed to room temperature and stirred for 3 days. H₂O (7 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc (10 mL×3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Purification by silica gel chromatography gave 2-benzoyloxychroman **2-12** (167 mg, 90%)¹² as a white solid (m. p. 99-100 °C): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J*=7.3 Hz, 2 H), 7.63 - 7.50 (m, 1 H), 7.48 - 7.36 (m, 2 H), 7.14 (m, 2 H), 7.00 -6.87 (m, 2 H), 6.80 (br s, 1 H), 3.25 - 3.07 (m, 1 H), 2.82 (dd, *J*=16.3, 3.4 Hz, 1 H), 2.38 - 2.24 (m, 1 H), 2.10 - 2.23 (m, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.4, 151.7, 133.5, 129.8, 129.4, 129.3, 128.5, 127.8, 121.8, 121.6, 117.3, 90.9, 24.3, 19.9; FTIR (NaCl/thin layer) 3736, 2923, 1729, 1488, 1262, 1220, 1084, 1008, 700. cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₆H₁₄O₃: 254.0938, found: 254.

2-tert-Butyloxycarbonyloxychroman

Pyridine (220 µL, 2.76 mmol, 2.0 equiv) and DMAP (16.9 mg, 0.138 mmol, 0.10 equiv) were added to a solution of 2-hydroxychroman (**2-10**, 207 mg, 1.38 mmol, 1.0 equiv) in CH₂Cl₂ (3 mL, 0.5 M). The reaction mixture was cooled to 0 °C in an ice-water bath, and Boc₂O (361 mg, 1.65 mmol, 1.2 equiv) was added. The reaction was then warmed to room temperature and stirred for 3 days. H₂O (5 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc (5 mL×3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Purification by silica gel chromatography (5% Et₂O/hexanes with 2%

Et₃N) gave chroman **2-13** (273mg, 80%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, *J*=7.6 Hz, 1 H), 7.07 (d, *J*=7.6 Hz, 1 H), 6.91 (t, *J*=7.6 Hz, 2 H), 6.36 (t, *J*=2.8 Hz, 1 H), 3.09 - 2.95 (m, 1 H), 2.76 - 2.63 (m, 1 H), 2.23 - 2.11 (m, 1 H), 2.10 - 1.97 (m, 1 H), 1.49 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 151.5, 129.4, 127.7, 121.9, 121.5, 117.2, 92.7, 83.0, 27.9, 25.2, 19.7; FTIR (NaCl/thin film) 2980, 2935, 1751, 1585, 1491, 1458, 1369, 1286, 1215, 1160, 1105, 1050, 1013, 917, 891, 843, 755 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₄H₁₈O₄: 250.1200, found 250.

Alkynylation of Chroman Acetals

General Method. In a N₂-atmosphere glovebox, ZnBr₂ (6.8 mg, 0.030 mmol, 10 mol%) was weighed into a 1-dram vial, and then Et₂O (1.5 mL, 0.2 M), alkyne (0.39 mmol, 1.3 equiv), *i*-Pr₂NEt (75 μ L, 0.45 mmol, 1.5 equiv) and 2-acetoxychroman (**2-7**, 57.6 mg 0.30 mmol, 1.0 equiv) were added. The vial was capped with a Teflon-lined septum cap and removed from the glovebox. TESOTf (90 μ L, 0.39 mmol, 1.3 equiv) was added via syringe, and the reaction mixture was stirred for 24 h at room temperature. The mixture was then diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was rinsed with Et₂O (10 mL). The filtrate was concentrated and purified by silica gel chromatography.

Chroman 2-6. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5% Et_2O /hexanes with 2% Et_3N) to give compound **2-6** (67.1 mg, 95%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.41 (m, 2 H), 7.37 - 7.27 (m, 3 H), 7.18 - 7.05 (m, 2 H), 6.94 - 6.86 (m, 2 H), 5.17 (dd, J=6.8, 3.3 Hz, 1 H), 3.05 (dt, J=16.5, 6.8 Hz, 1 H), 2.86 (dt, J=16.5, 6.8 Hz, 1 H), 2.18 - 2.35 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 132.0, 129.7, 128.7, 128.4, 127.5, 122.4, 121.7, 120.8, 117.3, 87.1, 85.5, 66.2, 28.1, 23.4; FTIR (NaCl/thin layer) 3858, 3750, 3060, 2932, 2846, 2231, 1653, 1559, 1488, 1456, 1228, 1112, 990, 752, 690 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₇H₁₄O: 234.1040, found: 234.

Chroman 2-16. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound 2-16 (61.1 mg, 88%) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.10 (t, *J*=7.6 Hz, 1 H), 7.05 (d, *J*=7.6 Hz, 1 H), 7.14 - 7.02 (m, 2 H), 6.90 - 6.83 (m, 2 H), 4.88 (dd, *J*=7.6, 3.0 Hz, 1 H), 2.99 - 2.89 (m, 1 H), 2.85 - 2.75 (m, 1 H), 2.25 - 2.04 (m, 2 H), 0.17 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 129.6, 127.4, 121.6, 120.8, 117.3, 103.4, 90.5, 66.2, 28.2, 23.6, -0.1; FTIR (NaCl/thin film) 3853, 2959, 2900, 2181, 1583, 1488, 1457, 1250, 1229, 1114, 1059, 993, 958, 844, 756, 668 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₄H₁₈OSi: 230.1122, found: 230.

Chroman 2-18. Prepared via General Method described above. Crude material was purified by silica gel chromatography (2% Et_3N /hexanes) to give compound **2-18** (66.1 mg, 91%) as a light

yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.14 - 7.03 (m, 2 H), 6.90 - 6.82 (m, 2 H), 4.93 - 4.86 (m, 1 H), 2.95 (dt, *J*=16.4, 6.4 Hz, 1 H), 2.80 (dt, *J*=16.4, 6.4 Hz, 1 H), 2.26 - 2.12 (m, 3 H), 2.11 - 2.00 (m, 1 H), 1.54 - 1.44 (m, 2 H), 1.39 - 1.18 (m, 6 H), 0.87 (t, *J*=7.0 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 129.6, 127.4, 121.7, 120.7, 117.3, 86.6, 78.2, 66.1, 31.4, 28.62, 28.59, 28.4, 23.5, 22.7, 18.9, 14.2; FTIR (NaCl/thin film) 3853, 2955, 2931, 2857, 2265, 1488, 1457, 1230, 1066, 991, 752, 668 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₇H₂₂O: 242.1666, found: 242.

82%)¹³ as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.07 (t, *J*=8.0 Hz, 1 H), 7.03 (d, *J*=8.0 Hz, 1 H), 6.89 - 6.80 (m, 2 H), 4.93 - 4.83 (m, 1 H), 2.99 - 2.88 (m, 1 H), 2.84 - 2.73 (m, 1 H), 2.69 - 2.58 (m, 1 H), 2.22 - 2.12 (m, 1 H), 2.11 - 2.00 (m, 1 H), 1.96 - 1.84 (m, 2 H), 1.76 - 1.46 (m, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 129.6, 127.4, 121.7, 120.6, 117.3, 90.7, 77.7, 66.1, 33.8, 30.2, 28.5, 25.0, 23.6; FTIR (NaCl/thin film) 3853, 3750, 2958, 2869, 2237, 1653, 1559, 1506, 1488, 1457, 1229, 1065, 991, 753, 668 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₆H₁₈O: 226.1353, found: 226.

Asymmetric Alkynylation of Chroman Acetals

General Method. In a N₂-atmosphere glovebox, ZnOTf₂ (3.6 mg, 0.010 mmol, 10 mol%) was weighed into a 1-dram vial. Ligand (0.012 mmol, 12 mol%) and then Et₂O (0.5 mL) were added. The vial was capped with a Teflon-lined cap. The mixture was stirred for 1 h at room temperature in the glovebox. The vial was then opened, and phenylacetylene (13 μ L, 0.13 mmol, 1.3 equiv), *i*-Pr₂NEt (25 μ L, 0.15 mmol, 1.5 equiv), and 2-acetoxychroman (2-7, 19.2 mg 0.10 mmol, 1.0 equiv) were added. The vial was capped with a Teflon-lined septum cap and removed from the glovebox. TESOTf (30 μ L, 0.13 mmol, 1.3 equiv) was added via syringe, and the reaction mixture was stirred for 24 h at room temperature. The mixture was then diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was rinsed with Et₂O (10 mL). The filtrate

was concentrated, purified using preparatory TLC and submitted for analysis on chiral HPLC.

Alkynylation of 2-Acetoxytetrahydropyran

In a N₂-atmosphere glovebox, ZnBr₂ (7.9 mg, 0.035 mmol, 10 mol%) was weighed into a 1-dram vial, and then dioxane (1.7 mL, 0.2 M), phenylacetylene (49 μ L, 0.45 mmol, 1.3 equiv), *i*-Pr₂NEt (86 μ L, 0.52 mmol, 1.5 equiv), 2-acetoxytetrahydropyran **3-8** (50 mg, 0.35 mmol, 1.0 equiv) and BF₃·OEt₂ (88 μ L, 0.69 mmol, 2.0 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was removed from the box, and the mixture was diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was then rinsed with Et₂O (10 mL). The filtrate was concentrated and purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give pyran **3-9** (34 mg, 53%).¹⁴ The spectral data for this compound match that reported in the literature.¹⁵

Preparation of Tetrahydropyranyl Acetals

2-Acetoxy-5-Benzyl-Tetrahydropyran

A solution of **3-14**² (67.4 mg, 0.38 mmol, 1.0 equiv) in toluene (1.9 mL, 0.2 M) was cooled to -78 $^{\circ}$ C and DIBAl-H (1.2 M, 414 µL, 0.497 mmol, 1.3 equiv) was added slowly via syringe. The reaction mixture was stirred for 4 hours at -78 $^{\circ}$ C. The reaction

was then quenched with methanol (500 μ L) and stirred for 30 minutes at -78 °C. A saturated solution of Rochelle's salt (10 mL) was added, and the reaction mixture was warmed to room temperature and stirred overnight. The layers were separated and the aqueous layer was extracted with Et₂O (10 mL×3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. This material was taken forward without purification.

The crude 3-15 was redissolved in CH_2Cl_2 (2 mL, 0.2 M). Acetic anhydride (0.5 mL, 5.30 mmol, 13.9 equiv) and pyridine (0.5 mL, 6.20 mmol, 16.3 equiv) were added to the solution, and the reaction mixture was stirred at 60 °C overnight. The solution was cooled to room temperature and H₂O (5 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc (5 mL \times 3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Excess acetic anhydride and pyridine were removed under high vacuum. Crude product was purified by silica gel chromatography to give 2-acetoxy-5-benzyl-tetrahydropyran **3-16** (51.9 mg, 62 %) as a 1:1 mixture of diastereomers as a light yellow oil: ¹H NMR (400 MHz, CDCl₃, both diastereomers) δ 7.19 - 7.36 (m, 10 H), 6.36 - 6.31 (m, 1 H), 6.26 (d, J=2.8 Hz, 1 H), 4.52 (quin, J=6.3 Hz, 1 H), 4.35 (dq, J=9.1, 6.3 Hz, 1 H), 3.08 (dd, J=13.5, 6.0 Hz, 1 H), 2.99 (dd, J=13.5, 6.0 Hz, 1 H), 2.85 (dd, J=13.5, 7.0 Hz, 1 H), 2.77 (dd, J=13.5, 7.0 Hz, 1 H), 2.10 - 1.62 (m, 14 H); ¹³C NMR (101 MHz, CDCl₃, both diastereomers) & 170.74, 170.68, 138.1, 137.9, 129.54, 129.53, 128.46, 126.6, 126.5, 99.3, 99.0, 82.7, 80.9, 42.9, 41.5, 32.9, 31.7, 28.4, 27.7, 21.6, 21.5; FTIR (NaCl/thin film) 3062, 3028, 2941, 1743, 1604, 1497, 1454, 1375, 1240, 1101, 1009, 959, 854, 753, 701 cm^{-1} .

2-Acetoxy-5-Phenyl-Tetrahydropyran

Acetic anhydride (0.5 mL, 5.30 mmol, 7.9 equiv) and pyridine (0.5 mL, 6.20 mmol, 9.3 equiv) were added to a solution of 2-hydroxy-5-phenyl-tetrahydropyran⁵ (3-**20**, 110 mg, 0.67 mmol, 1.0 equiv) in CH_2Cl_2 (3.4 mL, 0.2 M), and the reaction mixture was stirred at 60 °C overnight. The solution was cooled to room temperature and H₂O (10 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc (10 mL \times 3). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Excess acetic anhydride and pyridine were removed under high vacuum. Crude product was purified by silica gel chromatography (10% Et_2O /hexanes with 2% Et_3N) to give 2-acetoxy-5-benzyl-tetrahydropyran 3-**21**(124.2 mg, 90%) as a 1.15:1 mixture of diastereomers as a light yellow oil: ¹H NMR (400 MHz, CDCl₃, both diastereomers) δ 7.39 - 7.32 (m, 10 H), 6.54 (d, J=4.8 Hz, 1 H), 6.42 (br. s., 1 H), 5.27 (t, J=7.0 Hz, 1 H), 5.10 (dd, J=10.1, 6.3 Hz, 1 H), 2.49 (dq, J=12.2, 7.9 Hz, 1 H), 2.24 - 2.42 (m, 2 H), 2.16 - 2.23 (m, 2 H), 1.94 - 2.14 (m, 8 H), 1.88 (dq, J=15.47, 5.79 Hz, 1 H); 13 C NMR (101 MHz, CDCl₃, both diastereomers) δ 170.7, 170.6, 142.3, 141.8, 128.6, 128.5, 127.74, 127.69, 126.1, 125.7, 99.3, 99.1, 83.8, 81.4, 33.7, 32.4, 32.1, 31.8, 21.7, 21.6; FTIR (NaCl/thin film) 3031, 2990, 2951, 1744, 1375, 1237, 1165, 1097, 1010, 962, 883, 849, 760, 701 cm⁻¹.

This procedure was adopted from that reported in the literature.¹⁶⁻¹⁷ Magnesium turnings (196 mg, 8.05 mmol, 1.2 equiv) were placed in a 50-mL three-neck roundbottomed flask and dried with a heat gun under vacuum. The flask was cooled to room temperature, and dry Et₂O (6.7 mL, 1.0 M), 1,2-dibromoethane (9 μ L, 0.10 mmol, 0.015 equiv), and a small crystal of iodine were added to the flask. The mixture was stirred for 30 minutes and 4-bromo-1-butene (3-22, 680µL, 6.71 mmol, 1.0 equiv) was added slowly via syringe. The reaction mixture turned green and started to boil. The mixture was stirred at 45 °C for 3 hours, and the green color disappeared. The reaction mixture was then cooled to 0 °C in an ice-water bath and phenylacetaldehyde (780 µL, 6.71 mmol, 1.0 equiv) was added slowly via syringe. The reaction mixture was stirred for 2 hours at room temperature and then quenched with H₂O (10 mL) and then 1.0 M HCl (5 mL). The magnesium salts dissolved. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (15 mL×3). The organic layers were washed with sat. Na₂CO₃ (40 mL) and then water (40 mL). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Crude product was purified by silica gel chromatography (20% Et₂O/hexanes) to give 3-23 (970 mg, 82%) as a light yellow oil. The spectral data for this compound match that reported in the literature.¹⁶⁻¹⁷

2-Acetoxy-5-Benzyl-Tetrahydropyran

RuCl₃ $3H_2O$ (8.5 mg, 0.040 mmol, 0.035 equiv) was added to a solution of **3-23** (200 mg, 1.14 mmol, 1.0 equiv) in MeCN (5.7 mL, 0.2 M). Then H₂O (1.0 mL) and NaIO₄ (485.5 mg, 2.27 mmol, 2.0 equiv) were added. The reaction mixture was stirred for 1 hour at room temperature. Sat. Na₂S₂O₃ (5 mL) and then H₂O (5 mL) were added to dissolve all precipitates. The layers were separated and the aqueous layer was extracted with Et₂O (15 mL×3) and washed with brine (40 mL). The combined organic layers were dried with MgSO₄, filtered, and concentrated. Crude product was taken forward without purification. The procedure for acylation of **3-15** is the same as described above.

Alkynylation of Tetrahydrofuran Acetals

General Method. In a N₂-atmosphere glovebox, ZnBr₂ (6.8 mg, 0.030 mmol, 10 mol%) was weighed into a 1-dram vial, and then dioxane (1.5 mL, 0.2 M), phenylacetylene (43 μ L, 0.39 mmol, 1.3 equiv), *i*-Pr₂NEt (75 μ L, 0.45 mmol, 1.5 equiv), acetal (0.30 mmol, 1.0 equiv) and BF₃ OEt₂ (76 μ L, 0.60 mmol, 2.0 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was removed from the glovebox, and the mixture was diluted

with Et_2O (1.5 mL) and filtered through a plug of silica gel, which was rinsed with Et_2O (10 mL). The filtrate was concentrated and purified by silica gel chromatography.

Tetrahydropyran 3-24. Prepared via General Method described above. ¹H NMR analysis of the crude material showed that the ratio of diastereomers was 2:1.¹⁸ Crude material was purified by silica gel chromatography (2% Et₃N/hexanes) to give compound 3-24 (Total: 50.7 mg, 68%; *Trans*-3-24: 16.3 mg, 22 %; *Cis*-3-24: 7.2 mg, 10 %; mixture of *cis*- and *trans*-3-24: 27.2 mg, 36%).

Trans-**3-24**: ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, *J*=6.4, 2.9 Hz, 2 H), 7.40 - 7.25 (m, 8 H), 5.21 (t, *J*=7.2 Hz, 1 H), 5.14 (t, *J*=6.4 Hz, 1 H), 2.59 - 2.49 (m, 1 H), 2.43 (dtd, *J*=12.4, 7.5, 7.5, 5.1 Hz, 1 H), 2.30 - 2.19 (m, 1 H), 1.91 (dq, *J*=12.4, 7.5 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 131.9, 128.48, 128.45, 128.37, 127.5, 125.9, 122.9, 89.3, 84.8, 80.6, 69.3, 34.6, 34.0; LCMS (CI+) [M]⁺ calculated for C₁₈H₁₆O: 248.1196, found: 248.

Cis-**3-24**: ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.43 (m, 4 H), 7.39 - 7.27 (m, 6 H), 5.05 – 4.97 (m, 2 H), 2.46 - 2.31 (m, 2 H), 2.30 - 2.20 (m, 1 H), 2.14 - 2.03 (m, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 131.7, 128.34, 128.33, 128.29, 127.4, 126.1, 122.9, 89.4, 85.0, 82.1, 69.5, 34.9, 34.0; LCMS (CI+) [M]⁺ calculated for C₁₈H₁₆O: 248.1196, found: 248.

FTIR (NaCl/thin film, both diastereomers) 2948, 2871, 1598, 1490, 1443, 1335, 1079, 1045, 755, 691 cm⁻¹.

diastereomers was 3:2. Crude material was purified by silica gel chromatography (3% Et₂O/hexanes with 2% Et₃N) to give compound **3-25** (Total: 29.0 mg, 81%; *Trans-***3-25**: 7.0 mg, 20 %; *Cis-***3-25**: 5.1 mg, 14%; mixture of *cis-* and *trans-***3-25**: 16.9 mg, 47%).

Trans-**3**-**25**: ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.38 (m, 2 H), 7.35 - 7.18 (m, 8 H), 4.96 - 4.88 (m, 1 H), 4.42 (quin, *J*=6.5 Hz, 1 H), 3.02 (dd, *J*=13.4, 5.6 Hz, 1 H), 2.78 (dd, *J*=13.6, 7.3 Hz, 1 H), 2.31 - 2.17 (m, 1 H), 2.15 - 2.01 (m, 2 H), 1.71 - 1.60 (m, 1 H); ¹³C NMR (101 MHz, CDCl₃) 138.4, 131.9, 129.5, 128.5, 128.4, 128.3, 126.4, 122.9, 89.5, 84.6, 79.9, 68.7, 41.7, 33.7, 30.8; LCMS (CI+) [M]⁺ calculated for C₁₉H₁₈O: 262.1353, found: 262.

Cis-**3-25**: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J*=6.4, 2.9 Hz, 2 H), 7.38 - 7.18 (m, 8 H), 4.85 - 4.77 (m, 1 H), 4.18 (quin, *J*=6.9 Hz, 1 H), 3.13 (dd, *J*=13.5, 6.4 Hz, 1 H), 2.83 (dd, *J*=13.5, 6.9 Hz, 1 H), 2.29 - 2.16 (m, 1 H), 2.15 - 2.06 (m, 1 H), 2.00 (td, *J*=12.2, 7.2 Hz, 1 H), 1.92 - 1.81 (m, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 138.8, 131.9, 129.45, 128.50, 128.40, 128.38, 126.4, 123.0, 89.7, 84.6, 81.2, 68.8, 42.6, 33.6, 31.0; LCMS (CI+) [M]⁺ calculated for C₁₉H₁₈O: 262.1353, found: 262.

FTIR (thin film, both diastereomers) 3027, 2925, 2867, 1490, 1455, 1333, 1044, 756, 692 cm⁻¹.

The stereochemistry of diastereomers was assigned using 1D NOE experiment. In this NMR experiment, H_a was irradiated. In case of *cis*-**3**-**25**, I observed the correlations with H_b and H_c . In case of *trans*-**3**-**25**, I observed the correlations with H_c and H_d .

General Method. In a N₂-atmosphere glovebox, ZnBr₂ (6.8 mg, 0.030 mmol, 10 mol%) was weighed into a 1-dram vial, and then CH₂Cl₂ (1.5 mL, 0.2M), alkyne (0.39 mmol, 1.3 equiv), *i*-Pr₂NEt (75 μ L, 0.45 mmol, 1.5 equiv), 2-acetoxy-3-bromotetrahydropyran⁷ (**3-26**, 66.9 mg, 0.30 mmol, 1.0 equiv), and BF₃·OEt₂ (76 μ L, 0.60 mmol, 2.0 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The mixture was then removed from the glovebox, diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was rinsed with Et₂O (10 mL). The filtrate was concentrated and purified by silica gel chromatography.

Tetrahydropyran 3-31. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **3-31** (43.0 mg, 54 %) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.54 -7.45 (m, 2 H), 7.39 - 7.30 (m, 3 H), 4.55 (d, *J*=7.6 Hz, 1 H), 4.24 - 4.06 (m, 2 H), 3.66 (ddd, *J*=11.6, 9.1, 3.0 Hz, 1 H), 2.53 (dt, *J*=13.6, 4.5 Hz, 1 H), 2.09 - 1.96 (m, 1 H), 1.93 - 1.84 (m, 1 H), 1.82 - 1.70 (m, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 132.0, 128.8, 128.4, 122.2, 86.7, 85.6, 73.0, 66.8, 50.7, 33.1, 25.8; FTIR (NaCl/thin film) 3411, 3027, 2241, 1777, 1497, 1454, 1069, 985, 745, 700 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₃H₁₃BrO: 264.010, found: 264.

Tetrahydropyran 3-33. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give

compound **3-33** (46.5 mg, 59 %) as a light yellow oil: ¹H NMR (400 TMS MHz, CDCl₃) δ 4.29 (d, J=7.6 Hz, 1 H), 4.04 (ddt, J=12.2, 8.3, 4.2, ′Br 4.2 Hz, 2 H), 3.56 (ddd, J=11.6, 8.9, 3.0 Hz, 1 H), 2.50 - 2.38 (m, 1 (rac)-3-33 H), 1.99 - 1.88 (m, 1 H), 1.82 (dd, J=9.2, 4.6 Hz, 1 H), 1.69 (dtd, J=13.7, 9.2, 9.2, 4.6 Hz, 1 H), 0.19 (s, 9 H); ¹³C NMR (101 MHz, CDCl₃) δ 101.5, 92.0, 72.8, 66.6, 50.4, 32.9, 25.6, -0.2; FTIR (NaCl/thin film) 2959, 2927, 2852, 2169, 1250, 1115, 1102, 1079, 1044, 1022, 917, 844, 761 cm⁻¹.

Tetrahydropyran 3-35. Prepared via General Method described above. Crude material was purified by silica gel chromatography (10% Et₂O/hexanes) to give compound **3-35** (44.2 mg, 56 %) as a

light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 4.42 (d, J=7.3 Hz, 1 H), 4.24 (q, J=7.1 Hz, 2 H), 4.13 – 3.97 (m, 2 H), 3.59 (ddd, J=11.6, 8.9, 3.0 Hz, 1 H), 2.50 - 2.38 (m, 1 H), 2.02 - 1.80 (m, 2 H), 1.70 (dtd, J=13.7, 9.1, 8.9, 4.6 Hz, 1 H), 1.30 (t. J=7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 82.6, 78.0, 72.0, 66.9, 62.5, 48.6, 32.7, 25.2, 14.1; FTIR (NaCl/thin film) 2963, 2853, 2250, 1712, 1366, 1260, 1169, 1101, 1067, 1025, 934, 800, 750 cm⁻¹.

Tetrahydropyran 3-37. Prepared via General Method described above. Crude material was purified by silica gel chromatography (2% Et₂O/hexanes) to give compound **3-37** (55.7 mg, 81 %) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 4.22 (d, *J*=7.1 Hz, 1 H), 4.09 - 3.92 (m, 2 H), 3.53 (ddd, J=11.7, 9.2, 2.9 Hz, 1 H), 2.43 (dg, J=13.6, 4.4 Hz, 1 H), 1.92 (dtd, J=13.6, 9.8, 9.8, 4.4 Hz, 1 H), 1.83 - 1.74 (m, 1 H), 1.73 - 1.62 (m, 1 H), 1.35 - 1.23 (m, 1 H), 0.82 - 0.69 (m, 4 H); ¹³C NMR (101 MHz, CDCl₃) δ 90.7, 72.9, 72.0, 66.6, 51.2, 33.3, 31.1, 25.9, 8.5, 8.4; FTIR (NaCl/thin film) 2951, 2852, 2246, 1756, 1370, 1220, 1202, 1077, 1023, 934, 866, 720 cm⁻¹; LCMS (CI+) [M]⁺ calculated for

C₁₀H₁₃BrO: 228.0150, found: 228.

Tetrahydropyran 3-39. Prepared via General Method described above. Crude material was purified by silica gel chromatography (10-20% EtOAc/hexanes) to give compound **3-39** (34.0 mg, 33 %)¹⁹ as a yellow solid (m. p. 129-130 °C): ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, *J*=5.3, 3.0 Hz, 2 H),

7.73 (dd, J=5.3, 3.0 Hz, 2 H), 4.51 (d, J=1.0 Hz, 2 H), 4.29 (d, J=7.1 Hz, 1 H), 4.07 – 3.92 (m, 2 H), 3.58 - 3.48 (m, 1 H), 2.47 - 2.33 (m, 1 H), 1.99 - 1.74 (m, 2 H), 1.64 (td, J=9.0, 4.6 Hz, 1 H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 134.3, 132.1, 123.7, 80.4, 79.7, 72.2, 66.4, 50.2, 32.6, 27.4, 25.3; FTIR (NaCl/thin layer) 2926, 2851, 1772, 1721, 1421, 1392, 1346, 1118, 1074, 940, 724, 711 cm⁻¹.

Tetrahydropyran 3-41. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5% Et₂O/hexanes with 2% Et₃N) to give compound **3-41** (34.8 mg, 42 %) as a light yellow oil: ¹H NMR (400 MHz, CDCl₃) δ

4.27 (d, *J*=7.6 Hz, 1 H), 4.03 (dt, *J*=12.2, 4.4 Hz, 2 H), 3.61 - 3.51 (m, 1 H), 2.50 - 2.38 (m, 1 H), 2.25 (td, *J*=7.0, 1.6 Hz, 2 H), 2.01 – 1.87 (m, 1 H), 1.79 (tt, *J*=8.8, 4.4 Hz, 1 H), 1.75 - 1.63 (m, 1 H), 1.53 (quin, *J*=7.0 Hz, 2 H), 1.42 - 1.35 (m, 2 H), 1.34 - 1.22 (m, 4 H), 0.89 (t, *J*=7.0 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 87.8, 72.9, 66.6, 51.3, 33.2, 31.4, 30.3, 28.6, 28.5, 25.9, 22.7, 18.8, 14.2; FTIR (NaCl/thin film) 2930, 2857, 2243, 1458, 1434, 1360, 1168, 1114, 1103, 1076, 1024, 935, 866, 722 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₃H₂₁BrO: 272.0771, found: 272.

Alkynylation of Phenylacetaldehyde Dimethyl Acetal

In a N₂-atmosphere glovebox, ZnBr₂ (6.8 mg, 0.030 mmol, 10 mol%) was weighed into a 1-dram vial, and then Et₂O (1.5 mL, 0.2 M), phenylacetylene (43 µL, 0.39 mmol, 1.3 equiv), *i*-Pr₂NEt (75 µL, 0.45 mmol, 1.5 equiv), phenylacetaldehyde dimethyl acetal⁸ (**3-49**, 50 mg, 0.30 mmol, 1.0 equiv) and BF₃ OEt₂ (57 µL, 0.45 mmol, 1.5 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was then removed from the glovebox, and the reaction mixture was diluted with Et₂O (1.5 mL) and filtered through a plug of silica gel, which was then rinsed with Et₂O (10 mL). The filtrate was concentrated and purified by silica gel chromatography (3% Et₂O/hexanes) to give compound **3-50** (29 mg, 41%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.45 - 7.39 (m, 2 H), 7.36 - 7.24 (m, 8 H), 4.37 (t, *J*=6.7 Hz, 1 H), 3.49 (s, 3 H), 3.20 - 3.05 (m, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 137.4, 131.8, 129.8, 128.5, 128.4, 128.3, 126.8, 122.8, 87.6, 86.9, 72.8, 56.8, 42.2; FTIR (NaCl/thin layer) 3029.49, 2925.62, 2850.61, 2821.38, 2229, 1489.94, 1339.34, 1099.58, 1029.38, 755.80, 730.58, 691.53 cm⁻¹; LCMS (CI+) [M]⁺ calculated for C₁₇H₁₆O: 236.1197, found: 236.

REFERENCES

 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.;
 Timmers, F. J. "Safe and Convenient Procedure for Solvent Purification" Organometallics 1996, 15, 1518.

(2) Zhang, Z.; Widenhoefer, R. A. "Gold(I)-Catalyzed Intramolecular Enantioselective Hydroalkoxylation of Allenes" *Angew. Chem., Int. Ed.* **2007**, *46*, 283.

(3) Parham, W. E.; Huestis, L. D. "The Reaction of Dichlorocarbene with 2,3-Chromene and 3,4-Chromene" *J. Am. Chem. Soc.* **1962**, *84*, 813.

(4) Yates, P.; Macas, T. S. "Tandem Wessely oxidation and intramolecular Diels–Alder reactions. III. Synthesis of isotwistanes" *Can. J. Chem.* 1988, *66*, 1.

(5) Kang, J. Y.; Connell, B. T. "Chromium-Catalyzed Homoaldol Equivalent Reaction Employing a Nucleophilic Propenyl Acetate" *J. Am. Chem. Soc.* **2010**, *132*, 7826.

(6) Iwanami, K.; Aoyagi, M.; Oriyama, T. "Iron(III) triflate-catalyzed onepot synthesis of acetal-type protected cyanohydrins from carbonyl compounds" *Tetrahedron Lett.* **2006**, *47*, 4741.

(7) Shelton, J. R.; Cialdella, C. "Reaction of N-Bromosuccinimide with Dihydropyran" *J. Org. Chem.* **1958**, *23*, 1128.

(8) Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. "Gold(III) as an electrophilic oxidant of alkenes" *J. Chem. Soc.*, *Perkin Trans. 1* **1976**, 811.

(9) 2-Methoxychroman was prepared by Dr. Prantik Maity.

(10) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" *Angew. Chem., Int. Ed.* **2010**, *49*, 7096.

(11) Clark-Lewis, J.; McGarry, E. "Hydroboration of chromenes, flav-2-enes, flavylium salts, and flavones" *Aust. J. Chem.* **1973**, *26*, 819.

(12) Slightly contaminated with hydrocarbon grease. See ¹H NMR spectrum.

(13) Slightly contaminated with ethyl acetate, dichlomethane, and hydrocarbon grease. See ¹H NMR spectrum.

(14) Slightly contaminated with diethyl ether, dichlomethane, and hydrocarbon grease. See ¹H NMR spectrum.

(15) Brabander, J. K. D.; Liu, B.; Qian, M. "Au(I)- and Pt(II)-Catalyzed
 Cycloetherification of ω-Hydroxy Propargylic Esters" *Org. Lett.* 2008, *10*, 2533.

(16) Voelker, T.; Xia, H.; Fandrick, K.; Johnson, R.; Janowsky, A.; Cashman,
J. R. "2,5-Disubstituted tetrahydrofurans as selective serotonin re-uptake inhibitors" *Bioorg. Med. Chem.* 2009, *17*, 2047.

(17) Hartung, J.; Hiller, M.; Schmidt, P. "Photoreactions of Phenyl-Substituted N-(pent-4-enyl-1-oxy)Pyridine-2(1 H)-Thiones" *Chem. Eur. J.* 1996, *2*, 1014.

(18) Stereochemistry of diastereomers was assigned by analogy to **3-25**.

(19) Slightly contaminated with dichlomethane and hydrocarbon grease. See ¹H NMR spectrum.

Appendix B

SPECTRAL DATA

DE 18.00 usec TE 2.00000000 sec D11 0.03000000 sec D11 0.55 dB P11 0.55 dB NUC1 13C P11 0.55 dB P11 0.55 dB P11 0.528298 MHz SF01 100.6228298 MHz P11 35.18820572 W NUC2 Waltz16 NUC2 Waltz16 NUC2 Waltz16 NUC2 9.2000 MB P12 9.21.000 MB P12 9.21.000 MB P13 3.30822015 W P13 9.0.011316005 MHz P13 9.0.011316	0 ppm 1.40
	5 0 ₋
	40
	- 09
	- 80
	- 100
	120
	140
	160
-	180
-	200

1.40	D D D	20	04	- <u>0</u> 0	80	- 1 00	120	140	160	180	200
rocessing parameters 32768 100.6127595 MHz EM 1.00 Hz	F2 ST SF SSB MDW SF CSB SSB CD SSB SSB SSB SSB SSB SSB SSB SSB SSB SS										
== CHANNEL F2 ======== 11 90.00 usec 4.90 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	E==== CPDPRG CPDPRG PL2 PL2 PL13 PL13 PL13W PL13W SFO2 SFO2										
== CHANNEL f1 ======= 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	REFERENCE NUC1 P1 P11 P11 S701										
1 cquisition Parameters 20120420 11.02 m 5 mm CPQNP 1H/ G 5 mm CPQNP 1H/ G 55536 7 256336 65536 65536 14 Hz 0.365918 Hz 0.365918 Hz 0.365918 Hz 0.365918 Hz 0.365918 Hz 0.365918 Hz 0.365918 Hz 0.366918 Hz 1.3664756 sec 20.850 usec 20.850 usec 20.0000000 sec	PROCNO F2 - A Time - Time - TD PROBHD PRUPPRO SOLVEN' SOLVEN' SOLVEN' SOLVEN' SOLVEN' SOLVEN' FIDRES PD DT DT DT DT DT DT DT								لل ا	5°	< <u> </u>
t Data Parameters TVH-2-153A 4 1	CULFEN NAME EXPNO PROCNO										
		21.82		91.99	6Þ.28	48.011	171.65 175.65 175.61 15.75 178.36 178.75	- 135.69	09'851 ———		

	n ppm	50	60 40	80	001	0ZL	140	19L	DBL	200
EM EM 1.00 Hz 1.40	NDW NDW SSB CS CS CS CS CS CS CS CS CS CS CS CS CS	- :	-			_			-	_
Processing parameters 32768 100.6127591 MHz	F2 - ST SF									
W 0.09195905 W W 0.08120718 W 400.1316005 MHz	PL127 PL127 PL137 SF02 SF02									
4.90 dB 20.46 dB 21.00 dB 3.30822015 W	PL12 PL12 PL13 P1.2W									
<pre>==== CHANNEL f2 ======== RG2 waltz16 1H 2 90.00 usec</pre>	E=== CPDPF NUC2 PCPD2									
9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	P1 PL1 PL1 SF01 SF01									
1 ==== CHANNEL f1 =======	TDO									
20.850 usec 18.00 usec 298.2 K 2.0000000 sec	TE TE									
23980.814 Hz 23980.814 Hz 0.365918 Hz 1.3664756 sec	DS SWH FIDRE AQ							2-7		
XUM spect HD 5 mm CPQNP 1H/ XOG zgpg30 G5536 G5536 CDC13 256	INSTF PULPF PULPF SOLVE SOLVE NS						Ac			
TVH-2-133B 1 1 Acquisition Parameters 20120413	NAME EXPNC PROCN F2 - Date									
ent Data Parameters	Curre			-						
ŘÚKĚR		L.6I — 8.IS — I.SS —		E.06		· LII	• ISI	•041		
		₽ 9 ₽		0	-	50 21 81 39 39	69	S 0		

$\begin{array}{c} 11\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\$	20.850 usec 18.00 usec 18.00 usec 298.2 K 2.0000000 sec 1.13C 9.25 usec 9.25 usec 9.25 usec 9.25 usec 1.100.6228298 MHZ 100.6228298 MHZ 100.622015 W 4.90 dB 20.46 dB 20.46 dB 20.9195905 W 4.00 dB 20.09195905 W 4.00 dB 20.09195905 W 4.00 dB 20.01316005 MHZ Processing parameters 100.6127563 MHZ 100.6127563 MHZ 100.6127563 MHZ 100.6127563 MHZ	CPDDPRC DT DT DT DT DT DT DT DT DT DT	3 - 5 -		- 0 - 0	80	0 - 0 - 0			- 16	18 – 18	
	<pre>=== CHANNEL f2 ===================================</pre>	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE										
1 1 1 1 1 1 1 1	=== CHANNEL f1 ======== 13C 9.25 usec 35.18820572 W 100.6228298 MHz	NUC1 NUC1 P1 PL1 PL1 SF01				-		_				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acquisition Parameters 20120228 17.14 0M 5 mm CPQNP 1H/ 0G 5936 CDC13 NT 256 0.365918 Hz 23980.814 Hz 256 0.365918 Hz 1.3664756 sec 256 1.3664756 sec 20.850 usec 2850 usec 28000000 sec 0.03000000 sec	F2 - Z Date_ Time_ Fustru Probhu PULPRO PULPRO SOLVEN SSU AQ FIDRE SWH FIDRE SWH FIDRE FIDRE FIDRE TE D1 TE TE TE TE								OPiv		
	nt Data Parameters TVH-2-133C 0 1	Currel Currel NAME EXPNO PROCNO	52 22 22	33		06			.st			

Current Data Parameters NAME FRONO 1 PROCNO 1	F2 - Acquisition Parameters Date	====== CHANNEL fl ======= NUC1 IH P1 15.00 usec P1 3.30822015 W SF01 400.1324710 MHz	F2 - Processing parameters SI 32768 SF 400.1300103 MHz WDW EM 0 LB 0.30 Hz GB 0.30 Hz GB 1.00	mdd
- 5 · 1 67 - 2 · 1 7 3 - 2 · 1 85 - 5 · 1 85 - 5 · 2 55 - 5 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·				4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0
$\begin{array}{c} 5.83 \\ - 2.13 $	2-12			9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4 9. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	Parameters TVH-2-133E 2 1	tion Parameters 20120301 1.19 spect m CPQNP 1H/ spect 65536 65536 65536 65536 65536 256 65536 256 65536 1.3664756 sec 1.3664756 sec 1.3664756 sec 20.850 usec 18.00 usec 18.00 usec 18.00 usec 0.03000000 sec	NNEL fl ===================================	NNEL f2 ====== waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W	ing parameters 32768 100.6127569 MHz EM 1.00 Hz	1.40
	Current Data NAME EXPNO PROCNO	F2 - Acquisi Date_ Time_ Time PULPROG PULPROG SOLVENT SOLVENT SSLVENT	====== CHA NUC1 P1 PL1 PL1W SF01	====== CHA CPDPRG2 NUC2 PCPD2 PL12 PL13 PL13W PL13W PL13W PL13W PL13W	F2 - Process ST - Process WDW SSB	ppm PC
						- 0
25.42 						5 0
						- 64
						- 09
						80 -
<i>L</i> 8.06 ———						100
18.711 20.121 18.721 18.721 18.721 18.721						120
- 133.52 - 133.52						140
89°ISI ———		N		_		- 09
98°397 ———				_		-
		5-12				180
		< <u> </u>				500

I

	1.40 1.40	0 ppm	50 -	- 4	- 09	- 8	- 100	- 120	- 140	- 1	- 180	- 500
	Processing parameters 32768 100.6127579 MHz	E2 - SE		a ter and a second s			and the second				1	and the second secon
$2\cdot 3$	<pre>cHANNEL f2 ======= d3 c2 maltz16 1H 4.90 dB 20.00 usec 4.90 dB 21.00 dB 3.30822015 W 0.09195905 W 4.00.1316005 MHz</pre>	===== CPDPR CPDPR PL12 PL12 PL12W PL12W PL12W PL13W SF02 SF02										
2^{-13}	CHANNEL f1	===== NUC1 P1 PL1 PL1W SF01										
1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acquisition Parameters 20120228 20120228 18.20 Spect 19.20 Spect 11/ 18.20 256 256 256 256 14 4 256 14 4 256 1256 256 256 256 1256 256 256 256 256 256 256 256	F2 - Date INSTR PROBH PROBH PROBH PROBH NS SOLVE SSLVE AQ DW NS SOLVE FIDRE DM TE D11 TD TE TD TE TD TD TD TD TD TD TD TD TD TD TD TD TD	-							a →	2-1 2-1	
	the barameters TVH-2-133D 10 1	Curre RAPNO PROCN	89.61 61.82 88.72			27.22		98.921 98.921				

Data Parameters TVH-2-153C-2	<pre>guisition Parameters 20120331 20120331 17.23 20120331 17.23 spect 5 mm CPQNP 1H/ 5 mm CPQNP 1H/ 5536 5536 5536 5536 512 0.365918 Hz 1.3664756 sec 18.00 usec 18.00 usec 0.03000000 sec 0.0300000 sec 0.03000000 sec 0.0300000 sec 0.0300000 sec 0.0300000 sec 0.0300000 sec 0.03000000 sec 0.03000000 sec 0.0300000 sec 0.03000000 sec 0.0300000 sec 0.0300000 sec 0.0300000 sec 0.0300000 sec 0.03000000 sec 0.030000000 sec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.03000000 sec 0.030000000 sec 0.03000000 sec 0.030000000 sec 0.030000000 sec 0.030000000 sec 0.0300000000 sec 0.030000000 sec 0.030000000 sec 0.030000000 sec 0.030000000000000000000000000000000000</pre>	<pre>= CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz</pre>	<pre>= CHANNEL f2 ===================================</pre>	ocessing parameters 32768 100.6127575 MHz EM 1.00 Hz 0 1.40
	F2 - Acc Date_ Time FNBTRUM PULPROG SOLVENT SOLVENT SOLVENT SWH SWH AQ FIDRES AQ BW FIDRES DM FIDRES TE D11 TD0	NUC1 P1 PL1 PL1 SF01	CPDPRG2 CPDPRG2 PCPD2 PL12 PL13 PL13 PL13W PL13W PL13W SFO2	F2 - Prc SI SF WDW SSB IB IB PC PC
S0°0-				— — – 0
23.55				50
				- 4 0
LT*99				- 09
				80
LE.EOI				100
117.28 120.78 121.58				120
15 001				- 1
₽9°83T	TMS			
	5-16			-180
				200 200

	Current Data Parameters NAME TVH-2-159C EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date 10.12 Time 10.12 INSTRUM 5 mm CPQNP 1H/ PULPROG 299930 TD 25536 SOLVENT 256 SOLVENT 256 SOLVENT 256 NS 23980.814 Hz SWH 20.365918 Hz 0.365918 Hz 1.3664756 sec RG 20.850 usec RG 20.850 usec DE 18.00 usec TE 2.0000000 sec TE 2.0000000 sec	====== CHANNEL f1 ======== NUC1 13C P1 9.25 usec PL1 35.18820572 W PL1W 100.6228298 MHz	CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 90.00 usec PL2 90.00 usec PL12 20.46 dB PL13 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W PL13W 0.08120718 W	F2 - Processing parameters SI 32768 SF 100.6127571 MHz WDW 5SB 1000 Hz SSB 1.000 Hz	
02.41				-		- D - D
28.89 28.58 28.58 28.58 28.58 28.58	- - - -					50 -
£₽·TE -∕						- 4
99	-		_			- 09
£9.98 ——	-					80
						- 1 00
20.021 720.67 720.67	-					120
5/•561	_	⁵ Me				140
		2-18				- 160
						180
						500
					1	

EM 1.00 Hz 1.40	DDM PC	- 0	5 –	- 4	- 09	80 -	- 100	120	- 140	160	- 180	500
<pre>cHANNEL f2 ======== waltz16</pre>	====== CFDPRG2 NUC2 PL2 PL2 PL13 PL13W PL13W PL13W PL13W PL13W											
- CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	====== NUC1 PL1 PL1 PL1W SF01											
<pre>puisition Parameters 20120402 20.38 20.38 spect s</pre>	F2 - Acq Date_ Time INSTRUM PROBHD PULPROG PULPROG SOLVENT NS SOLVENT SOLVENT NS SOLVENT RG FIDRES RG PU FIDRES DM D11 TE D11 TE D11								\frown	, , , , ,	Ň	
Data Parameters TVH-2-153B-2 4 1	Current NAME EXPNO PROCNO		53.58 53.58 30.50 53.58	23.82	₽T.88 ———	98°LL	02.06	SZ.TIT 00.021 27.121 28.721 88.621		8 <i>L</i> ·EST ———		

	rrent Data Parameters ME TVH-2-136 PNO 2 OCNO 1	- Acquisition Parameters te_ 20120317 me 8:48 STRUM 5:48 OBHD 5 mm CPONP 1H/ LPROG 299930 65536 55536 1.VENT 23980.814 Hz 0.365918 Hz 1.3664756 sec 1.3664756 sec 1.3664756 sec 1.3664756 sec 29820 usec 18:00 usec 2982 K 512 usec 0 0.03000000 sec		===== CHANNEL f2 ======= DPRG2 waltz16 C2 PD2 90.00 usec 14.90 dB 12 20.46 dB 13 3.30822015 W 12W 0.09195905 W 13W 0.08120718 W 02 400.1316005 MHz	- Processing parameters 32768 32768 100.6127576 MHz W 1.00 Hz 1.00 Hz 1.40
-	Cu NA PR	ТОННЧСКИ ССЛИСТИСТИ ССЛИСТИСТИСТИСТИСТИСТИСТИСТИСТИСТИСТИСТИСТИ	= □ U U U U U U U U U U U U U U U U U U	чтгггг ЧССССССССССССССССССССССССССССССССС	
86'IZ 08'SZ 58'6Z TE'ZE					40 20
88.99 09.76 08.77					- 09
88.22					100 8 -
68.121 24.821 25.821 28.221					140
		E			- 1
		و ب			200 - 180 -

35.18820572 W 100.6228298 MHz waltz16 waltz16 4.90 dB 20.46 dB 20.46 dB 20.46 dB 3.30822015 W 0.09195905 W 400.1316005 MHz rocessing parameters 100.6127588 MHz 100.6127588 MHz 100.1120 Hz	PLL1 SF01 SF01 SF01 CPDPRG2 PL12 PL12 PL13 PL13 PL13 SF02 SF02 SF02 SF02 SF13 MDW SF02 SF13 MDW SF02 SF02 SF02 SF13 MDW SF02 SF02 SF02 PL13 PL13 PL13 PL13 PL13 PL13 PL13 PL13	40 20	- 0 9	80 -		1 20	- 1 - 1 - 41	1 60 – 1	1 1 1 1 1 1 1 1 1 1	
<pre>= CHANNEL f2 ======== waltz16 1H 90.00 usec 4.90 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz</pre>	===== CPDPRG2 CPDPRG2 PCPD2 PL13 PL13 PL13 PL13W PL13W PL13W SF02						-		_	
<pre>= CHANNEL f1 ======== 13C 9.25 usec 35.18820572 W 100.6228298 MHz</pre>	PLC PLC PLL PLL PLLIW SFO1									
quisition Parameters 20120420 13.38 13.38 spect spect 25536 CDC13 256 CDC13 256 0.365918 Hz 0.3664756 sec 1.3664756 sec 1.3664756 sec 2850 usec 18.00 usec 18.00 usec 0.03000000 sec 0.03000000 sec	F2 - AC Date_ Time INSTRUM PULPROG PULPROG SOLVENT SSLVENT SSLVENT AD BS AQ BS AQ BC DW FIDRES AQ DW TE D11 TD TD TD TD TD TD TD TD TD TD TD TD TD								-OAc	
Data Parameters TVH-2-158A 1	Current NAME EXPNO PROCNO	26.24 27.15 28.36 28.35 28.35 28.35 28.35 28.35 28.35 28.35 29.35 29.35 20.45 20		27.28 <u> </u>	20.02	126.49 128.50 128.50	21.85. 88.721 138.54 128.54	89°0/T	₽L·OLT	

21.00 dB 3.30825015 W 0.091952015 W 0.08120718 W 400.1316005 MHz 32768 MHz 100.6127566 MHz EM 100.6127566 MHz 100.11.100 Hz 1.40	PLL3W PLL2W PLL2W PLL2W PLL2W PLL2W PLL2W PLL2W SFC2 SFC2 SFC2 SFC2 SFC2 SFC2 SFC2 SFC2	40 20 - 20	- 0 9	88		120	140	- 9	180	5 00 -
<pre>= CHANNEL f2 ===================================</pre>	CPDPRG2 CPDPRG2 NUC2 PCPD2 PL13 PL13	-								
<pre>= CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz</pre>	NUC1 P1 PL1 PL1W SF01									
quisition Parameters 20120216 10.44 sect sect 5 mm CPQNP 1H/ 5 mm CPQNP 1H/ 55536 65536 65536 65536 65536 0.365918 Hz 1.3664756 sec 1.3664756 sec 1.3664756 sec 1.3664756 sec 18.00 usec 18.00 usec 18.00 usec 0.03000000 sec	F2 - Ac Date_ INSTRUM PROBHD PULPROG PULPROG SOLVENT NS SOLVENT NS SOLVENT RG PU PU DE TD DE TD DE TD D1 D1 TD D1								OAc 5:1 dr	
Data Parameters TVH-2-126D 1	Current NAME EXPNO PROCNO	51.58 51.66 51.66 32.40 33.40 33.66		LE·LL 8E·T8 08·E8	80.66 TE.66	₩2.221 126.10 127.69 121	15'821 SS'821 LL'101 CS'201	£9·0/T	89.071	

	Current Data Parameters NAME TVH-2-156B EXPNO 3 PROCNO 1	F2 - Acquisition Parameters Date20120420 Time20120420 INSTRUM Spect PROBHD 5 mm CPQNP 1H/ PULPROG Spect SSOLVENT CPC13 NS CDC13 NS CDC1	DF 20.030 use DE 18.00 use TE 298.2 K D1 2.0000000 sec D11 0.03000000 sec TD0 1 0.0300000 sec	====== CHANNEL f1 ======== NUC1 13C P1 9.25 use PL1 35.18820572 W SFO1 100.6228298 MHz	====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 D1H PCPD2 90.00 use PL2 4.90 dB PL12 20.46 dB PL13 3.30822015 W PL13W 0.09195905 W PL13W 0.08120718 W SF02 400.1316005 MHz	F2 - Processing parameters SI 32768 SF 100.6127577 MHz WDW EM SSB 100.Hz	0 ppm
							5 0 -
							- 4
							- 09
:L ———							80 –
							100
							120
21 21 21 21 23 21 23							140
		Ч С					160
		3-23 HO					180
							500
]	

TVH-2-161B-1 2 1 1 isition Parameters 20120423 17.01 spect 5 mm CPQNP 1H/ 5 mm CPQNP 1H/ 5536 CDC13 256	23980.814 Hz 0.365918 Hz 1.3664756 sec 512 20.850 usec 18.00 usec 298.2 K 2.0000000 sec 0.03000000 sec	CHANNEL fl ===================================	CHANNEL f2 ======== waltz16 90.00 usec 4.90 dB 20.46 dB	21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	essing parameters 32768 100.6127580 MHz EM	1.00 Hz 0 1.40
NAME EXPNO EXPNO EXPNO EXPNO FROCNO Time Time FULFROG FULFROG FULFROG SOLVENT	DS SWH FIDRES AQ AQ DE DT D11 TD0 TD0	======================================	DF.01 ======= CPDPRG2 NUC2 PCPD2 PL12 PL12	PL13 PL2W PL12W PL13W SF02	F2 - Proc SI SF WDW	0 ppm
						50
						60 40
						100
						140 120
Ph						- 160 - 160
Ph C						200
	Physical and the second	Photon 1 Photon	Ph-C-1613-1 Ph-C-1701 Ph-C-1613-1 Ph-C-1613-1 Ph-C-1613-1 Ph-C-1613-1 Ph-C-1613-1 Ph-C-1701	Ph-f-filt 200000 1 Ph-f-filt 200100 11 Ph-f-filt 2001010 11 Ph-filt 2001010 11 Ph-filt 2001010 11 2001010 Ph-filt 2001010 11 2001010 11 Ph-filt 2001010 11 20010100 12001000 Ph-filt 2001010 11 20010000 12001000 Ph-filt 200100000 12000000 120000000 120000000 Ph-filt 200100000 120000000 120000000 120000000 120000000 1200000000 120000000 1200000000 120000000 1200000000 1200000000 1200000000 1200000000 1200000000 1200000000 1200000000 1200000000 1200000000 1200000000 12000000000 12000000000 12000000000 12000000000 12000000000 1200000000000 12000000000 12000000000 12000000000 12000000000 12000000000 120000000000 120000000000 12000000000 12000000000 12000000000 12000000000 120000000000 12000000000 12000000000	Ph-f-f-metric 200000 1 Ph-f-f-metric 20120120 20120120 Ph-f-f-metric 20120120 2012010 Ph-f-f-metric 20120120 2012010 Ph-f-f-metric 2012010 2012010 Ph-f-f-metric 20120100 20120000 Ph-f-f-metri <t< td=""><td>Phých 1 Phých 1 Phích 1</td></t<>	Phých 1 Phích 1

0 - -	0 ppm	20) 40	90	80	100	120	140	160	180	200
EM 0 1.00 Hz 1.40	MDW SSB LB LB CB PC								in the second seco		
rocessing parameters 32768 100.6127690 MHz	F2 - P1 ST SF		ta da de la compañía	La se		tikon sa	a second a second s	and the second	and the second	مرد المراجع المراجع المراجع بعد 1944. 1444 - من من مراجع المراجع بعد 1944.	والمتعادية
3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	PL2W PL12W PL13W SFO2										
1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB	NUC2 PCPD2 PL12 PL13										
== CHANNEL f2 ======= 2	===== CPDPR(3)										
== CHANNEL fl ========= 13C 9.25 usec 35.18820572 W 100.6228298 MHz	NUC1 NUC1 PL1 PL1 SF01 SF01										
20.0300000 sec 298.2 K 2.0000000 sec 0.0300000 sec 1	ры 1 111 1100										
cquisition Parameters 20120423 17.49 3 5 mm CPONP 1H/ 5 mm CPONP 1H/ 5 c5536 65536 65536 65536 1 256 256 4 4 23980.814 Hz 0.365918 Hz 1.3664756 sec	F2 - A Date Time TNSTRUP PROBHD PULPRO PULPRO SOLVEN NS SWH SWH SWH FIDRES AQ								E \	cis-3-24	Ph 0
t Data Parameters TVH-2-161B-3 2 1	Current NAME EXPNO PROCNO										
		56°€€ 76°₽5	00 / 0	ES.69 ———	ЕТ'Z8 ——— 10'S8 ——— 9E'68 ———		122.8 12.9 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	L.241			
							8 7 6	0 S			

	ent baca rarameters TVH-2-161A-1 10 10 11	Acquisition Parameters 20120422 20120422 22.46 SUM 5 mm CPQNP 1H/ ROG 29P930 65536 SNT 256 256 65536 14 Hz 256 0.365918 Hz 1.3664756 sec 218.00 usec 298.2 k 20000000 sec 298.2 k 20000000 sec 0.0300000 sec	CHANNEL f1	<pre>cHANNEL f2 ========= gg2 waltz16 1H 1H 4.90 dB 20.00 usec 4.90 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 1 0.08120718 W 400.1316005 MHz</pre>	Processing parameters 32768 100.6127576 MHz EM 1.00 Hz 0 1.40
	CULFIE NAME EXPNO PROCN	F2 - Date_ Time FINSTR PULDR PULDR SOLVE SOLVE AQ SSH FIDRE AQ DW FIDRE D1 D1 TE D11	====== NUC1 P1 PL1 PL1W SF01	===== CPDPR CPDPR PCPD2 PL12 PL12W PL12W PL12W SF02 SF02	E2 - SF WDW WDW SSB IIB PC PC
87.14 83.66 71.02					40 20
95.48					60 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -
24.821					- - - 100
04.851 86.851 86.851 88.151 88.151 88.151 88.151 88.151		Ę			140
)- <i>trans</i> - 3-25			- 180 160
		Bn (rac)			200 -

ta Parameters TVH-2-161A-3 1	<pre>sition Parameters 20120422 22.19 22.19 spect spect spect spect 23980.814 Hz 0.365918 Hz 1.3664756 sec 23980.814 Hz 0.366918 Hz 1.3664756 sec 23980.814 Sec 23980.814 Hz 0.3600000 sec 280 0 usec 0.0300000 sec 0.0300000 sec 0.0300000 sec</pre>	CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	CHANNEL f2 ======= waltz16 1H 90.00 usec 4.90 dB 21.00 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	sssing parameters 32768 MHz EM 1.00 Hz 1.00 Hz 1.40
Current Da RAME EXPNO PROCNO	F2 - Acqui Date_ Time_ Time_ PULPROG PULPROG PULPROG PULPROG SOLVENT SOLVENT NS SOLVENT NS FIDRES SWH FIDRES PU FIDRES PU FIDRES TE D1 TE D1 TE	============= 0 NUC1 PL1 PL1W PL1W SF01	======= CPDPRG2 NUC2 PLC2 PL12 PL13 PL12W PL13W PL13W SFO2	F2 - Proce SI SF SS SSB SSB LB C BD PDM
85.52 33.52				
42.83				60
29.68				100 80
67.851 28.151 28.151 28.151 28.151 28.151 28.151 28.151 28.151 28.151 29.151 20				140 120
	- 25			- 160 - 160
	Bn 20			200 180
				1 I

Z	CULTENT DATA FARAMETERS NAME TVH-2-160-2 EXPNO 2 PROCNO 1	F2 - Acquisition Parameter: Date_ 20120421 Time 16.06 INSTRUM spect PROBHD 5 mm CPQNP 1H/ PULPROG spect FULPROG c5536 SOLVENT 256 NS 23980.814 Hz SWH 23980.814 Hz FIDRES 0.365918 Hz AQ 1.3664756 sec RG 1.3664756 sec	DW 20.850 use DE 18.00 use TE 298.1 K D1 2.0000000 sec D11 0.0300000 sec TD0 1	====== CHANNEL fl ====== NUC1 13C Pl 9.25 use PL1 35.18820572 W PL1W 35.18820572 W SF01 100.6228298 MHz	====== CHANNEL F2 ====== CPDPRG2 waltz16 NUC2 P12 90.00 use PL2 4.90 dB PL2 4.90 dB PL12 21.00 dB PL13 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W SF02 400.1316005 MHz	F2 - Processing parameters SI 32768 SF 100.6127597 MHz WDW EM SSB 1.00 Hz	0 ppm
52							50 -
.55							- 40
2.03							- 09
9.28							- 80
9.98							- 1 00
• 221 —							120
121							140
		4					- 160
		(rac)-3-31					- 180
							- 500
							-

	ata Parameters TVH-2-144B-2 2 1	isition Parameters 20120320 23.03 23.03 spect spect 29390.814 Hz 256 CDC13 256 CDC13 256 1.3664756 sec 1.3664756 sec 20.365918 Hz 1.3664756 sec 2850 usec 2820 usec 288.0 usec 288.0 usec 288.0 usec 0.03000000 sec	CHANNEL f1 ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	CHANNEL f2 ======== waltz16 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	essing parameters 32768 100.6127583 MHz EM 1.00 Hz 1.40 1.40
	Current D NAME EXPNO PROCNO	F2 - Acqu Date Time INSTRUM PROBHD PULPROG TD NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS PULPROG TD NS DS DT DT D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1 D1	======================================	======================================	F2 - Proc SI SF WDW SSB LB LB CG PDM
SI.O					
22°25					
20 . 38		_			
95°99					
20.20					80
20 26 <u> </u>					100
					120
					140
		- 33			- 16 - 1
		(rac)-3			180
					500

	E C	WDW EM SSB 0 0 LL 100 Hz 0	F2 - Processing parameters SI 32768 SF 100.6127567 MHz	PL12W 0.09195905 W PL13W 0.08120718 W SFO2 400.1316005 MH:	CFDFRG2 waltz16 NUC2 11 PCPD2 90.00 us(PL2 2.0.46 dB PL13 3.30822015 W	====== CHANNEL f2 ======	====== CHANNEL f1 ======= NUC1 13C P1 9.25 ust P1 0.55 dB PL1 35.18820572 W SFO1 100.6228298 MHz	RG 512 512 18 18 18 18 18 10 15 15 15 16 1	TD Control Con	FACONO F2 - Acquisition Parameter: Date20120421 Time 13.25 INSTRUM spect PROBHD 5 mm CPONP 1H/	Current Data Parameters NAME TVH-2-160D EXPNO 2 PROCNO 1	
1355 1335 13 13 13 13 13 13 13 13 13 13 13 13 13 1	dd 0	-										
	20	-									-	• ₽Т
140 120 100 80 60 1	6 0										-	.25 ——
110 120 100 80 61	` 0						_				-	85
11 - 12 13.35 140 120 100 80	90										-	
100 − 120 −	80										-	· LL
140 120 140 120 120 120 120 120 120 120 120 120 12	100											
140 140 160 160 160 160 160 160 160 16	120	_ {										
	140	-										
	160	_								2Et	-	EST
	180	- (, Br c) -3-35	00		
	200	-							(Ta			

$\sum_{i=1}^{n}$		ca Parameters TVH-2-144G 1	sition Parameters 20120420 9.33 9.33 spect mm CPQNP 1H/ 256 65536 CDC13 256 65536 0.365918 Hz 1.3664756 sec 1.3664756 sec 1.3864756 sec 1.38647565555555555555555555555555555555555	HANNEL fl ======== 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	HANNEL f2 ======== waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	ssing parameters 32768 MHz EM 1.00 Hz 1.40 1.40
		Current Dat NAME EXPNO PROCNO	F2 - Acquis Date Time INSTRUM FULFROG FULFROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS FIDRES AQ DS FIDRES AQ DG TE D11 TD D11 TD	======= CI NUCI PL1 PL1 PL1W SF01	CPDPRG2 CPDPRG2 CPDPRG2 NUC2 PCPD2 PCD2 PL12 PL13 PL13W PL13W PL13W PL13W PL13W PL13W	F2 - Proces ST WDW WDW LB LB FC P DM
	8.42			-		
	55.22 01.15					- 50
	12°19					40
	€9°99 —					- 09
	69.06					- 88
						- 0 1
						120
			\triangleleft			- 140
			ac)- 3-37			- 160 - 160
						180
						500

Current Data Parameters NAME EXPNO PROCNO 1	F2 - Acquisition Parameters Date20120322 Time13.19 INSTRUM spect PULPROG 5 mm CPQNP 1H/ PULPROG 2930 TD 65536 SDLVENT 16 S5536 SDLVENT 16 S5536 SDLVENT 16 S5536 SDLVENT 16 S5536 SSH SMH 8278.146 Hz CDC13 NS 0.12661314 Hz SMH 8278.146 Hz CDC13 SWH 8278.146 Hz CDC13 SWH 8278.146 Hz CDC13 SWH 8278.146 Hz CDC13 SWH 8278.146 Hz CDC13 SWH 8278.146 Hz CDC12 SWH 8278.146 Hz CDC12 SWH 8278.146 Hz CDC12 SWH 8278.146 Hz CDC13 SWH 827	====== CHANNEL fl ======== NUC1 1H Pl 15.00 usec PL1 3.30822015 W FL1W 400.1324710 MHz	F2 - Processing parameters SI 32768 SF 400.1300113 MHz WDW EM 0 SSB 0.30 Hz GB 0.30 Hz GB 1.00	F 8
$\begin{array}{c} 1 \cdot 413 \\ -7 \cdot 623 \\ -7 \cdot $.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 pl
178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 178.7 179.7	(rac)-3-39			9.5 9.0 8.5 8.0 7.5 7.0 6.5 6 $\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

	vata Farameters TVH-2-144E-3 4 1	iisition Parameters 20120421 11.48 spect spect provertified 2566 CDC13 2566 CDC13 2566 0.365918 Hz 0.365918 Hz 0.366918 Hz 0.366918 Hz 0.366918 Hz 0.366918 Hz 0.366918 Hz 0.0000000 sec 200 0.03000000 sec 0.03000000 sec	CHANNEL f1 ======= 13C 9.25 usec 0.55 dB 35.18820572 W 100.6228298 MHz	CHANNEL f2 ======= waltz16 1H 90.00 usec 4.90 dB 20.46 dB 21.00 dB 3.30822015 W 0.09195905 W 0.08120718 W 400.1316005 MHz	essing parameters 32768 MHz EM 1.00 Hz 0 1.40 1.40
	LULTENT L NAME EXPNO PROCNO	F2 - Acqu Date_ Time_ INSTRUM PULPROG PULPROG PULPROG SOLVENT NS SOLVENT NS SOLVENT NS SOLVENT NS FIDRES AQ PM FIDRES TE D1 TE D11 TD0	======================================	====== CPDPRG2 PCPD2 PL12 PL13 PL13 PL13 PL13 PL13W PL13W PL13W SFO2	F2 - Proc SI SF SE SB LB LB C BD PDM
SZ·SZ SE·LZ TI·TE					20
SI.OZ					60 - 40
19.08					0 80
02.521					120 120
55.951					60 140
L0·L9ī		(rac)			- 180 -
					500
0.070 0.070 0.070 0.070 Current Data Parameters TVH-2-144C-2 EXPNO 1 PROCNO 1	F2 - Acquisition Parameters Date20120321 Time20120321 Time20120321 FNSTRUM 5 mm CPONP 1H/ PULPROG 55536 SOLVENT CPOR13 NS TD 65536 SOLVENT CDC13 NS 16 SS36 SOLVENT 0.126314 Hz NS 11.3 NS 11.	====== CHANNEL f1 ======== NUC1 11 P1 15.00 usec PL1 3.30822015 W SF01 400.1324710 MHz F2 - Processing parameters SI 400.1300051 MHz SF 400.1300051 MHz WDW 5SB 0.30 Hz MDW 1.00	mdd		
---	---	---	---		
TVH-2-144C-2 PROTON_16 CDC13 /opt/topspin tatsiana 53 2767777 27673 2767 277 27	(rac)-341		9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.12 1.0 1.12 1.12 1.0 1.12 1.12 1.12 1.0 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12		

	Current Data Parameters NAME TVH-2-144C-2 EXPNO 2 PROCNO 1	F2 - Acquisition Parameters Date_ 5.01 Time 5.01 INSTRUM 5.01 INSTRUM 5.01 PULPROG 5.01 PULPROG 299930 SOLVENT 256 SOLVENT 256 SOLVENT 256 SOLVENT 23980.814 Hz SUP 23980.814 Hz SUP 23980.814 Hz FIDRES 0.365918 Hz SUP 20.850 usec RG 20.8591 usec DF 11.0.3664756 sec RG 20.8591 usec DF 11.0.0300000 sec D11 2.0000000 sec D11 0.0300000 sec	====== CHANNEL f1 ======= NUC1 13C P1 9.25 usec PL1 35.18820572 W SF01 100.6228298 MHz	====== CHANNEL f2 ======= CPDPRG2 waltz16 NUC2 1H PCPD2 90.00 usec PL2 4.90 dB PL12 20.46 dB PL12 21.00 dB PL12 3.30822015 W PL12W 0.09195905 W PL13W 0.08120718 W SF02 400.1316005 MHz	F2 - Processing parameters S1 32768 SF 100.6127585 MHz WDW EM SSB 0	0 ppm
26						- 7
23.23						- 64
65.99						- 09
58·2 <i>L</i> ——						- 80
82.78						- 100
						120
		≥ ⁴			-	140
		2 F				- 160
						180
						- 500

