ZINC-CATALYZED ALKYNYLATION OF ACETALS VIA OXOCARBENIUM ION INTERMEDIATES

by
Tatsiana Haidzinskaya

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Chemistry and Biochemistry

Spring 2012
© 2012 Tatsiana Haidzinskaya
All Rights Reserved

ZINC-CATALYZED ALKYNYLATION OF ACETALS VIA OXOCARBENIUM ION INTERMEDIATES

by
Tatsiana Haidzinskaya

Approved:
Mary P. Watson, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Klaus Theopold, Ph.D.
Chair of the Department of Chemistry and Biochemistry

Approved:
George H. Watson, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Professor Mary Watson for her help, support, and guidance throughout the years. The skills and knowledge that I acquired working in her laboratory allowed me to be where I am now.

I would like to thank Professor Joseph Fox for believing in me, helping me on various issues, and recommending me for an industrial position which I successfully acquired.

I would like to thank my husband Dr. Peter DeMatteo for his insight on problems in my research and his advice how to fix them.

I would like to thank the fellow group members Danielle Shacklady-McAtee and Dr. Prantik Maity for their knowledge and wisdom that they shared with me during my work in the laboratory.

I would like to thank my aunt Tatjana Karoly for her moral and financial support. Without her I would not be able to afford my undergraduate degree and move forward in my career.

I would like to thank my parents Halina Haidzinskaya and Valiantsin Haidzinski for their constant encouragement on the phone. I would also like to thank them for their courage in fighting the U.S. Visa Office for the right to see their daughter (me) for the first time in six years and attend my graduation ceremony. After multiple visa denials for no reason they did not lose hope that they would be allowed to visit me and my husband in the United States. No matter how desperate the situation is, there should be hope.

TABLE OF CONTENTS
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF SHEMES vii
ABSTRACT ix
Chapter
1 ENANTIOSELECTIVE ADDITIONS OF CARBON NUCLEOPHILES TO OXOCARBENIUM IONS 1
References 15
2 ALKYNYLATION OF CHROMAN ACETALS 24
References 38
3 ALKYNYLATION OF NONBENZOPYRANYL SUBSTRATES 40
3.1 Alkynylation of 2-Acetoxytetrahydropyran 41
3.2 Diastereoselective Alkynylation of Tetrahydrofuranyl Acetals 47
3.3 Diastereoselective Alkynylation of 2-Acetoxy- 3-Bromotetrahydropyran 52
3.4 Preliminary Results for Alkynylation of Acyclic Acetals 57
3.5 Conclusion and Future Work 58
References 60
Appendix
A EXPERIMENTAL 65
References 84
B SPECTRAL DATA 86

LIST OF TABLES

Table 2.1 Catalyst Screen for Alkynylation of 2-Acetoxychroman 26
Table 2.2 Lewis Acid Screen for Alkynylation of 2-Acetoxychroman. 27
Table 2.3 Lewis Acid Screen for Alkynylation of 2-Acetoxychroman under Modified Conditions 28
Table 2.4 Comparison of Zinc Salts 29
Table 2.5 Effect of Leaving Group on Reactivity 31
Table 2.6 Scope of Alkyne 32
Table 3.1 Initial Screening for Alkynylation of 2-Acetoxytetrahydropyran 42
Table 3.2 Catalyst Screen for Alkynylation of 2-Acetoxytetrahydropyran. 44
Table 3.3 Solvent Screen for Alkynylation of 2-Acetoxytetrahydropyran 45
Table 3.4 Base Screen for Alkynylation of 2-Acetoxytetrahydropyran. 46
Table 3.5 Solvent Screen for Alkynylation of Tetrahydropyranyl Acetal 3-21 51
Table 3.6 Solvent Screen for Alkynylation of 2-Acetoxy- 3-Bromotetrahydropyran. 53
Table 3.7 Preliminary Alkyne Scope 54
Table 3.8 Solvent Screen for Alkynylation of Secondary Acyclic Acetals 58

LIST OF FIGURES

Figure 1.1 Biologically Active and Natural Oxygen Heterocycles with α-Stereocenters 2
Figure 2.1 Oxocarbenium Ions for Enantioselective Additions 24
Figure 2.2 Representative Results with Chiral Amino Alcohol, Diol, and Diamine Ligands 34
Figure 2.3 Bis(Oxazoline) Ligands Screen 35
Figure 2.4 Chiral Ligands Screen 36

LIST OF SCHEMES

Scheme 1.1 Hoveyda's Copper-Catalyzed Conjugate Addition 3
Scheme 1.2 Braun's Allylation of Dihydropyranyl Acetal 4
Scheme 1.3 Thiourea-Catalyzed Addition of Silyl Ketene Acetals to 1- Chloroisochromans by Jacobsen 5
Scheme 1.4 Addition of Vinyl- and Aryl-Based Nucleophiles to Oxocarbenium Ions 6
Scheme 1.5 Proposed Mechanism of Schaus' Reaction 6
Scheme 1.6 Enantioselective Alkynylation of Isochroman Acetals 7
Scheme 1.7 Proposed Catalytic Cycle 8
Scheme 1.8 Enantioselective Alkynylation of Chromene Acetals. 9
Scheme 1.9 Enantioselective Orthoester Alkylation of N -Acylthiazolidinethiones by Evans 10
Scheme 1.10 Enantioselective Aldol-Type Reaction with Acetals by Sodeoka 11
Scheme 1.11 Carreira's Enantioselective Alkynylation of Aldehydes 12
Scheme 1.12 Cozzi's Enantioselective Alkynylation of Ketones 13
Scheme 1.13 Schreiber's Alkynylation of Isolated Isoquinolinium Ions 13
Scheme 2.1 Alkynylation of 2-Methoxychroman 25
Scheme 2.2 Synthesis of Chroman Acetals 30
Scheme 3.1 Cyclic Aliphatic Oxocarbenium Ions as Intermediates for Enantioselective and Diastereoselective Alkynylation of Acetals 41
Scheme 3.2 Synthesis of 2-Acetoxytetrahydropyran Model Substrate 42
Scheme 3.3 Proposed Diastereoselective Alkynylation of Tetrahydropyranyl Acetals 48
Scheme 3.4 Substrate Synthesis. Route A. 49
Scheme 3.5 Substrate Synthesis. Route B 49
Scheme 3.6 Substrate Synthesis. Route C 50
Scheme 3.7 Alkynylation of Tetrahydropyranyl Acetal 3-16 51
Scheme 3.8 Synthesis of 2-Acetoxy-3-Bromotetrahydropyran 52
Scheme 3.9 Neighboring Group Participation in Alkynylation of 2-Acetoxy-3- Bromotetrahydropyran 53
Scheme 3.10 Alkynylation of Dihydropyran via Bromonium Ion. 54
Scheme 3.11 Proposed Functionalization of Glucals 56
Scheme 3.12 Alkynylation of Primary Acetals 57

Abstract

Reactions that allow the conversion of a simple achiral or racemic starting material into an enantiomerically pure product are of great importance. Such processes are particularly advantageous when they are combined with the formation of a carboncarbon bond. In the large majority of such reactions, stereoselectivity is controlled by enzymes, chiral auxiliaries, organocatalysts, or transition metal catalysts. In particular, enantioselective transition metal catalysis is a powerful tool in the synthesis of enantioenriched products. The M. Watson group has recently demonstrated a new enantioselective metal-catalyzed strategy for the addition of terminal alkynes to racemic isochroman and chromene acetals. This thesis describes my progress towards establishing this alkynylation strategy for a much broader class of cyclic acetal substrates.

The first chapter reviews developments in enantioselective additions of carbon nucleophiles to prochiral cyclic oxocarbenium ions using both organocatalysis and transition metal catalysis. The chapter briefly discusses the addition of carbon nucleophiles to aldehydes and ketones catalyzed by transition metals, as well as enantioselective alkynylation of iminium ions.

The second chapter of this thesis describes my work on alkynylation of chroman acetals through cyclic oxocarbenium ions, specifically optimization of reaction conditions and my progress towards an asymmetric version of this reaction.

The third chapter discusses diastereoselective alkynylation reactions. In addition to the routes for substrate synthesis for these studies, the alkynylation of

several nonbenzopyranyl substrates through aliphatic oxocarbenium ion intermediates has been achieved.

This work establishes that the alkynylation strategy previously used for the addition of terminal alkynes to racemic isochroman and chromene acetals can be applied to a much broader class of cyclic acetal substrates, in particular chroman, tetrahydrofuran, and tetrahydropyran acetals.

Chapter 1

ENANTIOSELECTIVE ADDITIONS OF CARBON NUCLEOPHILES TO OXOCARBENIUM IONS

α-Substituted oxygen heterocycles constitute the framework of many biologically active molecules, as well as synthetic and semisynthetic compounds of interest (Figure 1.1). ${ }^{1-12}$ The development of highly efficient methods for the enantioselective synthesis of such compounds would contribute greatly to the fields of medicinal, agricultural, and material sciences.

Multiple routes for the enantioselective preparation of α-substituted cyclic ethers have been reported. In many of these methods, the formation of the stereogenic center occurs before cyclization. ${ }^{13-22}$ Other strategies, such as hetero-Diels-Alder reactions, Wacker-type cyclizations, and intramolecular conjugate additions rely on simultaneous formation of the stereocenter with the cyclization. ${ }^{23-31}$ In addition to the above-mentioned strategies, several enantioselective substitution reactions of oxygen heterocycles have been described. ${ }^{32-36}$ Most notably, in 2005, Hoveyda reported examples of enantioselective copper-catalyzed conjugate addition of dialkylzinc reagents to unsaturated furanones and pyranones. α-Substituted cyclic ether $\mathbf{1 - 3}$ was formed enantioselectively from chromenone $\mathbf{1 - 1}$ (Scheme 1.1). However, the application of this methodology to other substrates to make α-substituted oxygen heterocycles was not investigated.

(+)-Microcladallene B

leukotriene biosynthesis inhibitor

myristinin A
inhibitor of DNA polymerase B

aposphaerin A antibacterial agent

U-101387
selective dopamine
D4 receptor agonist

laurencin

5-lipoxygenase (5-LO) inhibitor

trans-kumausyne

epigallocatechin gallate antioxidant

nonnatural DNA base replacement

Figure 1.1. Biologically Active and Natural Oxygen Heterocycles with $\alpha-$ Stereocenters

Scheme 1.1. Hoveyda's Copper-Catalyzed Conjugate Addition

Nucleophilic additions to oxocarbenium ion intermediates would provide a powerful method for the synthesis of α-substituted cyclic ethers. However, controlling enantioselectivity of these additions is not trivial. The high reactivity of oxocarbenium ions as well as the E1 elimination pathway make the uncatalyzed addition reaction problematic. The enantioselective addition to oxocarbenium ion intermediates is vastly under-developed, and only a few examples of enantioselective catalytic additions to prochiral cyclic oxocarbenium ions have been reported to date. ${ }^{37-40}$

Braun reported the first example of enantioselective additions to cyclic oxocarbenium ions in 2004. In his report, Braun described a titanium(IV)-catalyzed asymmetric allylation of alcohols, silyl ethers, and acetals. ${ }^{38}$ The majority of reactions did not utilize cyclic acetal substrates. However, Braun showed that a single example of cyclic acetal 1-4 underwent allylation (Scheme 1.2). This allylation is proposed to proceed via dynamic kinetic resolution of the diastereomeric acetal-catalyst complexes 1-7 and 1-9, which interconvert via prochiral oxocarbenium ion 1-8. Notably, a stoichiometric amount of chiral Lewis acid was required to achieve good enantioselectivity in this transformation.

Scheme 1.2. Braun's Allylation of Dihydropyranyl Acetal

In 2008, Jacobsen reported the thiourea-catalyzed addition of silyl ketene acetals to 1-chloroisochromans to give esters (Scheme 1.3). ${ }^{37}$ 1-Chloroisochroman 114 was prepared in situ from methyl acetal $\mathbf{1 - 1 0}$ by treatment with BCl_{3}. The catalyst $\mathbf{1 - 1 1}$ promoted the substitution to generate ester $\mathbf{1 - 1 3}$. The chiral thiourea catalyst was used to control stereochemistry by inducing chloride dissociation to generate a reactive oxocarbenium-chloride-thiourea complex $\mathbf{1 - 1 5}$. ${ }^{41}$ A wide variety of substituted isochromans were prepared using this method. Jacobsen's work proved that prochiral oxocarbenium ions were viable substrates for asymmetric catalysis.

Scheme 1.3. Thiourea-Catalyzed Addition of Silyl Ketene Acetals to 1Chloroisochromans by Jacobsen

In 2010, Schaus described the enantioselective addition of boronic esters such as $\mathbf{1 - 1 7}$ to chromene acetals $\mathbf{1 - 1 6}$ catalyzed by a chiral Brønsted acid/Lewis acid system to generate chiral chromene products $\mathbf{1 - 1 9}$ (Scheme 1.4). ${ }^{39,42-43}$ A wide variety of vinyl boronic esters was tolerated under optimized reaction conditions, but aryl boronates proved to be less reactive and required electron-donating substituents on the aromatic ring, such as methoxy groups. The proposed mechanism is presented in Scheme 1.5. The boronic ester $\mathbf{1 - 1 7}$ and tartaramide acid $\mathbf{1 - 1 8}$ first form dioxoborolane 1-20. With the addition of metal Lewis acid (M) and chromene acetal

1-16, boronate complex 1-21 is generated. The addition of the chiral nucleophile to the oxocarbenium ion furnished product $\mathbf{1 - 1 9}$ in 87% yield and 97% ee. According to the authors, Lewis acid alone provided none of the desired product, while chiral Brønsted acids gave only moderate yields and enantioselectivites. A combination of the two afforded a chiral Brønsted acid/metal triflate Lewis acid/vinyl boronate catalytic complex 1-21 that led to the products in high yields and enantioselectivities.

Scheme 1.4. Addition of Vinyl- and Aryl-Based Nucleophiles to Oxocarbenium Ions by Schaus

Scheme 1.5. Proposed Mechanism of Schaus' Reaction

Most recently, Watson et al. developed an enantioselective, copper(I)catalyzed alkynylation of racemic isochroman acetals 1-22 (Scheme 1.6). ${ }^{40}$ Use of a chiral catalyst derived from copper (I) and bis(oxazoline) ligand 1-23 gave 1-alkynyl isochromans 1-24 in good yields and high enantioselectivities.

Scheme 1.6. Enantioselective Alkynylation of Isochroman Acetals

The proposed catalytic cycle is shown in Scheme 1.7. Chiral copper acetylide $\mathbf{1 - 2 6}$ is formed by combination of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$, chiral ligand $\mathbf{1 - 2 3}$, phenyl acetylene, and diisopropylethylamine. In the presence of TMSOTf, isochroman acetal 1-22 is converted in situ to the corresponding oxocarbenium ion. A minor byproduct, silylacetylene $\mathbf{1 - 2 7}$, is generated from the reaction of TMSOTf and copper acetylide. However, use of 1.2 equiv of alkyne enables high yields of desired product. Ligand dissociation from the 18-electron copper acetylide complex likely occurs to enable the interaction with the oxocarbenium ion intermediate. The authors propose that formation of the carbon-carbon bond occurs either directly from trivalent 1-28 or via π-complexation of the oxocarbenium ion to copper forming intermediate $\mathbf{1 - 2 9}$ or $\mathbf{1 - 3 0}$. The authors proposed a preliminary model for enantioselectivity based on analysis of molecular models. They suggest that steric interactions between the benzyl group of
the chiral copper acetylide and oxocarbenium ion disfavors transition state TS-b. ${ }^{40}$ However, several experimental details suggest that the factors that control enantioselectivity are more complicated than this simple model depicts. Certainly, extending the asymmetric alkynylation to other classes of oxocarbenium ions will test this stereochemical model.

Scheme 1.7. Proposed Catalytic Cycle

The authors also reported the alkynylation of chromene acetals such as $\mathbf{1 - 3 2}$ to afford chromene products such as $\mathbf{1 - 3 3}$ in good yields and high enantioselectivities under modified conditions (Scheme 1.8). ${ }^{40}$

Scheme 1.8. Enantioselective Alkynylation of Chromene Acetals

Compared to the organocatalytic enantioselective additions of carbon nucleophiles to prochiral oxocarbenium ions reported by Jacobsen and Schaus, this method was the first approach that uses a transition metal catalyst and proceeds through organometallic intermediates. This work demonstrated that transition metals can be used for the enantioselective addition of carbon nucleophiles to cyclic oxocarbenium ions.

All above-mentioned methodologies to prepare enantioenriched α-substituted cyclic ethers involve nucleophilic additions to prochiral cyclic oxocarbenium ion intermediates. However, enantioselective reactions of prochiral nucleophiles and achiral oxocarbenium ions have also been disclosed. In 2005, Evans reported a nickelcatalyzed enantioselective orthoester alkylation of N-acylthiazolidinethiones (Scheme 1.9). ${ }^{44}$ According to Evans, the high observed enantioselectivity can be explained by
the formation of Ni -enolate $\mathbf{1 - 3 8}$, which then reacts with achiral oxocarbenium ion $\mathbf{1 -}$ 39. In this reaction, the stereocenter emerges from the prochiral nucleophile, instead of a prochiral oxocarbenium ion.

Scheme 1.9. Enantioselective Orthoester Alkylation of NAcylthiazolidinethiones by Evans

Scheme 1.10. Enantioselective Aldol-Type Reaction with Acetals by Sodeoka

In 2008, Sodeoka reported an enantioselective catalytic aldol-type reaction of β-ketoesters such as $\mathbf{1 - 4 0}$, with acetals $\mathbf{1 - 4 1}$ (Scheme 1.10). ${ }^{45}$ In this reaction Pd complex 1-42 acts as an acid/base catalyst, simultaneously activating both the nucleophile and the electrophile. The Pd catalyst assists the formation of enolate 1-44 while in situ generated proton activates the acetal to give oxocarbenium ion intermediate $\mathbf{1 - 4 5}$. This reaction employs a prochiral nucleophile and a prochiral electrophile; strereocenters emerge on both the β-ketoester and acetal. ${ }^{46-47}$

The only example of an enantioselective transition metal-catalyzed addition to cyclic oxocarbenium intermediates has been reported by Watson et. al. ${ }^{40}$ However, multiple cases of transition metal-catalyzed additions of carbon nucleophiles to similar systems - aldehydes and ketones - have been described. In this thesis, I will limit my
discussion to enantioselective transition metal-catalyzed alkynylation for the synthesis of chiral propargylic alcohols. ${ }^{48-66}$

In 2001, Carreira described a zinc-catalyzed enantioselective addition of terminal alkynes to aldehydes (Scheme 1.11). ${ }^{67}$ These additions proceed through chiral zinc-acetylide intermediates, which add to aldehydes to give chiral alcohols in high enantioselectivities. Both the Zn (II) salts and ligands are commercially available. Further, the reaction can tolerate air and moisture and can be conducted at temperatures as high as $100{ }^{\circ} \mathrm{C}$, affording products in excellent yields and high enantioselectivities.

Scheme 1.11. Carreira's Enantioselective Alkynylation of Aldehydes

The first general method that allowed the enantioselective addition of acetylenes to ketones was described by Cozzi in 2003 and utilized zinc/salen catalysis (Scheme 1.12). ${ }^{48}$ Since 2003, many articles have been published in the field of enantioselective alkynylation of aldehydes and ketones. ${ }^{49-67}$

Scheme 1.12. Cozzi's Enantioselective Alkynylation of Ketones
Alkynylation of oxocarbenium ions is also similar to alkynylation of iminium ions. Enantioselective copper-catalyzed coupling reactions of alkynes with iminium ions are well known. ${ }^{68-71}$ In 2006 Schreiber published the asymmetric alkynylation of alkylisoquinolinium and alkyldihydroisoquinolinium ions, such as $\mathbf{1 - 5 2}$ in the presence of triethylamine, catalytic copper bromide, and QUINAP (1-53) (Scheme 1.13). These conditions tolerated a variety of alkynes and furnished propargylic amines in high yields and enantioselectivities. Ma and Arndtsen later demonstrated that Cu catalysts also enable enantioselective alkynylation of pyridinium ions. ${ }^{70,72}$

1-52

Scheme 1.13. Schreiber's Alkynylation of Isolated Isoquinolinium Ions

Despite the recent advances in many areas of asymmetric catalysis, the development of new methodologies for enantioselective nucleophilic additions to oxocarbenium intermediates is still in demand. The new methods for enantioselective synthesis of α-substituted oxygen heterocycles are indispensable. α-Substituted oxygen heterocycles represent a promising class of biologically active compounds, and highly efficient strategies for the synthesis of these compounds would make a great contribution to the development of new medicines.

The successful enantioselective additions of carbon nucleophiles to benzylic and vinylogous oxocarbenium ions create a platform for further exploration of asymmetric additions to oxocarbenium ions. Enantioselective addition to aliphatic oxocarbenium ions still represents a major synthetic challenge. My preliminary results towards alkynylation of aliphatic oxocarbenium ions will be discussed in the following chapters. This work is significant as it will change the way chiral ethers are prepared.

REFERENCES

(1) Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.; Müller, W.; Bayer, M.; Lin, W.; Wu, J.; Proksch, P. "Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata" Bioorg. Med. Chem. 2009, 17, 7362.
(2) Stambasky, J.; Hocek, M.; Kocovsky, P. "C-Nucleosides: Synthetic Strategies and Biological Applications" Chem. Rev. 2009, 109, 6729.
(3) Trost, B.; Toste, F. "A Catalytic Enantioselective Approach to Chromans and Chromanols. A Total Synthesis of (-)-Calanolides A and B and the Vitamin E Nucleus" J. Am. Chem. Soc. 1998, 120, 9074.
(4) Wang, L. J.; Carter, J. S.; Springer, J. R.; Limburg, D. C.; Aston, K. W.; Pharmacia and Upjohn Co., LLC: 2006.
(5) Kool, E. "Replacing the Nucleobases in DNA with Designer Molecules" Acc. Chem. Res. 2002, 35, 936.
(6) Storck, P.-H.; Piettre, A. M. P.; Ermert, P.; Schoentjes, B.; Poncelet, V. S.; Csoka, I. C. F.; Janssen Pharmaceutica NV: USA, 2010.
(7) Alberts, A.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; Patchett, A.; Monaghan, R.; Currie, S.; Stapley, E.; Albers-Schonberg, G.; Hensens, O.; Hirshfield, J.; Hoogsteen, K.; Liesch, J.; Springer, J. "Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent" Proc. Natl. Acad. Sci. 1980, 77, 3957.
(8) Albrecht, U.; Lalk, M.; Langer, P. "Synthesis and structure-activity relationships of 2-vinylchroman-4-ones as potent antibiotic agents" Bioorg. Med. Chem. 2005, 13, 1531.
(9) TenBrink, R.; Bergh, C.; Duncan, J.; Harris, D.; Huff, R.; Lahti, R.; Lawson, C.; Lutzke, B.; Martin, I.; Rees, S.; Schlachter, S.; Sih, J.; Smith, M. "(S)-(-)-4-[4-[2-(Isochroman-1-yl)ethyl]piperazin-1-yl]benzenesulfonamide, a Selective Dopamine D4 Antagonist" J. Med. Chem. 1996, 39, 2435.
(10) Xu, J.; Stevenson, J. "Drug-like Index: A New Approach To Measure Drug-like Compounds and Their Diversity" J. Chem. Inf. Comput. Sci. 2000, 40, 1177.
(11) Ghose, A.; Viswanadhan, V.; Wendoloski, J. "A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases" J. Comb. Chem. 1999, l, 55.
(12) Belliotti, T.; Brink, W.; Kesten, S.; Rubin, J.; Wustrow, D.; Zoski, K.; Whetzel, S.; Corbin, A.; Pugsley, T.; Heffner, T.; Wise, L. "Isoindolinone enantiomers having affinity for the dopamine D-4 receptor" Bioorg. Med. Chem. Lett. 1998, 8, 1499.
(13) Bagnoli, L.; Scarponi, C.; Rossi, M.; Testaferri, L.; Tiecco, M. "Synthesis of Enantiopure 1,4-Dioxanes, Morpholines, and Piperazines from the Reaction of Chiral 1,2-Diols, Amino Alcohols, and Diamines with Vinyl Selenones" Chem. Eur. J. 2011, 17, 993.
(14) Lian, Y.; Hinkle, R. J. "BiBr3-Initiated Tandem Addition/Silyl-Prins Reactions to 2,6-Disubstituted Dihydropyrans" J. Org. Chem. 2006, 71, 7071.
(15) Hinkle, R. J.; Lian, Y.; Speight, L. C.; Stevenson, H. E.; Sprachman, M. M.; Katkish, L. A.; Mattern, M. C. "Synthesis of 2,6-disubstituted dihydropyrans via an efficient BiBr3-initiated three component, one-pot cascade" Tetrahedron 2009, 65, 6834.

Alvarez, E.; Candenas, M.-L.; Perez, R.; Ravelo, J.; Delgado Martin, J. "Useful Designs in the Synthesis of Trans-Fused Polyether Toxins" Chem. Rev. 1995, 95, 1953.
(17) Boivin, T. "Synthetic routes to tetrahydrofuran, tetrahydropyran, and spiroketal units of polyether antibiotics and a survey of spiroketals of other natural products" Tetrahedron 1987, 43, 3309.
(18) Patil, N.; Yamamoto, Y. "Coinage Metal-Assisted Synthesis of Heterocycles" Chem. Rev. 2008, 108, 3395.
(19) Volz, F.; Krause, N. "Golden opportunities in natural product synthesis: first total synthesis of (-)-isocyclocapitelline and (-)-isochrysotricine by gold-catalyzed allene cycloisomerization" Org. Biomol. Chem. 2007, 5, 1519.
(20) Hodgetts, K. "Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones" Tetrahedron 2005, 61, 6860.
(21) Noda, Y.; Watanabe, M. "Synthesis of Both Enantiomers of Flavanone and 2-Methylchromanone" Helv. Chim. Acta 2002, 85, 3473.
(22) Rao, A.; Gaitonde, A.; Prakash, K.; Rao, S. "A concise synthesis of chiral 2-methyl chroman-4-ones : Stereo selective build-up of the chromanol moiety of anti-HIV agent calanolide A" Tetrahedron Lett. 1994, 35, 6347.
(23) Terada, M.; Mikami, K. "Periselective and enantioselective carbonylene reaction of isoprene with fluoroalkyl glyoxylate catalysed by modified binaphtholtitanium complex: asymmetric catalytic synthesis of enantiomerically pure ipsdienol" J. Chem. Soc., Chem. Commun. 1995, 2391.
(24) Wender, P.; Hegde, S.; Hubbard, R.; Zhang, L. "Total Synthesis of (-)Laulimalide" J. Am. Chem. Soc. 2002, 124, 4956.
(25) Uozumi, Y.; Kato, K.; Hayashi, T. "Catalytic Asymmetric WackerType Cyclization" J. Am. Chem. Soc. 1997, 119, 5063.
(26) Biddle, M.; Lin, M.; Scheidt, K. "Catalytic Enantioselective Synthesis of Flavanones and Chromanones" J. Am. Chem. Soc. 2007, 129, 3830.
(27) Son, S.; Fu, G. C. "Copper-Catalyzed Asymmetric [4+1] Cycloadditions of Enones with Diazo Compounds To Form Dihydrofurans" J. Am. Chem. Soc. 2007, 129, 1046.
(28) Zhang, Z.; Widenhoefer, R. A. "Gold(I)-Catalyzed Intramolecular Enantioselective Hydroalkoxylation of Allenes" Angew. Chem., Int. Ed. 2007, 46, 283.
(29) Dittmer, C.; Raabe, G.; Hintermann, L. "Asymmetric Cyclization of 2'Hydroxychalcones to Flavanones: Catalysis by Chiral Brønsted Acids and Bases" Eur. J. Org. Chem. 2007, 2007, 5886.
(30) Wang, L.; Liu, X.; Dong, Z.; Fu, X.; Feng, X. "Asymmetric Intramolecular Oxa-Michael Addition of Activated α, β-Unsaturated Ketones Catalyzed by a Chiral N,N'-Dioxide Nickel(II) Complex: Highly Enantioselective Synthesis of Flavanones" Angew. Chem., Int. Ed. 2008, 47, 8670.
(31) Wang, H.-F.; Cui, H.-F.; Chai, Z.; Li, P.; Zheng, C.-W.; Yang, Y.-Q.; Zhao, G. "Asymmetric Synthesis of Fluorinated Flavanone Derivatives by an Organocatalytic Tandem Intramolecular Oxa-Michael Addition/Electrophilic Fluorination Reaction by Using Bifunctional Cinchona Alkaloids" Chem. Eur. J. 2009, 15, 13299.
(32) Brown, M.; Degrado, S.; Hoveyda, A. "Highly Enantioselective CuCatalyzed Conjugate Additions of Dialkylzinc Reagents to Unsaturated Furanones and Pyranones: Preparation of Air-Stable and Catalytically Active Cu -Peptide Complexes" Angew. Chem., Int. Ed. 2005, 44, 5306.
(33) Hodgetts, K.; Maragkou, K.; Wallace, T.; Wootton, R. "Conjugate addition to 3-arylsulfinylchromones as a synthetic route to homochiral 2-substituted chromanones: scope and limitations" Tetrahedron 2001, 57, 6793.
(34) Chen, J.; Chen, J.; Lang, F.; Zhang, X.; Cun, L.; Zhu, J.; Deng, J.; Liao, J. "A C2-Symmetric Chiral Bis-Sulfoxide Ligand in a Rhodium-Catalyzed Reaction: Asymmetric 1,4-Addition of Sodium Tetraarylborates to Chromenones" J. Am. Chem. Soc. 2010, 132, 4552.
(35) Han, F.; Chen, G.; Zhang, X.; Liao, J. "Chiral Heterodisulfoxide Ligands in Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Chromenones" Eur. J. Org. Chem. 2011, 2011, 2928.
(36) Korenaga, T.; Hayashi, K.; Akaki, Y.; Maenishi, R.; Sakai, T. "Highly Enantioselective and Efficient Synthesis of Flavanones Including Pinostrobin through the Rhodium-Catalyzed Asymmetric 1,4-Addition" Org. Lett. 2011, 13, 2022.
(37) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective ThioureaCatalyzed Additions to Oxocarbenium Ions" J. Am. Chem. Soc. 2008, 130, 7198.
(38) Braun, M.; Kotter, W. "Titanium(IV)-Catalyzed Dynamic Kinetic Asymmetric Transformation of Alcohols, Silyl Ethers, and Acetals under Carbon Allylation" Angew. Chem., Int. Ed. 2004, 43, 514.
(39) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" Angew. Chem., Int. Ed. 2010, 49, 7096.
(40) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" J. Am. Chem. Soc. 2011, 133, 17142.
(41) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.; Jacobsen, E. N. "Enantioselective Pictet-Spengler-Type Cyclizations of Hydroxylactams: H-Bond Donor Catalysis by Anion Binding" J. Am. Chem. Soc. 2007, 129, 13404.
(42) Harrity, J. P. A.; La, D. S.; Cefalo, D. R.; Visser, M. S.; Hoveyda, A. H. "Chromenes through Metal-Catalyzed Reactions of Styrenyl Ethers. Mechanism and Utility in Synthesis" J. Am. Chem. Soc. 1998, 120, 2343.
(43) Wipf, P.; Weiner, W. S. "Enantioselective Synthesis and Photoracemization Studies of (+)-2-Cyclopropyl-7,8-dimethoxy-2H- chromene-5carboxylic Acid Methyl Ester, an Advanced Intermediate of a Dihydrofolate Reductase Inhibitor" J. Org. Chem. 1999, 64, 5321.
(44) Evans, D.; Thomson, R. "Ni(II) Tol-BINAP-Catalyzed Enantioselective Orthoester Alkylations of N-Acylthiazolidinethiones" J. Am. Chem. Soc. 2005, 127, 10506.
(45) Umebayashi, N.; Hamashima, Y.; Hashizume, D.; Sodeoka, M. "Catalytic Enantioselective Aldol-type Reaction of β-Ketosters with Acetals" Angew. Chem., Int. Ed. 2008, 47, 4196.
(46) Terada, M.; Tanaka, H.; Sorimachi, K. "Enantioselective Direct AldolType Reaction of Azlactone via Protonation of Vinyl Ethers by a Chiral Brønsted Acid Catalyst" J. Am. Chem. Soc. 2009, 131, 3430.
(47) Kobayashi, S.; Arai, K.; Yamakawa, T.; Chen, Y.-J.; Salter, M. M.; Yamashita, Y. "Lewis Acid-Mediated Acetal Substitution Reactions: Mechanism and Application to Asymmetric Catalysis" Adv. Synth. Catal. 2011, 353, 1927.
(48) Cozzi, P. G. "Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes" Angew. Chem., Int. Ed. 2003, 42, 2895.
(49) Cozzi, Pier G.; Hilgraf, R.; Zimmermann, N. "Acetylenes in Catalysis: Enantioselective Additions to Carbonyl Groups and Imines and Applications Beyond" Eur. J. Org. Chem. 2004, 2004, 4095.
(50) Lin, P. "Asymmetric alkynylzinc additions to aldehydes and ketones" Tetrahedron 2003, 59, 9873.
(51) Frantz, D. E.; Fässler, R.; Carreira, E. M. "Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes" J. Am. Chem. Soc. 2000, 122, 1806.
(52) Anand, N. K.; Carreira, E. M. "A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes" J. Am. Chem. Soc. 2001, 123, 9687.
(53) Boyall, D.; Frantz, D. E.; Carreira, E. M. "Efficient Enantioselective Additions of Terminal Alkynes and Aldehydes under Operationally Convenient Conditions" Org. Lett. 2002, 4, 2605.
(54) Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. "Asymmetric Alkynylation of Aldehydes Catalyzed by an In(III)/BINOL Complex" J. Am. Chem. Soc. 2005, 127, 13760.
(55) Asano, Y.; Hara, K.; Ito, H.; Sawamura, M. "Enantioselective Addition of Terminal Alkynes to Aldehydes Catalyzed by a Cu(I)-TRAP Complex" Org. Lett. 2007, 9, 3901.
(56) Koyuncu, H.; Dogan, Ö. "Fam-Ti Catalyzed Enantioselective Alkynylation of Aldehydes" Org. Lett. 2007, 9, 3477.
(57) Yang, F.; Xi, P.; Yang, L.; Lan, J.; Xie, R.; You, J. "Facile, Mild, and Highly Enantioselective Alkynylzinc Addition to Aromatic Aldehydes by BINOL/NMethylimidazole Dual Catalysis" J. Org. Chem. 2007, 72, 5457. of Terminal Alkynes to Aromatic Aldehydes Catalyzed by Copper(I) Complexes with Wide-Bite-Angle Chiral Bisphosphine Ligands: Optimization, Scope, and Mechanistic Studies" Organometallics 2008, 27, 5984.
(59) Ito, J.-i.; Asai, R.; Nishiyama, H. "Asymmetric Direct Alkynylation Catalyzed by Chiral Ru-Bis(oxazolinyl)phenyl Complexes" Org. Lett. 2010, 12, 3860.
(60) Trost, B. M.; Chan, V. S.; Yamamoto, D. "Enantioselective ProPhenolCatalyzed Addition of 1,3-Diynes to Aldehydes to Generate Synthetically Versatile Building Blocks and Diyne Natural Products" J. Am. Chem. Soc. 2010, 132, 5186.
(61) Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. "Low Ligand Loading, Highly Enantioselective Addition of Phenylacetylene to Aromatic Ketones Catalyzed by Schiff-Base Amino Alcohols" Org. Lett. 2006, 8, 2277.
(62) Zhou, S.; Chen, C.-R.; Gau, H.-M. "Highly Enantioselective 3Furylation of Ketones Using (3-Furyl)titanium Nucleophile" Org. Lett. 2009, 12, 48.
(63) Reynolds, T. E.; Bharadwaj, A. R.; Scheidt, K. A. "Stereoselective Lewis Acid-Catalyzed α-Acylvinyl Additions" J. Am. Chem. Soc. 2006, 128, 15382.
(64) Unger, R.; Weisser, F.; Chinkov, N.; Stanger, A.; Cohen, T.; Marek, I. "Enantio- and Diastereoselective Tandem Zn-Promoted Brook Rearrangement/Ene-Allene Carbocyclization Reaction" Org. Lett. 2009, 11, 1853.
(65) Corey, E. J.; Cimprich, K. A. "Highly Enantioselective Alkynylation of Aldehydes Promoted by Chiral Oxazaborolidines" J. Am. Chem. Soc. 1994, 116, 3151.
(66) Usanov, D. L.; Yamamoto, H. "Enantioselective Alkynylation of Aldehydes with 1-Haloalkynes Catalyzed by Tethered Bis(8-quinolinato) Chromium Complex" J. Am. Chem. Soc. 2011, 133, 1286. Anand, N.; Carreira, E. "A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes" J. Am. Chem. Soc. 2001, 123, 9687.
(68) Taylor, A. M.; Schreiber, S. L. "Enantioselective Addition of Terminal Alkynes to Isolated Isoquinoline Iminiums" Org. Lett. 2005, 8, 143.
(69) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. "Enantioselective Addition of Activated Terminal Alkynes to 1-Acylpyridinium Salts Catalyzed by Cu-Bis(oxazoline) Complexes" J. Am. Chem. Soc. 2007, 129, 9300.
(70) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. "Copper-Catalyzed Coupling of Pyridines and Quinolines with Alkynes: A One-Step, Asymmetric Route to Functionalized Heterocycles" J. Org. Chem. 2008, 73, 1906.
(71) Ahamed, M.; Todd, M. H. "Catalytic Asymmetric Additions of CarbonCentered Nucleophiles to Nitrogen-Containing Aromatic Heterocycles" Eur. J. Org. Chem. 2010, 2010, 5935.
(72) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. "Enantioselective addition of activated terminal alkynes to 1-acylpyridinium salts catalyzed by Cu -bis(oxazoline) complexes" J. Am. Chem. Soc. 2007, 129, 9300.

Chapter 2

ALKYNYLATION OF CHROMAN ACETALS ${ }^{1}$

As discussed in chapter 1, there are only four methods for the enantioselective addition to cyclic oxocarbenium ion intermediates. ${ }^{2-5}$ Three of these (Jacobsen, ${ }^{2}$ Schaus, ${ }^{3}$ Watson ${ }^{4}$) are limited to fairly stable benzylic or aromatic oxocarbenium ions 2-1 or 2-2 (Figure 2-1). Braun's allylation of a single dihydropyranyl acetal 5 represents the only example to date of enantioselective nucleophilic addition to a less stable aliphatic cyclic oxocarbenium ion 2-4.

2-1
benzylic (Jacobsen, Watson)

2-2
aromatic (Schaus, Watson)

2-3

2-4 aliphatic (Braun)

Figure 2.1. Oxocarbenium Ions for Enantioselective Additions

In an effort to extend the enantioselective Cu -catalyzed alkynylation to less stable oxocarbenium ions such as $\mathbf{2 - 3}$, I investigated the alkynylation of chroman acetal $\mathbf{2 - 5}{ }^{6}$ (Scheme 2-1), which was easily prepared from 2-hydroxychroman using methanol and trifluoroacetic acid. ${ }^{3}$ The application of the optimized reaction conditions for the chromene and isochroman acetals failed to give any product with substrate 2-5. Catalyst screening was required to identify an effective catalyst for alkynylation.

Scheme 2.1. Alkynylation of 2-Methoxychroman

I initiated a catalyst screen and investigated the ability of various copper and zinc salts to perform the addition of terminal alkynes to chroman $\mathbf{2 - 7}^{7}$ (Table 2-1). I hypothesized that a better leaving group was required for alkynylation, as it would assist the oxocarbenium ion formation. 2-Acetoxychroman 2-7 was chosen as a model substrate. Diethyl ether and dichloromethane were tested as solvents for the reaction. I discovered that copper(I) and copper(II) salts were ineffective catalysts for the alkynylation, and the formation of the desired product was not observed in diethyl ether or dichloromethane (entries 1-2, 5-8, 11-12). In comparison, zinc salts provided promising results (entries 3-4, 9-10). Zinc bromide furnished the product in higher yields than zinc triflate. Zinc bromide furnished the product in 59% yield in diethyl ether. Alkene by-product $\mathbf{2 - 8} \mathbf{8}^{7-8}$ formed through an E1-elimination pathway was observed in entries 2-4 and 11. Starting material was present in all cases except entries 6 and 12 .

Table 2.1. Catalyst Screen for Alkynylation of 2-Acetoxychroman

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard.

To determine the best Lewis acid for the transformation, I investigated various silyl triflates and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Table 2.2). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided significantly lower yield of the desired product compared to silyl triflates (entry 4). TESOTf was the best Lewis acid for the transformation, increasing the yield of the alkynylated product to 78% (entry 2). ${ }^{9}$ No desired product was observed in the absence of Lewis acid.

Table 2.2. Lewis Acid Screen for Alkynylation of 2-Acetoxychroman

	$\xrightarrow[\substack{\text { 1.1 equiv Lewis Acid } \\ \text { Et } \mathrm{t}_{2} \mathrm{O}, \text { r.t., } 24 \mathrm{~h}}]{\substack{1.2 \text { equiv } \\ 10 \mathrm{~mol} \% \mathrm{ZnBr}_{2} \\ 1.3 \text { equiv } i-\mathrm{Pr}_{2} \mathrm{NEt}}}$			
Entry	Lewis Acid	Yield (\%) ${ }^{a}$		
		2-6	2-8	2-7
1	TMSOTf	64	10	30
2	TESOTf	78	2	20
3	TIPSOTf	71	Trace	15
4	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	18	0	90

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard.

The presence of unreacted starting material suggested that not all acetal was ionizing to the oxocarbenium ion. Based on this hypothesis, I increased the amounts of base and Lewis acid. The quantity of Lewis acid was increased from 1.1 to 1.3 equivalents. The amount of base was increased to 1.5 equivalents due to the possibility of triflic acid formation in the presence of trace amounts of water. I repeated the Lewis acid screen under these new conditions (Table 2.3). Silyl triflates, AlCl_{3}, and FeCl_{3} were investigated as Lewis acids. AlCl_{3} furnished the product in low yield (entry 5). FeCl_{3} provided only trace amounts of desired product (entry 6), and silyl trilates (entries 1-3) gave comparable results with the yields of 2-6 close to 90%.

Table 2.3. Lewis Acid Screen for Alkynylation of 2-Acetoxychroman under Modified Conditions

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) n.d. = not determined.

As the final step of optimization, different zinc salts were investigated with TMSOTf, TESOTf, and TIPSOTf (Table 2.4). From the results of the screening, I concluded that ZnBr_{2} was the most efficient catalyst and TESOTf was the best Lewis acid for the transformation. With freshly distilled TESOTf and ZnBr_{2} as catalyst, quantitative conversion of the starting material to the desired product was observed (entry 6).

Table 2.4. Comparison of Zinc Salts

	$\xrightarrow[\substack{\text { 1.3 equiv Lewis Acid } \\ \text { Et } \mathrm{t}_{2} \mathrm{O}, \text { r.t., } 24 \mathrm{~h}}]{\substack{1.2 \text { equiv } \\ 10 \mathrm{~mol} \% \mathrm{ZnX}_{2} \\ 1.5 \text { Ruiv } i-\mathrm{Pr}_{2} \mathrm{NEt}}}$		
Entry	Catalyst	Lewis Acid	Yield (\%) ${ }^{a}$
1	ZnCl_{2}	TMSOTf	47
2	ZnBr_{2}	TMSOTf	60-90
3	$\mathrm{Zn}(\mathrm{OTf})_{2}$	TMSOTf	14
4	ZnI_{2}	TMSOTf	37
5	ZnCl_{2}	TESOTf	94
6	ZnBr_{2}	TESOTf	99
7	$\mathrm{Zn}(\mathrm{OTf})_{2}$	TESOTf	31
8	ZnI_{2}	TESOTf	51
9	ZnCl_{2}	TIPSOTf	92
10	ZnBr_{2}	TIPSOTf	81
11	$\mathrm{Zn}(\mathrm{OTf})_{2}$	TIPSOTf	48
12	ZnI_{2}	TIPSOTf	57

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard.

I also investigated the effect of the leaving group on reactivity. A variety of chroman acetals were prepared from dihydrocoumarin and tested under the alkynylation conditions. The synthesis of chroman acetals is presented in Scheme 2.2. Dihydrocoumarin 2-9 was reduced to lactol 2-10 with DIBAl-H. ${ }^{7,10}$ Lactol 2-10 was then converted to the acetals $\mathbf{2 - 5}, \mathbf{2 - 7}, \mathbf{2 - 1 1}, \mathbf{2 - 1 2}$ and $\mathbf{2 - 1 3}$. The results of the screening are presented in Table 2.5. The hydroxy and methoxy groups (entries 1-2) were not
suitable leaving groups for the transformation. The bulky OPiv, OBoc, and OBz groups furnished the product in low yields (entries 4-6). Acetate was the optimal leaving group for the reaction (entry 3).

Scheme 2.2. Synthesis of Chroman Acetals

Table 2.5. Effect of Leaving Group on Reactivity
Entry
1^{b}
2

With optimized reaction conditions in hand, I determined the preliminary alkyne scope. I discovered that aromatic, aliphatic, and silyl alkynes are viable in the alkynylation, providing excellent yields of the desired products (Table 2.6).

Table 2.6. Scope of Alkyne ${ }^{a}$
Entry
a) Conditions: Acetal $\mathbf{2 - 7}$ ($0.30 \mathrm{mmol}, 1.0$ equiv), ZnBr_{2} ($0.030 \mathrm{mmol}, 10 \mathrm{~mol} \%$), alkyne ($0.39 \mathrm{mmol}, 1.3$ equiv), i- $\mathrm{Pr}_{2} \mathrm{NEt}(0.45 \mathrm{mmol}, 1.5$ equiv), TESOTf (0.39 mmol , 1.3 equiv), $\mathrm{Et}_{2} \mathrm{O}$, r.t., 24 h . b) Isolated yields.

Having determined optimized reaction conditions for the nonasymmetric reaction, I tested various chiral ligands for an asymmetric version of this reaction. Initial screening was performed with chiral amino alcohols, diols, and diamine ligands and zinc bromide or zinc triflate (Figure 2.2). No enantiomeric enrichment was observed in all cases. The same results were obtained with stoichiometric quantities of diethyl zinc and chiral ligands. I then investigated bis(oxazoline) ligands. I noticed that $\mathrm{Zn}(\mathrm{OTf})_{2}$ provided higher ee compared to other zinc sources. Enantiomeric enrichment was detected with ligands 2-32, 2-34, 2-35, 2-36, and 2-37 (Figure 2.3). The highest ee of 42% was observed with ligand $\mathbf{2 - 3 5}$. However, significant reduction in yield of the desired product was observed with only 10-20\% of 2-6 formed. Attempts to further increase ee by reducing temperature to $-27^{\circ} \mathrm{C}$ were unsuccessful and no product formation occurred. Chiral NHC, phosphine, and phosphoramidite ligands were also investigated (Figure 2.4). All these ligands furnished products in low to no enantioselectivity. These results indicate that the development of enantioselective alkynylation of chroman acetals is workable and further screening of chiral ligands will be required to improve the yield and enantioselectivity.

2-21
0% ee

0% ee

0% ee

Figure 2.2. Representative Results with Chiral Amino Alcohol, Diol, and Diamine Ligands

2-35
42\% ee

2-37
10\% ee

Figure 2.3. Bis(Oxazoline) Ligands Screen

2-43
0% ee

2-44
2-9\% ee

2-47
0\% ee

0\% ee

2-53
0% ee

0% ee

2-52
0% ee

2-54
0\% ee

Figure 2.4. Chiral Ligands Screen

In conclusion, we have developed a zinc-catalyzed alkynylation of chroman acetals through oxocarbenium ion intermediates. Key to achieving high yields in this reaction were (1) identification of acetate as the best leaving group; (2) identification of ZnBr_{2} as catalyst; and (3) using increased equivalents of Lewis acid and base. Aromatic, aliphatic, and silyl acetylenes were viable partners in the reaction and produced alkynylated products in excellent yields. From the preliminary screening of chiral ligands, promising enantioselectivities have been achieved; my best result to date is 42% ee, which was observed with bis(oxazoline) ligand 2-35. This promising result shows the potential of developing an asymmetric variant of this reaction. Further screening of chiral ligands will be necessary to identify a catalyst able to furnish the product in excellent yield and high enantioselectivity.

REFERENCES

(1) This work was performed in collaboration with Dr. Prantik Maity.
(2) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective ThioureaCatalyzed Additions to Oxocarbenium Ions" J. Am. Chem. Soc. 2008, 130, 7198.
(3) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" Angew. Chem., Int. Ed. 2010, 49, 7096.
(4) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" J. Am. Chem. Soc. 2011, 133, 17142.
(5) Braun, M.; Kotter, W. "Titanium(IV)-Catalyzed Dynamic Kinetic Asymmetric Transformation of Alcohols, Silyl Ethers, and Acetals under Carbon Allylation" Angew. Chem., Int. Ed. 2004, 43, 514.
(6) Wulff, G.; Wolf, G. "Zur Chemie von Haftgruppen, VI. Über die Eignung verschiedener Aldehyde und Ketone als Haftgruppen für Monoalkohole" Chem. Ber. 1986, 119, 1876.
(7) Parham, W. E.; Huestis, L. D. "The Reaction of Dichlorocarbene with 2,3-Chromene and 3,4-Chromene" J. Am. Chem. Soc. 1962, 84, 813.
(8) Clark-Lewis, J.; McGarry, E. "Hydroboration of chromenes, flav-2enes, flavylium salts, and flavones" Aust. J. Chem. 1973, 26, 819.
(9) Fujioka, H.; Okitsu, T.; Ohnaka, T.; Sawama, Y.; Kubo, O.; Okamoto, K.; Kita, Y. "Reaction of Tetrahydropyranyl Ethers with Triethylsilyl Trifluoromethanesulfonate-2,4,6-Collidine Combination: Speculation on the

Intermediate, Efficient Deprotection, and Application to Efficient Ring-Closing Metathesis as a Tether" Adv. Synth. Catal. 2007, 349, 636.
(10) Yates, P.; Macas, T. S. "Tandem Wessely oxidation and intramolecular Diels-Alder reactions. III. Synthesis of isotwistanes" Can. J. Chem. 1988, 66, 1.

Chapter 3

ALKYNYLATION OF NONBENZOPYRANYL SUBSTRATES

The reactions of oxocarbenium ion intermediates play a significant role in the synthesis of various complex natural products and in the chemistry of carbohydrates. ${ }^{1}$ Tetrahydrofuran and tetrahydropyran structural motifs are present in many bioactive molecules and other synthetic targets. ${ }^{2}$ Given the importance of α-substituted tetrahydropyrans and tetrahydrofurans, the development of metal-catalyzed alkynylation of their oxocarbenium ion precursors would be of great advantage. We have begun to extend our metal-catalyzed alkynylation strategy ${ }^{3}$ to aliphatic oxocarbenium ions such as 3-4, 3-5, and 3-6 derived from acetals 3-1, 3-2, and 3-3 respectively (Scheme 3.1). For oxocarbenium ions with stereocenters such as 3-4, we envisioned the opportunity for diastereoselective alkynylation via a substratecontrolled reaction. For oxocarbenium ions 3-5 with no stereocenters, we envisioned the opportunity for enantioselective catalysis to control the stereoselectivity of nucleophilic addition. We proposed that oxocarbenium ions 3-6 would have little stereochemical bias in the addition of terminal alkynes. In this case, we envisioned catalyst control of diastereoselectivity. In this chapter, I present the development of zinc-catalyzed alkynylations of each of these types of oxocarbenium ions.

Substrate Control

3-1

3-4
opportunity for diastereoselective alkynylation

3-2

3-5

opportunity for enantioselective catalysis

3-3

3-6

opportunity for diastereoselective alkynylation

Scheme 3.1. Cyclic Aliphatic Oxocarbenium Ions as Intermediates for Enantioselective and Diastereoselective Alkynylation of Acetals

3.1 Alkynylation of 2-Acetoxytetrahydropyran

2-Acetoxytetrahydropyran 3-8 was selected as a model substrate for my initial investigations of the alkynylation of non-benzopyranyl acetals. Pyran 3-8 was prepared from dihydropyran $\mathbf{3 - 7}$ in 84% yield using acetic acid and pyridinium p toluenesulfonate ${ }^{4}$ (Scheme 3.2). The application of the optimized reaction conditions for benzopyranyl substrates (Chapter 2) furnished the product in only 7% yield (Table 3-1, entry 1). Increasing the catalyst loading did not improve the yield of the alkynylation product (entry 2). With stoichiometric quantities of ZnBr_{2}, still only 17% yield of the product was observed (entry 3). With $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as Lewis acid, the yield was 19\% (entry 4). With no Lewis acid present, only trace amount of the product 3-9 was detected. In all these reactions, no starting material was recovered, suggesting a
competitive decomposition pathway for acetal 3-8. Because no byproducts were observed by NMR, I propose that the mass balance is likely due to competitive E1 elimination of the acetal, leading to volatile pyran 3-7. With this hypothesis in mind, I analyzed the reaction parameters in an effort to optimize the yield of ether 3-9.

Scheme 3.2. Synthesis of 2-Acetoxytetrahydropyran Model Substrate

Table 3.1. Initial Screening for Alkynylation of 2-Acetoxytetrahydropyran

Entry	$\mathrm{X} \mathrm{mol} \mathrm{\%}$ of ZnBr_{2}	Lewis Acid	Yield of 3-9 $(\%)^{a}$
1	10	TESOTf	7
2	20	TESOTf	8
3	100	TESOTf	17
4	10	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	19

a) $\begin{aligned} & 5 \quad 10 \quad-\quad \text { trace } \\ & \begin{array}{l}\text { Yields determined by }{ }^{1} \mathrm{H} \text { NMR analysis using } \\ \text { 1,3,5-trimethoxybenzene as internal standard. }\end{array}\end{aligned}$

Catalyst screening was performed to identify an effective catalytic system for the alkynylation (Table 3.2). Copper (I) and zinc (II) salts were investigated with Lewis acids $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and TMSOTf. $\mathrm{Et}_{3} \mathrm{~N}$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}$ were evaluated as bases for the reaction. Supporting ligands were evaluated for both copper and zinc (enries 2, 4, 9). No product formation or very low yield of the desired product was observed in all cases. With stoichiometric quantities of ZnEt_{2} and TMSOTf, the yield of the desired product was 30% (entry 7).

Table 3.2. Catalyst Screen for Alkynylation of 2-Acetoxytetrahydropyran

		$\begin{aligned} & 1.3 \text { equiv } \\ & \times \mathrm{mol} \% \text { catalys } \\ & 1.5 \text { equiv base } \end{aligned}$		$=\mathrm{Ph}$	
Entry	Catalyst	Mol\% of Catalyst	Lewis Acid	Base	Yield (\%) ${ }^{\text {a }}$
1	CuI	20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	4
2	$\mathrm{CuI}+\mathrm{L}^{\text {b }}$	20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	1
3	$\left[\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}\right]$] 20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	DIPEA	0
4	$\begin{gathered} {\left[\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}\right]} \\ +\mathrm{L}^{\mathrm{b}} \end{gathered}$] 20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	DIPEA	0
5	CuOTf $\cdot \mathrm{PhMe}$	20	TMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	0
6	CuOt - Bu	20	TMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	Trace
7	ZnEt_{2}	100	TMSOTf	DIPEA	30
8	ZnEt_{2}	20	TMSOTf	DIPEA	7
9	$\mathrm{ZnEt}_{2}+\mathrm{L}_{1}{ }^{\text {c }}$	20	TMSOTf	-	0
10	$\mathrm{Zn}(\mathrm{OTf})_{2}$	20	TMSOTf	DIPEA	1
11	ZnBr_{2}	20	TMSOTf	DIPEA	1

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard. b) $\mathrm{L}=1,10$-phenanthroline $(24 \mathrm{~mol} \%) . \mathrm{c}) \mathrm{L}_{1}=\mathrm{N}$-methylephedrine $(24 \mathrm{~mol} \%)$.

A solvent screen was conducted with both copper(I) and zinc(II) catalysts (Table 3.3). Under all conditions examined, copper(I) salts were ineffective catalysts for alkynylation (entries 2, 4, 6, and 8). In comparison, ZnBr_{2} provided promising results in polar solvents - dichloromethane, tetrahydrofuran, and dioxane (entries 1, 7,

9-11). In these solvents, decreasing catalyst loading to $10 \mathrm{~mol} \%$ did not reduce the yield of the cross-coupling product. The highest yield of 50% was observed with ZnBr_{2} in dioxane (entry 10).

Table 3.3. Solvent Screen for Alkynylation of 2-Acetoxytetrahydropyran

Entry	Catalyst	X mol \% of catalyst	Base	Solvent	Yield (\%) ${ }^{a}$
1	ZnBr_{2}	20	DIPEA	DCM	33
2	$\mathrm{CuI}+\mathrm{L}^{\text {b }}$	20	$\mathrm{Et}_{3} \mathrm{~N}$	DCM	0
3	ZnBr_{2}	20	DIPEA	PhMe	8
4	$\mathrm{CuI}+\mathrm{L}^{\text {b }}$	20	$\mathrm{Et}_{3} \mathrm{~N}$	PhMe	3
5	ZnBr_{2}	20	DIPEA	MeCN	5
6	$\mathrm{CuI}+\mathrm{L}^{\text {b }}$	20	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	0
7	ZnBr_{2}	20	DIPEA	dioxane	45
8	$\mathrm{CuI}+\mathrm{L}^{\text {b }}$	20	$\mathrm{Et}_{3} \mathrm{~N}$	dioxane	0
9	ZnBr_{2}	10	DIPEA	DCM	28
10	ZnBr_{2}	10	DIPEA	dioxane	50
11	ZnBr_{2}	10	DIPEA	THF	39

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) $\mathrm{L}=1,10-$ phenanthroline ($24 \mathrm{~mol} \%$).

Next, I screened a variety of soluble organic bases (Table 3.4). From the results of the screening, I concluded that a non-nucleophilic, hindered base proved to be optimal for the reaction (entries 1, 3, and 4). Less hindered $\mathrm{Et}_{3} \mathrm{~N}$ and DBU prevented product formation (entries 2 and 5). Our hypothesis that the addition of pyridine in the reaction mixture could increase yield by stabilization of the oxocarbenium ion intermediate was disproved. With the addition of pyridine, the yield of the desired cross-coupling product decreased to 4% (entry 6).

Table 3.4. Base Screen for Alkynylation of 2-Acetoxytetrahydropyran

Entry	Base	Yield (\%) a
1	DIPEA	50
2	$\mathrm{Et}_{3} \mathrm{~N}$	0
3	PMP	48
4	$\mathrm{Cy}_{2} \mathrm{NEt}$	40
5	DBU	0
6	DIPEA $^{2}+$ Pyridine $^{\mathrm{b}}$	4

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard. b) 1.0 equiv of pyridine was used.

In conclusion, using 2-acetoxytetrahydropyran as the model substrate, I obtained useful data about the conditions required for alkynylation of aliphatic cyclic acetals. I discovered that ZnBr_{2} was an efficient catalyst for alkynylation, while
copper(I) catalysts provided no product or gave very low yields of the desired product. I concluded that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was an optimal Lewis acid for the reaction, and a nonnucleophilic base such as DIPEA was required for the alkynylation. The choice of solvent was of great importance. Polar solvents such as dioxane, tetrahydrofuran, and dichloromethane provided the product in higher yields. These requirements were considered in the development of the alkynylation of other cyclic acetals.

3.2 Diastereoselective Alkynylation of Tetrahydrofuranyl Acetals

In addition to enantioselective catalysis, catalyst control of diastereoselectivity in the addition of carbon nucleophiles to racemic oxocarbenium ions remains challenging. We proposed to examine cyclic acetals that have little stereochemical bias towards the incoming nucleophile and identify a catalyst that is capable of controlling the stereochemistry of the addition. The precedent in the literature suggested that five-membered cyclic acetals would be stereochemically unbiased towards the incoming nucleophile. ${ }^{2,5-6}$ Thus, catalyst-controlled stereoselective additions may be possible, and the cis or trans products could be formed selectively (Scheme 3.3).

Scheme 3.3. Proposed Diastereoselective Alkynylation of Tetrahydropyranyl Acetals

I decided to examine the racemic five-membered oxocarbenium ions first to confirm that the tetrahydrofuranyl acetals were stereochemically unbiased towards the addition of terminal alkynes. Three different routes for the substrate synthesis were proposed, and the desired acetal was prepared using these methods. The first route involved gold-catalyzed homogeneous oxidative carboheterofunctionalization of 4pentenoic acid 3-13 with phenylboronic acid to give lactone 3-14 ${ }^{7}$ (Scheme 3.4). The subsequent reduction of the lactone with DIBAl-H and the acylation of the lactol 3-15 produced acetal 3-16 in 90\% yield as a 1:1 ratio of diastereomers. Route B started with zinc-catalyzed coupling of acrolein 3-17 with acetyl bromide to give alkene 3-18 as a mixture of E - and Z-isomers (Scheme 3.5). ${ }^{8}$ Alkene 3-18 underwent chromiumcatalyzed homoaldol coupling (Nozaki-Hiyama-Kishi reaction) with benzaldehyde to give vinyl acetate 3-19. ${ }^{9}$ After the basic hydrolysis of intermediate 3-19, lactol 3-20 was formed. Subsequent acylation produced desired acetal 3-21 as a 1.15:1 ratio of diastereomers. Route C started with 4-bromo-1-butene 3-22, which was converted to
the Grignard reagent and phenylacetaldehyde was added to provide secondary alcohol 3-23 (Scheme 3.6). ${ }^{10}$ Ruthenium-catalyzed oxidative cleavage of 3-23 gave lactol 315. ${ }^{11}$ Subsequent acylation provided desired acetal 3-16 in a $1: 1$ ratio of diastereomers. Via these three routes, both phenyl- and benzyl acetals 3-16 and 3-21 were prepared efficiently.

Scheme 3.4. Substrate Synthesis. Route A.

Scheme 3.5. Substrate Synthesis. Route B.

Scheme 3.6. Substrate Synthesis. Route C

With the substrates in hand, I investigated the use of polar solvents under the previously optimized alkynylation conditions for model substrate 3-8 and determined the diastereomeric ratio of products. For acetal 3-21, product formation was observed in good yields in dioxane, dichloromethane, and tetrahydrofuran in a $2: 1$ ratio of diastereomers (Table 3.5).

When the best conditions for acetal 3-21 were applied to acetal 3-16, the desired product was formed in 81% yield in a 3:2 ratio of diasteremers (Scheme 3.7). Using 1D NOE experiments, I determined that the major diastereomer was the transproduct. Substrates 3-16 and 3-21 are slightly biased towards the addition of a terminal alkyne. However, we are optimistic that this slight stereochemical bias may be overcome by identification of the proper chiral catalyst.

Table 3.5. Solvent Screen for Alkynylation of Tetrahydropyranyl Acetal 3-21

Entry	Solvent	${\text { Yield, }(\%)^{a}}^{\text {d. r. }{ }^{\text {b }}}$	
1	DCM	69	$2: 1$
2	dioxane	$84(68)^{\text {c }}$	$2: 1$
3	THF	76	$2: 1$

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. c) Isolated yield in parenthesis.

Scheme 3.7. Alkynylation of Tetrahydropyranyl Acetal 3-16

Within this project, I have developed efficient routes for the preparation of racemic acetal starting materials and demonstrated that zinc-catalyzed alkynylation occurs with little stereochemical bias. The future work on this project will include identification of a chiral catalyst capable of controlling the stereochemistry of the alkyne addition. This effort will require preparation of enantiopure tetrahydrofuranyl acetals. By using opposite enantiomers of the chiral catalyst, we anticipate that both
cis and trans products can be prepared in high enantioselectivity. Methoxy will also be investigated as a leaving group in addition to acetate.

3.3 Diastereoselective Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

To investigate six-membered cyclic acetals in the zinc-catalyzed alkynylation, I prepared 2-acetoxy-3-bromotetrahydropyran 3-26 from dihydropyran 3-7 using acetic acid and N-bromosuccinamide (Scheme 3.8). ${ }^{12}$ I conducted a solvent screen with this substrate under previously optimized conditions (Table 3.6). Dichloromethane was the optimal solvent providing 75\% yield of desired product 3-27 (entry 1). A single diastereomer formed in the reaction under all conditions examined. The anti diastereoselectivity can be explained by neighboring group participation of the bromine substituent, which ensures delivery of the alkyne nucleophile from the opposite face of the bromine (Scheme 3.9). Neighboring group participation of bromine is well precedented. ${ }^{13-25}$ However, the only reported alkynylations of a bromonium ion derived from enol ether were described with 2,3dibromotetrahydropyran and trimethylsilyl lithium acetylide or ethynyl magnesium bromide. ${ }^{26}$ Our route is more synthetically attractive, as the metal acetylide is catalytically formed in situ. This difference will enable greater functional group tolerance in our alkynylation.

Scheme 3.8. Synthesis of 2-Acetoxy-3-Bromotetrahydropyran

Table 3.6. Solvent Screen for Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

Entry	Solvent	${\text { Yield }(\%)^{a}}_{\text {d.r. }{ }^{b}}$1 DCM 75 $1: 0$ 2 $\mathrm{Et}_{2} \mathrm{O}$ 31 $1: 0$ 3 dioxane 38 $1: 0$ 4 THF 12 $1: 0$ m	

a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5-trimethoxybenzene as internal standard. b) The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

Scheme 3.9. Neighboring Group Participation in Alkynylation of 2-Acetoxy-3Bromotetrahydropyran

I also investigated the possibility of a one-pot bromination/alkynylation sequence (Scheme 3.10). However, the one-pot bromoalkynylation of dihydropyran 3-7 did not provide desired product. The lack of desired reaction may be due to the
reaction of N -bromosuccinimide with the alkyne or zinc acetylide. A possible solution for this problem would be to premix 3-7 and N -bromosuccinamide to form the bromonium ion before the addition of the alkyne.

Scheme 3.10. Alkynylation of Dihydropyran via Bromonium Ion
Preliminary investigation of alkyne scope of this reaction suggests that a wide variety of alkynes can be used. Aromatic, aliphatic, and silyl acetylenes underwent the alkynylation in moderate to good yields (Table 3.7). The reaction can tolerate ester and amide functional groups (entries 3 and 5). A single trans diastereomer was formed in all cases.

Table 3.7. Preliminary Alkyne Scope ${ }^{a}$

		$\xrightarrow[\substack{\text { 2.0 eqiuv } \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} \\ \text { DCM, r.t., } 24 \mathrm{~h}}]{\substack{1.3 \text { eqiuv } \\ \text { 10 mol\% } \mathrm{ZnBr}_{2}}} \mathrm{R}$		
Entry	Alkyne	Product	Yield (\%) ${ }^{\text {b }}$	Ratio of Diatereomers ${ }^{c}$
1			54	1:0
	3-30	(rac)-3-31		

2

3-32
(rac)-3-33
3^{d}

(rac)-3-35
4

(rac)-3-37
5^{e}

3-36

33
1:0
3-34

81
1:0
3-38
6

3-40

42
1:0

$$
(r a c)-3-41
$$

a) Conditions: Acetal $\mathbf{3 - 2 6}$ ($0.30 \mathrm{mmol}, 1.0$ equiv), $\mathrm{ZnBr}_{2}(0.030 \mathrm{mmol}, 10 \mathrm{~mol}$ $\%$), alkyne ($0.39 \mathrm{mmol}, 1.3$ equiv), $\mathrm{i}-\mathrm{Pr}_{2} \mathrm{NEt}$ ($0.45 \mathrm{mmol}, 1.5$ equiv), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($0.60 \mathrm{mmol}, 2.0$ equiv), DCM, r.t., 24 h . b) Isolated yields. c) The diastereomeric ratio was determined ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. d) 3.0 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was used. e) 4.0 equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was used.

The products shown in Table 3.6 are useful intermediates in organic synthesis, as they contain both an alkyne and bromide for further functionalization. ${ }^{16}$

Halogenosugars serve as starting materials in the synthesis of other carbohydrate derivatives, including naturally occurring and synthetic deoxysugars, since the halogen can be easily removed by reducing agents ${ }^{27}$ and photolysis. ${ }^{28}$ Secondary bromide can also be functionalized using cross-coupling reactions. ${ }^{29-37}$ Halogenosugars also represent valuable precursors in synthesis of non-sugar natural products. ${ }^{16}$ For example, the products in Table 3.6 can react with $n-\mathrm{BuLi}$ to give cis and trans enynes. ${ }^{26}$ This motif is present in natural products such as histrionicotoxin, ${ }^{38}$ Laurencin, ${ }^{39}$ and (-)-laurenine. ${ }^{40}$

The future work on this project will include further optimization of reaction conditions to increase the reaction yields. The alkynylation of 2-acetoxy-3chlorotetrahydropyran and 2-acetoxy-3-iodotetrahydropyran in a similar diastereoselective manner will be investigated. This methodology will be applied to functionalize glucals such as 3-42 using substrate-controlled stereoselective formation of bromoacetate 3-43 and then substrate-controlled alkynylation to give pyran 3-44 in high diastereoselectivity (Scheme 3.11). This strategy will constitute a powerful procedure for the construction of multi-substituted pyrans.

Scheme 3.11. Proposed Functionalization of Glucals

3.4 Preliminary Results for Alkynylation of Acyclic Acetals

To confirm that our alkynylation methodology can be applied to aliphatic acyclic oxocarbenium ions in the same manner, primary and secondary acetals were tested in the alkynylation reaction. The application of the optimized conditions for alkynylation did not produce desired product with primary acetals 3-45 and 3-47 (Scheme 3.12). In comparison, alkynylation of secondary acetal 3-49 furnished desired product 3-50 in 79% yield in $\mathrm{Et}_{2} \mathrm{O}$ (Table 3.8). Thus, secondary acyclic acetals were good substrates for the alkynylation, affording products in good yields, while primary acetals did not react under the optimized reaction conditions. We hypothesize that this reactivity difference is due to the greater stability of the secondary oxocarbenium ion; with primary acetals 3-45 and 3-47, the oxocarbenium ion may not form under these conditions.

Scheme 3.12. Alkynylation of Primary Acetals

Table 3.8. Solvent Screen Alkynylation of Secondary Acyclic Acetals

Entry	Solvent	Yield, (\%) ${ }^{a}$
1	dioxane	53
2	$\mathrm{Et}_{2} \mathrm{O}$	$79(41)^{\text {b }}$
3	DCM	67
4	THF	65

[^0]
3.5 Conclusion and Future Work

I have developed efficient conditions for the zinc-catalyzed alkynylation of cyclic nonbenzopyranyl acetals. Studying 2-acetoxytetrahydropyran as a model substrate, I obtained useful data regarding the conditions required for alkynylation. I discovered that zinc bromide was an efficient catalyst for alkynylation and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was a suitable Lewis acid for the reaction. I concluded that a hindered base such as DIPEA was required for alkynylation and that the choice of solvent had a major effect on the reaction. Acetate was chosen as the leaving group for the reaction based on previous results with chroman acetals. I also prepared tetrahydrofuranyl acetals which were tested under the optimized alkynylation conditions. Product formation was observed in good yields. I determined that substituted tetrahydrofuranyl acetals were
slightly stereochemically biased towards the addition of zinc acetylides. In the case of six-membered rings, the alkynylation of 3-bromo-2-acetoxypyran was performed in moderate to good yields, and a single diastereomer was formed in these reactions. The stereoselectivity can be explained by the participation of the neighboring bromine substituent via formation of a bromonium ion. The preliminary alkyne scope of this reaction is very promising.

Working with acyclic acetals, I discovered that secondary acyclic acetals underwent alkynylation in good yields, while primary acetals did not react under the optimized alkynylation conditions. This reactivity difference is likely due to the differing stabilities of their respective oxocarbenium ions.

These studies established several exciting directions for the future studies. For five-membered acetals, future work will include preparation of enantiomerically pure substrates and identification of a chiral catalyst that is capable of forming selectively a single cis or trans diastereomer. For six-membered acetals, the future work will include the functionalization of glucals using substrate-controlled stereoselective formation of bromoacetate and subsequent substrate-controlled alkynylation to give multisubstituted pyrans in high diastereoselectivity.

REFERENCES

(1) Reisman, S.; Doyle, A.; Jacobsen, E. "Enantioselective ThioureaCatalyzed Additions to Oxocarbenium Ions" J. Am. Chem. Soc. 2008, 130, 7198.
(2) Stambasky, J.; Hocek, M.; Kocovsky, P. "C-Nucleosides: Synthetic Strategies and Biological Applications" Chem. Rev. 2009, 109, 6729.
(3) Maity, P.; Srinivas, H. D.; Watson, M. P. "Copper-Catalyzed Enantioselective Additions to Oxocarbenium Ions: Alkynylation of Isochroman Acetals" J. Am. Chem. Soc. 2011, 133, 17142.
(4) Iwanami, K.; Aoyagi, M.; Oriyama, T. "Iron(III) triflate-catalyzed onepot synthesis of acetal-type protected cyanohydrins from carbonyl compounds" Tetrahedron Lett. 2006, 47, 4741.
(5) Hainke, S.; Singh, I.; Hemmings, J.; Seitz, O. "Synthesis of C-ArylNucleosides and O-Aryl-Glycosides via Cuprate Glycosylation" J. Org. Chem. 2007, 72, 8811.
(6) Bárta, J.; Pohl, R.; Klepetářová, B.; Ernsting, N.; Hocek, M. "Modular Synthesis of 5-Substituted Thiophen-2-yl C-2'-Deoxyribonucleosides" J. Org. Chem. 2008, 73, 3798.
(7) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. "Homogeneous GoldCatalyzed Oxidative Carboheterofunctionalization of Alkenes" J. Am. Chem. Soc. 2010, 132, 1474.
(8) Lombardo, M.; Morganti, S.; Trombini, C. "3-Bromopropenyl Esters in Organic Synthesis: Indium- and Zinc-Mediated Entries to Alk-1-ene-3,4-diols $\dagger=$ " J. Org. Chem. 2003, 68, 997.
(9) Kang, J. Y.; Connell, B. T. "Chromium-Catalyzed Homoaldol Equivalent Reaction Employing a Nucleophilic Propenyl Acetate" J. Am. Chem. Soc. 2010, 132, 7826.
(10) Voelker, T.; Xia, H.; Fandrick, K.; Johnson, R.; Janowsky, A.; Cashman, J. R. "2,5-Disubstituted tetrahydrofurans as selective serotonin re-uptake inhibitors" Bioorg. Medicinal Chem. 2009, 17, 2047.
(11) Yang, D.; Zhang, C. "Ruthenium-Catalyzed Oxidative Cleavage of Olefins to Aldehydes" J. Org. Chem. 2001, 66, 4814.
(12) Shelton, J. R.; Cialdella, C. "Reaction of N-Bromosuccinimide with Dihydropyran" J. Org. Chem. 1958, 23, 1128.
(13) Segan, D.; Vukicevic, R. D.; Segan, S.; Sojic, N.; Buriez, O.; Manojlovic, D. "Kinetic investigations of the electrochemical bromination of peracetylated d-glucal in organic solvents" Electrochim. Acta 2011, 56, 9968.
(14) Boschi, A.; Chiappe, C.; De Rubertis, A.; Ruasse, M. F. o. "Substituent Dependence of the Diastereofacial Selectivity in Iodination and Bromination of Glycals and Related Cyclic Enol Ethers" J. Org. Chem. 2000, 65, 8470.
(15) Čolović, M.; Vukićević, M.; Šegan, D.; Manojlović, D.; Sojic, N.; Somsák, L.; Vukićević, R. D. "Electrochemical Bromination of Peracetylated Glycals" Adv. Synth. Catal. 2008, 350, 29.
(16) Damljanovic, I.; Stevanovic, D.; Vukicevic, M.; Vukicevic, R. D. "Electrochemical bromochlorination of peracetylated glycals" Carbohydr. Res. 2011, 346, 2683.
(17) Damljanovic, I.; Vukicevic, M.; Manojlovic, D.; Sojic, N.; Buriez, O.; Vukicevic, R. D. "Electrochemical bromination of peracetylated d-glucal: Effect of DMSO on chemoselectivity" Electrochim. Acta 2010, 55, 965.
(18) Denmark, S. E.; Burk, M. T.; Hoover, A. J. "On the Absolute Configurational Stability of Bromonium and Chloronium Ions" J. Am. Chem. Soc. 2010, 132, 1232.
(19) Gautier, F. o.-M.; Djedani-Pilard, F.; Grandjean, C. "The iodosulfonamidation of peracetylated glycals revisited: access to 1,2-di-nitrogenated sugars" Carbohydr. Res. 2011, 346, 577.
(20) Gomez, A. M.; Pedregosa, A.; Valverde, S.; Lopez, J. C. "A synthetic route to pyranoid epoxy-exo-glycals from D-glucose" Arkivoc 2011, 33.
(21) Nagorski, R. W.; Brown, R. S. "Electrophilic addition of bromine to olefins in the presence of nucleophilic trapping anions. Implications for the lifetimes of bromonium ion intermediates produced from electrophilic bromination of olefins in methanol" J. Am. Chem. Soc. 1992, 114, 7773.
(22) Qian, Y.; Feng, J.; Parvez, M.; Ling, C.-C. "Unexpected Anomeric Selectivity of a 1-C-Arylglycal Donor in Kdo Glycoside Synthesis" J. Org. Chem. 2011, 77, 96.
(23) Rawal, G. K.; Kumar, A.; Tawar, U.; Vankar, Y. D. "New method for chloroamidation of olefins. Application in the synthesis of N -glycopeptides and anticancer agents" Org. Lett. 2007, 9, 5171.
(24) Sels, B.; Levecque, P.; Brosius, R.; De Vos, D.; Jacobs, P.; Gammon, D. W.; Kinfe, H. H. "A New Catalytic Route for the Oxidative Halogenation of Cyclic Enol Ethers using Tungstate Exchanged on Takovite" Adv. Synth. Catal. 2005, 347, 93.
(25) Yousuf, S. K.; Hussain, A.; Sharma, D. K.; Wani, A. H.; Singh, B.; Mukherjee, D.; Taneja, S. C. "Stereoselective Conversion of Dihydropyran and Glycals to 1-Azido-2-halo Derivatives Using NIS/NBS-TMSN(3)" J. Carbohydr. Chem. 2011, 30, 61.
(26) Karadogan, B.; Edwards, N.; Parsons, P. J. "A novel synthesis oftransenynes from substituted tetrahydropyrans" Tetrahedron Lett. 1999, 40, 5931.
(27) Bermejo Gonzalez, F.; Lopez Barba, A.; Ruano Espina, M. "Efficient Preparation of a Valuable Intermediate in the Synthesis of (\−)-Swainsonine" Bull. Chem. Soc. Jap. 1992, 65, 567.
(28) Binkley, R. W.; Bankaitis, D. "Photochemically Based Synthesis of Deoxy Sugars. Synthesis of 2-Deoxy-D-Arabino-Hexopyranose (2-Deoxy-D-Glucose) and Several of Its Derivatives from 3,4,6-Tri-O-Acetyl-D-Glucal" J. Carbohydr. Chem. 1982, $1,1$.
(29) Li, Z.; Jiang, Y.-Y.; Fu, Y. "Theoretical Study on the Mechanism of Ni-Catalyzed Alkyl-Alkyl Suzuki Cross-Coupling" Chem. Eur. J. 2012, 18, 4345.
(30) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.; Liu, J.H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. "Alkylboronic Esters from Copper-Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides" Angew. Chem., Int. Ed. 2012, 51, 528.
(31) Glasspoole, B. W.; Crudden, C. M. "Cross-coupling: The final frontier" Nat Chem 2011, 3, 912.
(32) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X. "Cross-Coupling of Nonactivated Alkyl Halides with Alkynyl Grignard Reagents: A Nickel Pincer Complex as the Catalyst" Angew. Chem., Int. Ed. 2011, 50, 11777. Cross-Coupling Reactions of Secondary Alkylzinc Halides and Aryl Iodides" Org. Lett. 2011, 13, 1218.
(34) Saito, B.; Fu, G. C. "Alkyl-Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Halides at Room Temperature" J. Am. Chem. Soc. 2007, 129, 9602.
(35) Strotman, N. A.; Sommer, S.; Fu, G. C. "Hiyama Reactions of Activated and Unactivated Secondary Alkyl Halides Catalyzed by a Nickel/Norephedrine Complex" Angew. Chem., Int. Ed. 2007, 46, 3556.
(36) González-Bobes, F.; Fu, G. C. "Amino Alcohols as Ligands for NickelCatalyzed Suzuki Reactions of Unactivated Alkyl Halides, Including Secondary Alkyl Chlorides, with Arylboronic Acids" J. Am. Chem. Soc. 2006, 128, 5360.
(37) Powell, D. A.; Maki, T.; Fu, G. C. "Stille Cross-Couplings of Unactivated Secondary Alkyl Halides Using Monoorganotin Reagents" J. Am. Chem. Soc. 2004, 127, 510.
(38) Carey, S. C.; Aratani, M.; Kishi, Y. "A total synthesis of d,1histrionicotoxin" Tetrahedron Lett. 1985, 26, 5887.
(39) Murai, A.; Murase, H.; Matsue, H.; Masamune, T. "The synthesis of (\pm)-Laurencin" Tetrahedron Lett. 1977, 18, 2507.
(40) Overman, L. E.; Thompson, A. S. "Total synthesis of (-)-laurenyne. Use of acetal-initiated cyclizations to prepare functionalized eight-membered cyclic ethers" J. Am. Chem. Soc. 1988, 110, 2248.

Appendix A

EXPERIMENTAL

Reactions were performed either in a N_{2}-atmosphere glovebox in oven-dried 1dram vials with Teflon-lined caps or in oven-dried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N_{2}. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel $60(40-63 \mu \mathrm{~m}, 60 \AA)$. Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, or Cambridge Isotopes Laboratories and used as received with the following exceptions: toluene, dioxane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried by passing through drying columns. ${ }^{1}$ Toluene and dioxane were then degassed by sparging with N_{2}. Toluene was stored over activated $4 \AA \mathrm{MS}$ in a N_{2}-atmosphere glovebox. $\mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N},(i-\mathrm{Pr})_{2} \mathrm{NEt}, \mathrm{PMP}, \mathrm{Cy}_{2} \mathrm{NEt}$, pyridine, and DBU were distilled from CaH_{2}. TMSOTf, TESOTf, TIPSOTf, and TBSOTf were distilled before use and stored under $\mathrm{N}_{2} . \mathrm{CDCl}_{3}$ was stored over oven-dried potassium carbonate. Alkynes were degassed before use by either freeze-pump-thaw cycles or sparging with N_{2}. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded on 400 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.26\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.16\right)$. Data are represented as follows: chemical shift, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants in Hertz (Hz), integration. Infrared (IR) spectra were obtained using FTIR spectrophotometers with material loaded
onto a NaCl plate. The mass spectral data were obtained at the University of Delaware spectrometry facility. Known lactone $\mathbf{3 - 1 4},{ }^{2}$ lactols $\mathbf{2 - 1 0}{ }^{3-4}$ and $\mathbf{3 - 2 0},{ }^{5}$ and acetals 3-8, ${ }^{6}$ $\mathbf{3 - 2 6},{ }^{7}$ and $3-49^{8}$ were prepared as described in the literature.

Preparation of Chroman Acetal Substrates

This procedure was adopted from that reported in the literature. ${ }^{10}$ The solution of 2-9 ($5.0 \mathrm{~g}, 33.7 \mathrm{mmol}, 1.0$ equiv) in toluene ($0.6 \mathrm{M}, 60 \mathrm{~mL}$) was cooled to $-78{ }^{\circ} \mathrm{C}$ and DIBAl-H (1.2 M, $36.5 \mathrm{~mL}, 43.8 \mathrm{mmol}, 1.3$ equiv) was added slowly via syringe. The reaction mixture was stirred for 4 hours at $-78^{\circ} \mathrm{C}$ and then allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 15 min . The reaction was diluted with EtOAc (150 mL) and quenched with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and vigorously stirred and filtered through Celite. The layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 150 \mathrm{~mL}$). The organic layers were combined and washed with brine $(100 \mathrm{~mL})$ and then dried with MgSO_{4}, filtered, and concentrated. This material was taken forward without purification.

The crude 2-10 was redissolved in MeOH ($60 \mathrm{~mL}, 0.6 \mathrm{M}$). Trifluoroacetic acid ($77 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 0.03$ equiv) was added, and the reaction was stirred for 3 h at room temperature. The reaction was quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}(233 \mathrm{mg}, 1.7 \mathrm{mmol}, 0.05$ equiv), filtered and concentrated under reduced pressure. Crude product was purified by silica gel chromatography (2-5\% EtOAc in hexanes) to give 2-methoxychroman 2-5 (2.50 g, 63%) as a light yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.02$ $2.90(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 152.0,129.4,127.4,122.7,120.8,117.1,98.2,55.8,26.4,20.4 ;$ FTIR (NaCl/thin film) 2936, 1583, 1488, 1458, 1374, 1275, 1213, 1184, 1106, 1060, 999, 910, $755 \mathrm{~cm}^{-1}$; LCMS $(\mathrm{CI}+)[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$: 164.0832 , found: 164 .

2-Acetoxychroman

This procedure was adopted from that reported in the literature. ${ }^{11}$ Pyridine (1.2 $\mathrm{mL}, 14.9 \mathrm{mmol}, 2.0$ equiv) was added to a solution of 2-hydroxychroman ($\mathbf{2 - 1 0}, 1.12 \mathrm{~g}$, $7.46 \mathrm{mmol}, 1.0$ equiv) in acetic anhydride ($4.0 \mathrm{~mL}, 42.4 \mathrm{mmol}, 5.7$ equiv). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 hours and then cooled to room temperature. $\mathrm{H}_{2} \mathrm{O}$ (5 mL) was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. The crude product was purified by silica gel chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 2-acetoxychroman 2-7 (1.08 $\mathrm{g}, 75 \%$) as a light yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (ddd, $J=16.9$, 12.6, 6.1 Hz, 1 H), 2.71 (ddd, $J=15.8,6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.17-1.97(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.1,151.6,129.4,127.7,121.8,121.5,117.2,90.3,25.1,21.4$, 19.7; FTIR (NaCl/thin film) 2939, 2853, 1751, 1491, 1458, 1244, 1207, 1174, 1119, 1049, 1004, 955, 916, $757 \mathrm{~cm}^{-1} ;$ LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}:$ 192.0781, found 192.

2-Pivaloyloxychroman

Pivaloyl chloride ($2.5 \mathrm{~mL}, 20 \mathrm{mmol}, 2.0$ equiv) was added to a solution of 2hydroxychroman ($\mathbf{2 - 1 0}, 1.5 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) in pyridine ($3 \mathrm{~mL}, 3.3 \mathrm{M}$). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 3 hours and then cooled to room temperature. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. Combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Crude product was purified by silica gel chromatography (5\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 2-pivaloyloxychroman 2-11 (1.21g, 52\%) as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.83(\mathrm{~m}, 2 \mathrm{H})$, 6.55-6.47 (t, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (ddd, $J=16.4,12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.72 (ddd, $J=16.4$, $15.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.4,151.7,129.3,127.7,121.8,121.4,117.2,90.2,39.1,27.1,25.2,19.9$; FTIR (thin film) $2973,2935,1743,1585,1492,1481,1459,1275,1227,1181,113,1114,1048$, 1033, 944, 914, $755 \mathrm{~cm}^{-1} ;$ LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}: 234.1251$, found: 234.

2-Benzoyloxychroman

Pyridine ($120 \mu \mathrm{~L}, 1.47 \mathrm{mmol}, 2.0$ equiv) and DMAP ($8.9 \mathrm{mg}, 0.073 \mathrm{mmol}, 0.10$ equiv) were added to a solution of 2-hydroxychroman ($\mathbf{2 - 1 0}, 110 \mathrm{mg}, 0.733 \mathrm{mmol}, 1.0$
equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}, 0.4 \mathrm{M})$. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and $\mathrm{BzCl}(102 \mu \mathrm{~L}, 0.88 \mathrm{mmol}, 1.2$ equiv) was added via syringe. The reaction was warmed to room temperature and stirred for 3 days. $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc (10 mL×3). The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Purification by silica gel chromatography gave 2-benzoyloxychroman 2$12(167 \mathrm{mg}, 90 \%)^{12}$ as a white solid (m. p. 99-100 ${ }^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.01 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.63-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.36$ (m, 2 H), 7.14 (m, 2 H), 7.00 $6.87(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.3,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38-2.24(m, 1 H), 2.10-2.23(m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.4,151.7$, 133.5, 129.8, 129.4, 129.3, 128.5, 127.8, 121.8, 121.6, 117.3, 90.9, 24.3, 19.9; FTIR ($\mathrm{NaCl} /$ thin layer) $3736,2923,1729,1488,1262,1220,1084,1008,700 . \mathrm{cm}^{-1} ;$ LCMS $(\mathrm{CI}+)[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}: 254.0938$, found: 254.

2-tert-Butyloxycarbonyloxychroman

Pyridine ($220 \mu \mathrm{~L}, 2.76 \mathrm{mmol}, 2.0$ equiv) and DMAP ($16.9 \mathrm{mg}, 0.138 \mathrm{mmol}, 0.10$ equiv) were added to a solution of 2-hydroxychroman ($\mathbf{2 - 1 0}, 207 \mathrm{mg}, 1.38 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 0.5 \mathrm{M})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath, and $\mathrm{Boc}_{2} \mathrm{O}(361 \mathrm{mg}, 1.65 \mathrm{mmol}, 1.2$ equiv) was added. The reaction was then warmed to room temperature and stirred for 3 days. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc ($5 \mathrm{~mL} \times 3$). The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Purification by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with 2%
$\mathrm{Et}_{3} \mathrm{~N}$) gave chroman 2-13 (273mg, 80%) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.36$ (t, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $1.97(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.4,151.5,129.4,127.7$, 121.9, 121.5, 117.2, 92.7, 83.0, 27.9, 25.2, 19.7; FTIR (NaCl/thin film) 2980, 2935, $1751,1585,1491,1458,1369,1286,1215,1160,1105,1050,1013,917,891,843,755$ $\mathrm{cm}^{-1} ;$ LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}: 250.1200$, found 250 .

Alkynylation of Chroman Acetals

General Method. In a N_{2}-atmosphere glovebox, $\mathrm{ZnBr}_{2}(6.8 \mathrm{mg}, 0.030 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was weighed into a 1-dram vial, and then $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$, alkyne (0.39 mmol, 1.3 equiv), $i-\operatorname{Pr}_{2} \operatorname{NEt}(75 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 1.5$ equiv) and 2-acetoxychroman ($\mathbf{2 - 7}$, $57.6 \mathrm{mg} 0.30 \mathrm{mmol}, 1.0$ equiv) were added. The vial was capped with a Teflon-lined septum cap and removed from the glovebox. TESOTf ($90 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 1.3$ equiv) was added via syringe, and the reaction mixture was stirred for 24 h at room temperature. The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate was concentrated and purified by silica gel chromatography.

Chroman 2-6. Prepared via General Method described above. Crude material was purified by silica gel chromatography (5\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 2-6 (67.1 mg , 95%) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-$
7.41 (m, 2 H), 7.37-7.27(m, 3H), 7.18-7.05 (m, 2 H), 6.94-6.86(m, 2 H), 5.17 (dd, $J=6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=16.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=16.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ $2.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.6, 132.0, 129.7, 128.7, 128.4, 127.5, 122.4, 121.7, 120.8, 117.3, 87.1, 85.5, 66.2, 28.1, 23.4; FTIR ($\mathrm{NaCl} /$ thin layer) 3858 , $3750,3060,2932,2846,2231,1653,1559,1488,1456,1228,1112,990,752,690 \mathrm{~cm}^{-1}$; LCMS (CI+) [M] ${ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}: 234.1040$, found: 234.

Chroman 2-16. Prepared via General Method described above.
 Crude material was purified by silica gel chromatography (5\% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound $\mathbf{2 - 1 6}(61.1 \mathrm{mg}$, 88%) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.14-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=7.6,3.0 \mathrm{~Hz}, 1$ H), 2.99-2.89 (m, 1 H), 2.85-2.75 (m, 1 H), 2.25-2.04 (m, 2 H), $0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.6,129.6,127.4,121.6,120.8,117.3,103.4,90.5,66.2$, 28.2, 23.6, -0.1; FTIR (NaCl/thin film) 3853, 2959, 2900, 2181, 1583, 1488, 1457, 1250, 1229, 1114, 1059, 993, 958, 844, 756, $668 \mathrm{~cm}^{-1}$; LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OSi}$ 230.1122, found: 230.

Chroman 2-18. Prepared via General Method described above. Crude material was purified by silica gel chromatography (2% $\mathrm{Et}_{3} \mathrm{~N} /$ hexanes) to give compound $\mathbf{2 - 1 8}(66.1 \mathrm{mg}, 91 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H})$, 4.93-4.86 (m, 1 H), 2.95 (dt, $J=16.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dt, $J=16.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 - $2.12(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 153.7$, 129.6, 127.4, 121.7, 120.7, 117.3, 86.6, 78.2, 66.1, 31.4, 28.62, 28.59, 28.4, 23.5, 22.7, 18.9, 14.2; FTIR (NaCl/thin film) 3853, 2955, 2931, 2857, 2265, 1488, 1457, 1230, 1066, 991, 752, $668 \mathrm{~cm}^{-1}$; LCMS $(\mathrm{CI}+)[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}: 242.1666$, found: 242.

Chroman 2-20. Prepared via General Method described above. Crude material was purified by silica gel chromatography (2% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 2-18 (55.6 mg , $82 \%)^{13}$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.83(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.84$ - $2.73(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.46(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,129.6,127.4$, 121.7, 120.6, 117.3, 90.7, 77.7, 66.1, 33.8, 30.2, 28.5, 25.0, 23.6; FTIR (NaCl/thin film) 3853, 3750, 2958, 2869, 2237, 1653, 1559, 1506, 1488, 1457, 1229, 1065, 991, 753, 668 cm^{-1}; LCMS (CI+) [M] $]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}: 226.1353$, found: 226.

Asymmetric Alkynylation of Chroman Acetals

General Method. In a N_{2}-atmosphere glovebox, $\mathrm{ZnOTf}_{2}(3.6 \mathrm{mg}, 0.010 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) was weighed into a 1-dram vial. Ligand ($0.012 \mathrm{mmol}, 12 \mathrm{~mol} \%$) and then $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added. The vial was capped with a Teflon-lined cap. The mixture was stirred for 1 h at room temperature in the glovebox. The vial was then opened, and phenylacetylene ($13 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 1.3$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(25 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 1.5$ equiv), and 2-acetoxychroman ($\mathbf{2 - 7}, 19.2 \mathrm{mg} 0.10 \mathrm{mmol}, 1.0$ equiv) were added. The vial was capped with a Teflon-lined septum cap and removed from the glovebox. TESOTf (30 $\mu \mathrm{L}, 0.13 \mathrm{mmol}, 1.3$ equiv) was added via syringe, and the reaction mixture was stirred for 24 h at room temperature. The mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate
was concentrated, purified using preparatory TLC and submitted for analysis on chiral HPLC.

Alkynylation of 2-Acetoxytetrahydropyran

In a N_{2}-atmosphere glovebox, $\mathrm{ZnBr}_{2}(7.9 \mathrm{mg}, 0.035 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was weighed into a 1-dram vial, and then dioxane ($1.7 \mathrm{~mL}, 0.2 \mathrm{M}$), phenylacetylene ($49 \mu \mathrm{~L}$, $0.45 \mathrm{mmol}, \quad 1.3$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(86 \mu \mathrm{~L}, \quad 0.52 \mathrm{mmol}, \quad 1.5$ equiv), $2-$ acetoxytetrahydropyran $\mathbf{3 - 8}(50 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv $)$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(88 \mu \mathrm{~L}, 0.69$ mmol, 2.0 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was removed from the box, and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was then rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate was concentrated and purified by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give pyran $\mathbf{3 - 9}(34 \mathrm{mg}$, $53 \%) .{ }^{14}$ The spectral data for this compound match that reported in the literature. ${ }^{15}$

Preparation of Tetrahydropyranyl Acetals

2-Acetoxy-5-Benzyl-Tetrahydropyran

A solution of $\mathbf{3 - 1 4}{ }^{2}(67.4 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.0$ equiv) in toluene $(1.9 \mathrm{~mL}, 0.2 \mathrm{M})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and DIBAl-H ($1.2 \mathrm{M}, 414 \mu \mathrm{~L}, 0.497 \mathrm{mmol}, 1.3$ equiv) was added slowly via syringe. The reaction mixture was stirred for 4 hours at $-78^{\circ} \mathrm{C}$. The reaction
was then quenched with methanol $(500 \mu \mathrm{~L})$ and stirred for 30 minutes at $-78{ }^{\circ} \mathrm{C}$. A saturated solution of Rochelle's salt (10 mL) was added, and the reaction mixture was warmed to room temperature and stirred overnight. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. This material was taken forward without purification.

The crude 3-15 was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~mL}, 0.2 \mathrm{M}$). Acetic anhydride (0.5 $\mathrm{mL}, 5.30 \mathrm{mmol}, 13.9$ equiv) and pyridine ($0.5 \mathrm{~mL}, 6.20 \mathrm{mmol}, 16.3$ equiv) were added to the solution, and the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. The solution was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with $\operatorname{EtOAc}(5 \mathrm{~mL} \times 3$). The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Excess acetic anhydride and pyridine were removed under high vacuum. Crude product was purified by silica gel chromatography to give 2-acetoxy-5-benzyl-tetrahydropyran 3-16 $(51.9 \mathrm{mg}, 62 \%)$ as a $1: 1$ mixture of diastereomers as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) $\delta 7.19-7.36(\mathrm{~m}, 10 \mathrm{H}), 6.36-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.52 (quin, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.35(\mathrm{dq}, J=9.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.77 (dd, $J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.62(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) $\delta 170.74,170.68,138.1,137.9,129.54,129.53,128.46,126.6,126.5$, 99.3, 99.0, 82.7, 80.9, 42.9, 41.5, 32.9, 31.7, 28.4, 27.7, 21.6, 21.5; FTIR (NaCl/thin film) $3062,3028,2941,1743,1604,1497,1454,1375,1240,1101,1009,959,854,753$, $701 \mathrm{~cm}^{-1}$.

Acetic anhydride ($0.5 \mathrm{~mL}, 5.30 \mathrm{mmol}, 7.9$ equiv) and pyridine ($0.5 \mathrm{~mL}, 6.20$ mmol, 9.3 equiv) were added to a solution of 2-hydroxy-5-phenyl-tetrahydropyran ${ }^{5}$ (320, $110 \mathrm{mg}, 0.67 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL}, 0.2 \mathrm{M})$, and the reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. The solution was cooled to room temperature and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ was added to the reaction mixture. The layers were separated and the aqueous layer was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Excess acetic anhydride and pyridine were removed under high vacuum. Crude product was purified by silica gel chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 2-acetoxy-5-benzyl-tetrahydropyran 3$\mathbf{2 1}(124.2 \mathrm{mg}, 90 \%)$ as a $1.15: 1$ mixture of diastereomers as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) $\delta 7.39-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.54(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.42 (br. s., 1 H), 5.27 (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (dd, $J=10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dq, $J=12.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.14(\mathrm{~m}, 8 \mathrm{H})$, 1.88 (dq, $J=15.47,5.79 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both diastereomers) δ 170.7, 170.6, 142.3, 141.8, 128.6, 128.5, 127.74, 127.69, 126.1, 125.7, 99.3, 99.1, 83.8, 81.4, 33.7, 32.4, 32.1, 31.8, 21.7, 21.6; FTIR (NaCl/thin film) 3031, 2990, 2951, 1744, $1375,1237,1165,1097,1010,962,883,849,760,701 \mathrm{~cm}^{-1}$.

This procedure was adopted from that reported in the literature. ${ }^{16-17}$ Magnesium turnings ($196 \mathrm{mg}, 8.05 \mathrm{mmol}, 1.2$ equiv) were placed in a $50-\mathrm{mL}$ three-neck roundbottomed flask and dried with a heat gun under vacuum. The flask was cooled to room temperature, and dry $\mathrm{Et}_{2} \mathrm{O}(6.7 \mathrm{~mL}, 1.0 \mathrm{M})$, 1,2-dibromoethane $(9 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 0.015$ equiv), and a small crystal of iodine were added to the flask. The mixture was stirred for 30 minutes and 4-bromo-1-butene ($\mathbf{3 - 2 2}, 680 \mu \mathrm{~L}, 6.71 \mathrm{mmol}, 1.0$ equiv) was added slowly via syringe. The reaction mixture turned green and started to boil. The mixture was stirred at $45^{\circ} \mathrm{C}$ for 3 hours, and the green color disappeared. The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and phenylacetaldehyde $(780 \mu \mathrm{~L}, 6.71$ mmol, 1.0 equiv) was added slowly via syringe. The reaction mixture was stirred for 2 hours at room temperature and then quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and then $1.0 \mathrm{M} \mathrm{HCl}(5$ mL). The magnesium salts dissolved. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The organic layers were washed with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}(40 \mathrm{~mL})$ and then water $(40 \mathrm{~mL})$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Crude product was purified by silica gel chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give 3-23 ($970 \mathrm{mg}, 82 \%$) as a light yellow oil. The spectral data for this compound match that reported in the literature. ${ }^{16-17}$

2-Acetoxy-5-Benzyl-Tetrahydropyran

$\mathrm{RuCl}_{3} 3 \mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{mg}, 0.040 \mathrm{mmol}, 0.035$ equiv) was added to a solution of $\mathbf{3 - 2 3}$ ($200 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeCN}\left(5.7 \mathrm{~mL}, 0.2 \mathrm{M}\right.$). Then $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(485.5 \mathrm{mg}, 2.27 \mathrm{mmol}, 2.0$ equiv) were added. The reaction mixture was stirred for 1 hour at room temperature. Sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$ and then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added to dissolve all precipitates. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$ and washed with brine (40 mL). The combined organic layers were dried with MgSO_{4}, filtered, and concentrated. Crude product was taken forward without purification. The procedure for acylation of $\mathbf{3 - 1 5}$ is the same as described above.

Alkynylation of Tetrahydrofuran Acetals

General Method. In a N_{2}-atmosphere glovebox, $\mathrm{ZnBr}_{2}(6.8 \mathrm{mg}, 0.030 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was weighed into a 1-dram vial, and then dioxane ($1.5 \mathrm{~mL}, 0.2 \mathrm{M}$), phenylacetylene ($43 \mu \mathrm{~L}, 0.39 \mathrm{mmol}, 1.3$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(75 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 1.5$ equiv), acetal ($0.30 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(76 \mu \mathrm{~L}, 0.60 \mathrm{mmol}, 2.0$ equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was removed from the glovebox, and the mixture was diluted
with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The filtrate was concentrated and purified by silica gel chromatography.

3-24

Tetrahydropyran 3-24. Prepared via General Method described above. ${ }^{1} \mathrm{H}$ NMR analysis of the crude material showed that the ratio of diastereomers was 2:1. ${ }^{18}$ Crude material was purified by silica gel chromatography ($2 \% \mathrm{Et}_{3} \mathrm{~N} /$ hexanes) to give compound 3-24 (Total: $50.7 \mathrm{mg}, 68 \%$; Trans-3-24: $16.3 \mathrm{mg}, 22 \%$; Cis-3-24: $7.2 \mathrm{mg}, 10 \%$; mixture of cis- and trans-3-24: $27.2 \mathrm{mg}, 36 \%$).

Trans-3-24: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ (dd, $J=6.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-$ $7.25(\mathrm{~m}, 8 \mathrm{H}), 5.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (dtd, $J=12.4,7.5,7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dq}, J=12.4,7.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 142.6,131.9,128.48,128.45,128.37,127.5,125.9$, $122.9,89.3,84.8,80.6,69.3,34.6,34.0$; LCMS (CI+) $[M]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$: 248.1196, found: 248.

Cis-3-24: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6$ H), $5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 142.8,131.7,128.34,128.33,128.29,127.4,126.1$, $122.9,89.4,85.0,82.1,69.5,34.9,34.0$; LCMS (CI+) $[M]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$: 248.1196, found: 248.

FTIR (NaCl/thin film, both diastereomers) 2948, 2871, 1598, 1490, 1443, 1335, $1079,1045,755,691 \mathrm{~cm}^{-1}$.

3-25

Tetrahydropyran 3-25. Prepared via General Method described above. The reaction was run on a 0.136 mmol scale.
${ }^{1} \mathrm{H}$ NMR analysis of the crude material showed that the ratio of
diastereomers was $3: 2$. Crude material was purified by silica gel chromatography (3% $\mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 3-25 (Total: $29.0 \mathrm{mg}, 81 \%$; Trans-3-25: $7.0 \mathrm{mg}, 20 \%$; Cis-3-25: $5.1 \mathrm{mg}, 14 \%$; mixture of cis- and trans-3-25: $16.9 \mathrm{mg}, 47 \%$).

Trans-3-25: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.18(\mathrm{~m}$, $8 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.42$ (quin, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dd}, J=13.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) 138.4, 131.9, 129.5, 128.5, 128.4, 128.3, 126.4, $122.9,89.5,84.6,79.9,68.7,41.7,33.7,30.8 ; \mathrm{LCMS}(\mathrm{CI}+)[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$: 262.1353, found: 262.

Cis-3-25: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=6.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 7.18 (m, 8 H), 4.85-4.77(m, 1 H), 4.18 (quin, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=13.5,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{dd}, J=13.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{td}$, $J=12.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.8,131.9$, $129.45,128.50,128.40,128.38,126.4,123.0,89.7,84.6,81.2,68.8,42.6,33.6,31.0$; LCMS (CI+) [M] $]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}: 262.1353$, found: 262.

FTIR (thin film, both diastereomers) 3027, 2925, 2867, 1490, 1455, 1333, 1044, $756,692 \mathrm{~cm}^{-1}$.

The stereochemistry of diastereomers was assigned using 1D NOE experiment. In this NMR experiment, H_{a} was irradiated. In case of cis-3-25, I observed the correlations with H_{b} and H_{c}. In case of trans-3-25, I observed the correlations with H_{c} and H_{d}.

Alkynylation of 2-Acetoxy-3-Bromotetrahydropyran

General Method. In a N_{2}-atmosphere glovebox, $\mathrm{ZnBr}_{2}(6.8 \mathrm{mg}, 0.030 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was weighed into a 1-dram vial, and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$, alkyne (0.39 mmol, 1.3 equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(75 \mu \mathrm{~L}, \quad 0.45 \mathrm{mmol}, 1.5$ equiv), 2-acetoxy-3bromotetrahydropyran ${ }^{7}\left(\mathbf{3 - 2 6}, 66.9 \mathrm{mg}, 0.30 \mathrm{mmol}\right.$, 1.0 equiv), and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(76 \mu \mathrm{~L}$, $0.60 \mathrm{mmol}, 2.0$ equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The mixture was then removed from the glovebox, diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate was concentrated and purified by silica gel chromatography.

(rac)-3-31

Tetrahydropyran 3-31. Prepared via General Method described above. Crude material was purified by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 3-31 (43.0 mg, $54 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ 7.45 (m, 2 H), $7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.66$ (ddd, $J=11.6,9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=13.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.96(\mathrm{~m}, 1 \mathrm{H})$, 1.93-1.84(m, 1 H), 1.82-1.70(m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.0,128.8$, $128.4,122.2,86.7,85.6,73.0,66.8,50.7,33.1,25.8$; FTIR (NaCl/thin film) 3411, 3027, 2241, 1777, 1497, 1454, 1069, 985, 745, $700 \mathrm{~cm}^{-1}$; LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrO}: 264.010$, found: 264.

Tetrahydropyran 3-33. Prepared via General Method described above. Crude material was purified by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give

(rac)-3-33
compound 3-33 ($46.5 \mathrm{mg}, 59 \%$) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (ddt, $J=12.2,8.3,4.2$, $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 (ddd, $J=11.6,8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.38(\mathrm{~m}, 1$ H), $1.99-1.88$ (m, 1 H), 1.82 (dd, $J=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (dtd, $J=13.7,9.2,9.2,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 101.5,92.0,72.8,66.6,50.4$, 32.9, 25.6, -0.2; FTIR (NaCl/thin film) 2959, 2927, 2852, 2169, 1250, 1115, 1102, 1079, 1044, 1022, $917,844,761 \mathrm{~cm}^{-1}$.

Tetrahydropyran 3-35. Prepared via General Method described above. Crude material was purified by silica gel chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{3 - 3 5}(44.2 \mathrm{mg}, 56 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1$ H), 4.24 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.13-3.97$ (m, 2 H), 3.59 (ddd, $J=11.6,8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50-2.38(m, 1 H), 2.02-1.80(m, 2 H), 1.70 (dtd, $J=13.7,9.1,8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,82.6,78.0,72.0,66.9,62.5$, 48.6, 32.7, 25.2, 14.1; FTIR (NaCl/thin film) 2963, 2853, 2250, 1712, 1366, 1260, 1169, $1101,1067,1025,934,800,750 \mathrm{~cm}^{-1}$.

Tetrahydropyran 3-37. Prepared via General Method described above. Crude material was purified by silica gel chromatography (2% $\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes}$) to give compound $\mathbf{3 - 3 7}$ ($55.7 \mathrm{mg}, 81 \%$) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ - 3.92 (m, 2 H), 3.53 (ddd, $J=11.7,9.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (dq, $J=13.6,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 1.92 (dtd, $J=13.6,9.8,9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.35$ - $1.23(\mathrm{~m}, 1 \mathrm{H}), 0.82-0.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 90.7, 72.9, 72.0, 66.6, 51.2, 33.3, 31.1, 25.9, 8.5, 8.4; FTIR (NaCl/thin film) 2951, 2852, 2246, 1756, 1370, 1220, 1202, 1077, 1023, 934, 866, $720 \mathrm{~cm}^{-1}$; LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}: 228.0150$, found: 228.

Tetrahydropyran 3-39. Prepared via General Method
 described above. Crude material was purified by silica gel chromatography ($10-20 \% \mathrm{EtOAc} /$ hexanes) to give compound 3-39 ($34.0 \mathrm{mg}, 33 \%)^{19}$ as a yellow solid (m. p. 129-130 ${ }^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (dd, $J=5.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (dd, $J=5.3,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (td, $J=9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,134.3,132.1,123.7,80.4$, 79.7, 72.2, 66.4, 50.2, 32.6, 27.4, 25.3; FTIR (NaCl/thin layer) 2926, 2851, 1772, 1721, $1421,1392,1346,1118,1074,940,724,711 \mathrm{~cm}^{-1}$.

Tetrahydropyran 3-41. Prepared via General Method described

(rac)-3-41 above. Crude material was purified by silica gel chromatography ($5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give compound 3-41 (34.8 $\mathrm{mg}, 42 \%)$ as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 4.27 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dt}, J=12.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.38$ (m, 1 H), $2.25(\mathrm{td}, J=7.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{tt}, J=8.8,4.4 \mathrm{~Hz}, 1$ H), 1.75-1.63 (m, 1 H), 1.53 (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.22(\mathrm{~m}$, $4 \mathrm{H}), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 87.8,72.9,66.6,51.3$, 33.2, 31.4, 30.3, 28.6, 28.5, 25.9, 22.7, 18.8, 14.2; FTIR (NaCl/thin film) 2930, 2857, 2243, 1458, 1434, 1360, 1168, 1114, 1103, 1076, 1024, 935, 866, $722 \mathrm{~cm}^{-1}$; LCMS $(\mathrm{CI}+)[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{BrO}$: 272.0771, found: 272.

Alkynylation of Phenylacetaldehyde Dimethyl Acetal

In a N_{2}-atmosphere glovebox, $\mathrm{ZnBr}_{2}(6.8 \mathrm{mg}, 0.030 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was weighed into a 1 -dram vial, and then $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$, phenylacetylene ($43 \mu \mathrm{~L}$, $0.39 \mathrm{mmol}, 1.3$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(75 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$, 1.5 equiv), phenylacetaldehyde dimethyl acetal ${ }^{8}$ ($\mathbf{3}-49,50 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(57 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$, 1.5 equiv) were added. The vial was capped, and the reaction mixture was stirred for 24 h at room temperature in the glovebox. The vial was then removed from the glovebox, and the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and filtered through a plug of silica gel, which was then rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The filtrate was concentrated and purified by silica gel chromatography ($3 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes) to give compound $\mathbf{3 - 5 0}$ (29 $\mathrm{mg}, 41 \%)$ as a yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-$ $7.24(\mathrm{~m}, 8 \mathrm{H}), 4.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4,131.8,129.8,128.5,128.4,128.3,126.8,122.8,87.6,86.9,72.8$, 56.8, 42.2; FTIR (NaCl/thin layer) 3029.49, 2925.62, 2850.61, 2821.38, 2229, 1489.94, 1339.34, 1099.58, 1029.38, 755.80, 730.58, $691.53 \mathrm{~cm}^{-1}$; LCMS (CI+) $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}: 236.1197$, found: 236.

REFERENCES

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. "Safe and Convenient Procedure for Solvent Purification" Organometallics 1996, 15, 1518.
(2) Zhang, Z.; Widenhoefer, R. A. "Gold(I)-Catalyzed Intramolecular Enantioselective Hydroalkoxylation of Allenes" Angew. Chem., Int. Ed. 2007, 46, 283.
(3) Parham, W. E.; Huestis, L. D. "The Reaction of Dichlorocarbene with 2,3-Chromene and 3,4-Chromene" J. Am. Chem. Soc. 1962, 84, 813.
(4) Yates, P.; Macas, T. S. "Tandem Wessely oxidation and intramolecular Diels-Alder reactions. III. Synthesis of isotwistanes" Can. J. Chem. 1988, 66, 1.
(5) Kang, J. Y.; Connell, B. T. "Chromium-Catalyzed Homoaldol Equivalent Reaction Employing a Nucleophilic Propenyl Acetate" J. Am. Chem. Soc. 2010, 132, 7826.
(6) Iwanami, K.; Aoyagi, M.; Oriyama, T. "Iron(III) triflate-catalyzed onepot synthesis of acetal-type protected cyanohydrins from carbonyl compounds" Tetrahedron Lett. 2006, 47, 4741.
(7) Shelton, J. R.; Cialdella, C. "Reaction of N -Bromosuccinimide with Dihydropyran" J. Org. Chem. 1958, 23, 1128.
(8) Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. "Gold(III) as an electrophilic oxidant of alkenes" J. Chem. Soc., Perkin Trans. 1 1976, 811.
(9) 2-Methoxychroman was prepared by Dr. Prantik Maity.
(10) Moquist, P. N.; Kodama, T.; Schaus, S. E. "Enantioselective Addition of Boronates to Chromene Acetals Catalyzed by a Chiral Bronsted Acid/Lewis Acid System" Angew. Chem., Int. Ed. 2010, 49, 7096.
(11) Clark-Lewis, J.; McGarry, E. "Hydroboration of chromenes, flav-2-enes, flavylium salts, and flavones" Aust. J. Chem. 1973, 26, 819.
(12) Slightly contaminated with hydrocarbon grease. See ${ }^{1} \mathrm{H}$ NMR spectrum.
(13) Slightly contaminated with ethyl acetate, dichlomethane, and hydrocarbon grease. See ${ }^{1}$ H NMR spectrum.
(14) Slightly contaminated with diethyl ether, dichlomethane, and hydrocarbon grease. See ${ }^{1} \mathrm{H}$ NMR spectrum.
(15) Brabander, J. K. D.; Liu, B.; Qian, M. "Au(I)- and $\mathrm{Pt}(\mathrm{II})$-Catalyzed Cycloetherification of ω-Hydroxy Propargylic Esters" Org. Lett. 2008, 10, 2533.
(16) Voelker, T.; Xia, H.; Fandrick, K.; Johnson, R.; Janowsky, A.; Cashman, J. R. "2,5-Disubstituted tetrahydrofurans as selective serotonin re-uptake inhibitors" Bioorg. Med. Chem. 2009, 17, 2047.
(17) Hartung, J.; Hiller, M.; Schmidt, P. "Photoreactions of PhenylSubstituted N-(pent-4-enyl-1-oxy)Pyridine-2(1 H)-Thiones" Chem. Eur. J. 1996, 2, 1014.
(18) Stereochemistry of diastereomers was assigned by analogy to 3-25.
(19) Slightly contaminated with dichlomethane and hydrocarbon grease. See ${ }^{1} \mathrm{H}$ NMR spectrum.

Appendix B

SPECTRAL DATA

		,						,	.						,			
9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	ppm
					$\|\underset{\Gamma}{\infty}\|$										-	O-		

F2 - Acquisition Parameters			
Date_		20120423	
Time		15.44	
INSTRUM		spect	
PROBHD	5 mm	CPQNP 1H/	
PULPROG		zg30	
TD		65536	
SOLVENT		CDCl3	
NS		16	
DS		2	
SWH		8278.146	
FIDRES		0.126314	Hz
AQ		3.9584243	sec
RG		12.7	
DW		60.400	usec
DE		6.00	usec
TE		298.1	K
D1		1.00000000	sec
TD 0		1	

$20 \cdot \tau \varepsilon=$
$89 \cdot \varepsilon \varepsilon=$
$\boxed{89}=2 \square=$
$28 \cdot 89 \longrightarrow$
 $-$

[^0]: a) Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis using 1,3,5trimethoxybenzene as internal standard (0.10 mmol scale). b) Isolated yield in parenthesis (0.30 mmol scale).

