
FAST ALGORITHMS FOR SELECTION AND

MULTIDIMENSIONAL SPARSE FOURIER TRANSFORM

by

André Rauh

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Fall 2015

c© 2015 André Rauh
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10014748

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10014748

FAST ALGORITHMS FOR SELECTION AND

MULTIDIMENSIONAL SPARSE FOURIER TRANSFORM

by

André Rauh

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Interim Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Gonzalo R. Arce, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Javier Garcia-Frias, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiang-Gen Xia, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jose Luis Paredes, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor, Dr. Gonzalo Arce for giving me the

opportunity to pursue this long and rewarding journey, and for his help and guidance.

I would also like to thank my friends in Newark who have supported me throughout

the years. I am especially grateful for the friendships I have in my home country in

Germany which have continuously reached out to me even though I sometimes fell off

the face off the earth. In particular I would like to mention my friend Sandra who has

helped me when I most needed it. And my dear friend Violet who has enriched my life

with so much with just being there.

Most of all I would like to thank my family in Germany who has supported me

throughout the years and always offered help if I needed some.

Without the continuous support of all of these people this endeavour would have

been a much tougher one, and for this I would like to say: Thank You!

iv

TABLE OF CONTENTS

LIST OF TABLES . vii
LIST OF FIGURES . viii
LIST OF ALGORITHMS . xiii
ABSTRACT . xiv

Chapter

1 INTRODUCTION . 1

1.1 Motivation . 1
1.2 Dissertation Overview . 5
1.3 Organization of the Dissertation . 7

2 FAST WEIGHTED MEDIAN SEARCH 10

2.1 Introduction . 10
2.2 Preliminaries . 17
2.3 The Quickselect Algorithm . 19
2.4 Optimal Order Statistics In Pivot Selection 21

2.4.1 First pivot p1 . 21
2.4.2 Second pivot p2 . 26
2.4.3 Subsequent Pivots . 31

2.5 Complexity Analysis . 33
2.6 Simulation Results . 34
2.7 Conclusions . 37

3 OPTIMIZED SPECTRUM PERMUTATION FOR THE
MULTIDIMENSIONAL SPARSE FFT 45

3.1 Introduction . 45

v

3.2 Lattices . 49

3.2.1 Dual Lattice . 53
3.2.2 Permutation Candidates Algorithm 57

3.2.2.1 Complexity Analysis 60

3.3 Odd Determinant Algorithm . 61

3.3.1 Error and Complexity Analysis 65
3.3.2 Examples . 66

3.4 Sparse FFT Algorithm . 67
3.5 Multidimensional sparse FFT Algorithm 69

3.5.1 Complexity Analysis . 74

3.6 Results . 75
3.7 Conclusion . 77

4 DICUSSION AND CONCLUDING REMARKS 86

4.1 Recommendations for Future Work 88

BIBLIOGRAPHY . 90

Appendix

A OPTIMALITY PROOF FOR MEDIAN SEARCH 97
B PROOF OF CONVEXITY FOR COST FUNCTION 98
C COPYRIGHT NOTICE . 100

vi

LIST OF TABLES

2.1 This table shows the average number of normalized comparisons C̄
for different alpha of alpha input distributions. Note that the number
of comparisons are not affected by heavy tailed input distributions. 34

3.1 Overview of the most recent existing sparse FFT algorithms. 67

3.2 This table show the improvement of the proposed algorithm by
avoiding collision generating parameters which can result in a very
poor PSNR. 600 input spectra were generated and one iteration of the
algorithm was run. The table show the minimum PSNR across all 600
simulations. σp and σr show the corresponding standard deviations of
the proposed method and the random method respectively. 77

vii

LIST OF FIGURES

2.1 This figure visualizes the weighted median sample as the minimum of
a cost function. Top: An example cost function TW M(β) with six
input samples X1 to X6 and a minimum at β = X(3). Bottom: The
derivative T ′

W M(β) of the cost function (top). Note the zero-crossing
point at β = X(4) which coincides with the WM. In this example the
weights Wi range from 0 to 1, however this is not required in general. 15

2.2 This graph show simulations of the number of comparisons that are
needed depending on the subset size chosen for the first pivot. Very
small subset sizes M0 yield higher overall runtime due to more
element-wise comparisons necessary. Very large subset sizes on the
other hand are also not optimal since too much runtime is spent on
finding a pivot. The optimal subset size is where the number of
comparisons is minimized. This dissertation focuses on finding a
closed form solution to this subset size. The higher M0 is chosen the
lower is the variance but the mean increases as well. The lower
variance means that the runtime is more reliable which is due to a
very good pivot that removes half the elements reliably. (For the
graph: N = 8192, 100000 simulations averaged) 38

2.3 The error of the optimal M∗
0 and the approximated M̃∗

0 . The error
increases as N0 becomes increasingly large. However the relative error
stays close to zero since the error grows slower than M0. This result
shows the applicability of the approximations. 39

viii

2.4 This figure shows a conceptual depiction of the state of the algorithm
after the first pivot was chosen and the input sequence partitioned
along the pivot p1. In this case the first pivot happened to be less
than the sought weighted median. During the partitioning step it is
easy to calculate the sum of the weighted W 1

≤ which is used to find
the optimal second pivot p2. The best strategy for the second pivot is
not to choose a pivot as close as possible to the location where the
weighted median is expected. This could potentially result in a
“wasted” iteration when the second pivot is again less than the WM
discard only very few elements. Thus, an overall better strategy is to
choose a “safer” pivot which will result in a lower number of
comparison on average. 40

2.5 Expected cost Tk for choosing the kth order statistic as the second
pivot p2. Note that the weighted median is expected to lie at αM .
However, choosing this point as the second pivot is far from optimal.
This is due the case that the pivot could end up below the weighted
median which is highly undesirable. The minimum cost –and hence
optimality– is achieved by choosing a slightly larger order statistics as
the pivot. (For this plot: N1 = 10000, M1 = 159, α = 0.1) 41

2.6 The maximum relative error of the optimal order statistic k∗ and the
approximation k̃∗. The error decreases as the input size increases. . 42

2.7 The relative error of the optimal order statistic k∗ and the
approximation k̃∗ for N = 29 (M = 27), N = 213 (M = 175) and
N = 220 (M = 4439). It is important to note that the error is small
for small α. This is crucial for the algorithm to work well as small α
are more likely to occur in practice. 43

2.8 The sample average of the normalized number of comparisons (C/N)
for the different algorithms. 44

2.9 Speedup against Floyd and Rivest’s SELECT. 44

3.1 Examples of two dimensional lattice tilings. Left: A simple square
lattice. Right: A hexagonal lattice. 52

ix

3.2 The solid dots (green) are the lattice points generated by the base
vectors shown in the bottom left. The solid connected lines (orange)
surrounding the lattice points is the Voronoi tessellation. The
straight lines (grey) crossing through the lattice are the Delaunay
tessellation also known as the dual graph. The fundamental region is
spanned by the two basis vectors in the bottom left. Also note, the
lattice points are the centroids of the Voronoi parallelepiped. 53

3.3 Good and bad permutation of a permuted input spectrum. Top left:
The original input spectrum generated with a multivariate Gaussian
distribution. Top right: An example of a bad permutation due to
choosing the parameters randomly. Notice the clustering of the lattice
points leading to collisions in the sparse FFT algorithm. Bottom: An
example of using a permutation obtained from using the optimal
permutation with Algorithm 3.1. Note the very uniform distribution
of the coefficients which is desirable to reduce collisions in the sparse
FFT. 60

3.4 Two histograms depicting the difference between using different
methods of choosing permutation parameters. Over 400 input spectra
are generated in the shape of Figure 3.3 and permuted them either
randomly (bottom) or according the dual lattice method (top). The
distance between each non-zero coefficient in the spectrum and its
nearest neighbor is measured of how “good” a permutation is. For
this the Euclidean norm is used. The top image has a mean minimum
distance of 16.1 which is a 21% improvement over using random
permutation parameters (bottom) which has a mean minimum
distance of 13.3. 79

3.5 Conceptual depiction of the steps performed in HashToBins. The
original spectrum (1) has only three non-zero coefficients (k = 3)
which are then permuted (2) and convolved with the low pass filter
(3). Note that only two coefficients are hashed (4) and the third (a) is
missed. There is no collisions in this particular example which could
occur if the spectrum overlaps with neighboring coefficients and the
area is hashed. 80

x

3.6 An example graph depicting the PSNR over 50 iterations. The PSNR
was calculated as the average over 40 generated input spectra. The
input size N × N = 8192 × 8192 and the sparsity k = 1600. Top: In
each iteration a randomly generated permutation Bottom: A subset
of the proposed method DualPermCandidates was used. Note:
With only very few iteration the proposed algorithm finds a very
good permutation matrix. The proposed algorithm also avoids bad
permutation with low PSNR. A random strategy might or might not
find a good permutation. This non-deterministic behavior is
undesirable for real applications. 81

3.7 40 iterations of the proposed algorithm are used and compared it
with a random strategy. The PSNR was calculated as the average
over 40 generated input spectra. For the each iteration the average
PSNR was calculated and the best performing permutation matrix
chosen. For the shown graph the sparsity k was kept constant at 800.
The graph shows that the proposed method improves the PSNR by
roughly 2dB. 82

3.8 This graph shows the improvement in PSNR for an input spectrum of
N × N = 8192 × 8192 with different signal sparsity k ranging from
400 to 10000. The test setup is the same as the one of Figure 3.7. 82

3.9 This graph compares two histograms obtained from the optimal
permutation matrix from the proposed method (top) and the optimal
matrix obtained from randomly generating permutation matrices
(bottom). The histogram shows the distribution of 2000 generated
input spectra. It can be seen that the PSNR of the proposed method
is well contained and improves upon the random permutation by
roughly 2dB. 83

xi

3.10 Two histograms depicting the difference between using different
methods of choosing permutation parameters. Over 600 input spectra
are generated with an isotropic input spectrum with a sparsity
k = 400 and dimensions of 8192 × 8192. The PSNR is measured after
one iteration of the sFFT algorithm in order to compare the
performance of the permutation. Top: Choosing a random element of
the DualPermCandidates procedure as the permutation matrix.
Bottom: Choosing a completely random permutation element. The
top histogram shows that the PSNR is concentrated and successfully
avoids very poor permutations which can occur with random
parameters (bottom) and result in unpredictable algorithmic
performance. The average PSNR is 26.65dB on the top and 25.97dB
on the bottom. The minimum PSNR is 23.50dB on the top and
10.05dB on the bottom. 84

3.11 Top: A 1000×1000 pixel crop of a 32768×32768 image with a sparsity
of 1%. Bottom: The image after running the proposed sFFT
algorithm. The PSNR is 27.81dB when compared to the original
image. 85

xii

LIST OF ALGORITHMS

2.1 Standard Quickselect algorithm using random pivots. The algorithm
is given two parameters: The input set X and the integer k specifying
the requested order statistic of the set X. The algorithm then uses
recursion to find the sought element by choosing a pivot and
partitioning the set according to that pivot. Note that a actual
implementation can transform the algorithm in a non-recursive
version which is often desired in order to reduce stack size usage. . 20

3.1 The proposed iterative algorithm which generates an infinite sequence
of candidates for permutation matrices P̃ . The only parameter
needed is the lattice basis approximating the expected spectrum
shape. Note that the evaluation of the “goodness” of the candidates
is deferred until it is defined what constitutes a good permutation
matrix. Also note that despite generating an infinite sequence an
actual implementation would not realize the candidates in the
sequence eagerly. 58

3.2 Recursive algorithm to turn an integer matrix with even determinant
into a similar matrix with odd determinant. Note that the notation
[P] is the Iversion bracket which is 1 if P is true and 0 otherwise.
Note that the algorithm potentially recurses on a matrix of the same
input size but guarantees termination after only one more call due to
the conditions preceding the recursion. The algorithm works by
flipping bits carefully such that the Laplace expansion of the
determinant has an odd number of odd terms. 62

3.3 Exact k-sparse d-dimensional algorithm. 70

xiii

ABSTRACT

In recent years, many applications throughout engineering, science, and finance

have been faced with the analysis of massive amounts of data. This dissertation focuses

on two algorithms ubiquitous in data analysis, with the goal of making them efficient

in “big data” scenarios.

First, the selection problem also known as finding the order statistic of data is

addressed. In particular, a fast weighted median (WM) algorithm, which is a more

general problem than selection, is derived. The new algorithm computes the WM of N

samples which has linear time and space complexity as opposed to O(N log N) which

is the time complexity of traditional sorting algorithms. A popular selection algorithm

often used to find the WM in large data sets is Quickselect whose performance is highly

dependent on how the pivots are chosen. The new algorithm introduces an optimization

based pivot selection strategy which results in significantly improved performance as

well as a more consistent runtime compared to traditional approaches. In particular,

the selected pivots are order statistics of subsets of the input data. In order to find the

optimal order statistics as well as the optimal subset sizes, a set of cost functions are

derived, which when minimized lead to optimal design parameters. The complexity is

compared to Floyd and Rivest’s algorithm SELECT which to date has been the fastest

median algorithm and it is shown that the proposed algorithm requires 30% fewer

comparisons. It is also shown that the proposed selection algorithm is asymptotically

optimal for large N.

The second algorithm developed in this dissertation extends the concepts of

the Sparse Fast Fourier Transform (sFFT) Algorithm introduced in 2012, to work

with multidimensional input data. The multidimensional algorithm requires several

generalizations to multiple key concepts of the 1D sparse Fourier transform algorithm.

xiv

It is shown that the permutation parameter is of key importance and should

not be chosen randomly but instead can be optimized for the reconstruction of sparse

real world data.

A connection is made between key steps of the algorithm and lattice theory, thus

establishing a rigorous understanding of the effect of the permutation parameter on the

algorithm performance. Lattice theory is then used to optimize the set of parameters

to achieve a more robust and better performing algorithm.

The result improves the algorithm without penalty on sampling complexity. In

fact other algorithms which use pseudorandom spectrum permutation can also benefit

from this finding. This dissertation addresses the case of the exact k-sparse Fourier

transform but the underlying concepts can be applied to the general case of finding a

k-sparse approximation of the Fourier transform of an arbitrary signal.

Simulations illustrate the efficiency and accuracy of the proposed algorithm.

The optimizations of the parameters and the improvements therewith are shown in

simulations in such that the worst case and average case PSNR improves by several

dB.

xv

Chapter 1

INTRODUCTION

1.1 Motivation

One particularly important area of Electrical and Computer Engineering is sig-

nal processing. Both, the word signal as well as processing are very broad terms. A

signal can come in many forms and can be interpreted in many different ways. The most

prevalent signals are analog and digital signals. In recent decades, the so called digital

age has taken over our lives with emerging technologies in communications, computing

and data analysis. This technology often uses microprocessors such as CPUs, GPUs

or FPGAs which execute instructions on discrete digital data. This discrete data are

simply bits and bytes to the computer, but often it is interpreted as real world repre-

sentations of analog signals. One example is a digital image which is represented as

discrete pixels in the digital world and corresponds to photons in the analog world.

Another popular example is an audio signal which is a sampled time varying signal in

the digital world and corresponds to a continuous wave form in the analog world.

Frequently, digital data is not kept in its raw form but processed in some sense.

Often this processing can be necessary or helpful to understand or improve the raw

signal. One commonly known example is to generate a lower resolution thumbnail of a

too large, high resolution image. Another example is compression algorithms such as

the MP3 codec for audio and the JPEG file format for images. Both algorithms trans-

form the digital data into another domain and perform data compression algorithms

to discard information unimportant to the human eye or ear. In particular, MP3 uses

the well-known Fourier transform, a method taught to most engineers during their

undergraduate studies. The Fourier transform has many more application such as

1

correlation analysis, spectrum analysis, communication [CM13], image processing and

MRI [CP54].

One very common method of data analysis is to calculate various statistics. The

most popular statistic is the mean which is also known as the average which is simply

the sum of the samples divided by the number of samples. Another statistic is the

median which divides the ordered data set into two equally large sets. The median is

often used when the input data contains outliers since an outlier skews the mean but

not the median.

Extending the mean of an input sequence of samples, to the more general case

of dealing with samples of different variances and the well-known linear filter is derived

where the variances correspond to the reciprocal values of the weights of the filter.

Furthermore, allowing negative weights, popular digital filters such as low pass, band

pass and high pass can be derived. Applying the same concepts to the median the

weighted median filters are derived. In recent years weighted median filters have be-

come increasingly popular and are applied to compressive sensing [PA11,CRT06], audio

processing [EF13], mechatronics [TLP+13] and have recently been ported to quantum

computing [YMCX13].

This dissertation first focuses on an algorithm to find the weighted median. One

disadvantage of the weighted median is that compared to a linear filter the computa-

tional cost is considerably higher. In the one dimensional case a linear filter exists of a

sequence of filter coefficients. This sequence is then used to compute the inner product

with the input signal in order to compute the output. In the weighted median case,

however, the computation is much more complex. A naive implementation has to sort

the input samples and computes the cumulative sum of the resulting array. This leads

to the motivation to find a more performant algorithm to determine the weighted me-

dian. It turns out that the well-known recursive algorithm Quickselect can be modified

to determine the weighted median.

In particular, one of this dissertation’s focus is on the runtime complexity of

algorithms. The runtime complexity of an algorithm is usually defined as the behavior

2

of the runtime on the input size. For instance, given an input vector of length N it is

of interest to the user of an algorithm how the runtime changes if the input size is –for

instance– 2N . To answer this we introduce the so called big O notation also sometimes

referred to as Landau notation [CLR+01] which describes the asymptotic behavior of

functions:

f(x) = O(g(x)) as x → ∞

if and only if there exists constants C1 and C2 such that

|f(x)| ≤ C1|g(x)| for all x > C2 (1.1)

Intuitively, this means that the function f does not grow faster than g. If the focus

is runtime complexity then this definition allows us to compare different algorithms

and judge them by how fast they solve a problem. For instance, a linear runtime

complexity is said to run in time O(N) and a exponential algorithm to run in time

O(2N). Note that the notation is not limited to runtime complexity and can also be

used to make statements about the sampling complexity or the memory requirements

of an algorithm which may be of interest for other uses of an algorithm.

Quickselect is the focus for part of this dissertation. It has linear time complexity

(O(N)) as opposed to O(N log N) of sorting. However, the performance and runtime

of the algorithm highly depend on the choice of the pivots which are elements of the

input signal that are used to partition the data. This dissertation’s main goal is to

derive, proof and demonstrate optimal parameters for the Quickselect algorithm such

that the runtime is minimized. It should also be noted that this dissertation will treat

the Median and Weighted Median problem synonymous sometimes, as both are found

using the same algorithm. Further, the optimal parameters which are derived can be

used with any version of the Quickselect algorithm, i.e. to find the order statistic or

(weighted) median of an input set.

The second major focus of this dissertation is the Fourier transform and in par-

ticular algorithms which compute the discrete Fourier transform. For signal processing

3

the most common algorithm is the discrete Fourier transform which takes a discrete,

finite input signal and produces a discrete finite output sequence — the spectrum.

Similar to the weighted median problem, the Fourier transform has a naive algorithm:

Generate a Fourier matrix of size N × N and multiply it by the input vector. This

approach results in an O(N2) algorithm since a matrix vector multiplication has to per-

form N × N element wise multiplications. A much improved algorithm is the famous

Fast Fourier Transform (FFT) method which uses properties of complex numbers to

achieve an O(N log N) runtime complexity.

The term sparse in the context of signal processing means that the signal is

populated with primarily zeros and only few non-zero samples. In many applications

the signal that is processed is sparse in some other domain. For instance a recording

of a music song is sparse in the Fourier domain since at a given interval only few

frequencies are present that generate the output signal. Similarly, an image is sparse

in the Wavelet domain. The sparsity depends on the basis functions that a transform

utilizes and how well these basis functions match the real world signal. Intuitively, this

allows to represent the signal by applying weights to these basis functions and adding

the resulting functions together. If we omit some of these basis functions due to making

little impact into the overall representation, then we lose only very little detail of the

overall information. A signal is said to be compressible if we can omit many of these

terms in some domain.

These ideas are the basis of file compression formats such as MP3 or JPEG

2000. One might wonder, if given a signal which has only few non-zero coefficients in

the Fourier domain: Is it possible to exploit this sparsity in order to find an even faster

performing algorithm to compute the Fourier transform? As it turns out, the answer to

this question is yes. In recent years there has been considerate research about finding

faster algorithms for computing the sparse Fourier coefficients of an input signal. Often

these new algorithms are referred to as “sparse Fourier transform” or since dealing with

discrete input data “sparse FFT”. The most notable of which was published in 2012 by a

group at M.I.T. [HIKP12a]. The achieved result was an average runtime complexity of

4

O(k log N) where k is the sparsity of the signal in the Fourier domain. This dissertation

will use the one dimensional algorithm and extend it to work for d-dimensional data

which requires extensions to multiple key concepts. Similarly to the weighted median

problem, the algorithm is highly dependent on its parameters. Again, the parameters

are to be optimized for real world signals which have not been studied by the academic

community. Prior research has assumed purely random distribution of the Fourier

coefficients of the input signals which fails to perform well for many real world input

data. This dissertation proposed methods to find optimal parameters for structured

signals.

1.2 Dissertation Overview

Both algorithms treated in this thesis –the sparse FFT and the weighted median–

have one thing in common: The performance greatly depends on the parameters of each

algorithm. For instance, the Quickselect algorithm takes the median of a subset as the

pivot in each iteration. The overall runtime can vary greatly depending on the input

but also depending on the subset size that the algorithm chooses. In the sparse FFT

algorithm the performance is heavily dependent on the number of collisions after the

input is permuted. The collisions in turn depend on the input spectrum and the per-

mutation applied to it. Thus, the permutation –which is chosen by the algorithm– is

the most important parameter in the performance of the algorithm.

In many academic findings, such as the sparse FFT algorithm of [HIKP12a] the

theoretical analysis requires some assumptions in order to make the analysis mathe-

matical tractable. For instance, the input distribution of the Fourier coefficients are

assumed to be randomly distributed. If this assumption holds true, then it is easy to

choose the parameters –such as the permutation– to be random as well. This turns

out to work well for randomly generated signals and makes the analysis simple due to

the simple properties of random variables.

However, if one were to use the proposed algorithm for real world signals, an

important question needs to be asked: Do these assumptions actually hold for real

5

world data? The answer to this question is usually no. This means, these algorithms

often require more attention with regards to their most important parameters in order

to perform well enough to be useful for real world applications.

Similarly, the median finding algorithm is usually not applied to randomly gen-

erated data but often to real world data which follow a certain distribution. Again, this

fact can be used to further improve upon a strategy that assumes uniformly distributed

input data which is often employed by theoretical research findings.

This dissertation investigates both algorithms and spends significant effort in

seemingly small details of these algorithms. As it turns out, this approach pays off

and provides the following benefits to the research community as well as real world

implementations of these algorithms:

1. Develop a rigorous understanding of the parameters in question. This helps to

guide application developers to implement these algorithms which in turn helps

adoption of these algorithms in the real world. It also allows other researchers

to use the new findings to further advance the field by building upon the newly

proposed methods.

2. Improve the performance of the algorithms by using the findings and the newly

developed theoretical models. Here the word “performance” might stand for

runtime complexity or a quality measure of the algorithm (such as reconstruction

PSNR).

3. Improve the robustness of the algorithms by avoiding the worst cases which can

happen when using real world data with the wrong theoretical model. This is

crucial for real world applications which need a predictable performing algorithm.

An algorithm that only sometimes performs well enough is not acceptable if used

in real world products. The theoretical understandings allows us to make these

algorithms more robust and thus become accessible to –for instance– the industry.

6

In this dissertation, the above points are addressed for both algorithms. A rigor-

ous theoretical model is developed for both and each of the above items is demonstrated

in detail.

Note that, the big-O notation (1.1) introduced earlier does not consider the

exact runtime complexity of an algorithm. That is, the runtime is only considered as

the asymptotic behavior of the function which is due to the constant C1 in (1.1). In

real world implementations however, the exact runtime matters just as much as the

asymptotic complexity.

For instance, two algorithm might both have the runtime complexity O(N log N)

but can differ quite pronounced in the actual runtime due to different constants in

their actual runtime. That is, the number of operations might be 2N log N for one

algorithm whereas the other algorithm requires 15N log N operations. Clearly, for real

world usage of these algorithms more careful investigations are helpful.

Often enough, a theoretical result of the exact number of operations an al-

gorithm performs until termination is prohibitively complex to calculate. Thus, the

focus is often only on the big-O notation when in fact a real world usage requires a

more nuanced understanding. This thesis investigates not only theoretical asymptotic

complexity but also aims to provide a better understanding for the real world runtime.

1.3 Organization of the Dissertation

The organization of this thesis is as follows:

Chapter 2 deals with the Fast Weighted Median search algorithm. First, the

problem formulation as well as the motivation for the problem is introduced. Subse-

quently, the chapter introduces the well known Quickselect algorithm and states the

problem of the importance of the pivots on the runtime performance. A theoretical

framework is introduced in order to model the problem mathematically. This model is

then used to find the optimal parameters for the algorithm. In particular, the pivots

used for each iteration of the algorithm are chosen very carefully with the provided

model. The important subset size of the pivot selection process is also solved with this

7

model. A novel closed form solution to this problem is the result. This novel algorithm

beats existing algorithms –the first time in over four decades. To show real world

performance, the newly proposed algorithm’s runtime is evaluated with simulations.

Both, the number of comparisons –the main measure of complexity for selection type

algorithms– as well as the actual runtimes are compared to the existing algorithms. To

this end a low level implementation of the proposed algorithm in the C-programming

language is used to do the comparison to existing algorithms. The chapter finishes

with a summary and conclusions.

Chapter 3 of this dissertation closely examines the sparse FFT algorithm in-

troduced in [HIKP12a]. First, the Fourier transform is introduced and the motivation

behind finding an algorithm dealing with sparse input data is discussed. The param-

eters which have the most impact on the algorithmic performance are inspected in

detail. In order to find a theoretical model for the most important parameter –the per-

mutation matrix– the topic of lattices is introduced. Consecutively the dual lattice is

shown to be an especially important part. Based on this novel connection an iterative

algorithm is introduced to find an optimal permutation parameter. In particular, the

proposed algorithm generates a sequence of potential permutation matrix candidates

which are then evaluated in the multidimensional sparse FFT. Note that, this novel

connection to Lattice theory can open new directions of research.

Preliminary simulations show the effectiveness of this algorithm by showing that

the mean minimum inter-point distance increases. The chapter then continues with

introducing the reader to the one dimensional sparse FFT algorithm by focusing on

a high level overview of the concepts. This dissertation proceeds with extending the

algorithm to multiple dimensions by carefully considering each part of the algorithm.

Further, a rigorous solution to some of the sub problems within the sparse FFT are

presented. One particular requirement for the sparse FFT algorithm is the permuta-

tion matrix to have an odd determinant. To this end, a novel algorithm is introduced

which takes a square integer matrix and turns it into a similar matrix with an odd

determinant. The algorithm works by only flipping the least significant bit of as few

8

entries of the permutation matrix as possible. A short complexity analysis of the pro-

posed algorithm as well as an error analysis is presented. Thus, overall this chapter

introduces three novel algorithms which are subsequently combined in order to achieve

a consistently performing multidimensional sparse FFT. Again, a complexity analysis

is given for the proposed multidimensional sparse FFT. The proposed algorithms are

evaluated by implementing them in MATLAB and running simulations that demon-

strate their working. The results are an improvement in the robustness and in the

performance of the sparse FFT. A conclusion with an outlook is given in the final

section of the chapter.

Chapter 4 concludes the dissertation in which the findings are summarized.

Several future directions of this research are discussed.

The appendices A and B provide further details such as proofs which may be

helpful to some readers.

9

Chapter 2

FAST WEIGHTED MEDIAN SEARCH

2.1 Introduction

Weighted medians (WM), introduced by Edgemore over two hundred years ago

in the context of least absolute regression, have been extensively studied in signal

processing over the last two decades [Arc05,Hoa61,MR02,AK97]. WM filters have been

particularly useful in image processing applications as they are effective in preserving

edges and signal discontinuities, and are efficient in the attenuation of impulsive noise

properties not shared by traditional linear filters [Arc05,AK97].

The properties of the WM are inherited from the sample median — a robust

estimate of location. An indicator of an estimator’s robustness is its breakdown point,

defined as the smallest fraction of the observations which when replaced with outliers

will corrupt the estimate outside of reasonable bounds. The breakdown point of the

sample mean, for instance, is 1 indicating that a single outlier present in the data

can have a detrimental effect in the estimate. The median, on the other hand, has a

breakdown point of 0.5N meaning that half or more of the data needs to be corrupted

before the median estimate is deteriorated significantly [Mal80].

This is the main motivation to perform median filtering. Assuming that the

data is contaminated with noise and outlying observations, the goal is to remove the

noise while retaining most of the behavior present in the original data. The median

filter does just that and does not introduce values that are not present in the original

data. Significant efforts have been devoted to the understanding of the theoretical

properties of WM filters [GW81,Arc05,Arc02,YYGN96,AM87,AG82,YHAN91,AP00,

MA87,FAB98], their applications [AF89,Arc91,AG83,BA94,MA87,FPA02] and their

10

optimization. A number of generalizations aimed at improving the performance of WM

filters have recently been introduced in the literature [AB07,KA98,GA01,KA00,PA99,

KA99]. WM filters to date enjoy a rich theory for their design and application.

A limiting factor in the implementation of WM filters, however, is their com-

putational cost. The most naive approach to computing the median, or any kth order

statistic, is to sort the data and then select the kth smallest value. Once the data

is sorted finding any order statistic is straightforward. Sorting the data leads to a

computational time complexity of O(N log N) and since the traversing of the sorted

array to find the WM is a linear operation, the cost of this approach is the cost of

sorting the data. Several approaches to alleviate the computational cost have been

proposed [HYT79,PH07].

In many signal processing applications the filtering is performed by a running

window and the computation of a median filter benefits from the fact that most values in

the running window do not change when the window is translated. In such case, a local

histogram can be utilized to compute a running median since the median computation

takes into account only the element values and not their location in the sliding window.

Simply maintaining a running histogram at each location of the sliding windows enables

the computation of the median [HYT79, PH07]. In a running histogram, the median

information is indeed present since pixels are sorted out into buckets of increasing

pixel values. Removing pixels from buckets and adding more is a simple operation,

making it easier to keep a running histogram and updating it than to go from scratch

for every move of the running window. The same idea can be used to build up a tree

containing pixel values and the number of occurrences, or intervals and number of

pixels. One can thus see the immediate benefit of retaining this information at each

step [HYT79,AS87,PH07].

Other approaches to reduce the computation of running medians include sep-

arable approximations where 2D processing is attained by a 1D median filtering in

two stages: the first along the horizontal direction followed by a second in the vertical

direction [Nar09, AM87, MA87]. All of the above mentioned techniques focus on the

11

median computation of small kernels — a set of samples inside running windows. De-

pending on the signal’s sampling resolution, the sample set may range from a small set

of four or nine samples to larger windows that span a few hundred samples. However,

emerging applications in signal processing are beginning to demand weighted median

computation of much larger sample sets. In particular, weighted median computations

are not simply needed to process data in running windows. WM are often needed for

the solution of optimization problems where absolute deviations are used as distance

metrics. While L2 norms, based on square distances, have been used extensively in sig-

nal processing optimization, the L1 norm has attracted considerable attention recently

because of its attributes when used in regression. Firstly, the L1 norm is more robust

to noise, missing data, and outliers, than the L2 norm [RL87,BLA79,LA04,BS80]. The

L2 norm sums the square of the residuals and thus places small weight on small resid-

uals and strong weight on large residuals. The L1 norm penalty, on the other hand,

puts more weight on small residuals and does not weight as heavily large residuals.

The end result is that the L1 norm is more robust than the L2 norm in the presence

of outliers or large measurement errors.

Secondly, the L1 norm has also been used as a sparsity-promoting norm in the

sparse signal recovery problem, where the goal is to recover a high-dimensional sparse

vector from its lower-dimensional sketch [CWB08]. In fact, the use of the L1 norm for

solving data fitting problems and sparse recovery problems traces back many years. In

1973, Claerbout et al. [CM73] proposed the use of the L1 norm for robust modeling

of Geophysical data. Later, in 1989, Donoho and Stark [DS89] used L1 minimization

for the recovery of a sparse wide-band signal from narrow-band measurements. Over

the last decade, a wide use of the L1 norm for robust modeling and sparse recovery

began to appear. It turns out, that it is often the case that WMs are required to solve

optimization problems when L1 norms are used in the data fitting model.

For instance, the algorithm in [PA11] uses weighted medians on randomly pro-

jected compressed measurement to reconstruct the original sparse signal. For this

application the input sizes on which a WM is performed are the size of the signals

12

which range from several thousands up to several million data points. In the examples

described in Section 2.6, for instance, typical sample sets can approach millions of sam-

ple points. The computation of weighted medians for such very large kernels becomes

critical and thus fast algorithms are needed. The data structures are no longer running

windows and rough approximations are inadequate in optimization algorithms. To this

end, fast and accurate WM algorithms are sought.

This chapter of the dissertation proposes a new algorithm which solves the

problem of finding the WM of a set of samples. The algorithm is based on Quickselect

which is similar to the well-known Quicksort algorithm. Even though the algorithm is

explained and implemented for the WM problem it is straight forward to use similar

concepts to construct a novel selection algorithm to find the order statistics of a set.

Note that the median is a special case of an order statistic. In many applications of

data processing it is crucial to calculate statistics about the data. Popular choices

are quantiles such as quartiles or 2-quantile (for instance in finance time series) both

of which reduce to a selection problem. Often, these consist of thousands or millions

of samples for which a fast algorithm is of importance in order to allow quick data

analysis.

Definition 1 Let {Xi}N
i=1 be a set of N samples and let {Wi}N

i=1 be their associated

weights. Now rearrange the samples in the form

X(1) ≤ · · · ≤ X(N)

then X(k) is referred to as the kth order statistic. Further denote W[k] as the associated

weight of X(k).

Moreover, W0 is needed as a threshold parameter and is formally defined as

W0 = 1
2

N∑
i=1

Wi

13

Without loss of generality it is assumed that all weights are positive. All results

can be extended to allow negative weights by coupling the sign of the weight to the

corresponding sample and use the absolute value of the weight [Arc02].

The problem of estimating a constant parameter β under additive noise given

N observations {Xi}N
i=1 can be solved by minimizing a cost function under different

error criteria:

β̂ = arg min
β

N∑
i=1

fe(Xi, β)

where fe is a function that calculates the error between its arguments. The well-known

sample average can be derived by choosing the L2 error norm for the function fe.

Extending the idea by incorporating weights assigned to each sample into the equation

results into the familiar weighted mean. In turn, the sample median follows from

minimizing the error under the L1 error norm. Conversely allowing the input samples

to have different weights leads to the cost function of the weighted median:

TW M(β) =
N∑

i=1
Wi |Xi − β| (2.1)

where the weights satisfy Wi > 0. The WM β̂ can be defined as the value of β in (2.1)

which minimizes the cost function TW M(β). That is:

β̂ = arg min
β

TW M(β).

Figure 2.1 on page 15 depicts an example cost function TW M(β) for N = 6. It can be

seen in the figure that TW M(β) is a piecewise linear continuous function. Furthermore,

it is a convex function and attains its minimum at the sample median which is one of

the input samples Xi. Figure 2.1 on page 15 also depicts the semi-derivative of the

cost function TW M where it is observed as a piecewise constant non-decreasing function

with the limits ±2W0 as β → ±∞. Note that the WM is the input sample where the

semi-derivative crosses the horizontal axis. Therefore the WM can alternatively be

14

X(0) X(1) X(2) X(3) X(4) X(5)

WM

C
os
t(
β
)

W[0]

d d
β
C
os
t(
β
)

Weighted Median

Figure 2.1: This figure visualizes the weighted median sample as the minimum of a
cost function. Top: An example cost function TW M(β) with six input
samples X1 to X6 and a minimum at β = X(3). Bottom: The derivative
T ′

W M(β) of the cost function (top). Note the zero-crossing point at β =
X(4) which coincides with the WM. In this example the weights Wi range
from 0 to 1, however this is not required in general.

defined by the following formula:

β̂ =
{

X(k) : min k for which
k∑

i=0
W[N−i] ≥ W0

}
.

This first seemingly more complicated expression turns out to allow us to have a dif-

ferent view of the problem which in turn gives us an algorithm dealing more directly

with the input samples to solve the weighted median problem. Note that finding the

kth order statistic is a special case of the above definition and can be found by replacing

W0 by N − k and set all weights to 1.

Figure 2.1 on page 15 illustrates the algorithm to find the WM which is sum-

marized as follows:

15

Step 1: Sort the samples Xi with their concomitant weights W[i], for i =

1, . . . , N .

Step 2: Traverse the sorted samples summing up the weights.

Step 3: Stop and return the sample at which the sum is higher or equal to W0.

It is well-known that sorting an array of N elements requires O(N log N) com-

parisons, both, in the average as well as in the worst case. However, using a similar

approach as in Quicksort, Hoare [Hoa61] introduced the so called Quickselect algo-

rithm which is an average linear time algorithm to find the kth order statistic of a

set of samples. This algorithm can be extended such that Quickselect solves the WM

problem. This is further described in Section 2.3. The runtime of both algorithms

greatly depend on the choice of the pivot elements which are used for partitioning the

array. In Quicksort a pivot close to the median is best and in Quickselect a pivot close

to the sought order statistic is best. Particularly, in Quicksort a good pivot is often

sought in order to reduce the stack size of a program.

Moreover this dissertation extends the concept of Quickselect which seeks the

kth order statistic to the more general case of WM filters which is needed for many

signal processing applications. This dissertation main contribution is a new concept to

pivot selection. The idea is based on an optimization framework in order to minimize

the expected cost of solving the WM problem. The cost functions are then minimized

in order to determine the optimal parameters. In particular, the cost is defined as the

number of comparisons needed until the algorithm terminates which is the standard

measurement of runtime complexity for selection type algorithms.

My approach uses order statistics of a subset of samples to select the pivot. The

optimization framework finds the optimal value of the parameter k, which determines

which order statistic to choose, and the optimal value of the subset size M . For

practical performance comparisons the proposed algorithm was implemented in the

C programming language. Numerous simulations validate the theory and show the

improvements gained by the proposed algorithm.

16

2.2 Preliminaries

The sample selection problem in essence, is equivalent to finding the kth order

statistic of a set of samples. The algorithms introduced in this dissertation to solve the

selection problem can easily be extended to solve the WM problem. To this end, this

dissertation focuses on the selection problem to simplify analysis but will go into the

details of solving the weighted median problem when necessary. Before introducing the

two major algorithms it is necessary to define what “fast” means in terms of algorithm

runtime.

In algorithm theory a fast algorithm is one which solves the problem and at

the same time has low complexity [CLR+01]. Complexity is defined in different ways

which depends on the type of algorithm. In sorting and selection it is defined as the

number of comparisons until termination. This is a sensible measure as the main cost

of these algorithms is the partitioning step which compares all elements with the pivot.

Furthermore the computational complexity is differentiated into worst case, average

case and best case complexities. The best case complexity is of little interest since

it is usually O(N) for selection and O(N) for sorting. The average case complexity

is of most interest in practice since it is the runtime which can be expected in a real

implementation with well distributed input data. Of similar importance in theory as

well as practice is the worst case complexity as this can be exploited by malicious users

to attack [CW03] an application which uses an algorithm whose worst case complexity

is unexpectedly higher than the average case.

It was shown in [FR75] that a lower bound on the expected time of the selection

problem is in O(N), i.e. linear time. This result is not surprising since given a solution

it takes linear time to verify if the solution is correct. For instance, given a sequence of

purely random numbers and a location of the kth order statistics (for instance in the

form of an array index), it is still necessary to compare each element of the sequence

with the given element in order to verify the location of the element if the sequence

were ordered.

Additionally, in [BFP+73] it is shown that by choosing the pivots carefully it

17

is possible to avoid the O(N2) worst case performance of the traditional Quickselect

and also achieve a O(N) worst case complexity. In summary it is important to note

that there exists a linear time worst case selection algorithm as well as a proof that

the lower bound is also linear. For this reason I do not only compare the computa-

tional complexity of the algorithms in terms of their limiting behavior (i.e. asymptotic

notation or Landau notation) but also analyze the behavior for low to moderate input

sizes and obtain accurate numbers for the number of comparisons in order to compare

the real world runtime performance.

Taking into account the constants involved in the equations is important es-

pecially in practice. A popular example is the fact that most programming language

prefer Quicksort to Heapsort for their sorting routine: Despite Heapsort’s advanta-

geous behavior of having worst case as well as average case complexity of O(N log N),

Quicksort –with its worst case of O(N2)– is often preferred as the smaller constant

term of Quicksort makes it outperform Heapsort on average.

To this date the fastest selection algorithm has been SELECT which was intro-

duced by Floyd and Rivest in 1975 [FR75]. The algorithm is asymptotically optimal for

large N and as shown by [FR75] the number of comparisons for selecting the kth order

statistic given N elements is N + min(k, N − k) + o(N). Where the notation o(N) is

similar to the already introduced big-O notation and is defined as:

f(N) ≤ g(N) + o(N) means lim
N→∞

((f(N) − g(N))/N) = 0.

Note that the proposed algorithm is asymptotically optimal as well. Further-

more, as can be seen by the simulations in Section 2.6 our algorithm outperforms

SELECT and converges to the theoretical optimum more quickly. Quickselect, which

will be introduced in Section 2.3 is another very popular selection algorithm due to

its simplicity and similarity to Quicksort. Even though it is widely used in practice,

its performance is always worse than SELECT except for very small input sizes. In

particular, for a median-of-3 pivot selection approach, Quickselect needs on average

18

2.75N comparisons for large N as shown by [MPV04].

Existing research has focused on two main subjects: Firstly, improving the

overall runtime of the algorithm which is equal to lowering the constant term in the

average case complexity. Secondly, improving the worst case runtime complexity by

carefully designing the algorithm to avoid the worst case complexity of O(N2) often

sacrificing average runtime. This dissertation adds a new measure to the equation

which determines the reliability of the algorithm runtime under average input data.

For instance, it might be that the algorithm performs very well on average but has

few outliers which result in an undesirably long runtime. In practice it is often needed

that an implementation performs well on average without large outliers. Even if this

results in an increased average complexity, it is usually worth the lost performance

for a more reliable runtime. An example measure is the well-known variance of the

runtime distribution. This topic is further discussed in Section 2.4.

2.3 The Quickselect Algorithm

Quickselect was first introduced in 1961 in [Hoa61] as an algorithm to find the

kth order statistic. Note that the popular Quicksort algorithm and Quickselect are

similar and the only difference between the two is that the former recurs on both

sub-problems –the two sets after partitioning– and the latter only on one.

The original algorithm chooses a sample at random from the sample set X which

is called the first pivot p1. Later in this dissertation, the method of choosing the pivot

will be made more accurately, than selecting a random sample, and instead optimal

order statistics which minimize a set of cost functions are used. By comparing all other

elements to the pivot, the rank r of the pivot is determined. The pivot is then put

into the rth position of the array and all other elements smaller or equal than the pivot

are put into positions before the pivot and all elements greater or equal are put after

the pivot. This step is called partitioning and can be implemented very efficiently by

running two pointers towards each other. One from the beginning of the array and one

from the end, swapping elements if necessary until both pointers cross each other.

19

After this partitioning step is completed there are three cases that can occur:

• If r > k then the kth order statistic is located in the first part of the array and
Quickselect recurses on this part.

• If r < k then Quickselect recurses on the second part but instead continues to
seek the (k − r)th order statistic.

• If k = r the recursion terminates and the pivot is returned.

A pseudocode description of the Quickselect algorithm is depicted in Algorithm 2.1 on

page 20.

procedure Quickselect(X, k) � Returns the kth order statistic of the set X
Select a pivot p ∈ X at random
Partition the set into two disjoint sets:
X≤ ← {Xi ∈ X|Xi ≤ p}
X> ← {Xi ∈ X|Xi > p}
if |X≤| > k then

return Quickselect(X≤, k)
else if |X>| > k then

return Quickselect(X>, k − |X≤|)
else

return p

end if
end procedure

Algorithm 2.1: Standard Quickselect algorithm using random pivots. The algorithm
is given two parameters: The input set X and the integer k speci-
fying the requested order statistic of the set X. The algorithm then
uses recursion to find the sought element by choosing a pivot and
partitioning the set according to that pivot. Note that a actual im-
plementation can transform the algorithm in a non-recursive version
which is often desired in order to reduce stack size usage.

The case of k = (N+1)/2 (N odd) is the well-known median and is considered a

special case of the WM with all weights equal to one. Small modifications of Quickselect

lead to a WM-finding Quickselect algorithm in the general case with arbitrary weights:

20

Instead of counting the number of elements less than or equal to the pivot, the algorithm

sums up the weights of all the samples which are less than or equal to the pivot. Wl is

defined to be the sum of weights of the partition which contains all elements smaller

than or equal to the pivot. Respectively, Wr contains the sum of weights of the other

partition. The next step is to compare Wr and Wl to W0 and either recurse on the

partition which contains the WM or return the pivot which terminates the algorithm.

2.4 Optimal Order Statistics In Pivot Selection

In this section the pivots which were introduced in the previous section are stud-

ies in detail. As will be shown, the first two pivots are of essence for the performance

of the algorithm and are thus the focus of this section.

2.4.1 First pivot p1

The run time of Quickselect is mostly influenced by the pivot choice. A good

pivot can significantly improve the performance. Consider an example: If the pivot is

small compared to the sought weighted median then only elements which are less than

the pivot are discarded. The worst case happens if the pivot is the smallest element

of the entire set. This would results in no elements being discarded despite having

performed and expensive partitioning step. The main cost of the partitioning step is

to compare all N0 − 1 elements to the pivot. Where N0 is the number of elements of

the original set before any reductions have been performed. Clearly, a pivot close to

the actual WM is desired.

Assuming no prior knowledge of the sample distribution or their weights, the

only good estimate for a pivot is to choose the median of the samples. The median

–by its very definition– ensures that half of the samples are removed after partitioning.

However, finding the median of the set is itself a selection type problem which would

cost too much time to be computed and offset any possible gains. Instead, an approx-

imation of the median is used as the pivot. An obvious and straightforward approach

21

is to take a random subset of the input set X and find the median of this smaller set

and use it as the pivot. Let M0 be the size of this subset with M0 	 N0.

Intuitively, a though experiment helps gauging the values of a sensible choice of

M0. If the subset size M0 is chosen to be close to 0 the time spent finding a pivot is very

little, however the number of elements that are discarded after the partitioning step

might be very little if the pivot was far from the sought value. If, on the other hand,

the subset size M0 is chosen very large (for instance M0 → N) then the time spent

on finding the pivot is itself very expensive. In that case, however, the partitioning

step can be sure to discard approximately M0/2 elements. Concluding, we expect an

optimal value of M0 to lie between the two extremes carefully balancing the cost vs.

benefit of choosing a larger subset size.

This intuition is depicted in Figure 2.2 on page 38. In this graph the performance

which is measured in C/N is plotted. Where C is the number of comparisons performed

until the algorithm terminates. The graph also shows the variance of C/N which is a

measure of the reliability of the run time.

Mart́ınez and Roura [MR02] studied the optimal subset size as a function of

N0 with the objective to minimize the average total cost of Quickselect. It was found

however, that in practice the runtime was improved if M0 was chosen larger. Also note

that no prior work exists for finding a closed form solution to the optimal subset size.

This dissertation derives a closed form solution to the problem.

To this end I introduce a model to obtain a closed form solution for the near

optimal M0. Consider a set of samples X1, X2, ·, XN . Assume each sample {Xi}N0
i=1

is independent and identically distributed (i.i.d.). Furthermore consider the random

subset X′ ⊂ X with |X′| = M0. The pivot p1 = median(X′) is sought as well as the op-

timal M0 to minimize the expected samples left (N1) after the partitioning step. This

means that the cost is defined as an approximation to the expected number of com-

parisons needed until the algorithm terminates. The cost function has to differentiate

between the three cases:

1. The pivot is less than the WM of X

22

2. The pivot is greater than the WM of X

3. The pivot is equal to the WM of X.

The problem arises that both –pivot and WM– are not known beforehand and

are in fact random variables. In order to obtain a simpler yet accurate enough cost

function which can be solved, various assumptions and simplifications are applied to

the model:

1. Each sample of the set X is modeled as uniformly distributed random variables.

This approximation is in fact very accurate since the working point of the model

is near the median of the true distribution function at which most distribution

behave like a uniform distribution.

2. Finding median(X′) can be done in cM0 comparisons where c is some constant

independent of M0. Additionally, solving the remaining WM problem after the

partitioning step can be done in cN1 comparisons as well. Since M0 	 N1 this

does not hold true as finding the constant c decreases with increasing samples.

However, the difference is small enough and can be neglected.

3. The WM coincides with the median of the standard uniform distribution which

is at 0.5. As stated earlier the WM is a random variable. However the variability

of the WM can be accounted for in the pivot. Increasing the variance of the pivot

distribution accordingly allows to perform this simplification.

Let R be the expected number of elements removed after the partitioning step

and by using the assumptions (1)-(3) from above, R is derived as:

R ≈
∫ 1/2

0
xN0

xM0/4−1(1 − x)M0/4−1

B(M0/4, M0/4) dx (2.2)

= 1
2N0I1/2(

M0

4 + 1,
M0

4) (2.3)

where N0 is the size of the original problem set X, where B is the beta function, and

I is the regularized incomplete beta function [OLBC10]. The first term (xN0) of (2.2)

23

is the expected number of elements less than the pivot. The second term of (2.2) is

the probability that the pivot is located at x. Assuming M0 is odd, then the median

of a random subset of size M0 is beta distributed with the parameters (M0 + 1)/2 and

(M0 + 1)/2 [DN03]. To account for the third item of the above approximation model

the variance of the median is further changed. Reducing the number of samples of the

beta distribution by a factor of 0.5 approximately doubles the variance. Furthermore

the following approximation can be used:

B(M0 + 1
4 ,

M0 + 1
4) ≈ B(M0

4 ,
M0

4)

to obtain (2.2). Solving the integral of (2.2) cannot be done in a closed form. However

since the resulting equation is again the p.d.f. of a beta distribution the result of the

overall expression is the c.d.f. of the beta distribution evaluated at 0.5 in (2.3).

With the derived expression for R, the new cost function defined as the expected

number of comparisons is given by:

TM0 = c(N0 − R) + cM0

= cN0(1 − 1
2I1/2(

M0

4 + 1,
M0

4)) + cM0 (2.4)

where c is the constant mentioned in the second item of the above simplification model.

The first summand is the expected number of comparisons necessary to solve the

remaining problem after the partitioning step. The second summand accounts for

the expected number of comparisons to find the pivot (i.e. the median of the subset).

The minimum of TM0 in (2.4) is defined to be M∗
0 :

M∗
0 = arg min

1≤M0≤N
TM0 .

Minimizing TM0 cannot be done in an algebraic way hence further approxima-

tions are necessary before a closed for solution can be attained. First note that the

division of the two parameters of the beta distribution M0/4+1
M0/4 is close to one as M0 is

24

large. This fact allows to use the normal distribution to approximate the beta distri-

bution. The variance of the beta distribution is M0
2(M0+2)2 which can be approximated

as (2M0)−1. The resulting approximate cost function is:

T̃M0 = M0 + N0 − N0

4 erfc(
√

M0

M0 + 2) (2.5)

where erfc is the complementary error function. It is easy to show that (2.5) is convex

for M0 > 4.397. See Appendix B on page 98 for a computer algebra system aided

proof.

Theorem 1 For large N0, the optimal subset size M∗
0 for choosing the first pivot is

approximately

M̃∗
0 ≈ 1

3
√

8π
N

2/3
0 .

Proof 1 Differentiating (2.5) with respect to M0 yields:

T̃ ′
M0 = − (M0 − 2)N0

4
√

πM0(M0 + 2)2 e
− M0

(M0+2)2 + 1

using the two facts that:

e−M0/(M0+2)2 ≈ 1

(M0 − 2)/(M0 + 2)2 ≈ 1/M0

yields the result.

Note that in an implementation M∗
0 is rounded to the nearest odd integer. Now

the first pivot p1 can formally be defined as:

p1 = MEDIAN(X ′
1, . . . , X ′

M̃∗
0
).

The error introduced by the approximation is very small which can be seen by

analyzing the error as well as the relative error. Figure 2.3 on page 39 depicts the

25

error eM0 = M∗
0 − M̃∗

0 as well as the relative error eM0/M∗
0 for the input size range of

26 ≤ N0 ≤ 226.

The error is almost always zero except for very few N0 for which the error is a

small even number (due to rounding to odd numbers). In fact the number of values of

N0 where the error is not zero is 67964 between 26 and 226, i.e. approximately 99.999%

of all samples between 26 and 226 have zero error. For large N0 ≈ 223 however, the error

starts to increase which makes it important to analyze the relative error eM0/M∗
0 . As

can be seen by the lower graph of Figure 2.3 on page 39 the relative error stays close

to zero as the error increases. The simulations were run over all integer numbers N0

between 26 and 226. As N0 becomes larger it becomes difficult to compute the error.

Random N0 of up to 250 were picked and the calculated error was bounded by 0.001

for the few chosen numbers which indicates that the error does not increase faster than

M0.

2.4.2 Second pivot p2

For a large number of samples it is unlikely to find the exact WM with the first

partitioning step. Thus it is assumed that the first pivot was either larger than or

smaller than the WM. The next step is to choose the second pivot p2. Two obvious

choices come to mind:

1. Should the median of a subset be used again?

2. Should a pivot (again) aim to be as close as possible to the expected location of
the weighted median?

As it turns out, both of these choices are not optimal. If the median of a subset is

selected again, most likely the pivot will be far away from the WM, thus not discarding

many elements. This is the result of a skewed sample median as many samples were

discarded during the first step of the algorithm. If the pivot is chosen to be as close as

possible to the expected location of the weighted median, then the second pivot p2 will

be on average 50% of the time on the same side of the weighted median as the side of

26

the first pivot. This however, would result in only very few elements being discarded

after the second iteration. This turns out to be also not optimal.

That is, intuitively, if the first pivot was smaller but close to the WM then a

good choice for the second pivot is an element close to the WM but slightly larger than

it. It is natural to use the approach of using the kth order statistic of a subset as the

second pivot. The number of samples left after the first iteration of the algorithm is

denoted as N1. M1 is the cardinality of the random subset X′′ of the remaining N1

samples. Again the formula of Theorem 1 is used to determine the optimal subset size

M1 as a function of N1. This intuition is depicted in Figure 2.4 on page 40.

To find the optimal order statistic k, the approach of minimizing the expectation

of an approximate cost function is again used. Since the goal is to remove as many

elements as possible by choosing the pivot appropriately the cost was defined as the

expected number of elements left after the partitioning step. A chosen pivot can be

either larger, smaller or equal to the WM. Since the cost is negligible if the pivot p2

happens to be the WM there are only two term for the other two cases. For simplicity,

only the case in which the pivot was smaller than the WM will be covered from here

on, the other case follows from symmetry.

The cost is defined formally as the expected number of elements left after the

partitioning step and is given by:

Tβ = (kC − 1)Pβ + (N1 − kC)(1 − Pβ) (2.6)

where

C = N1 + 1
M1 + 1

and where β = k/(M1 + 1) is introduced to normalize k. The minimum of (2.6) is

attained by the k∗th order statistic

k∗ = arg min
1≤k≤M0

Tβ. (2.7)

27

Pβ is the probability that the expected order statistic of the WM is less than or

equal to β and will be formally defined below in (2.9). β can be interpreted as the mean

of the kth order statistic of M1 i.i.d. standard uniform distributed random variables.

Equation (2.6) constitutes of two simple summands, the first of which accounts for

the case that the pivot is greater than the WM and the second for the case that it

is smaller. The first term of the first summand is the expected number of elements

which are less than the pivot. Again, the WM is modeled as a beta distributed random

variable with the parameters α(M1 + 1) and M1 − α(M1 + 1) + 1. Where α is the point

at which the WM is expected to lie:

WM ≈ X ′′
(�α(M1+1)+0.5�)

with

α =
W0 − W 1

≤
2W0 − W 1

≤
, (2.8)

where W 1
≤ is the sum of all weights which were lower than the first pivot p1 and formally

defined as

W 1
≤ =

rank(pi)∑
i=1

W[i].

Where W[i] are the concomitant weights as defined in the introduction. Note that the

mean of the model is α as desired.

The terms for the second summand of (2.6) are similar to the first summand

but cover the case when the pivot is smaller than the WM. For the above model to

hold, it is assumed that the input samples are uniformly distributed at the vicinity of

the sample median. This holds true for the vast majority of distributions.

The pivot is modeled as being the kth order statistic drawn from a standard

uniform distribution. Hence Pβ can be expressed as [ABN08]:

Pβ = Pr{X ′′
(α(M1+1)) ≤ β} (2.9)

= Iβ(α(M1 + 1), M − α(M1 + 1) + 1) (2.10)

28

where I is the incomplete beta function. Note that X ′′
(α(M1+1)) is not an order statistic

since α(M1 + 1) is most likely not an integer. Note however, that the formula can still

be evaluated correctly since the incomplete beta function allows non-integer arguments.

An example plot of a cost function is depicted in Figure 2.5 on page 41. This

figure shows that the 30th order statistic (k∗ = 30) of the set of M1 = 159 samples

should be chosen as the pivot in order to minimize the expected cost. This can be

explained by looking at the parameters. α is 0.1 which means the WM is expected to

lie close to X ′′
(20). However if X ′′

(20) was chosen as the pivot the probability that this

pivot is again lower than the actual WM is higher than if X ′′
(30) was chosen.

Similarly, there is no closed form algebraic solutions to (2.6) so that further

approximations are necessary. First, Pβ is approximated by the normal distribution

with mean α and variance

σ2 = α(1 − α)
(M1 + 2) .

Let this approximation be denoted as P̃β. Replacing k by β(M1 + 1), taking the

derivative with respect to β and division by the constant N1 + 1 yields:

T̃ ′
β = 2P̃β − 1 + (2β − 1)P̃ ′

β (2.11)

Note that P̃β is a cumulative density function and P̃ ′
β is a probability density function.

Lemma 1 The function T̃β is quasiconvex for β ∈ [0, 1].

Proof 2 The proof is divided into three parts:

for 0 ≤ β ≤ α: Since P̃β has median α it follows that (2.11) is strictly negative.

for α < β < 1/2: Taking the second derivative of P̃β:

T̃ ′′
β = 4P̃ ′

β + (2β − 1)P̃ ′′
β

shows that the function is convex on this interval as both terms are strictly posi-
tive.

for 1/2 ≤ β ≤ 1: Since all terms are positive, P̃β is positive as well.

29

Combining the three intervals proves the quasiconvexity.

Since the cost function is quasiconvex as shown by Lemma 1 the function has

only one global minima between [0, 1]. Minimizing (2.6) in order to find the optimal

k∗ yields:

Theorem 2 The optimal order statistic which is to be chosen as the second pivot is

k̃∗ ≈ (α +
√

2σ log(1 + 2α√
2πσ

))M1 (2.12)

where σ =
√

α(1−α)
M1+2 , α < 1/2 as defined in (2.8), and M1 is the size of the random

subset X′′.

Proof 3 Taking the derivative of (2.6) and setting it to zero yields the following equa-

tion:

ex2 erf(x) − 1 − 2
√

2σx + 2α√
2πσ

= 0 (2.13)

where x = β−α√
2σ

.

First, the approximation erf(x) ≈ 1 is used to simplify equation (2.13). As M1

increases so does x and hence the error function is close to 1 which justifies this step.

Next, the approximation

2
√

2σx = 2
√

2σ
β − α√

2σ

= 2(β − α)

≈ 0

can be used since β ≈ α for large M1. Solving the resulting equation yields the desired

result.

Note that in an implementation k̃∗ is rounded up to the nearest integer. The

reason is that the cost function is steeper towards smaller number and more flat towards

larger number which makes this step plausible.

30

The error introduced by the approximations is very small as can be seen in

Figure 2.6 on page 42. The error was defined as:

ek = max
0<α<1/2

∣∣∣k̃∗ − k∗
∣∣∣

M1

Note that the maximum relative error is declining with increasing N . Figure 2.7

on page 43 shows an example of the relative error. Also note that the maximum occurs

at α > 0.25 and the error is close to zero for small α. Most likely α will be close to

zero. This is true if the first pivot was close to the actual WM. Hence the maximum

error has a low impact on the average performance.

Given that k̃∗ is now known, Quickselect is called recursively to compute the

pivot. With high probability this pivot will be slightly larger than the WM and hence

many samples will be discarded. However, it is not guaranteed that the pivot is smaller

than the WM and in the other case very few samples are discarded. The case that

the pivot is on the same side of T ′
W M(β) as the first pivot is to be avoided as it would

only result in discarding the elements between p1 and p2. Since this approach is based

on probabilistic analysis it will fail sometimes which will result in a repetition of this

approach until the two pivots are located on different sides such that

T ′
W M(p1)T ′

W M(p2) < 0.

Note that in the successful case, the problem is bounded, i.e. it is known that

the WM is between the first and the second pivot.

2.4.3 Subsequent Pivots

Given the first and second pivots, these pivots can be considered as the lower

and upper bounds of the array since all elements outside of these bounds have been

discarded. Therefore, at each iteration hereafter the pivot is defined as a convex com-

bination of the maximum and minimum:

31

pi = βXmin + (1 − β)Xmax

where pi is the ith pivot, β is some constant between 0 and 1, and Xmin and Xmax are

the minimum and maximum points left in the array. After each iteration the minimum

and maximum will be updated and hence new bounds are established. This strategy

is very different to the existing ones since the pivots are not selected but computed.

This implies that the pivots are most likely not an element of the set. Note however,

that the crucial step for the algorithm –partitioning the set– is still possible.

After the partitioning step, the set which does not contain the WM will be

discarded and the new pivot takes over the weights of the discarded set. The pivot will

act as a proxy of the samples of the discarded set. This will introduce new samples

into the set which originally did not exist. However, this will not change the WM or

the zero-crossing point and is therefore a valid operation.

An optimal β at some iteration can again be found by minimizing a cost function

which will be of similar structure to the cost function (2.6). The result is similar to

(2.12):

β ≈ α +
√

2σ log(1 + 2α√
2πσ

)

where α and is defined the same way as in (2.8):

σ2 = α(1 − α)
(Ni + 2)

and Ni being the number of elements left in the array at the ith iteration.

Intuitively, if there are many samples between Xmin and Xmax then this ap-

proach works very well. If, however, few samples are within the boundaries then the

assumption of the data being uniformly distributed breaks down which results in de-

graded performance. Therefore the algorithm stops when the problem size gets below

a certain threshold level and solves the remaining problem by the standard median-

of-3 Quickselect implementation. In addition, in the case that this approach does not

32

remove any elements –which can happen for some inputs– the algorithm falls back to

the median-of-3 Quickselect as well in order to protect from an infinite loop.

2.5 Complexity Analysis

It has been shown, e.g. in [Knu71], that the average number of comparisons

to find the median using the standard Quickselect is approximately 3.39N and 2.75N

for median-of-3 Quickselect. The space complexity of the algorithm is O(N) since the

partitioning step can be done in-place and hence does not need additional memory.

For the first and second partition step the algorithm needs to choose the pivot from

a random subset of X. However, this approach would require additional memory

and time to generate the random numbers. In practice it is more efficient to sample

uniformly, i.e. using a set with equidistant indices. Selecting an order statistic from

this subset can also be done in-place and hence there is no need to create a copy to

hold the elements.

Since overall the most time of the algorithm is spent in the partitioning step, the

time complexity is defined as the number of element-wise comparisons the algorithm

makes until termination. In addition, the comparisons to select the pivots recursively

have to be taken into account. Using a median-of-M samples strategy as the pivot,

it was shown in [MR02] that the number of comparisons is 2N + o(N) on average.

Simulations in the next section show that the proposed algorithm beats this result.

This is mainly due to the strategy used for selecting the second pivot. As explained

earlier, selecting just the median of a subset for the second pivot is not optimal in

general.

The worst case runtime of the proposed algorithm is O(N2) trivially since the

algorithm will always do better or equal than the median-of-3 Quickselect which has

the same worst case runtime. It is shown in [MR02] that the worst case runtime for a

median-of-M approach is O(N3/2) for M = Θ(
√

N) 1 which is a similar approach used

1 The notation Θ(N) is used in the following way: f(N) ∈ Θ(g(N)) means ∃k1, k2 > 0, N0∀N > N0:
|g(N)|k1 ≤ |f(N)| ≤ |g(N)|k2

33

Table 2.1: This table shows the average number of normalized comparisons C̄ for
different alpha of alpha input distributions. Note that the number of
comparisons are not affected by heavy tailed input distributions.

alpha 2 1.8 1.4 1.0 0.8 0.6 0.4
C̄ 1.72 1.72 1.72 1.72 1.72 1.72 1.72

for the proposed algorithm. This is an indication that the proposed algorithm’s worst

case complexity is also lower than O(N2).

Performing theoretical average complexity analysis is not possible due to the

complex approach of choosing the subset size and the pivots. However, given the

simulations from Section 2.6 the complexity can be approximated by fitting a function.

An approximation is useful to give the reader or programmer an intuitive measure

of runtime behavior of the proposed algorithm. Using the tool Eureqa, which was

introduced in [SL09], the following formula for the complexity was obtained:

C(N) = 1.5N + 6.435N0.629.

Eureqa was run with the basic building plots and the block “power”. The data

was not smooted prior and the most compact formula was chosen over the most accurate

one.

2.6 Simulation Results

To compare the simulation results among different sample set sizes the number

C̄ = C/N is used. C is the sample mean of the number of comparisons and N the input

data set size. The proposed algorithm was implemented in MATLAB and simulated

with different input distributions of X. Since weighted medians are often used with

heavy tailed input distributions, the algorithm was run on alpha-stable distributions

where alpha ∈ [0, 2] [Arc05]. As alpha gets smaller the tails of the distribution get

heavier which results in more outliers present in the input data. For alpha = 2 the data

is Gaussian distributed. The resulting C/N for N = 8193 are depicted in Table 2.1.

34

Note that the mean does not change and is robust to heavy tailed inputs. This

can be easily explained: After the first two steps the algorithm makes the problem

bounded above and below and thus all outliers are already discarded. Furthermore

due to the approach to pick the first two pivots it is highly unlikely to select an outlier

as the pivot. In particular, the first pivot is taken as the median of a relatively large

subset size. This median is unlikely to be an outlier. The second pivot is then taken

in the vicinity of the first pivot which, again, is unlikely to be an outlier. Uniformly

distributed input data does not change the complexity which is expected since the

design of the proposed algorithm is based on the assumption that the input is uniformly

distributed around the WM.

The performance is compared to two other selection type algorithms. The stan-

dard median-of-3 Quickselect and Floyd and Rivest’s SELECT algorithm [FR75]. Since

both algorithms only solve the more specific problem of finding the order statistic of a

set of samples, a version of the proposed algorithm which finds the median was imple-

mented in the C programming language. To this end each implementation keeps track

of the number of comparisons it performs. In particular the proposed algorithm’s pivot

finding strategy is more complex and the comparisons performed during this phase is

taken into account.

The results are depicted in Figure 2.8 on page 44. The proposed method clearly

outperforms SELECT for smaller and medium input sizes and both methods converge

to C̄ = 1.5 optimum for very large input sizes. The C̄ = 1.5 optimum can be explained

easily: For very large input sizes the number of samples removed is almost N0/2 after

the first partitioning step which does N0 comparisons. The second pivot will also

remove almost N0/2 samples which cost N0/2 comparison to partition. All that is left

is a small fraction of the input size and therefore the number of comparisons converge

to 1.5N0. The asymptotic optimality is proved in Appendix A.

To explain why the proposed algorithm performs better it is necessary to look at

how SELECT works: SELECT first chooses two pivots which lie with high probability

just to the left and just to the right of the sought median. This however is suboptimal

35

unless the input size is very large since the two pivots have to be chosen to be relatively

far away from the median and therefore many unnecessary comparisons are done. The

proposed method on the other hand tries to get the first pivot as close as possible

to the median and then chooses the second pivot such that the median is with high

probability between the first and the second pivot. This explains Figure 2.8 on page 44.

However since the proposed algorithm is more complex and in turn requires

more code than the other two algorithms, it is of interest to show how the actual

runtime of the proposed algorithm compares to the other candidates. To this end, the

C-implementations were run and timed and the sample averages are compared. The

speedup is measured as Tslow

Tnew
where Tslow is the runtime of the faster of the two existing

algorithms SELECT or Quickselect. The tests were carried out on a Linux (CentOS)

host with kernel version 2.6 on an AMD Opteron 2376 processor and GCC 4.6 compiler

with all optimizations enabled. Figure 2.9 on page 44 shows the speedup in runtime

as defined above. In addition the figure also depicts the theoretical speedup which is

defined as the quotient of the comparisons: Cslow

Cnew
. Similar as above, Cslow is the number

of comparisons for the faster of the two existing algorithms and Cnew the number of

comparisons for the proposed algorithm.

The proposed method is up to 23% faster than SELECT for a wide range of

input sizes and converges to ≈ 5% for very large input sizes. There are subtle differences

in the theoretical and practical speedup which can be explained. First, the speedup for

the input sizes 513, 1025 is smaller due to the involved overhead of the more complex

implementation. This increased complexity however pays off nicely for larger input

sizes. For this reason the proposed method is slower than SELECT for input sizes

smaller than 513 samples. Secondly, even though the theoretical speedup approaches

zero as N becomes large the practical speedup approaches 5%. It seems that the

compiler can optimize the algorithm slightly better than SELECT.

For all simulations the input samples were i.i.d. normal distributed.

36

2.7 Conclusions

A fast new Weighted Median algorithm is introduced which is based on Quick-

select. The algorithm is based on the optimality of several parameters used to design

a set of pivots. In particular, the set of order statistics and the sample set size are the

crucial parameters for optimal performance. Minimizing cost functions in combination

with a well approximated model for the cost were used to develop this novel algorithm.

Theory explains that the proposed method should be faster than Floyd and Rivest’s

SELECT unless input sizes are very small. This was backed up by experiments which

showed a speedup of up to 23%.

Furthermore the proposed algorithm can compute the median as well as the

WM but the same ideas can be applied to finding the kth order statistic. In addition

the proposed algorithm can be used to solve multidimensional selection problems which

require medians of large data sets.

A C-implementation can be downloaded from my homepage at the University

of Delaware at the URL: http://www.eecis.udel.edu/˜rauh/fqs/

37

1.72

1.73

1.74

1.75

1.76

1.77

M
ea
n
n
or
m
al
iz
ed

co
m
p
ar
is
on

s
C
/N

100 200 300 400
Subset size M for N = 8192

0

0.01

0.02

0.03

0.04

0.05

V
ar
ia
n
ce

of
C
/N

Mean and Variance of C/N

Figure 2.2: This graph show simulations of the number of comparisons that are
needed depending on the subset size chosen for the first pivot. Very
small subset sizes M0 yield higher overall runtime due to more element-
wise comparisons necessary. Very large subset sizes on the other hand are
also not optimal since too much runtime is spent on finding a pivot. The
optimal subset size is where the number of comparisons is minimized.
This dissertation focuses on finding a closed form solution to this subset
size. The higher M0 is chosen the lower is the variance but the mean
increases as well. The lower variance means that the runtime is more
reliable which is due to a very good pivot that removes half the elements
reliably. (For the graph: N = 8192, 100000 simulations averaged)

38

x

−2W0

2W0

WM
1st pivot

W 1
≤

Sum of all Weights smaller than pivot.

(Computed during partitioning)

Better (safer) Pivot

Figure 2.4: This figure shows a conceptual depiction of the state of the algorithm after
the first pivot was chosen and the input sequence partitioned along the
pivot p1. In this case the first pivot happened to be less than the sought
weighted median. During the partitioning step it is easy to calculate the
sum of the weighted W 1

≤ which is used to find the optimal second pivot
p2. The best strategy for the second pivot is not to choose a pivot as close
as possible to the location where the weighted median is expected. This
could potentially result in a “wasted” iteration when the second pivot is
again less than the WM discard only very few elements. Thus, an overall
better strategy is to choose a “safer” pivot which will result in a lower
number of comparison on average.

40

αM0

50 100 150
k

2000

3000

4000

5000

6000

7000

8000

9000

Tk

k∗

Cost function

Figure 2.5: Expected cost Tk for choosing the kth order statistic as the second pivot
p2. Note that the weighted median is expected to lie at αM . However,
choosing this point as the second pivot is far from optimal. This is
due the case that the pivot could end up below the weighted median
which is highly undesirable. The minimum cost –and hence optimality–
is achieved by choosing a slightly larger order statistics as the pivot. (For
this plot: N1 = 10000, M1 = 159, α = 0.1)

41

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

M
ax

im
u
m

R
el
at
iv
e
E
rr
or

e k

28 210 212 214 216 218 220 222 224 226

Number of samples N

Maximum Relative Error

Figure 2.6: The maximum relative error of the optimal order statistic k∗ and the
approximation k̃∗. The error decreases as the input size increases.

42

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

R
el
at
iv
e
E
rr
or

(k̃
∗
−
k
∗)
/M

1

0.1 0.2 0.3 0.4
α

29

213

220

N = 29

N = 213

N = 220

Example of some relative errors

Figure 2.7: The relative error of the optimal order statistic k∗ and the approximation
k̃∗ for N = 29 (M = 27), N = 213 (M = 175) and N = 220 (M = 4439).
It is important to note that the error is small for small α. This is crucial
for the algorithm to work well as small α are more likely to occur in
practice.

43

29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

Number of samples N

2

3

S
am

p
le

av
er
ag
e
of

C
/N

Median-of-3 QS

Proposed QS

SELECT

Sample average of normalized comparisons

Figure 2.8: The sample average of the normalized number of comparisons (C/N) for
the different algorithms.

28 210 212 214 216 218 220 222 224 226

Number of samples N

0

10

20

30

40

S
p
ee
d
u
p
[%

]

Practical
Theoretical

Runtime comparison

Figure 2.9: Speedup against Floyd and Rivest’s SELECT.

44

Chapter 3

OPTIMIZED SPECTRUM PERMUTATION FOR THE
MULTIDIMENSIONAL SPARSE FFT

3.1 Introduction

The Discrete Fourier Transform (DFT) calculates the spectrum representation

of input signals and has become ubiquitous in signal processing applications. One

famous such application is the popular MP3 audio codec in which case the input are

samples in the time domain and the DFT is used to transform the signal into the audio

frequency domain in which most audio signals are compressible. The most popular

two dimensional signal is the digital photograph which contains the discretization of

a spatial signal. Image processing tasks such as denoising use the 2D DFT transform

in their algorithms. It is used broadly throughout digital signal processing, partial

differential equations, polynomial multiplication [CLR+01] and audio processing.

In certain time constrained applications, there is a natural desire to accelerate

the DFT. With the emergence of mobile computing which is often constrained in elec-

trical and processing power it is natural to seek algorithms that perform increasingly

faster and with less power usage [HAKI12].

In addition to improving the runtime complexity of the DFT, there is also an

interest in reducing the sampling complexity. The sampling complexity is important

when the sheer amount of data is impossible or prohibitive to sample or simply not

available. This idea of reducing the sampling complexity is similar to the idea behind

compressive sensing [CRT06].

Formally the DFT of a one dimensional signal of N elements is defined as:

x̂j =
N−1∑
n=0

xn · e−2πijn/N , (3.1)

45

where xn is the signal in the time domain and x̂k the DFT in the frequency domain.

i is defined as
√−1. The complexity of a naive and straightforward implementation

of the DFT has a runtime complexity of O(N2) for a one dimensional signal of length

N . This is readily noticed by analyzing (3.1) which can alternatively be expressed as

a matrix vector multiplication:

x̂ = F · x (3.2)

where F is the so called DFT matrix composed of the Fourier basis functions. The

matrix has the following entries defined for 0 ≤ n, j < N :

F n,j = e−2πijn/N .

In 1965 the popular Fast Fourier Transform (FFT) was introduced in [CT65].

This highly celebrated finding exploited properties of complex numbers and reduced

the runtime complexity of the DFT from O(N2) to O(N log N). The Fast Fourier

Transform (FFT) exploits properties of complex numbers leading to a reduced runtime

complexity of O(N log N). The idea behind the FFT algorithm is easy to understand

since it only involves the well known divide and conquer approach taking into account

special properties of complex numbers.

Following the approach of [FR13]:

x̂j =
N−1∑
n=0

xne2πijn/N

=
N/2−1∑

l=0
x2le

2πij2l/N +
N/2−1∑

l=0
x2l−1e

2πij2l/N

= e2πij/N
N/2−1∑

l=0
x2le

2πijl/(N/2) +
N/2−1∑

l=0
x2l−1e

2πijl/(N/2).

(3.3)

Thus, it can be seen how the DFT of N elements can be expressed as two separate

DFT transforms of size N/2. Applying the decomposition recursively yields the FFT

algorithm and results in a runtime complexity of O(N log N).

46

Note that, in (3.3), the runtime complexity of the transformation algorithms is

known to be determined only by the input size, and not affected by the value of the

input.

While the FFT algorithm does not make any assumptions about the structure

of the signal, very often the signals of interest are obtained from a structured source

resulting in a nearly sparse Fourier spectrum. This fact is the basis for signal com-

pression and is used among others in the popular MP3 codec. Other examples of

structured signals include images, video and in general samples of most systems over

time or space. In general it is likely that the signals encountered in nature are often

structured unless the signal in question is purely random and thus just noise. These

input signals frequently result in a sparse spectrum, i.e., most of the Fourier coefficients

of a signal are very small or equal to zero.

Assuming that a signal of length N is k-sparse (k < N) in the Fourier domain,

the signal can be described with only these k coefficients. Due to the fact that the

signal is accurately described with just k coefficients it seems natural that there should

be a better performing algorithm that exploits this property of the signal.

The last 20 years has seen advances in algorithms aimed at improving the run-

time for the sparse Fourier transform. The first notable in [KM93] and several other

algorithms have been proposed with this goal in mind [AGS03,GGI+02,Iwe10,Man92].

A recent approach is the so called sparse FFT (sFFT) which lowered the computational

complexity significantly. It was introduced in [HIKP12a] and improved the runtime

complexity to O(k log N) to make it faster than the FFT for a given sparsity factor

k ≤ O(N/ log N).

The applicability of the sparse FFT is only limited by the sparseness of the

signal in the Fourier domain. For instance, the standard FFT algorithm could be

chosen to perform the compression of an audio signal for when a high audio quality

is needed during playback. On the other hand, the sparse FFT could be used if the

audio signal is highly compressed into a lower quality signal which may be desirable

for speech.

47

There are also applications which inherently work on sparse signals. For in-

stance GPS deals with extremely sparse signals and the sparse FFT can be used to

significantly speed up signal acquisition [HAKI12]. Another application is GHz-Wide

sensing [HSA+14] of signals. Additionally, a very popular field that deals with sparse

signals is compressive sensing. Recovery algorithms for compressive sensing are often

limited by the performance of the sparse basis transformation. This is where the sparse

FFT would come into play and therefore allow faster recovery and recovery of large

problems sizes. One particularly interesting application within compressive sensing is

the reconstruction of Magnetic Resonance Imaging (MRI) images which rely on the

two or three dimensional Fourier transform.

Another similar application is to apply the 2D sparse FFT to reconstruct a more

sparsified image in 2D Magnetic Resonance Spectroscopy [SAH+13].

Computational Lithography uses very large scale two dimensional Fourier trans-

forms to calculate the intensity of every source point of the Wafer [?]. A sparse Fourier

transform of sizes up to 1033 or more is necessary for the detection of pulsars [AZJB06].

Various image registration techniques use the Fourier transform [ZF03]. Similarly these

ideas can be applied to motion estimation which is used for video encoding among other

applications [Tim99]. In general the DFT can be applied to multi dimensional signals

used in engineering applications and is not limited to audio, image or video signals.

The algorithm introduced in [HIKP12a] handles only one dimensional signals

and does not explicitly state how to extend the algorithm to solve the multidimensional

sparse FFT problem. Being a separable transform the 1D DFT can easily be extended

to multiple dimension by applying the 1D algorithm multiple times on each slice along

each dimension. Applying the sparse FFT in this naive way, however, would negate all

gains due to the repetitions necessary along one dimension.

Assuming a signal of dimensionality d with N elements along each dimension,

the complexity of such a naive algorithm would be kdN log N . The term N which is

introduced by the repeated computation of the 1D sFFT is prohibitively fast growing

compared to the desired logarithmic term log N . Thus, a more sophisticated approach

48

is shown in our work by extending the sparse FFT algorithm itself to multiple dimen-

sions.

In addition, the algorithm in [HIKP12a] introduces many parameters which

are left to be chosen randomly. This works well for the assumption of a randomly

distributed input spectra but is sub-optimal for signals inhibiting structure. Often

however, choosing those parameters randomly is far from optimal and becomes a much

more pronounced problem with the multi dimensional sFFT.

In this dissertation it is shown that the parameters in question should not be

chosen randomly and Lattice theory is used to optimize these parameters. In fact,

the findings are also applicable to other algorithms which use pseudorandom spectrum

permutation [HIKP12b,HIKP12a,GGI+02,GMS05,GST+08]. Note that the proposed

algorithm and finding in this chapter are not limited to the exact sparse FFT (sFFT-

3.0) but are also applicable to other and more recent developed algorithms such as [?].

This chapter is structured in the following way: Section 3.2 introduces the

concept of lattices and focus on the parts which are of interest for understanding the

main idea of this chapter. Section 3.2.1 makes the connection of Dual Lattices and

the Fourier transform. Section 3.2.2 introduces an iterative algorithm to optimize

the permutation parameter when applied to commonly shaped spectra. Section 3.3

introduces a recursive algorithm to change a matrix of even determinant to a matrix of

odd determinant which is needed for the proposed algorithm. Section 3.4 introduces the

sparse FFT algorithm and Section 3.5 explains the modifications necessary to extend

the algorithm to multiple dimensions. The chapter is finish up with some simulations

in Section 3.6 and conclude the chapter in Section 3.7.

3.2 Lattices

Lattices have various mathematical definitions depending on the context and

application field. In this work, lattices are used as a discrete additive subgroup of Rn

49

also known as point lattices. An additive subgroup has the property:

∀x, y ∈ L → −x, x + y ∈ L (3.4)

i.e. for any two points in the lattice L, the points −x and x + y are also part of that

lattice.

Equivalently, a lattice is the Z-linear span of a set of n linearly independent

vectors:

L = L(B) = B ·Zn = {a1b1 + a2b2 + · · · + anbn : a1, a2, . . . , an ∈ Z}. (3.5)

The vectors b1, b2, . . . , bn are called the basis vectors of the lattice and similarly the

matrix B is called the basis of the lattice. One simple 2-dimensional lattice is the

set Z2 which is a simple rectangular shaped point lattice of all integer numbers. Note

that in theory a lattice is an infinite set, however in practical applications the set of

numbers will be on a finite domain.

The fundamental parallelepiped of a basis B is defined as:

P(B) = B ·
[
−1

2 ,
1
2

)n

=
{

n∑
i=1

cibi : ci ∈ [−1
2 ,

1
2)

}
.

Another fundamental region of particular interest is the Voronoi cell of a lattice.

It is defined as the set of all points in Rn that are closer to the origin than to any other

lattice point:

V(B) = {x ∈ Rn : ||x|| < ||x − v|| ∀ v ∈ L \ {0}} . (3.6)

Note, that the basis of a lattice is not unique. For any matrix U ∈ Zn×n,

det U = ±1 the matrix resulting from B ·U will also be a basis for the lattice L(B).

Some basis are more desirable and interesting than other basis due to their

50

mathematical properties. Basis reduction is the process of taking a base and reducing

it such that it still generates the same lattice. In lattice theory a vast effort has been

made to find such reduced basis sets [LLL82].

Given a basis, the problem of finding the shortest near-orthogonal vectors is

called the shortest vector problem (SVP). The exact problem of finding the shortest

vector within a lattice is known to be NP-hard [Ajt98]. However, various approximate

solutions with polynomial time exist. In fact, this NP-hardness result gave rise to a

new field called lattice based cryptography. However, various algorithms to find good

approximations in polynomial time complexity have been reported [LLL82, Kan83,

Sch87].

The minimum basis of a lattice is the basis with the shortest and nearly orthog-

onal basis vectors. The fundamental parallelepiped of the minimum basis of a lattice

is called the fundamental domain of the lattice. The determinant of the fundamental

lattice is defined as the volume of the fundamental parallelepiped.

An example of a two dimensional lattice is the well known hexagonal tiling

which is obtained from a lattice with basis vectors of equal length and an inner angle

of 60 deg. Due to a lattice being an additive subgroup the tiling that is generated is a

monohedral tiling, i. e. all tiles are congruent.

The rank of a lattice is the dimension of its linear span:

m = dim(span(B)). (3.7)

In the case of m = n the lattice is called a full rank lattice. The rank of the lattice is

easily visualized: It is the number of vectors necessary to generate the lattice. In two

dimensions, two well known full rank lattices are the square and the hexagonal lattice

which are depicted in Figure 3.1.

Many engineering and science fields are connected to lattices in their applica-

tions. For instance, lattices find application in material science where they describe

the atom structure of regular grid like structures such as crystals. In fact, the dual

51

Figure 3.1: Examples of two dimensional lattice tilings. Left: A simple square lattice.
Right: A hexagonal lattice.

lattice –which is often called the reciprocal lattice– is used in Crystallography to obtain

information about the crystal after X-ray exposure [KMM76].

Another recently emerging application is the usage in public key cryptography

due to the high computational complexity of the lattice basis reduction problem [NS01].

In communication, lattices find use in demodulation and quantization both of which

seek to solve the closest vector problem. In computer graphics lattices are applied in

sampling patterns and pixel anti-aliasing [Dam09]. Pseudo random number generators

are closely connected to lattices and find applications in numerical integration [SB89].

This dissertation discusses lattices in the context of multidimensional sparse

FFT. While the focus is on the two dimensional case, all arguments are straightforward

to extended to arbitrary dimensions unless otherwise noted.

An example of a two dimensional lattice is depicted in Figure 3.2. It also depicts

the Voronoi cell, the Delaunay tessellation and the two basis vectors that generate the

lattice points. The fundamental parallelepiped is spanned by the two basis vectors and

the origin.

52

Figure 3.2: The solid dots (green) are the lattice points generated by the base vectors
shown in the bottom left. The solid connected lines (orange) surrounding
the lattice points is the Voronoi tessellation. The straight lines (grey)
crossing through the lattice are the Delaunay tessellation also known as
the dual graph. The fundamental region is spanned by the two basis
vectors in the bottom left. Also note, the lattice points are the centroids
of the Voronoi parallelepiped.

3.2.1 Dual Lattice

The Nyquist-Shannon sampling theorem is the corner stone of sampling a con-

tinuous signal. It states that a signal is completely determined when sampled at twice

the bandwidth. Fulfilling this constraint, it is possible to reconstruct the signal per-

fectly. Violating this requirement yields to aliasing and artifacts in the signal. The

original theorem is stated for the one dimensional case where the samples are equidis-

tant. It is straightforward to extend the theorem to multiple dimension by treating

each dimension independently. This is easy to see by using the fact that the Fourier

transform is a separable transform. For instance, a two dimensional signal which has

53

a rectangular shaped spectrum with different bandwidths along each dimension, im-

plies that the signal can be sampled at a lower rate along one dimension and must be

sampled at a higher rate along the other dimension.

For instance, consider an image with a rectangular spectrum S that has a band-

width of 1 1
m

along the x-dimension and a bandwidth of 2 1
m

along the y-dimension.

This implies that the signal can be sampled at different rates along the x-dimension

than the y-dimension thus departing from the commonly used square like sampling

lattice. It is easy to see that the optimal sampling lattice for such a signal is again a

rectangular shaped lattice with the difference that the sampling should be 0.5m along

the x-dimension and 0.25m along the y-dimension. Thus, in this example the optimal

sampling lattice is again a rectangular lattice. Note that a fat rectangular shaped

spectrum will result in a tall and skinny shaped sampling lattice in the time domain.

Naturally, it is interesting to ask what the optimal sampling lattice is for a

given arbitrary shaped spectrum? Note, that any kind of rectangular sampling in the

time domain will result in the repetition of the spectrum along a rectangular shaped

lattice in the frequency domain. Thus, the standard rectangular sampling grid method

does not allow us to answer this question in an interesting way. This constraint of

rectangular sampling is therefore relaxed and allow for more freedom. As introduced

in the previous section, a lattice can be used to sample a continuous signal. This, in

turn, raises the question of the effect on the signal spectra as it is sampled by a lattice.

The answer to this question is the Dual Lattice.

One well known fact is that the optimal sampling lattice of circular shaped

spectra is the hexagonal lattice. This is due to two facts:

1. The hexagonal lattice is self-dual, i.e. the dual of a hexagonal lattice is again a
hexagonal lattice.

2. The hexagonal lattice optimizes the arrangement of spheres thus achieving the
highest density. This fact was proven by Gauss in 1831 [Gau31].

It is also helpful to think of the Voronoi tessellation of the hexagonal lattice

–which is a hexagon– as the best approximation to a circle among all two dimensional

54

lattices. Also note that the hexagonal lattice is popular due to the fact that it is

optimal if the spectrum is assumed to be isotropic; i.e. of circular shape. This is in

fact a good assumption for most real world signals.

In general, the signal is sampled in such a way that the resulting spectra of the

samples signals do not overlap and thus the signal can be reconstructed perfectly.

If the sampling constraints are relaxed from ordinary rectangular lattices to

arbitrary lattices however, the way the signal is sampled is still constrained. As shown

later, the effect of signals that are sampled according to a lattice in the time domain

is that their spectrum is reduplicated according to the dual lattice in the frequency

domain.

Given this constraint it is natural to ask what the optimal sampling lattice

is, given an a priori knowledge of the shape of the spectrum. Reduplication of the

spectrum in the frequency domain along a lattice L means that overlapping of the

spectrum occurs if the spectrum extends beyond the Voronoi cell of the lattice L. This

is a straightforward result from the definition of the Voronoi tessellation (3.6) which

quasi tiles the space according to the proximity to a lattice point. Here, the term

“quasi-tiling” is used since the Voronoi cell does not include the boundary points so

the tiling is not complete. The above assumes symmetric spectra or else a more general

approach must be taken which will be noted later in this section.

Formally, the dual lattice of the lattice L is denoted as LT .

It is defined as the set of real vectors h ∈ Rn with:

LT := {h ∈ Rn |h · x ∈ Z for all x ∈ L} (3.8)

which means that the dual of a lattice L is the set of points whose inner product

with any points of the lattice is an integer. The dual lattice is –as its name suggests–

again a lattice. For instance the dual of the lattice 2Zn is the lattice 1
2 Z

n. As this

example shows, it is also common to refer to the dual lattice as the reciprocal lattice.

If the lattice is a full rank lattice, then the dual lattice can be generated with

55

the basis matrix of the inverse of the transpose of B, i.e. (BT)−1. This follows directly

from the definition of the dual lattice. For the use-case of improving the sparse FFT,

it should be noted that we always deal with full rank lattices.

Next it is shown that sampling a signal with a lattice L results in the spectrum

of the signal being reduplicated according to the dual lattice LT [EDM09]:

L̂B(ξ) =
∫

LB(x)e−2πiξ·xdx

=
∑

k∈Zn

e−2πiξ·Bk

L̂B(ξ + B−T m) =
∑

k∈Zn

e−2πi(ξ+B−T m)·Bk

=
∑

k∈Zn

e−2πi[ξ·Bk+B−T m·Bk]

=
∑

k∈Zn

e−2πi[ξ·Bk+mT B−1Bk]

=
∑

k∈Zn

e−2πi[ξ·Bk+mT k]

=
∑

k∈Zn

e−2πiξ·Bk since e−2πim·k = 1

= L̂B

(3.9)

A more rigorous proof can be found in [EDM09].

In general, the algorithm of finding an optimal sampling lattice provided an

expected shape of the spectrum is the following:

1. Given the expected shape of the spectrum Sg (which, if no a-priori information
is given, should be chosen as an n-sphere)

2. find a lattice whose Voronoi tessellation (3.6) best approximates the spectrum
shape Sg. Let this lattice be called Lg.

3. Calculate the dual lattice LT
g of the lattice Lg and use the lattice LT

g to sample
the signal.

Step 2 of the algorithm can be done by a simple brute force search by generating

lattices and their Voronoi tessellation and measuring the error. The error can be

56

measured according to some user defined error measure, for instance by calculating

the area of the given spectrum that lies outside the Voronoi tessellation. This is

a simple and effective approach if the dimensionality of the signal is low, otherwise

this approach suffers from the popular curse of dimensionality and more sophisticated

approaches must be employed [DDK09].

Lastly, it is noted that in some cases finding an optimal lattice requires a more

sophisticated algorithm. For instance, if the spectrum of the signal is non-symmetric

the step 2 of the algorithm tries to match a Voronoi cell –which is always symmetric–

with the non-symmetric spectrum. This, in turn, will result in a poor fitting lattice

which is larger than necessary and hence results in non-optimal lattice.

In this case it is recommended, that the optimal lattice should be found by brute

force iterating over lattices and reduplicate the input spectrum around the neighbor-

hood of the origin point of the lattice. The error measure used to find a good matching

lattice is the intersection of the reduplicated spectra. In general, more elaborated

methods to deal with non-symmetric spectral characteristics can yield slightly better

lattices.

3.2.2 Permutation Candidates Algorithm

In this Subsection an iterative algorithm is introduced which is based on the

dual lattice introduced in the previous section. The pseudo code of the algorithm is

given in Algorithm 3.1 on page 58. The algorithm takes the basis L of a lattice L and

returns a sequence of matrices of the same size as the basis. Note that, one step within

the algorithm ensures that the determinant of the integer matrix is odd. An algorithm

to ensure an odd determinant is given in Section 3.3.

To this end, the algorithm first calculates the dual and generates integer matrices

based on this dual. This sequence of matrices can be used to permute the spectrum of

the shape of the input lattice.

Each candidate matrix M is evaluated by applying the permutation operator

57

procedure DualPermCandidates(L)
L′ ← L−T

s ← ||L′||max � Maximum matrix element
S ← ∅, n ← 0
for m ← 1, 2, . . . do

P̃ ← round(msL′)
Ensure det(P̃) is odd � See Alg. 3.2
if P̃ /∈ S then

S ← S ∪ P̃

Mn ← P̃

n ← n + 1
end if

end for
return M

end procedure

Algorithm 3.1: The proposed iterative algorithm which generates an infinite se-
quence of candidates for permutation matrices P̃ . The only parame-
ter needed is the lattice basis approximating the expected spectrum
shape. Note that the evaluation of the “goodness” of the candidates
is deferred until it is defined what constitutes a good permutation
matrix. Also note that despite generating an infinite sequence an ac-
tual implementation would not realize the candidates in the sequence
eagerly.

58

P ′ to the spectrum:

(P ′x̂)j = x̂Mj . (3.10)

Each spectrum permutation is then evaluated by measuring the error. The error mea-

sure can vary by the application and is user defined. For instance it may be preferable

to choose the overall PSNR or a simple inter point distance as an error measure.

Next, the algorithm is evaluated with simulations. To this end, multiple sparse

input spectra are generated whose shape is derived from a multivariate Gaussian distri-

bution. MATLAB was used for implementing the simulation. The setup was as follow:

The input size was chosen to be N × N = 1024 × 1024 with a sparsity of 0.01%. One

realization of such an input spectrum is depicted in Figure 3.3 (left).

For each input spectrum the simulation permutes the spectrum according to (3.10).

The permutation matrix M is either chosen randomly or from the sequence of matrices

obtained from Algorithm 3.1 (page 58).

One example of a random permutation is depicted in Figure 3.3 (middle) with

an example of a good permutation obtained via the proposed algorithm depicted on

the right. Note the structured layout of the coefficients which are unfavorable to avoid

collisions in the sparse FFT algorithm.

In order to measure the “goodness” of a permuted spectrum the distance to the

closest neighbor is calculated for each nonzero coefficient:

Dmin
k = min

j �=k
||x̂k − x̂j||2. (3.11)

Note that, this is different from the minimum distance of a lattice. This error

measure was chosen due to being correlated to the number of collisions in the sparse

FFT algorithm. Close neighbors can lead to collisions which in turn yield to non-

optimal performance.

A total of 400 simulations were run and the results summarized with a histogram

which is depicted in Figure 3.4. The result is a 21% improvement in the mean closest

neighbor distance.

59

term of d since d is usually small and considered constant for the sparse FFT algorithm.

The actual complexity comes from the dimension of the input spectrum that is to be

permuted. That is, the elements of the returned permutation matrix are at most N ,

where N is the number of elements in each dimension. It does not make sense for the

elements to be > N since the input spectrum is a cycling signal due to the definition

of the DFT.

A naive algorithm would try all possible permutation matrices which has a

complexity of O(Ndd). This means that the complexity is exponential in the number

of dimensions. This is no surprise due to the well known curse of dimensionality.

However, evaluating all possible matrices is impossible even for d = 2 unless N is small

which is of no interest to the sparse FFT algorithm. The proposed Algorithm 3.1 on

page 58 reduces this complexity for any dimensionality d to a linear search algorithm

of O(N) by only evaluating the matrices that are likely to yield a good performance.

This massive reduction in complexity allows for a much more sensible subset of possible

permutation matrices which yield good performance as will be shown later. It also

makes the problem tractable for higher dimensions due to being independent of d.

3.3 Odd Determinant Algorithm

In this Section a novel algorithm is introduced that ensures that the determinant

of a square matrix is odd. This constraint is to be fulfilled in order for the permutation

generated by the matrix to be invertible. Normally a matrix is invertible if the deter-

minant is nonzero. However, the permutation applies a modulo N operation to the

indices due to the implicitly cyclic DFT. This results in a system of linear congruences

which are invertible if the determinant is relatively prime to N [Apo13]. Due to the

further constraint of N being a power of two, the constraint is for the determinant to

be odd. The algorithm works with any square matrix M ∈ Nd×d. The approach is

to flip bits of as few of the matrix entries as possible thus changing some entries from

even to odd and vice versa.

61

procedure EnsureOddDeterminant(M)
Assert M ∈ Nd×d

if |M | is odd then
return M

end if
if d = 1 then

return M+ 1
end if
Let m and N be the expansion such that:
|M | = ∑d

i=1 (−1)i+1m1,iN 1,i

To = ∑d
i=1[m1,iN 1,i is odd] � To: Terms odd

if To ≥ 2 then
Find the i for which m1,i is odd
return M with the entry m1,i ← m1,i − 1

end if
Find i for which |N 1,i| is odd
if i was found then

return M with the entry m1,i ← m1,i + 1
end if
if There is no i for which m1,i is odd then

Set m1,1 ← m1,1 + 1
end if
Find i for which m1,i is odd
Update N 1,i ← EnsureOddDeterminant(N 1,i)
return EnsureOddDeterminant(M)

end procedure

Algorithm 3.2: Recursive algorithm to turn an integer matrix with even determinant
into a similar matrix with odd determinant. Note that the notation
[P] is the Iversion bracket which is 1 if P is true and 0 otherwise.
Note that the algorithm potentially recurses on a matrix of the same
input size but guarantees termination after only one more call due
to the conditions preceding the recursion. The algorithm works by
flipping bits carefully such that the Laplace expansion of the deter-
minant has an odd number of odd terms.

62

The basis for the algorithm approach is the Laplace expansion of the determinant

calculation of a matrix:

|M | =
d∑

i=1
(−1)i+jmi,jN i,j

where mi,j are the matrix entries and N i,j are the minors of M obtained by generating

a matrix of the elements of M omitting the entries of the row i and column j. Thus

effectively crossing-out the entries of the ith row and jth column. Note that the size

of the minor N is d − 1 × d − 1. This technique is also sometimes referred to as the

expansion by minors.

The other obvious observation is that only an odd number of odd terms yield

an odd number. The algorithm is most easily understood with recursion which reduces

the problem size in each iteration by one and ends in the trivial case of a 1×1 matrix

which is just an integer. Such a matrix can be made odd by subtracting or adding one

in case the number is even.

To describe the algorithm we further introduce the Iversion bracket which is a

more general version of the well known indicator function and defined as:

[P] =

⎧⎪⎪⎨⎪⎪⎩
1 if P is true

0 otherwise

A full pseudo code description of the algorithm is given in Algorithm 3.2 on

page 62 .

A detailed description of the algorithm is given walking through the algorithm

from the top to the bottom: First, the algorithm handles two trivial cases which stop

the recursion:

1. The determinant of the input is odd

2. The input size is a single number (d = 1)

63

The second case can be solved by adding one to the input number which makes

the number odd. The algorithm then proceeds with inspecting the input’s Laplace ex-

pansion as introduced earlier. Subsequently, the number of odd terms in the expansion

are counted. Note that, at that stage of the algorithm the number of odd terms are

even or else the determinant would have been odd. If the number of odd terms is two

or more, the solution is easy: Make one of the terms even and the overall determinant

will become odd. Note, however, that the minor matrices of the terms are not disjoint

and have common elements. Thus, flipping one of the elements of the minor matrices

can result in a change in multiple terms. This in turn means that a flip in the matrices

could result in the determinant staying even. For this reason, the factor m1,i of the

expansion is used to make the overall term odd. It is know –due to the term being odd–

that the factor m1,i must be odd as well. This stage solves the problem and terminates

the recursive algorithm.

The next stage is to handle the case if the number of odd terms is zero. This

means that the determinant can be made odd by making one single term odd. Overall,

it is desirable to change change the least amount of matrix entries which implies that

the focus is on changing the factors m1,i as opposed to the minor matrices which could

require multiple changes for it be become odd. Thus, the algorithm analyses each

term of the expansion and tries to find a term with a minor matrix which has an

odd determinant. If this is successful, the factor m1,i is made odd as well. Again,

this terminates the algorithm since this will make one term odd and thus the overall

determinant odd.

At this stage, there is no minor matrix with odd determinant, which implies

that recursion on one minor matrix is necessary. The first step however, is to ensure

that at least one factor m1,j exists which is odd. If this fails, then the first factor m1,1

of the matrix is set to become odd. The next step is to find an odd factor m1,j and

its accompanying minor matrix N 1,j. It is known that the minor matrix N 1,j has an

even determinant. Thus, the algorithm calls itself recursively which ensures that minor

matrix has an odd determinant. Note that the problem size is now reduced by one

64

since the minor matrix has size d − 1 × d − 1.

The final line of the algorithm requires some attention: As noted earlier, chang-

ing a minor matrix’s entries affects the other d − 2 minor matrices’ entries. This, in

turn, can lead to other terms of the expansion become odd. For instance, if there

were no terms which were odd and one minor matrix is modified then this modification

could yield two 2 odd terms. Thus effectively negating what was desired: An overall

odd determinant. Interestingly, the case of two or more odd terms was already covered

earlier in the algorithm. This means that this case can be “fixed” by simply calling the

algorithm recursively. Note that, the recursive call is not being done with a reduced

input size but with the same d × d input matrix size. It first seems that this could

potentially result in an infinite loop. However, the recursive call will never call itself

recursively and is thus safe to do. This observation also proves the termination of the

algorithm since the other recursion reduces the problem size each time.

Note that, there is a slightly more complex version of this algorithm possible.

The proposed algorithm only does one Laplace expansion along the first row of the

input matrix. A more sophisticated algorithm could potentially reduce the number of

bit flips even more by considering other expansion along the rows and columns. This,

however, does increase the complexity of the algorithm and was not considered for the

use-case of our main algorithm: The sparse FFT.

3.3.1 Error and Complexity Analysis

In this Section the runtime complexity of Algorithm 3.2 as well as the error

introduced by the bit flipping is analyzed. The worst case runtime of the proposed

algorithm is O(d!). This is due to the complexity of the Laplace expansion which also

has a complexity of O(d!). In the worst case the algorithm recurses on one smaller

minor matrices and expands each. Note, however, that for the use case of generating

permutation matrices this seemingly high complexity is not an issue. For instance for a

3-dimensional sparse FFT the input matrix is only 3×3 and in fact considered constant

for the algorithmic complexity of the sparse FFT algorithm.

65

Since the algorithm changes the entries of the input matrix it is of interest how

much the output of the algorithm differs from the input. The absolute maximum error

is bound by one:

||Min − Mout||∞ = 1

This is due to the careful choice of adding one to the even entries and subtract-

ing one from the odd entries which effectively can be implemented as a bit flipping

operation. This means, that even if the recursive algorithm changes entries multiple

times the error is guaranteed to be at most one.

3.3.2 Examples

In this Section some examples input and output of the proposed algorithm are

given.

EnsureOddDeterminant

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
62 50 97

41 87 18

10 53 39

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎣
62 51 97

40 87 18

10 53 38

⎤⎥⎥⎥⎥⎥⎦
EnsureOddDeterminant

⎛⎜⎝
⎡⎢⎣33 35

43 44

⎤⎥⎦
⎞⎟⎠ =

⎡⎢⎣32 35

43 45

⎤⎥⎦

EnsureOddDeterminant

⎛⎜⎝
⎡⎢⎣33 25

67 19

⎤⎥⎦
⎞⎟⎠ =

⎡⎢⎣32 25

67 19

⎤⎥⎦
Note how the algorithm successfully only flips one element in the last case. A

more naive algorithm would potentially have flipped more elements to achieve an odd

determinant.

66

Table 3.1: Overview of the most recent existing sparse FFT algorithms.

Algorithm Complexity Robust Permutation

sFFT 2.0 (Non-Iterative) O(log N
√

Nk log N) Yes Yes
sFFT 3.0 (Exact k Sparse) k log N No Yes
sFFT 4.0 (General k Sparse) k log N log(N/k) Yes Yes
Prony Based [HKPV13] O(k5/3 log2 N) Yes Yes

3.4 Sparse FFT Algorithm

In this Section the core ideas of the one dimensional sparse FFT algorithm as

introduced by [HIKP12a] in 2012 are described. A more in depth explanation of all

steps is described in Section 3.5. Specifically, the proposed algorithm is based on what

is often referred to as the exact k-sparse algorithm also called sFFT-3.0. However, the

proposed changes to the algorithm are not specific to this version and are also applicable

to the general k-sparse algorithm which is also sometimes referred to as sFFT-4.0. An

overview of a few selected sparse FFT algorithms is presented in Table 3.1.

Firstly, the notation is introduced. Note however that the notation will partly

be re-used for the multidimensional version of the algorithm in Section 3.5.

Given a signal x of length N its discrete Fourier transform is denoted as x̂.

A signal is considered to be k-sparse if there are only k non-zero components in x̂.

Furthermore ω = e−2πı/N is defined as the Nth root of unity. The set {0, . . . , N − 1}
is defined as [N] and further [N] × [N] as [N]2. The number of bins that are used to

hash the Fourier coefficients is denoted by B.

The following paragraph describes the main ideas of one iteration of the sFFT-

3.0 algorithm. The key idea of the sFFT algorithm is to hash the k coefficients into few

buckets in sub-linear time. This is achieved by using a carefully designed filter that is

concentrated in time as well as in the frequency domain. Due to the sparsity of the

signal and the careful selection of the number of bins, each bin is likely to only contain

one coefficient after being hashed. After the coefficients of each bin are obtained the

67

actual positions in the frequency domain are recovered by locating and estimating.

The algorithm does this hashing twice and “encodes” the frequency of the coefficient

into the phase difference between the two hashed coefficients. This technique achieves

the locating part of the algorithm by decoding the phase and obtaining the frequency.

Before the coefficients are hashed into buckets, the procedure (HashToBins) permutes

the signal x in the time domain by applying the permutation operator Pσ,a,b which is

defined as

(Pσ,a,bx)i = xσ(i−a)ω
σbi, (3.12)

where the parameter b is uniformly random between 1 and N , σ is uniformly random

odd between 1 and N , and a is 0 for the first hashing operation (HashToBins) and 1

for the second call to HashToBins. The constraining to odd values for σ is necessary

in order for the permutation to be invertible.

With the use of some basic properties of the Fourier transform the following can

be proved (page 5 of [HIKP12a]):

P̂σ,a,bxσ(i−b) = x̂iω
aσi. (3.13)

Later a multidimensional version of this equation is derived. Informally, this equation

states the following: A permutation, defined by equidistant sub-sampling in the time

domain in addition to applying a linear phase, results in a (different) permutation in

the frequency domain with a (different) linear phase. By carefully choosing the param-

eters of (3.13) it is possible to design the permutation such that the phase difference

between the two hashed coefficients is linear in frequency. This property is then used to

recover the coefficient exactly by using the quotient of two measurements with different

parameter a.

A high level overview of the functions that divide the key steps of the sFFT-3.0

algorithm are the following [HIKP12a]:

• HashToBins permutes the spectrum of x̂ − z, then hashes to B bins. Where z
is the already recovered signal which is initially all zero.

68

• NoiselessSparseFFTInner runs HashToBins twice and estimates and lo-
cates “most” of x̂ − z’s coefficients.

• NoiselessSparseFFT runs NoiselessSparseFFTInner multiple times until
it finds x̂ exactly.

The function NoiselessSparseFFTInner generates the random parameters

for the permutation (among others) and passes it to HashToBins. The permutations

are Pσ,0,b for the first call of HashToBins and Pσ,1,b for the second call respectively.

The number of bins is denoted by B and gradually reduced with each call of Noise-

lessSparseFFTInner. HashToBins performs the low pass filtering on the signal

which has a complexity of O(B log N). By carefully reducing B per iteration the 1D

sFFT algorithm runs in time O(k log N). The reader is advised to see [HIKP12a] for

a more in depth description and proves of the 1D sFFT algorithm.

3.5 Multidimensional sparse FFT Algorithm

In this Section it is described how to extend the one dimensional sparse FFT

from Section 3.4 to multiple dimensions. A comprehensive pseudo code description of

the d-dimensional algorithm is given in Algorithm 3.3 on page 70. First it is described

what extensions to the concepts are necessary. Consecutively the algorithm is described

in more detail.

As stated earlier, for simplicity the symbols are reused and the notation is

redefined for the d-dimensional case. Let x be an [N]d-dimensional signal with sparsity

k. It is assumed that each Fourier coefficient x̂i ∈ −L, . . . , L where L ≤ N c for some

constant c > 0. Let the number of bins that are used to hash the coefficients be [B]d.

The low pass filter –which has a general form approximating a rectangular in

one dimension– needs to be extended to multiple dimensions. There are two popular

and straightforward options:

1. hypersphere

2. hypercube

69

procedure HashToBins(x, ẑ, PM,a,b, B, δ, α)
Compute ŷjN/B for j ∈ [B]d, where y = GB,α,δ · (PM,a,bx)
ŷ′

jN/B = ŷjN/B − (Ĝ′
B,α,δ ∗ P̂M,a,bz)

jN/B
, j ∈ [B]d

return û given by ûj = ŷ′
jN/B

end procedure
procedure NoiselessSparseFFTInner(x, k′, ẑ, α)

Let B = k′/β, for sufficiently small constant β.
Let δ = 1/(4N2L)
Choose M by Algorithm 3.1 � precomputed
Choose b uniformly at random from [N]d.
for i ← 0, 1, . . . , d do

a ← according to (3.17)
ûi ← HashToBins(x, ẑ, PM,a,b, B, δ, α)

end for
Compute J = {j : |û0,j| > 1/2}
for j ∈ J do

for p ← 1, 2, . . . , d do
ap−1 ← φ(û0,j/ûp,j) � φ(·) denotes the phase

end for
ν ← round(aM−1 n

2π
) � round(·) applied to each element

Find v in MT (v − b) mod N = ν � See (3.18)
ŵv ← round(ûo)

end for
return ŵ

end procedure
procedure NoiselessSparseFFT(x, k)

ẑ ← 0
for t ∈ 0, 1, . . . , log k do

kt ← k/2t

αt ← Θ(2−t)
ẑ ← ẑ + NoiselessSparseFFTInner(x, kt, ẑ, αt)

end for
return ẑ

end procedure

Algorithm 3.3: Exact k-sparse d-dimensional algorithm.

70

The extension to multiple dimensions need to be performed very carefully due to

the constraints of the filter. It is crucial that the filter has limited support in both, time

domain as well as Fourier domain. It turns out that this poses a significant problem

when defining the multi-dimensional filter which transition from one to zero not along a

principal axis. For instance, a circular shaped low pass filter contains transitions along

each direction (0◦ to 180◦) whereas the rectangular filter only contains transitions along

0◦ and 90◦.

Due to this unique limitation the low pass filter is defined as the dyadic product

of the one dimensional low pass filter:

GB,α,δ =
d⊗

i=1
g′

B,α,δ (3.14)

where g′
B,α,δ denotes the same filter vector as described in Section 7 of [HIKP12a].

Thus approximating a hypercube.

For two dimensions this is defined as:

GB,α,δ =

⎡⎢⎢⎢⎢⎢⎣g′
B,α,δ · · · g′

B,α,δ

⎤⎥⎥⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎢⎣
g′T

B,α,δ

...

g′T
B,α,δ

⎤⎥⎥⎥⎥⎥⎦ (3.15)

where � denotes the element wise matrix multiplication. Note that the actual com-

plexity of this is much less than the seemingly O(Nd) due to the limited support of

the vector g′ which is O(B log N) in the one dimensional case. In d dimensions the

support of GB,α,δ is thus O(Bd logd N)

The fact that the phase difference between the two hashes is always a one

dimensional entity even in a d-dimensional sample poses a problem. To be able to

recover the frequencies in d-dimensions it is necessary to hash a total of d + 1 times

and encode each dimension in the calls 1, 2, . . . , d to HashToBins. This allows to

locate the coefficient in d-dimensions by decoding each frequency component along

each dimension separately.

71

The most interesting part of the algorithm and the focus of this dissertation

is the very first part of each outer iteration: The permutation. It is necessary to

extend the permutation (3.13) to multiple dimensions which is done with the following

definition of the permutation operator PM ,a,b:

(PM ,a,bx)v = xM(v−a)ω
vT MT b (3.16)

where M is a matrix of size d×d that stretches the input signal x. And a and b are the

d-dimensional vectors counterparts of the one dimensional definition in (3.13). Note

also that all of the vectors and matrices in (3.16) only contain integers. The definition

works for arbitrary dimensions. In order to recover the original Fourier coefficients, i.e.

perform a reversible permutation the determinant of the matrix M needs be odd. For

two dimensions, the matrix M can be interpreted as applying a shear and scale to the

multidimensional input signal. This interpretation allows for some intuition regarding

the optimal parameter: If the parameters are chosen randomly, and the shear along one

dimension happens to dominate the transformation, what happens to an isotropic input

spectrum? The answer is that in such an unfortunate case the permuted spectrum

would results in a “banding” like accumulation of Fourier coefficients. This can be

fatal for the performance of the algorithm since such bands of accumulated coefficients

results in many collisions. The answer in choosing the optimal matrix M lies in the

proposed Algorithm 3.1.

Furthermore, the parameter a is the only parameter that differs among each

call to HashToBins. For a given iteration i and vector index q:

ai,q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 0

0 if i �= 0 and q �= i

1 if i �= 0 and q = i

(3.17)

where the iteration index i ranges from 0 to d.

72

Another part of the multi-dimensional algorithm requiring special attention is

one step within NoiselessSparseFFTInner where the inverse to above permutation

is needed. Again, the extension to multiple dimensions is not straightforward. Firstly,

note that in the one dimensional sparse FFT algorithm the inverse is found with the

extended Euclidean algorithm with the constraint of σ being odd which is the coun-

terpart of the constraint that the determinant of the permutation matrix is odd. In

order to simplify this Section the focus is only on the expression Mv. The result is

straightforward to extend to the form of (3.16). Remember that all elements in M are

integers and further det M must be odd for the expression to be a bijection. We are

interested in finding v for

Mv mod N = y

Where the modulo appears due to the simple fact that the DFT of a signal is implicitly

periodic with the signal length N .

This problem turns out to be a congruence equation which can be solved by

reducing this problem to a linear Diophantine equation [Mor69]. First, a trick is used

to get rid of the modulo operation:

⎡⎢⎢⎢⎢⎢⎣
m1,1 · · · m1,d

...

md,1 · · · md,d

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1
...

xd

⎤⎥⎥⎥⎥⎥⎦ mod N =

⎡⎢⎢⎢⎢⎢⎣
y1
...

yd

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

m1,1 · · · m1,d μ1
...

md,1 · · · md,d μd

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
...

xd

N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
y1
...

yd

⎤⎥⎥⎥⎥⎥⎦

M ′v′ = y

(3.18)

where μ is a vector of arbitrary integers. In this simple form the solution to the linear

Diophantine equation can be found by computing the Hermite normal form of the

matrix M ′ [Mar99]. Note that the complexity of computing the Hermite normal form is

73

quite high with O(d6). However, the dimensionality is usually quite low and considered

constant for the complexity of the sparse FFT algorithm. Thus, it does not increase

the complexity of the overall sparse FFT algorithm. In fact, the permutation matrices

as well as its inverse permutation obtained with the HNF form can be precomputed

by an application.

Next the relationship between the original signal x and the effect of the permu-

tation (3.16) to the spectrum is derived:

(P̂M,a,bx)MT (v−b) =
∑

u∈[N]d
ωuT MT (v−b)(PM,a,bx)u

=
∑

u∈[N]d
ωuT MT (v−b)xM(u−a)ω

uT MT b

= ωvT Ma
∑

u∈[N]d
ωvT M(u−a)xM(u−a)

= x̂vωvT Ma

(3.19)

Again, this states that the applied permutation (3.16) in the time domain results in a

permutation in the Fourier domain. Both, the frequency as well as the time domain,

also apply a (different) phase, which is exactly what is needed for the algorithm to

function by encoding the frequency in the phase component.

To conclude this Section, a high level overview of the key steps of the 2D sparse

FFT algorithm is depicted in Figure 3.5.

3.5.1 Complexity Analysis

In this Section the time complexity of the d-dimensional sparse FFT is analyzed.

The time complexity of the d-dimensional sparse FFT algorithm is similar to the one

dimensional algorithm. Besides the straightforward extensions of the various parame-

ters and entities of the one dimensional sparse FFT to multiple dimensions, there are

a few steps that require more careful attention.

First, the d + 1 calls to HashToBins which encode the d dimensions of each

coefficient need to be taken into account. Secondly, the d-dimensional FFT within

74

HashToBins results in a complexity of O(Bd log B). Taking into account that B is

chosen as O(k1/d) the result is a complexity of O(k log k1/d) for the FFT calculation

within HashToBins.

The main cost of the algorithm is the first iteration. Within this first iteration

the application of the time domain filter is the dominating cost with O(Bd logd N).

Again, taking into account that B is chosen as O(k1/d) the result is a complexity of

O(k logd N)

Thus, given that d + 1 iterations of HashToBins is necessary for one iteration

and the fact that the complexity is dominated by the first iteration of Noiseless-

SparseFFTInner, the algorithm has an overall time complexity of O(k logd N).

3.6 Results

The proposed algorithms are validated by simulating the sparse FFT algorithm

in two dimensions. To this end the 2D sFFT algorithm was implemented in MATLAB.

The simulation setup was as follows: Input spectra were generated with a given spar-

sity k. Each spectrum had an isotropic shape which is the most common shape among

real world signals and should be assumed if no a-priori knowledge of the input signal is

given. One iteration of the overall algorithm is run, i.e. one call to NoiselessSparse-

FFTInner. This allows one to compare the performance of the permutation. As an

error measure the PSNR of the recovered signal after one iteration is calculated. A

good permutation will reduce the number of collisions and result in a higher PSNR.

Also note that the algorithm runtime is dominated by the first iteration.

Algorithm 3.1 is used to generated candidates for the permutation matrix of

Algorithm 3.3. Each candidate is evaluated with 40 generated input spectra. An

example of the evaluation of 50 candidates is depicted in Figure 3.6. As a comparison

60 random candidates where evaluated and are depicted on the top image of Figure 3.6.

It can be seen that our proposed algorithm performs better finding a better maximum

PSNR.

75

Figure 3.7 shows the improvements for the proposed algorithm for different input

sizes N . Again, the PSNR is compared to choosing random permutation matrices. It

can be seen that the proposed algorithm finds permutation matrices that improve the

PSNR of the sparse FFT algorithm by roughly 2dB across the shown input sizes.

Similarly, Figure 3.8 depicts the PSNR improvement over different sparsity k for

and input spectrum of size N × N = 8192 × 8192. Again, the improvement is around

2dB compared to a random permutation strategy.

Figure 3.9 depicts the histogram of PSNR values over 2000 simulations. The top

histogram shows the distribution of the PSNR with the permutation obtained from the

proposed algorithm whereas the bottom shows the optimal permutation obtained from

randomly selected permutations. Again, 40 iterations where employed. This shows

that the PSNR values follow a Gaussian like distribution which is desirable for real

world applications that require predictable performance.

Next, a different approach is investigated. Instead of iterating over the sequence

generated by Algorithm 3.1 and finding the optimal permutation the strategy of using

a random sample of the sequence is used and is compared to taking a completely

random permutation matrix. This turns out to be a better strategy since it avoids

very poor permutations which in turn result in very poor PSNR. The result is depicted

in Figure 3.10. The histogram shows the PSNR of 600 simulations of an input spectrum

of 8192 × 8192 and a sparsity of k = 400. This histogram shows that the very poor

PSNR values are avoided. Note that this does not increase the runtime since picking

a random element of the sequence of Algorithm 3.1 does not require generating the

entire sequence and is thus a very cheap (constant time) operation. Thus, this strategy

could be employed by libraries which have no prior knowledge of the input data.

Furthermore, a comparison of the minimum PSNR is shown in Table 3.2 on

page 77. This table shows that a randomly chosen permutation can result in extremely

poor performance. The proposed method mitigates these poor permutations success-

fully which is crucial for real world applications of the sparse FFT.

Concluding, an example of applying the two dimensional sparse FFT to an

76

Table 3.2: This table show the improvement of the proposed algorithm by avoiding
collision generating parameters which can result in a very poor PSNR. 600
input spectra were generated and one iteration of the algorithm was run.
The table show the minimum PSNR across all 600 simulations. σp and σr

show the corresponding standard deviations of the proposed method and
the random method respectively.

Sparsity k Min. PSNR proposed Min. PSNR random

200 22.93 8.35
300 24.49 13.47
400 23.50 10.05
600 22.52 9.85

image is shown. Figure 3.11 on page 85. shows a crop of 1000×1000 pixels of an image

of 32768×32768. Note that the sparse FFT was independently applied to each RGB

channel.

3.7 Conclusion

In this chapter the one dimensional exact sparse FFT introduced in [HIKP12a]

is extended to multiple dimensions. Further the focus is on the permutation part of

the algorithm which is the main subtlety and crucial to achieve good performance.

This is well known in the Computer Science community where good performance for

many algorithms are obtained by minimizing the collision rate of the hashing func-

tions [CLR+01]. The focus is on the shape of the spectra of real world signals and

it is shown that the performance can be optimized by carefully choosing the permu-

tation parameters as opposed to the widely spread notion of randomly choosing the

parameters.

The permutation operation is interpreted as generating a lattice which helps to

argue the optimal parameters for the shape of many real world signal spectra. The

results showed successfully that the proposed method avoids poor hashing permutation

which can result in many collision. This is crucial in real world applications which often

require a reliable performing algorithm.

77

Furthermore, the novel connection of lattice theory to the permutation step

of the algorithm could lead to more research in this area. A clear understanding of

the permutation and its inverse for the general d-dimensional case was established by

solving a system of linear congruence equations.

Further, an algorithm was proposed which modifies a matrix to ensure that the

determinant is odd. This novel algorithm was necessary in order for the congruence

equations to be invertible.

Practical guidelines were established for the permutation parameters in our

proposed algorithm which are optimized for real world signals. The proposed method

successfully avoids “bad” hashing permutation parameters which results in a more

robust and consistent performing algorithm.

78

28

30

32

34

36

P
S
N
R

Proposed

Random

211 212 213 214

Input size N ×N

Average PSNR improvement for k = 800

Figure 3.7: 40 iterations of the proposed algorithm are used and compared it with
a random strategy. The PSNR was calculated as the average over 40
generated input spectra. For the each iteration the average PSNR was
calculated and the best performing permutation matrix chosen. For the
shown graph the sparsity k was kept constant at 800. The graph shows
that the proposed method improves the PSNR by roughly 2dB.

28

30

32

34

36

P
S
N
R

Proposed

Random

400 800 1600 2500 5000 10000
Sparsity k

Average PSNR improvement for N ×N = 8192× 8192

Figure 3.8: This graph shows the improvement in PSNR for an input spectrum of
N × N = 8192 × 8192 with different signal sparsity k ranging from 400
to 10000. The test setup is the same as the one of Figure 3.7.

82

Figure 3.11: Top: A 1000×1000 pixel crop of a 32768×32768 image with a sparsity
of 1%. Bottom: The image after running the proposed sFFT algorithm.
The PSNR is 27.81dB when compared to the original image.

85

Chapter 4

DICUSSION AND CONCLUDING REMARKS

The main contributions of this dissertation are as follows:

• Introduce four novel algorithms.

• Develop a theoretical understanding of the inner parts of two exiting algorithms
(weighted median, sparse FFT).

• Develop theoretical models.

• Optimize these models in order to optimize these algorithms.

The essence of the presented work was to optimize existing algorithm through

the development of theoretical models. To this end, novel algorithms were introduced

in order to achieve this optimization of the existing algorithms.

In particular, in the first part of this dissertation a new algorithm has been pro-

posed to solve the weighted median problem. The weighted median is an increasingly

used tool to solve signal processing problems containing impulsive noise. This fact

motivated the development of an algorithm which is asymptotically optimal and is the

fastest known algorithm to this date, beating an algorithm that has been the fastest for

over four decades. A theoretical framework was developed which was based on random

variables and a cost function. The idea of optimizing a cost function is an old one and

has been suggested many times in the past decades. However, a closed form solution

for the optimal parameters has never been discovered due to the complexity of the

cost functions. This dissertation achieved the feat of finding a closed form solution by

approximating the cost function. Careful approximation lead to a very accurate closed

86

form solution which was verified by investigating the error of the approximations. Fur-

ther, the model turned out to be viable for finding the optimal order statistic of a

subset to be used as the second pivot of the weighted median finding algorithm. The

result was a novel algorithm which is based on the well known Quickselect algorithm

having closed form solutions for the optimal parameters. Simulations for the error and

the runtime showed the effectiveness of the proposed algorithm. The algorithm is not

limited to weighted median but can also be used to calculate the order statistics of a

given input set. This is due to the simple fact that the weighted median algorithm is

a more general version of the Quickselect algorithm. Thus by assuming all weights as

equal one can implement a specific version of the proposed algorithm to find the kth

smallest value of a set.

The sparse FFT algorithm performs the well known DFT algorithm on sparse

signals. This problem is motivated by the fact that most natural signals are sparse

in the frequency domain. In addition, the Fourier coefficients of such natural signals

often inhibit a structure and are not randomly distributed. This fact motivated a key

observation: Given a non-random distribution of the Fourier coefficients, what are the

best parameters for the sparse FFT? The main focus was thus shifted on the permu-

tation step of the sparse FFT algorithm. In general, for hashing type algorithms, the

main performance measure for the “goodness” of a hashing operation is the number of

collisions. In order to minimize the collisions the distribution of the Fourier coefficients

after the hashing operation is desired to be as uniform as possible. The permutation

step was thus identified to be the main step of the algorithm to focus on. Similar to

the weighted median algorithm, a theoretical model was developed in order to optimize

the permutation step. To this end, lattice theory was connected to the permutation

step and a novel iterative algorithm was developed which reduces the search space for

possible permutation matrices from exponential to linear.

In order to evaluate the new findings, the existing one dimensional sparse FFT

was extended to multiple dimensions. To this end, each step of the sparse FFT was

87

investigated and generalizations developed for solving the multidimensional sparse FFT

problem. For instance, the Hermite normal form is now used to invert the permutation.

Another novel algorithm was proposed to turn an integer matrix with even determinant

into a similar integer matrix with odd determinant. This algorithm was proposed due

to the need for the determinant to be odd for the permutation matrix. To this end the

algorithm flips as few entries’ bits of the matrix to achieve an odd determinant.

Concluding, the proposed findings and algorithms allowed for a novel multidi-

mensional sparse FFT algorithm which performs significantly better than with using

random permutations. This was shown by combining and simulating the proposed

algorithms. For each algorithm the complexity and error was analyzed.

4.1 Recommendations for Future Work

This dissertation has proposed multiple new algorithms as well as presented

multiple new findings and theoretical models. In this section, we discuss possible

future direction that could be of interest for future research.

As it was noted in the dissertation, finding the (weighted) median of a set is at

least a linear algorithm even in the best case. This can become prohibitive with even

larger data sets. It is thus of interest to develop an algorithm to find an approximate

solution to the (weighted) median problem. This is quite similar to the sparse FFT

which does exactly that: Solving the problem by working with only a subset of the

input data. I believe there is merit in finding good guarantees for an approximate

algorithm.

Another interesting topic that is becoming increasingly important with nowa-

days’ big-data movement is distributed computing. For a distributed algorithm the

permutation step happens in parallel and communication should be kept to a minimum

to minimize the delay. The pivot question then becomes more interesting: Should the

pivots be chosen as close as possible to the sought element? Should the pivots try to

contain (i.e. achieve a bounded problem) the sought elements?

88

For the sparse FFT the introduced connection to lattice theory for the optimal

permutation may allow other researchers to further combine these ideas to other algo-

rithms. In particular, a closed form solution –similar to the one I give for the weighted

median problem– is desirable. Given an optimal permutation which minimizes the

number of collisions, what other trade offs can we achieve? For instance, we can trade

the improved performance in PSNR with a reduction in the number of bins which in

turn reduce the runtime. How much faster can we thus solve the sparse FFT problem?

89

BIBLIOGRAPHY

[AB07] T. C. Aysal and K. E. Barner. Meridian filtering for robust signal process-
ing. IEEE Transactions on Signal Processing, 55(8):3949–3962, 2007.

[ABN08] Barry C. Arnold, N. Balakrishnan, and H. N. Nagaraja. A First Course in
Order Statistics (Classics in Applied Mathematics). SIAM, 2008.

[AF89] G. R. Arce and R. E. Foster. Detail-preserving ranked-order based filters
for image processing. IEEE Transactions on Acoustics, Speech and Signal
Processing, 37(1):83–98, jan 1989.

[AG82] G. R. Arce and N. C. Gallagher. State description for the root-signal
set of median filters. IEEE Transactions on Acoustics, Speech and Signal
Processing, 30(6):894–902, 1982.

[AG83] G. R. Arce and N. C. Gallagher. BTC image coding using median filter
roots. IEEE Transactions on Communications, 31(6):784–793, 1983.

[AGS03] Aadi Akavia, Shafi Goldwasser, and Shmuel Safra. Proving hard-core pred-
icates using list decoding. In Annual Symposium on Foundations of Com-
puter Science, volume 44, pages 146–159. IEEE COMPUTER SOCIETY
PRESS, 2003.

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized
reductions (extended abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 10–19, New
York, NY, USA, 1998. ACM.

[AK97] J. Astola and P. Kuosmanen. Fundamentals of nonlinear digital filtering.
CRC, 1997.

[AM87] G. R. Arce and M. P. McLoughlin. Theoretical analysis of the max/me-
dian filter. IEEE Transactions on Acoustics, Speech and Signal Processing,
35(1):60 – 69, January 1987.

[AP00] G. R. Arce and J. L. Paredes. Recursive weighted median filters admitting
negative weights and their optimization. IEEE Transactions on Signal
Processing, 48(3):768–779, 2000.

90

[Apo13] Tom M Apostol. Introduction to analytic number theory. Springer Science
& Business Media, 2013.

[Arc91] G. R. Arce. Multistage order statistic filters for image sequence processing.
IEEE Transactions on Signal Processing, 39(5):1146–1163, 1991.

[Arc02] G. R. Arce. A general weighted median filter structure admitting negative
weights. IEEE Transactions on Signal Processing, 46(12):3195–3205, 2002.

[Arc05] G. R. Arce. Nonlinear Signal Processing: A Statistical Approach. John
Wiley & Sons, Inc., New York, NY, USA, 2005.

[AS87] M. Ahmad and D. Sundararajan. A fast algorithm for two dimensional
median filtering. Circuits and Systems, IEEE Transactions on, 34(11):1364
– 1374, November 1987.

[AZJB06] WB Atwood, M Ziegler, RP Johnson, and BM Baughman. A time-
differencing technique for detecting radio-quiet gamma-ray pulsars. The
Astrophysical Journal Letters, 652(1):L49, 2006.

[BA94] K. E. Barner and G. R. Arce. Permutation filters: A class of nonlinear
filters based on set permutations. IEEE Transactions on Signal Processing,
42(4):782–798, 1994.

[BFP+73] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection*. Journal of Computer and System Sciences, 7(4):448–
461, 1973.

[BLA79] V. Barnett, T. Lewis, and F. Abeles. Outliers in statistical data. Physics
Today, 32:73, 1979.

[BS80] P. Bloomfield and W. Steiger. Least absolute deviations curve-fitting.
SIAM Journal on Scientific and Statistical Computing, 1(2):290–301, 1980.

[CLR+01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein,
et al. Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[CM73] J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geo-
physics, 38:826, 1973.

[CM13] Anirban Chatterjee and GK Mahanti. Combination of fast fourier
transform and self-adaptive differential evolution algorithm for synthe-
sis of phase-only reconfigurable rectangular array antenna. annals of
telecommunications-annales des télécommunications, pages 1–13, 2013.

[CP54] Herman Y Carr and Edward M Purcell. Effects of diffusion on free
precession in nuclear magnetic resonance experiments. Physical Review,
94(3):630, 1954.

91

[CRT06] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal
recovery from incomplete and inaccurate measurements. Communications
on pure and applied mathematics, 59(8):1207–1223, 2006.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[CW03] Scott A Crosby and Dan S Wallach. Denial of service via algorithmic
complexity attacks. In Usenix Security, volume 2, 2003.

[CWB08] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by
reweighted L1 minimization. Journal of Fourier Analysis and Applications,
14(5):877–905, 2008.

[Dam09] Sabrina Dammertz. Rank-1 Lattices in Computer Graphics. PhD thesis,
Ulm University, Germany, 2009.

[DDK09] Sabrina Dammertz, Holger Dammertz, and Alexander Keller. Efficient
search for two-dimensional rank-1 lattices with applications in graphics.
In Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 271–287.
Springer, 2009.

[DN03] H. A. David and H. N. Nagaraja. Order statistics. Wiley series in proba-
bility and mathematical statistics. John Wiley & Sons, Inc., 2003.

[DS89] D. L. Donoho and P. B. Stark. Uncertainty principles and signal recovery.
SIAM Journal on Applied Mathematics, 49(3):906–931, 1989.

[EDM09] Alireza Entezari, Ramsay Dyer, and Torsten Möller. From sphere packing
to the theory of optimal lattice sampling. In Mathematical Foundations
of Scientific Visualization, Computer Graphics, and Massive Data Explo-
ration, pages 227–255. Springer, 2009.

[EF13] Anders Elowsson and Anders Friberg. Modelling perception of speed in
music audio. Forthcoming for Proc. of SMC, 2013.

[FAB98] A. Flaig, G. R. Arce, and K. E. Barner. Affine order-statistic filters: Me-
dianization of linear FIR filters. IEEE Transactions on Signal Processing,
46(8):2101–2112, 1998.

[FPA02] M. Fischer, J. L. Paredes, and G. R. Arce. Weighted median image sharp-
eners for the World Wide Web. IEEE Transactions on Image Processing,
11(7):717–727, 2002.

[FR75] R. W. Floyd and R. L. Rivest. Expected time bounds for selection. Com-
mun. ACM, 18(3):165–172, 1975.

92

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to com-
pressive sensing. Springer, 2013.

[GA01] J. G. Gonzalez and G. R. Arce. Optimality of the myriad filter in practical
impulsive-noise environments. IEEE Transactions on Signal Processing,
49(2):438–441, 2001.

[Gau31] Carl Friedrich Gauß. Besprechung des buchs von la seeber: Intersuchungen
über die eigenschaften der positiven ternären quadratischen formen usw.
Göttingsche Gelehrte Anzeigen, 2:188–196, 1831.

[GGI+02] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, S. Muthukrishnan, and Mar-
tin Strauss. Near-optimal sparse fourier representations via sampling. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pages 152–161. ACM, 2002.

[GMS05] Anna C Gilbert, S Muthukrishnan, and Martin Strauss. Improved time
bounds for near-optimal sparse fourier representations. In Optics & Pho-
tonics 2005, pages 59141A–59141A. International Society for Optics and
Photonics, 2005.

[GST+08] Anna C Gilbert, Martin J Strauss, Joel Tropp, et al. A tutorial on fast
fourier sampling. Signal processing magazine, IEEE, 25(2):57–66, 2008.

[GW81] N. C. Gallagher and G. L. Wise. A theoretical analysis of the proper-
ties of median filters. IEEE Transactions on Acoustics, Speech and Signal
Processing, 29(6):1136 – 1141, December 1981.

[HAKI12] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. Faster
gps via the sparse fourier transform. In Proceedings of the 18th annual
international conference on Mobile computing and networking, pages 353–
364. ACM, 2012.

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly
optimal sparse fourier transform. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 563–578. ACM, 2012.

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple
and practical algorithm for sparse fourier transform. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
1183–1194. SIAM, 2012.

[HKPV13] Sabine Heider, Stefan Kunis, Daniel Potts, and Michael Veit. A sparse
prony fft. 2013.

[Hoa61] C. Hoare. Find (algorithm 65). Commun. ACM, pages 4:321–322, 1961.

93

[HSA+14] Haitham Hassanieh, Lixin Shi, Omid Abari, Ezzeldin Hamed, and Dina
Katabi. Ghz-wide sensing and decoding using the sparse fourier transform.
In INFOCOM, 2014 Proceedings IEEE, pages 2256–2264. IEEE, 2014.

[HYT79] T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering
algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing,
27(1):13 – 18, February 1979.

[Iwe10] Mark A Iwen. Combinatorial sublinear-time fourier algorithms. Founda-
tions of Computational Mathematics, 10(3):303–338, 2010.

[KA98] S. Kalluri and G. R. Arce. Adaptive weighted myriad filter algorithms for
robust signal processing in α-stable noise environments. IEEE Transactions
on Signal Processing, 46(2):322–334, 1998.

[KA99] S. Kalluri and G. R. Arce. A general class of nonlinear normalized adaptive
filtering algorithms. IEEE Transactions on Signal Processing, 47(8):2262–
2272, 1999.

[KA00] S. Kalluri and G. R. Arce. Fast algorithms for weighted myriad com-
putation by fixed-point search. IEEE Transactions on Signal Processing,
48(1):159–171, 2000.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In Proceedings of the Fifteenth Annual ACM Symposium
on Theory of Computing, STOC ’83, pages 193–206, New York, NY, USA,
1983. ACM.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the
fourier spectrum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KMM76] Charles Kittel, Paul McEuen, and Paul McEuen. Introduction to solid state
physics, volume 8. Wiley New York, 1976.

[Knu71] D. E. Knuth. Mathematical Analysis of Algorithms. Storming Media, 1971.

[LA04] Y. Li and G. R. Arce. A maximum likelihood approach to least abso-
lute deviation regression. EURASIP Journal on Applied Signal Processing,
2004:1762–1769, 2004.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534, 1982.

[MA87] M. P. McLoughlin and G. R. Arce. Deterministic properties of the recursive
separable median filter. IEEE Transactions on Acoustics, Speech and Signal
Processing, 35(1):98–106, 1987.

94

[Mal80] C. L. Mallows. Some theory of nonlinear smoothers. The Annals of statis-
tics, 8(4):695–715, 1980.

[Man92] Yishay Mansour. Randomized interpolation and approximation of sparse
polynomials. In Automata, languages, and programming: 19th interna-
tional colloquium, Wien, Austria, July 13-17, 1992: proceedings, volume
623, page 261. Springer, 1992.

[Mar99] Richard Kipp Martin. Large Scale Linear and Integer Optimization: A
Unified Approach: A Unified Approach. Springer Science & Business Media,
1999.

[Mor69] Louis Joel Mordell. Diophantine equations, volume 30. Academic Press,
1969.

[MPV04] C. Mart́ınez, D. Panario, and A. Viola. Adaptive sampling for quickselect.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 447–455. SIAM Philadelphia, PA, USA, 2004.

[MR02] C. Mart́ınez and S. Roura. Optimal sampling strategies in quicksort and
quickselect. SIAM Journal on Computing, 31(3):683–705, 2002.

[Nar09] P. M. Narendra. A separable median filter for image noise smoothing.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
3(1):20–29, 2009.

[NS01] Phong Q Nguyen and Jacques Stern. The two faces of lattices in cryptology.
In Cryptography and lattices, pages 146–180. Springer, 2001.

[OLBC10] F.W. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark. NIST handbook
of mathematical functions. Cambridge Univ. Press NY, 2010.

[PA99] J. L. Paredes and G. R. Arce. Stack filters, stack smoothers, and mir-
rored threshold decomposition. IEEE Transactions on Signal Processing,
47(10):2757–2767, 1999.

[PA11] J. L. Paredes and G. R. Arce. Compressive sensing signal reconstruction
by weighted median regression estimates. IEEE Transactions on Signal
Processing, 59(6), June 2011.

[PH07] S. Perreault and P. Hébert. Median filtering in constant time. IEEE Trans.
on Image Processing, 16(9):2389–2394, September 2007.

[RL87] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection.
John Wiley & Sons, Inc., Hoboken, NJ, USA, 1987.

95

[SAH+13] Lixin Shi, O Andronesi, Haitham Hassanieh, Badih Ghazi, Dina Katabi,
and Elfar Adalsteinsson. Mrs sparse-fft: Reducing acquisition time and
artifacts for in vivo 2d correlation spectroscopy. In ISMRM’13, Int. Society
for Magnetic Resonance in Medicine Annual Meeting and Exhibition, 2013.

[SB89] Josef Stoer and Roland Bulirsch. Numerische Mathematik, volume 8.
Springer, 1989.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical computer science, 53(2):201–224, 1987.

[SL09] M. Schmidt and H. Lipson. Distilling free-form natural laws from experi-
mental data. Science, 324(5923):81, 2009.

[Tim99] Samson J Timoner. Subpixel motion estimation from sequences of video
images. PhD thesis, Massachusetts Institute of Technology, 1999.

[TLP+13] Kok Kiong Tan, Wenyu Liang, Le Phuong Pham, Hsueh Yee Lim, and
Chee Wee Gan. Mechatronic design of an office-based ventilation tube
applicator for patients with otitis media with effusion. In Advanced Intel-
ligent Mechatronics (AIM), 2013 IEEE/ASME International Conference
on, pages 1448–1453. IEEE, 2013.

[YHAN91] O. Yli-Harja, J. Astola, and Y. Neuvo. Analysis of the properties of median
and weighted median filters using threshold logic and stack filter represen-
tation. IEEE Transactions on Signal Processing, 39(2):395–410, 1991.

[YMCX13] Suzhen Yuan, Xia Mao, Lijiang Chen, and Yuli Xue. Quantum digi-
tal image processing algorithms based on quantum measurement. Optik-
International Journal for Light and Electron Optics, 2013.

[YYGN96] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters:
a tutorial. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 43(3):157–192, 1996.

[ZF03] Barbara Zitova and Jan Flusser. Image registration methods: a survey.
Image and vision computing, 21(11):977–1000, 2003.

96

Appendix A

OPTIMALITY PROOF FOR MEDIAN SEARCH

This proofs that C(N0 → ∞) = 1.5N0 for k = (N0 + 1)/2 (median):

Proof 4 As N0 → ∞ then M0 → ∞ and hence p1 → MEDIAN(X). This removes

N0/2 elements with cost N0.

As M0 → ∞ then M1 → ∞. As p1 → MEDIAN(X) then either α → 0 or α → 1.

Hence either k∗ → 1 (since α → 0) or k∗ → M1 (since α → 1). Hence p2 →
MEDIAN(X). This removes N0/2 elements with cost N0/2.

Since the first and second pivot each removed N0/2 elements, the number of remaining

samples N2 → 0. Hence the total cost → 1.5N0. �

97

Appendix B

PROOF OF CONVEXITY FOR COST FUNCTION

In the following section the input source code is Mathematica 10.0 source code.

Mathematica is a well known Computer Algebra System which can aid in solving

symbolic equations.

First, the second derivative of the cost function (2.5) is computed:

In[1]:= D[m + n - n/4 Erfc[Sqrt[m]/(m + 2)], {m, 2}]

1
4

⎛⎜⎝−
2e

− m
(m+2)2

(
− 1

4m3/2(m+2) + 2
√

m
(m+2)3 − 1√

m(m+2)2

)
√

π

−
2e

− m
(m+2)2

(
2m

(m+2)3 − 1
(m+2)2

) (
1

2
√

m(m+2) −
√

m
(m+2)2

)
√

π

⎞⎟⎠ n

Next, we show that the second derivative is greater than zero. For this, it is

necessary to help Mathematica by providing it with constraints:

In[2]:= Assuming[n > 0,

Reduce[{$$Assumptions,

D[m + n - n/4 Erfc[Sqrt[m]/(m + 2)], {m, 2}] > 0}]]

Out[2]= m > Root[-16 - 72 #1 - 32 #1ˆ2 - 2 #1ˆ3 + 3 #1ˆ4 &, 2] && n > 0

This states that the value m needs to be larger than the 2nd root of the poly-

nomial −16 − 72x − 32x2 − 2x3 + 3x4.

The exact solution can be converted to a numerical value:

98

In[3]:= N[Root[-16 - 72 #1 - 32 #1ˆ2 - 2 #1ˆ3 + 3 #1ˆ4 &, 2], 20]

Out[3]= 4.3968437061310307376

Thus, the function is convex for all m ≥ 4.397. �

99

Appendix C

COPYRIGHT NOTICE

This appendix states the various copyright notices from the material in this

dissertation.

Most of Chapter 3 of this dissertation is submitted to IEEE Transactions on

Signal Processing which, when published will hold the Copyright c© 2015, IEEE.

Most of Chapter 2 was published in IEEE journal Transactions on Signal Pro-

cessing and is Copyright c© 2012, IEEE.

In both cases, I –André Rauh– am the senior author of the publications and

give full permission to reprint my work.

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of University of Delaware’s products or services.

Internal or personal use of this material is permitted. If interested in reprinting/repub-

lishing IEEE copyrighted material for advertising or promotional purposes or for cre-

ating new collective works for resale or redistribution, please go to http://www.ieee.

org/publications_standards/publications/rights/rights_link.html to learn how

to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives

of Canada may supply single copies of the dissertation.

100

