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4.4.2 Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.3 Stratonovich Integral . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.4 Strong Law of Large Numbers and Central Limit Theorem . . 59

4.4.4.1 Strong Law of Large Numbers . . . . . . . . . . . . . 59
4.4.4.2 Central Limit Theorem . . . . . . . . . . . . . . . . 60

4.5 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 First Hitting Time . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Wiener Process in Track Geometry Degradation . . . . . . . . . . . . 67
4.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



5 EXPLORATORY DATA ANALYSIS . . . . . . . . . . . . . . . . . . 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Data Set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Types of Data Set of EDA . . . . . . . . . . . . . . . . . . . . 77

5.3 Graphical Methods for EDA . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Histogram and Quantile-Quantile Plot . . . . . . . . . . . . . 78

5.3.1.1 Histograms and QQ Plots for Longitudinal Data . . 79
5.3.1.2 Histograms and QQ Plots for Cross-Sectional Data . 80

5.3.2 Box Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.2.1 Box Plot for Longitudinal Data . . . . . . . . . . . . 83
5.3.2.2 Box Plot for Cross-Sectional Data . . . . . . . . . . . 86

5.3.3 Correlation Plot . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 HYBRID MARKOV CHAIN MONTE CARLO AND WIENER
PROCESS IN RAILWAY TRACK GEOMETRY DEGRADATION
ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Metropolis-Hastings Algorithm Implementation and Output Analysis 94
6.4 Wiener Process Sample Paths . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



7 FIRST HITTING TIME IN RAILWAY TRACK GEOMETRY
DEGRADATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Estimation of the FHT for TQI . . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Confidence Limits for FHT . . . . . . . . . . . . . . . . . . . . 122

7.4 FHT for Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . 126

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Appendix

A EXPLORATORY DATA ANALYSIS PLOTS . . . . . . . . . . . . 130

A.1 Foot-By-Foot Measurements . . . . . . . . . . . . . . . . . . . . . . . 130
A.2 Box Plots for Longitudinal Data . . . . . . . . . . . . . . . . . . . . . 139

B MCMC OUTPUT PLOTS . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1 Output Plots for 500-foot sections . . . . . . . . . . . . . . . . . . . . 143

C PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

ix



LIST OF TABLES

2.1 Some track quality indices . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Selected references on track geometry degradation models . . . . . 24

3.1 Differences between Bayesian and frequentist approaches . . . . . . 32

3.2 Conjugate prior distributions (Attoh-Okine, 2017) . . . . . . . . . . 34

5.1 Sample of longitudinal data . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Sample of cross-sectional data . . . . . . . . . . . . . . . . . . . . . 78

6.1 Output summary for crosslevel track sections in the geocell zone . . 99

6.2 Output summary for surface left (124 ft) track sections in the geocell
zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Output summary for alignment left (124 ft) track sections in the
geocell zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Output summary for warp (62 ft) track sections in the geocell zone 108

6.5 Mean squared error for testing data set . . . . . . . . . . . . . . . . 115

7.1 Skewness and kurtosis for FHT . . . . . . . . . . . . . . . . . . . . 122

7.2 Illustration of the confidence intervals for the FHT for surface data 123

x



LIST OF FIGURES

1.1 Train accidents over ten years by major cause from FRA data . . . 2

1.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Typical track structure (Attoh-Okine, 2017) . . . . . . . . . . . . . 10

2.2 Track degradation models classification . . . . . . . . . . . . . . . . 11

2.3 Classification of rail track degradation based on structural and
geometrical components . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Some track geometry parameters . . . . . . . . . . . . . . . . . . . 14

2.5 Classification of track geometry degradation models . . . . . . . . . 17

2.6 Linear representation of track geometry degradation and restoration 18

2.7 Nonlinear representation of track geometry degradation and
restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Interpretation of confidence and credible intervals . . . . . . . . . . 32

3.2 Illustration of the Bayesian estimation process . . . . . . . . . . . . 33

3.3 Representation of accept-reject regions . . . . . . . . . . . . . . . . 39

3.4 Representation of mutation operator . . . . . . . . . . . . . . . . . 42

3.5 Representation of crossover operator . . . . . . . . . . . . . . . . . 43

3.6 Representation burn-in period . . . . . . . . . . . . . . . . . . . . . 44

3.7 Kernel plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Trace plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xi



3.9 Autocorrelation plot . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Representation of a degradation process with failure threshold . . . 51

4.2 Illustration of a random variable defined as a function in the sample
space S and takes values on R . . . . . . . . . . . . . . . . . . . . 53

4.3 Kernel density for surface right 62 ft . . . . . . . . . . . . . . . . . 54

4.4 Trajectory of a ODE initial condition x(0) . . . . . . . . . . . . . . 55

4.5 Schematic representation of a trajectory of a ODE and a SDE given
initial condition x(0) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Realization of the Brownian motion . . . . . . . . . . . . . . . . . . 62

4.7 Wiener process sample paths at different number of steps (N) . . . 64

4.8 Schematic representation of the threshold-regression model . . . . . 65

4.9 Representation of track geometry with shock events . . . . . . . . . 68

5.1 Illustration of foot-by-foot measurements for some track geometry
parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Illustration of surface right (62 ft) data . . . . . . . . . . . . . . . . 77

5.3 Illustration of histogram and QQ plot for crosslevel, surface right (62
ft), and alignment right (62 ft) at a specific track location . . . . . 79

5.4 Illustration of histogram and QQ plot for surface left (62 ft),
alignment left (62 ft), and warp (62 ft) at a specific track location . 80

5.5 Illustration of histogram and QQ plot for crosslevel, surface right (62
ft), and alignment right (62 ft) at a specific inspection date . . . . . 81

5.6 Illustration of histogram and qq plot for surface left (62 ft), alignment
left (62 ft), and warp (62 ft) at a specific inspection date . . . . . . 82

5.7 Illustration of box plot for crosslevel . . . . . . . . . . . . . . . . . 84

5.8 Illustration of box plot for surface right (62 ft) . . . . . . . . . . . 85

xii



5.9 Illustration of box plot for alignment right (62 ft) . . . . . . . . . . 86

5.10 Illustration of box plot for selected geometry parameters at a specific
inspection time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.11 Correlation matrix and scatter plots between selected track geometry
parameters at a specific inspection date . . . . . . . . . . . . . . . . 88

6.1 General overview for the implementation of the hybrid
Bayesian-Wiener process for a single track geometry parameter . . 91

6.2 Degradation plot for multiple track geometry parameters at a specific
150-foot track section . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Degradation plot for multiple track geometry parameters at a specific
500-foot track section . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Crosslevel: MCMC posterior plots for drift parameter . . . . . . . . 97

6.5 Crosslevel: MCMC posterior plots for diffusion parameter . . . . . 98

6.6 Surface left (124 ft): MCMC posterior plots for drift parameter . . 100

6.7 Surface left (124 ft): MCMC posterior plots for diffusion parameter 101

6.8 Alignment Left (124 ft): MCMC posterior plots for drift parameter 103

6.9 Alignment Left (124 ft): MCMC posterior plots for diffusion
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.10 Warp (62 ft): MCMC posterior plots for drift parameter . . . . . . 106

6.11 Warp (62 ft): MCMC posterior plots for diffusion parameter . . . . 107

6.12 Sample paths and observed data for selected track section for
crosslevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.13 Sample paths and observed data for selected track section for
standard deviation of surface left (124 ft) . . . . . . . . . . . . . . . 111

6.14 Sample paths and observed data for selected track section for
standard deviation of alignment left (124 ft) . . . . . . . . . . . . . 112

xiii



6.15 Sample paths and observed data for selected track section for
standard deviation of warp (62 ft) . . . . . . . . . . . . . . . . . . . 113

6.16 Illustration of training and testing data sets for a track section for
parameter surface left (124 ft) . . . . . . . . . . . . . . . . . . . . . 114

7.1 General overview for the estimation of the first hitting time for a
single track geometry parameter . . . . . . . . . . . . . . . . . . . . 118

7.2 Schematic representation of the threshold-regression model . . . . . 119

7.3 PDF and CDF of FHT for crosslevel . . . . . . . . . . . . . . . . . 120

7.4 PDF and CDF of FHT for surface left (124 ft) . . . . . . . . . . . . 120

7.5 PDF and CDF of FHT for alignment left (124 ft) . . . . . . . . . . 121

7.6 PDF and CDF of FHT for warp (62 ft) . . . . . . . . . . . . . . . . 121

7.7 Theoretical and simulated FHT at four adjacent locations for surface
left (62 ft) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.1 Illustration of crosslevel data at multiple inspection dates . . . . . . 130

A.2 Illustration of surface right (124 ft) data at multiple inspection dates 131

A.3 Illustration of surface left (124 ft) data at multiple inspection dates 132

A.4 Illustration of gage data at multiple inspection dates . . . . . . . . 133

A.5 Illustration of warp (62 ft) data at multiple inspection dates . . . . 134

A.6 Illustration of alignment left (62 ft) data at multiple inspection dates 135

A.7 Illustration of alignment right (62 ft) data at multiple inspection dates 136

A.8 Illustration of alignment right (124 ft) data at multiple inspection
dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.9 Illustration of alignment left (124 ft) data at multiple inspection dates 138

A.10 Illustration of box plot for gage . . . . . . . . . . . . . . . . . . . . 139

xiv



A.11 Illustration of box plot for surface left (124 ft) . . . . . . . . . . . . 140

A.12 Illustration of box plot for alignment right (124 ft) . . . . . . . . . 141

A.13 Illustration of box plot for alignment left (124 ft) . . . . . . . . . . 142

B.1 Alignment left (62 ft): MCMC posterior plots for drift parameter . 143

B.2 Alignment left (62 ft): MCMC posterior plots for diffusion parameter 144

B.3 Alignment left (124 ft): MCMC posterior plots for drift parameter . 145

B.4 Alignment left (124 ft): MCMC posterior plots for diffusion parameter 146

B.5 Alignment right (62 ft): MCMC posterior plots for drift parameter 147

B.6 Alignment right (62 ft): MCMC posterior plots for diffusion
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.7 Alignment right (124 ft): MCMC posterior plots for drift parameter 149

B.8 Alignment right (124 ft): MCMC posterior plots for diffusion
parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.9 Crosslevel: MCMC posterior plots for drift parameter . . . . . . . . 151

B.10 Crosslevel: MCMC posterior plots for diffusion parameter . . . . . 152

B.11 Surface left (124 ft): MCMC posterior plots for drift parameter . . 153

B.12 Surface left (124 ft): MCMC posterior plots for diffusion parameter 154

B.13 Surface right (124 ft): MCMC posterior plots for drift parameter . 155

B.14 Surface right (124 ft): MCMC posterior plots for diffusion parameter 156

C.1 Permission to use Figure 1.1 and Table 3.2 . . . . . . . . . . . . . . 157

xv



ABSTRACT

Globally, track-caused accidents are a major factor of train derailments. Rail

fatigue, rail wear, and track geometry defects are examples of track failure mechanisms.

These mechanisms are usually modeled separately due to their individual characteris-

tics, so maintenance activities are normally targeted to repair specific track structure

components. Modeling track degradation and estimation of the failure time of the

track is critical for safety and derailment purposes.

In particular, the use of railway track geometry degradation models has played

an important role in railway engineering. It helps in establishing track infrastructure

maintenance policies and the output can be used to address derailment potential. Most

track geometry degradation models are not stochastic and fail to account for small vari-

ations of the degradation values. On the other hand, failure time has been traditionally

modeled using defect data. However, unless it is an accident due to extreme events,

track geometry reaches a threshold as a result of an underlying degradation process.

This dissertation focuses on the formulation of track geometry degradation and its

first hitting time, in which two case studies were conducted using U.S. Class I railroad

inspection data.

The first case study formulates track geometry degradation as a Wiener process.

The Wiener process is a stochastic process that models degradation for non-strictly

monotonic increasing functions. Based on the characteristics of the track geometry

data, the Wiener process appears to be suitable for modeling the degradation process.

The model parameters were estimated using an adaptive Markov chain Monte Carlo

algorithm. The second case study estimates the first hitting time (FHT) for each track

geometry parameter and track section. The FHT is referred to as the probability

distribution of the time at which the degradation path first reaches a safety threshold.

xvi



The underlying degradation path is modeled as a Wiener process with drift and the

FHT follows an inverse Gaussian distribution.

Results from this dissertation provide a better understanding of track geometry

degradation and failure by accounting for the inherent uncertainty in this process

and by providing an alternative approach to identify track sections that require more

attention for maintenance activities, considering each track geometry parameter.
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Chapter 1

INTRODUCTION

1.1 Background & Motivation

The railway network is one of the most important transportation systems in the

United States. It is composed of approximately 140,000 miles of private-owned track

and moves nearly 40% of the U.S. freight (FRA, 2017). Maintaining railway infras-

tructure is critical. To keep infrastructure in good condition, railroads in 2015 invested

about $27.1 billion in maintaining, upgrading, and expanding the network, representing

42% of the total annual expenditure (AAR, 2016). These efforts for maintaining and

improving railway infrastructure influence, among others, the number of accidents due

to the condition of the infrastructure. Figure 1.1 presents the breakdown of the major

cause of train accidents for a ten-year time frame from the Federal Railroad Admin-

istration (FRA) data. It can be seen from the figure that overall the total number of

accidents and those resulting in train derailments was reduced. Despite that reduction,

the ranking of the major causes of accidents was constant; track is the second most

reported cause, after human factor.

A degraded track affects ride comfort and may lead to accidents if not main-

tained on time. Track geometry is a key component for keeping track infrastructure in

good condition, and the data collection process has a variety of uses (Lindamood et al.,

2003): (i) it helps to identify defects that are present in the track, (ii) it contributes

to the assessment of track condition, that is, track quality indices (TQIs), and (iii) it

can be used as an input for forecasting models.
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Figure 1.1: Train accidents over ten years by major cause from FRA data

1.2 Statement of the Problem

Predicting track geometry degradation and failure time require accounting for

the inherent uncertainty of the unobserved condition of the track. Traditionally, track

geometry degradation is quantified using foot-by-foot measurements and failure time is

estimated using track geometry defect data only. When degradation data is available

as a function of time or cumulative tonnage, extrapolation of the degradation paths

can be mathematically modeled as a stochastic process and the estimation of the time-

to-failure can be obtained for predefined confidence limits. There is, therefore, a need

to address questions regarding the prediction of track geometry degradation and failure

as a stochastic process that can provide insights of how new safety standards can be

created.

1.3 Objective of the Study

Based on the statement of the problem presented in Section 1.2, the main ob-

jective of this dissertation is to formulate and implement a threshold-regression model

2



for analyzing track geometry degradation and its failure time. To achieve this main

objective, the following sub-objectives are defined:

1. To conceptualize track geometry degradation as a stochastic process

2. To formulate and implement Markov chain Monte Carlo for parameter estimation
of track geometry degradation model

3. To estimate the time at which the degradation paths first reach a threshold

4. To conduct analysis of track geometry degradation and failure using United States
track geometry inspection data

1.4 Research Approach

This dissertation was conducted in three stages as presented in Figure 1.2. The

first stage deals with the conceptualization of the mathematical approaches for es-

timating track geometry degradation model parameters and stochastic processes for

predicting track degradation. Based on literature review in various disciplines, not

only railway track geometry, Bayesian approaches and stochastic processes were se-

lected for analyzing the available data set. The second stage examines in more detail

the different approaches for both Bayesian approaches and Wiener process. In this

stage, a variation of the Metropolis-Hastings algorithm and the Wiener process with

drift for the prediction of track geometry degradation and the estimation of the first

hitting time were considered. Finally, the third stage consists of the implementation

of the designed methodology in railway infrastructure, with a main focus on track

geometry degradation.
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Figure 1.2: Research approach

1.5 Dissertation Structure

1.5.1 Chapter 1: Introduction

This chapter presents the motivation of this research, as well as the structure

and the contributions of this dissertation.

1.5.2 Chapter 2: Background

This chapter presents the definitions of track geometry parameters and a liter-

ature review on track geometry degradation models. Also, the gaps in the literature

are discussed.

1.5.3 Chapter 3: Bayesian Inference

This chapter deals with the definition of Bayesian inference for parameter es-

timation. The fundamental differences with frequentist methods are discussed. Also,

this chapter presents three variations of the Markov chain Monte Carlo algorithms:

Metropolis-Hastings algorithm, Gibbs sampling algorithm, and population-based Markov

4



chain Monte Carlo methods. This chapter also presents the contributions of parame-

ter estimation in track geometry degradation models using Markov chain Monte Carlo

methods. Finally, an illustration of an output analysis in the context of track geometry

degradation is presented.

1.5.4 Chapter 4: Wiener Process for Degradation Analysis

The aim of this chapter is to introduce the concepts of stochastic process and

highlights the importance of using the Wiener process in track geometry degradation

and the estimation of the first hitting time. Also, this chapter formulates the Wiener

process and first hitting time in track geometry degradation.

1.5.5 Chapter 5: Exploratory Data Analysis

The goal of this chapter is to describe the data set utilized in this research, and

to present the findings of the exploratory data analysis for the data used.

1.5.6 Chapter 6: Hybrid Markov Chain Monte Carlo and Wiener Process

in Railway Track Geometry Degradation Analysis

This chapter presents the implementation of the hybrid Markov chain Monte

Carlo and Wiener process using the data set available in this research. A detailed

discussion of the findings are also presented.

1.5.7 Chapter 7: First Hitting Time in Railway Track Geometry Degra-

dation Analysis

This chapter presents the estimation of the first hitting time using the predicted

sample paths from Chapter 6. Also, the discussion of the results for track geometry

parameters and their confidence levels are highlighted.

1.5.8 Chapter 8: Conclusions and Recommendations

This chapter summarizes the research conducted. Recommendations and future

work are discussed.
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Chapter 2

BACKGROUND

2.1 Introduction

Railway is one of the most important freight and passenger transportation sys-

tems around the world, and in order to keep track infrastructure in good conditions,

different studies have focused on maintenance and track degradation prediction models.

Railway track geometry degradation is a phenomenon that if not detected and corrected

on time, can lead to extensive maintenance costs and safety issues. Despite the ex-

tensive contributions in the literature regarding track geometry degradation models,

there is still no consensus about the model parameters that best represent degradation

process. It has been shown that model parameters selection has a major influence on

the accuracy of the track degradation prediction used for long-term maintenance deci-

sions. The aim of this chapter is to present a state-of-the-art survey on track geometry

degradation models, highlighting their main characteristics including their shortcom-

ings. The outcome of the survey will provide researchers and practitioners a better

understanding of track geometry behavior that can be used for maintenance planning

and other decision making. This chapter also includes a general overview of the track

components and failure mechanisms.

2.2 Track Characterization

A ballasted track can be classified in two groups: (i) track superstructure, that

consists of the rail, fastening system and ties, and (ii) track substructure that includes

the ballast, subballast and subgrade. Figure 2.1 illustrates the track components.

• Rail: rails are defined as longitudinal steel that are designed to provide support
and guide the train. For ballasted track, the most common rail shape is the
standard tee rail section.
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Figure 2.1: Typical track structure (Attoh-Okine, 2017)

• Ties: ties provide support to the rails and contribute to keep the designed rail
gauge. Ties are typically made of wood (the most common in the United States),
concrete or steel.

• Fastening system: fasteners are used to firmly hold rails on top of the ties
to ensure they not move vertically, longitudinally or laterally (Indraratna et al.,
2011). For wood tie, the most common fastener is cut spike, whose are distributed
two spikes per plate and up to four for sharp curves. For concrete ties, elastic
fastenings are used at the rail hold down location in order to provide sufficient
tie load to the rail base and to provide longitudinal restraint for the rail.

• Ballast: ballast is defined as the coarse aggregate that is place under the ties
and above the subballast and it is designed to resist applied vertical, lateral, and
longitudinal loads. It is also used to maintain track position, so track deformation
can be prevented. In addition, it provides rapid drainage, that is, without a good
drainage system, there is a high risk of the void areas to fill by the action of the
combination of water and small particles.

• Subballast: subballast is the granular layer placed below the ballast and above
the subgrade. Similar as the ballast, the subballast contributes to load and stress
reduction, provides drainage, protects from frost to the subgrade, etc.

• Subgrade: subgrade, the foundation upon which everything above depends for
support, is often the most variable and potentially the weakest of track compo-
nents (Li et al., 2015).

2.3 Track Failure Mechanisms

When referring to track degradation, there is a wide range of possible failure

mechanisms that can influence track performance. Based on that, there is more than

one definition of track degradation, that is why it is important to specifically define
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which part of the track is subject to degradation, what their key parameters are,

and what the relationship with other track components is. In the literature there are

different classifications of track degradation models. Oberg (2006) presents an extensive

review of different track degradation models and classifies them in five groups (Figure

2.2):

Track 
degradation 

Models

Models due to 
vertical 

settlement

Models due to 
wear and 
contact 
fatigue

Computer 
aided 

planning and 
prediction 

tools

General 
deterioration 

models

Other models

Figure 2.2: Track degradation models classification

• Models due to vertical settlement for ballasted tracks

• Models due to wear and contact fatigue: this type of models only consider surface
defects of rails

• Computer aided planning and prediction tools: this group presents the com-
putational tools or software used for predicting track degradation, as well as
scheduling and cost analysis for track maintenance
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• General degradation models: they take under consideration more than one track
failure mechanism, including vertical settlement, wear and fatigue

• Other models: they attempt to update track maintenance activities due to
changes in the traffic condition

Another relevant classification on track failure mechanisms is presented by

Zarembski and Palese (2006). The authors discussed three categories of track fail-

ure or degradation that compromise safety as shown below:

• Broken rail risk model: this model intends to estimate the probability of a bro-
ken rail that allows railways to schedule ultrasonic test activities to reduce that
probability

• Track buckling risk model: this model allows to identify and classify track loca-
tions of high risk of buckling (track lateral misalignment mainly caused by high
compressive forces, weakened track conditions, and vehicle loads)

• Vehicle/track geometry risk model: this model allows to identify and prioritize
track locations with high potential of vehicle/track geometry related derailments

On the other hand, He et al. (2013) classify track degradation in two main

groups called structural and geometry defects (Figure 2.3).

Track Degradation

Structural Defects

• Rail
• Tie
• Fastening Systems
• Ballast
• Subballast
• Subgrade
• Drainage Systems

Geometry Defects
• Surface (profile)
• Alignment
• Gauge
• Cant
• Twist

Figure 2.3: Classification of rail track degradation based on structural and geometrical
components
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2.3.1 Track Structural Defects

Structural defects are those that are generated by the structural components

of the track, such as rail, ties, fastening systems, ballast, subballast, subgrade and

drainage systems. There are different failure mechanisms for each one these compo-

nents, which if not detected and corrected on time, can lead to the reduction of the

track system performance or in a derailment.

2.4 Track Geometry

In the United States, deviation from the allowable standards for track geometry

measurements are established by the Federal Railroad Administration (FRA), although

railroads usually consider narrower standards. Track geometry defects are obtained by

visual inspection, and the frequency follows FRA requirements, usually two times per

week for mainline in Class 4 and Class 5. However, automatic inspection is widely

used for measuring track geometry, which is performed by using a track geometry car,

and defects are defined based on FRA standards. The FRA operates the Automated

Track Inspection Program (ATIP), in which the ATIP cars use the Track Geometry

Measurement System (TGMS) whose main function is to generate signals collected from

the measurement and subsequently perform an online signal processing, producing as

an output a graphic report regarding track geometry measurements. Track geometry

defects are identified and displayed in tabular form. Once the data are collected and

processed, the ATIP cars compare the current track condition and compare it to the

FRA standards.

2.4.1 Track Geometry Parameters

Track geometry can be defined based on the following parameters (U.S Army,

2008) (Figure 2.4).

• Alignment: alignment is the relative position of the rails in its horizontal plane,
measured at the midpoint of a 32-foot, 62-foot, or 124-foot chord. For tangent
track, the alignment is equal to zero. For curved track, the alignment is equal to
the degree of curvature.
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Figure 2.4: Some track geometry parameters

• Crosslevel: crosslevel is the difference in elevation between the top surface of the
two rails at any point of railroad track. Crosslevel is measured at right angles to
the track.

• Gage: gage is the distance between two rail heads at right angles to the rails
in a plane five-eighths of an inch below the top of the rail head. In the United
States the distance used is standard gage which is equal to 56.5 inches for tracks
containing up to 12 degrees of curvature.

• Surface or Profile: surface (longitudinal leveling) is the relative elevation of the
two rails along the track. The profile measurement is usually carried out at the
midpoint of the 32-foot, 62-foot, or 124-foot mid chord.

• Twist: twist is the difference in crosslevel between two points of a fixed distance.

• Warp: warp is the difference in crosslevel between any two points less than or
equal to 62 feet apart.

2.5 Track Maintenance Methods

This section deals with the description of some track maintenance techniques.

• Tamping: this technology has traditionally been used in the United States to
correct surface geometry defects in North America. Tamping consists on squeeze
the ballast under the ties using tamping tools, correcting track geometry surface.
It is a quick technology to implement; however, the ballast is disturbed as a result
of the insertion of tamping tools (Zarembski and Newman, 2008).
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• Design over-lift tamping: this alternative consists on lifting the track over the
design profile in order to compensate the rapid ballast settlement that occurs
once the traffic resumes, so the ballast settlement reaches the design profile. The
advantage of using this alternative in comparison to conventional tamping is that
when conventional tamping actions are performed, the ballast settles to the prior
rough shape once the traffic resumes. The opposite occurs with design over-lift
tamping that allows a better shape after traffic resumes.

• Stone blowing: this technology is defined as the process of track geometry cor-
rection that adds rocks to the surface of the ballast right under the lifted tie.
The idea of this alternative is that ballast particles are rearranged in order to fill
the voids under the lifted tie. The advantages of performing stone blowing over
conventional tamping are the following: (i) because stone blowing pre-measure
track geometry, the stone blower performs corrections only in the place where
it is needed. This contributes to minimize the ballast requirements, and (ii) the
ballast damage is lower compared to conventional tamping, making the geometry
correction last longer (Li et al., 2015).

2.6 Track Quality Index (TQI)

Track quality is usually assessed by putting a single or a set of track geometry

parameters in a metric or set of metrics. These metrics are known as Track Quality

Index (TQI). The TQI provides information regarding track geometry and it is used to

determine track interventions, as well as track performance, and also to compare track

condition before and after interventions (Fortunato et al., 2007). Each TQI is unique

and vary as shown in Table 2.1.
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2.7 Track Geometry Degradation Models

Based on the existing literature, track geometry degradation models can be clas-

sified in five groups (Figure 2.5): regression models, exponential smoothing, hierarchical

Bayesian, artificial neural networks, and stochastic processes. There is an important

number of contributions in this area, where different data analysis techniques have

been performed to predict track degradation that can be used as an input for deter-

mining optimal maintenance schedule activities. The works of Dahlberg (2001), Oberg

(2006), Guler (2013b), and Soleimanmeigouni et al. (2016a) are examples of extensive

literature reviews in this area. In this section, an overview of the contributions in

literature regarding these track degradation models is presented, highlighting the main

characteristics of each model.

Track geometry 
degradation models

Regression
Exponential 
smoothing

Hierarchical 
Bayesian

Artificial neural 
networks

Stochastic 
processes

- Linear regression
- Polynomial regression
- Multi-stage linear regression
- Exponential regression

- Random field
- Gamma process
- Dagum model
- Markov chain
- Wiener process

Figure 2.5: Classification of track geometry degradation models

2.7.1 Regression Models

Different types of regression models have been used in track geometry degrada-

tion. Examples of regression models include: linear regression, polynomial regression,

multi-stage regression, and exponential regression. Figures 2.6 and 2.7 show an exam-

ple of linear and nonlinear regression.

In the linear regression approach, it is assumed that the track degrades at a

constant rate (the gradient of the equation). The constant of the equation is based

on the TQI value after restoration. Generally, the intersection of the linear equation
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Time

TQI
Restoration Restoration

Intervention threshold

Reached TQI after restoration

Figure 2.6: Linear representation of track geometry degradation and restoration

and the intervention threshold serves as the restoration time. Chang et al. (2010)

highlighted the characteristics of the track geometry degradation model using multi-

linear components of the track models. The authors defined the track geometry in terms

of three elements: (i) periodicity, defined as the change of surface values over the track,

which are the same between two adjacent track maintenance activities, (ii) multi-stage,

this is the case when degradation rates vary from the initial to final maintenance cycle,

and (iii) exponential characteristics, which is the case when the degradation model is

in the form of an exponential function. Equation (2.1) shows the multi-stage model

σTLD = an + bnT, (2.1)

where:

• σTLD: standard deviation of parameter surface

• bn: slope of line n

• an: intercept of line n

• T : cumulative passing tonnage from last maintenance to the present day
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Time
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Restoration Restoration

Intervention threshold

Reached TQI after restoration

Figure 2.7: Nonlinear representation of track geometry degradation and restoration

Andrade and Teixeira (2011) presented track geometry degradation as a func-

tion of the standard deviation of surface and the cumulative tonnage as presented in

equation 2.2.

σLD = c1 + c0T, (2.2)

where:

• σLD: standard deviation of surface

• c1: initial standard deviation of surface right after upgrade actions

• c0: degradation rate

• T : cumulative tonnage after track upgrade (100 MGT)

The authors used Monte Carlo simulation to address the uncertainty on the

model regarding tamping cycle for each track section group and specific quality levels.

The research concluded that bridges and switches require tamping activities more often

compared to stations and tangent track.

In a follow up paper, Andrade and Teixeira (2012) used Markov Chain Monte

Carlo (MCMC) for the estimation of the degradation model parameters. The aim of
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this analysis was to assess the uncertainty behavior of the track infrastructure through

its life cycle.

Audley and Andrews (2013) similarly presented a linear model (equation 2.3)

and used the maximum likelihood method to estimate the model parameters.

σ = A+Bt, (2.3)

where:

• σ : surface (vertical alignment)

• A : intercept

• B : degradation rate

Xu et al. (2011) approximated the nonlinear track geometry degradation for

each tamping cycle for multiple linear models selected in a short-range section. Each

linear model is updated based on the change of track geometry degradation historical

data. The linear model parameters were estimated using the frequentist approach least

squares.

Berawi et al. (2010) and Quiroga and Schnieder (2012) developed nonlinear

models in track geometry degradation. Berawi et al. (2010) assumed nonlinearity of

track geometry degradation in terms of the TQIs and they compared their results to

the European Standard EN 13848-5, the TQIs J synthetic coefficient, and TGI. In their

formulation, Quiroga and Schnieder (2012) assumed an exponential form, considering

parameter surface as the dependent variable of the model.

2.7.2 Exponential Smoothing

Simple exponential smoothing is more appropriate for forecasting a time series,

where there is absence of trend or seasonal pattern, and the mean slowly changes over

time. In general, exponential smoothing methods give larger weights to more recent

observations, and the weights decrease exponentially as the observations become more

distant, that is, the older observations. Oyama and Miwa (2006) proposed a model for
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measuring the parameter surface and predicting track maintenance operation effects

based on a logistic distribution. The exponential smoothing was utilized to predict the

increasing trend parameters associated with the standard deviation of logistic distri-

bution and to express the typical characteristic of track surface. The authors’ model

is accurate enough to estimate the future changes of track surface by forecasting a

selected parameter value which is the function of a logistic parameter and an integer

greater or equal to zero.

2.7.3 Hierarchical Bayesian Model

Hierarchical Bayesian model is a statistic technique based on graph-probabilistic

models. The technique is presented in a form of a directed acyclic graph in multiple

layers. In many applications, the model parameters have significant dependencies on

each other and there is strong need to find and address these dependencies. In the

hierarchical Bayesian methods, the directed graph helps to factorize the model using

the independent properties of the graph. Once the full conditionals are established,

the posterior distributions can be estimated.

Andrade and Teixeira (2013) used the hierarchical Bayesian approach in track

geometry degradation. The authors assumed that the standard deviation of parameter

surface is normally distributed, and the mean is composed by the following elements:

(i) constant linear evolution with MGT, (ii) initial standard deviation of surface, (iii)

disturbance effect of the initial standard deviation of surface after each tamping oper-

ation, and (iv) renewed track and non-renewed track sections. Non-informative priors

using inverse gamma distributions were assumed by the authors. The model proposed

by Andrade and Teixeira (2013) alerted railway researchers and practitioners to address

spatial dependencies in rail track geometry degradation modeling and analysis.

2.7.4 Neural Networks

Neural networks (NN) are biologically inspired machine learning techniques. NN

are data-driven self-adaptive, allowing few assumptions regarding the model (Zhang
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et al., 1998). Guler (2013a) used neural networks to model track geometry degradation.

In particular, the author applied the methodology to study the effects of the degree

of curvature, crosslevel, speed, age, rail type, rail length, etc. in the neural network

approach. However, the author did not fully discuss the learning approach, as well as

the criteria for the selection of the appropriate parameters for training, testing, and

validation. It is very important to note that there are different NN architectures, but

it is not clear which of them will be more appropriate for track degradation models.

This warrants further studies.

2.7.5 Stochastic Process

Stochastic processes account for uncertainty in track geometry degradation

Chapter 4 presents a detailed definition on this topic. Selected contributions in this

area are presented below.

Iyengar and Jaiswal (1995) used a random field model in track geometry degra-

dation. The authors used a stationary Gaussian random field defined with the power

spectra density function applied to Indian railways tracks. In terms of Markov models,

Shafahi and Hakhamaneshi (2009) predicted track degradation in Iranian railways by

defining six states. The transition matrix was defined using historical data composed

of about 2627 miles (4228 kilometers) in the time interval 2002-2006. The results were

utilized as an input for a dynamic programming model which was used to schedule

track maintenance activities. Yousefikia et al. (2014) also presented a Markov model

to assess tram track condition and predict maintenance actions for Melbourne tram

track data. The Markov chain state space is composed by the following:

• Normal

• Maintenance limit: degraded failure undetected

• Maintenance limit: degraded failure inspected

• Action limit: degraded failure undetected

• Action limit: degraded failure inspected
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• Safety limit

• Repaired

Meier-Hirmer et al. (2006) presented a Gamma process for track degradation

and a classification method based on regression trees using environmental variables

such as type and height of ballast, maximum speed, weather conditions, type of rail,

accumulated tonnage since ballast renewal, among others. In the paper, the authors

considered surface (longitudinal leveling) defects as the track failure mechanism for

track geometry defects. Mercier et al. (2012) implemented an extended version of

Meier-Hirmer et al. (2006) by modeling track geometry degradation for parameter

surface, using a bivariate Gamma process where the maximum likelihood estimation

was implemented to estimate the model parameters. In addition, Vale and Lurdes

(2013) performed a stochastic model based on the Dagum distribution, which is used

for describing track geometry degradation process over time. Dagum distribution is a

function of the input data and the model parameters. For parameter estimation, the

authors used the maximum likelihood method.

Soleimanmeigouni et al. (2016b) modeled track degradation as a Wiener process,

considering as the failure mechanism the standard deviation of the parameter surface.

The main limitation of this paper is that the model parameters were estimated using

maximum likelihood method which is a deterministic method that provides a single

point estimate, instead of the probability distribution of all the possible values for the

parameters.
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Table 2.2: Selected references on track geometry degradation models

Reference Degradation model Model variables

Iyengar and Jaiswal (1995) Random field
- Surface (absolute vertical profile)
- Unevenness data

Meier-Hirmer et al. (2006) Gamma process Surface (longitudinal leveling)

Oyama and Miwa (2006) Exponential smoothing
- Standard deviation of logistic distribution/track surface
irregularities

Chang et al. (2010) Multi-stage linear regression

- Standard deviation of surface (longitudinal level irregu-
larity)
- Slope of line
- Intercept
- Cumulative passing tonnage from last maintenance to the
present day

Berawi et al. (2010) Nonlinear regression Surface, alignment, twist, and gage

Xu et al. (2011) Linear regression
Standard deviation of gage, crosslevel, surface, alignment,
and twist

Mercier et al. (2012) Bivariate gamma process
Surface (longitudinal leveling) and alignment (transverse
leveling)

Quiroga and Schnieder (2012) Exponential function

- Surface (longitudinal leveling)
- Time
- Log-normally distributed variable
- Measurement noise
- Number of tamping interventions

Andrade and Teixeira (2011) Linear regression

- Initial standard deviation after renewal or tamping oper-
ations
- Degradation rate (mm/100 MGT)
- Cumulative tonnage between tamping operations (100
MGT)

Andrade and Teixeira (2012) Linear regression

- Initial standard deviation after renewal or tamping oper-
ations
- Degradation rate (mm/100 MGT)
- Cumulative tonnage between tamping operations (100
MGT)

Andrade and Teixeira (2013) Hierarchical Bayesian

- Standard deviation of surface (longitudinal leveling)
- Accumulated tonnage since last tamping or renewal op-
erations
- Degradation rate
- Initial standard deviation of surface (longitudinal level
defects)
- Initial standard deviation of surface (longitudinal level)
after each tamping operations
- Number of tamping operations performed since last re-
newal

Vale and Lurdes (2013) Dagum model
- Standard deviation of surface (longitudinal level)
Dagum distribution shape and scale parameters

Audley and Andrews (2013) Linear regression surface (vertical alignment)

Yousefikia et al. (2014) Markov chain

Markov chain states: - Normal - Maintenance limit. De-
graded failure undetected - Maintenance limit. Degraded
failure inspected - Action limit. Degraded failure unde-
tected - Action limit. Degraded failure inspected - Safety
limit. Repaired

Guler (2013a) Artificial neural networks

- Gradient (%)
- Curvature (1/R)(1/m)
- Crosslevel (mm)
- Speed (km/h)
- Age (years)
- Rail type (kg/m)
- Rail length (m)
- Tie type
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2.8 Remarks

Based on the literature review, the following conclusions are made:

1. Track geometry degradation models were classified in five groups (Figure 2.5)
where regression models is the most common approach. Table 2.2 presents a
summary of selected references on track geometry degradation where the type
of degradation model and model variables are highlighted. The literature review
findings show that there is still no consensus on the best representation of track
geometry degradation phenomenon, where different assumptions have been made
for each model. This makes track geometry degradation an area with potential
for improvement.

2. Model parameters’ were mainly estimated using frequentits methods such as max-
imum likelihood estimation and least squares method. As will be discussed in
Chapter 3, these methods do not capture the uncertainty associated with model
parameters, and probabilistic approaches (such as Markov chain Monte Carlo,
implemented in few studies) require further study.

3. In terms of track geometry parameters utilized in degradation models, track
quality indices (TQIs), in which a single or multiple parameters are included,
have been used to represent a single track section. However, the literature review
shows that parameter surface (profile) is the dominant parameter and the most
used for representing track geometry degradation.

4. Stochastic processes have been used to model track geometry degradation. These
approaches exhibit high potential because it accounts for the uncertainty in the
degradation process itself, making it more robust compared to other models.
However, despite the important contributions in the literature, the advantages
of stochastic processes have not been fully exploited. Failure time is a critical
aspect of track geometry degradation for maintenance and safety purposes.
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Chapter 3

BAYESIAN INFERENCE

3.1 Introduction

Bayesian inference has gained high relevance in statistical inference. It allows

quantifying of the uncertainty associated with measurements caused by non-calibrated

devices or processes that are not completely controlled or understood (Gamerman and

Lopes, 2006). Also, Bayesian inference is a powerful mechanism for incorporating in-

formation from previous studies or experts’ opinions regarding the model parameters

(Dunson, 2001). In particular, Markov chain Monte Carlo methods have been utilized

in different fields to facilitate the Bayesian analysis, by using numerical methods that

provide an approximation of the posterior density of the model parameters. Applica-

tions include epidemiology (Dunson, 2001), water resources (Lu et al., 2012), computer

science (Zhang, 2001), and civil infrastructure (Mills et al., 2012; Andrade and Teixeira,

2012; Mokhtarian et al., 2013), among others.

In railway track geometry, large amounts of data collected from different sen-

sors measuring track geometry defects, measurement errors, and modeling uncertainties

heavily influence maintenance decisions. Therefore, accurate methods of analysis and

interpretation of the data are critical. Few studies have focused on uncertainties asso-

ciated with track geometry degradation using Markov chain Monte Carlo approaches

(Andrade and Teixeira, 2012, 2013). However, few contributions in terms of output

analysis have been performed. This chapter presents the general concepts of Bayesian

inference with a main focus on Markov chain Monte Carlo methods, in which their

advantages with respect to classical inference methods are discussed. Also, an imple-

mentation of track geometry degradation model parameters estimation is presented.
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3.2 Frequentist and Bayesian Approaches

Frequentist and Bayesian approaches have played an important role when it is

necessary to estimate model parameters. There are fundamental differences in both ap-

proaches regarding each approaches’ assumptions, as well as the results interpretation.

This section broadly discusses these differences and presents the motivation of using

Bayesian approaches to estimate model parameters for track geometry degradation.

Frequentist approaches are developed based on the assumption that data come

from a repeatable random sample and the model parameters are constant during this

process. Since the unknown parameters are assumed to be constant, their uncertainty

are expressed not in terms of a probability distribution, but as confidence limits and

significant levels (p-values) instead (Cox, 2005). Examples of frequentist approaches

include least squares, maximum likelihood estimation, etc.

Bayesian approaches consider observed data that come from a sample (data are

fixed) and the model parameters are unknown and follow a probability distribution.

In general, Bayesian inference estimates the probability distribution of the model pa-

rameters by combining the prior knowledge of the parameters (prior distribution) and

the probability of the data given the parameters (likelihood distribution). Both the

prior and likelihood are put together, so the probability distributions of the parameters

given the observed data are estimated (posterior distribution). Equation 3.2 presents

an approximation for representing the estimation of the posterior distribution as a

function of the prior and likelihood distributions.

Posterior ≈ Prior × Likelihood. (3.1)

In the frequentist approach, for example, a confidence interval of 95% means

that in a collection of intervals, 95% of them contain the true parameter θ (left side of

Figure 3.1). In the Bayesian approach, a credible interval means that there is a 95%

chance that the interval contains the true parameter (right side of Figure 3.1).

Table 3.1 summarizes the main differences between Bayesian and frequentist
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Figure 3.1: Interpretation of confidence and credible intervals

approaches.

Table 3.1: Differences between Bayesian and frequentist approaches

Bayesian Frequentist

Data are observed from the realized
sample the studies are fixed

Data are repeatable random sample
there is a frequency the studies are re-
peatable

Parameters are unknown and assumed
to follow a probability distribution

Underlying parameters remain con-
stant during this repeatable process

Data are fixed Parameters are fixed

Uses probabilities for the parameters
and data

Does not use or estimates the probabil-
ity of a parameter

Depends on the prior and likelihood of
observed data

Depends on the likelihood for observed
and unobserved data

Uses prior information of the parame-
ters

Does not use prior information of the
parameters

3.3 Representation of Bayesian Estimation

As presented in Section 3.2, Bayesian inference assesses the uncertainty of model

parameters given observed data and it is a function of the prior and likelihood functions.
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Formally it can defined using the Bayes’ rule:

f(θ | X) =
f(θ)f(X | θ)∫
f(θ)f(X | θ)dθ

, (3.2)

where

• θ = {θ1, θ2, · · · , θn}: parameter vector

• X: observed data

• f(θ)f(X | θ): joint distribution

•
∫
f(θ)f(X | θ)dθ: normalizing constant

The joint distribution is composed by two functions: f(X | θ) is defined as

the likelihood function. f(θ) is known as the prior function and is defined as the

probability of the model parameters before observing the data. Figure 3.2 presents a

schematic representation of the Bayesian estimation. This probability usually comes

from experts’ opinions, previous studies, and conjugacy, etc., and it can be classified in

four groups: (i) conjugate priors, (ii) Jeffreys priors, (iii) non-informative priors, and

(iv) informative priors. Description of each prior class is presented below.

⋮

𝜃1
𝑓(𝜃2)

𝜃𝑛

Prior distribution

Bayesian updating

𝑓 𝜽 𝑋 =
𝑓 𝜽 ∙ 𝑓 𝑋 𝜽

׬ 𝑓 𝜽 ∙ 𝑓 𝑋 𝜽 𝑑𝜽

- Metropolis-Hasting algorithm
- Gibbs sampling algorithm
- Evolutionary Markov chain Monte Carlo
- Approximate Bayesian computation

Data set
𝑿

⋮

Posterior distribution

𝑓(𝜃1)

𝜃2

𝑓(𝜃𝑛)

𝜃1

𝑓 𝜃1 𝑋

𝜃2

𝜃𝑛

𝑓 𝜃2 𝑋

𝑓 𝜃𝑛 𝑋

Likelihood
𝑓 𝑋 𝜽

Figure 3.2: Illustration of the Bayesian estimation process
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3.3.1 Conjugate Priors

In a large number of practical applications, it is not feasible to find a closed-

form solution to the Bayes’ theorem. The integral expressed in the denominator of

equation 3.2 can be challenging to solve, especially in high-dimensional parameter

spaces (Stauffer, 2007). However, in some applications, a closed-form solution can

be obtained by using conjugate priors. Under this approach, the prior distribution

is chosen from specific probability distribution priors that can provide the posterior

distribution. Table 3.2 presents a summary of some common cases of conjugate priors.

Table 3.2: Conjugate prior distributions (Attoh-Okine, 2017)

Prior Likelihood Posterior

Normal Normal Normal
Normal Gamma Gamma

Bernoulli Beta Beta
Poisson Gamma Gamma

Binomial Beta Beta

An example of a conjugate prior is presented as follows:

The data set X is normally distributed with parameters N(θ, σ2), and the prior

distribution of the parameters θ is N(µ, b2). Then the likelihood function is:

f(X | θ) =

(
1

σ
√

2π

)2

exp

(
−1

2

n∑
i=1

(
xi − θ
σ

)2
)
. (3.3)

In addition, the prior distribution of θ is:

f(θ) =
1

b
√

2π
exp

(
−1

2

(
θ − µ
b

)2
)
, (3.4)

so the posterior distribution is:

f(θ | X) =
1

b
√

2π

(
1

σ
√

2π

)2

exp

(
−1

2

[
n∑
i=1

(xi−θ
σ

)2
+

(
θ − µ
b

)2
])

. (3.5)
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f(θ | X) ∝ exp

[
−1

2

(
θ2(σ2 + nb2)− 2θ(σ2µ+ nb2x) + (σ2µ2 + b2

∑
x2i )

σ2b2

)]
. (3.6)

f(θ | X) ∝ exp

−1

2

θ − µσ2+nb2x
σ2+nb2√
b2σ2

σ2+nb2

 , (3.7)

therefore,

f(θ | X) ∼ N

(
µσ2 + nb2x

σ2 + nb2
,

b2σ2

σ2 + nb2

)
. (3.8)

In this case, it can be noticed that both, the prior and posterior are normally

distributed, and therefore, are conjugates.

3.3.2 Jeffreys Priors

An approach that allows estimation of the posterior distribution when conjugate

priors are not suitable is the Jeffreys priors. This class of priors are defined as those

that might vary when a transformation is done. For example, if parameter θi follows

an uniform distribution, it is not necessary that θ2i is also uniformly distributed. The

idea of the Jeffreys priors is to define posterior distributions that are invariant to any

transformation of the model parameters (Stauffer, 2007). This is done by choosing a

prior based on the shape of the likelihood function.

3.3.3 Non-informative Priors

Non-informative priors are mainly used when there is not enough knowledge

about the model parameters, so a flat distribution is defined in order to reduce the

impact over the posterior distribution. A common choice of this class of priors includes

the uniform distribution, because it assigns the same probability to each value of the

parameter. Although this approach allows the reduction of subjective assessment of

the model parameters, problems might arise when the parameter is not bounded, so

the sum of all the probability values for parameter θi does not sum up to 1. This case

35



is known as improper priors. However, having an improper prior would not produce

an improper posterior, if the likelihood function has bounds that support where the

function is nonzero (Stauffer, 2007).

3.3.4 Informative Priors

In contrast to non-informative priors, informative priors are not dominated by

the likelihood function. This type of priors are usually defined when there is a high

knowledge of the model parameters based on previous studies or experts’ opinions.

3.4 Markov Chain Monte Carlo Methods

There are alternative methods to Bayesian inference techniques including Monte

Carlo integration and rejection sampling, among others. These methods are charac-

terized to produce sets of independent simulated values from the desired probability

distribution (Stauffer, 2007). On the other hand, Markov chain Monte Carlo (MCMC)

methods provide simulated chains that are slightly dependent on each other. This is

because the current value of the chain depend on the previous one. The MCMC idea is

to simulate a Markov chain whose stationary distribution is the posterior distribution

of the model parameters θ. To reach this stationary distribution, the Markov chain has

to be ergodic and irreducible. When the posterior distribution cannot be estimated

analytically, numerical methods-based MCMC are used to provide an approximation

of the posterior distribution. In this section, the Metropolis-Hastings algorithm, Gibbs

sampling algorithm, and population-based MCMC methods are discussed.

3.4.1 Markov Chains

Markov chains is a class of stochastic processes and it has been applied in

different areas. Formally, a Markov chain is defined as follows:

Definition 3.4.1. A stochastic process X = (Xj)j∈N0 with values in a set S is a

Markov chain if (Voss, 2013)
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P (Xj ∈ A | Xj−1 ∈ Aj−1, Xj−1 ∈ Aj−1, · · · , X0 ∈ A0) = (3.9)

P (Xj ∈ Aj | Xj−1 ∈ Aj−1) , ∀ A0, A1, · · · , Aj ⊆ S, and j ∈ N. (3.10)

Equation 3.9 states that the condition of the state at time j only depends on the

condition at time j − 1.

The probability of moving from state i to state j is represented by the transition

probability matrix

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
...

...

pm1 pm2 · · · pmn

 . (3.11)

Markov chain states (ej) have the following properties (Neapolitan, 2009):

• ej is reachable from ei in n ≥ steps such as pnij > 0. A Markov chain is called
irreducible if every state is reachable from every other state.

• ej is periodic if it has a period t > 1 with p
(n)
ij = 0, unless n = mt for any

integer m, and t is the largest integer with this property. In its counterpart, ej
is aperiodic if t > 1 does not exist.

• ej is persistent if fii = 1 and is transient if fii < 1. Where fii is the probability
of starting from state ei and entry to state ei. The persistent state ej is also

called null if its mean recurrence time (µi =
∑∞

n=1 nf
(n)
ii = ∞) and otherwise it

is called non-null.

• ej is ergodic if it is aperiodic, persistent, and non-null. A Markov chain is said
to be ergodic if all states are ergodic.

The stationary distribution of the Markov chain is presented as follows (Neapoli-

tan, 2009):
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Theorem 3.4.1. For an ergodic and irreducible Markov chain the limits

rj = lim
n→∞

p
(n)
ij (3.12)

exist and are independent of the initial state ei. Also, for rj > 0

∑
j

rj = 1, (3.13)

rj =
∑
i

ripij, (3.14)

and

rj =
1

µj
, (3.15)

where µj is the mean recurrence time of ej.

Therefore, the probability distribution P (E = ej) ≡ rj is called the stationary

distribution of the Markov chain.

3.4.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is based in the accept-reject (AR)

method. The AR method generates non-Markov samples. The objective is to generate

samples from a continuous target function π(x) = f(x)/K , where x ∈ Rd, f(x) is the

unormalized density, and K is the normalizing constant (Chib and Greenberg, 1995).

Also, let the envelope function h(x) be a density where samples can be generated from

and there is a constant c such that f(x) ≤ ch(x), ∀x (Figure 3.3). To obtain the target

function, the accept-reject algorithm is presented in Algorithm 1.
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Algorithm 1 Accept-reject algorithm

1: Propose a candidate H from h(·)
2: Generate a value u from an uniform distribution U(0, 1)
3: if u ≤ f(H)/ch(H) then
4: Set H = y
5: else
6: Go to step 1
7: end if

The accepted value y is a random variable from the target function π(·). As

presented by Chib and Greenberg (1995), constant c must be carefully selected because

the accept-reject routine may result in a large number of rejected samples.

Envelope function

Target function

𝒙

D
e
n
si
ty

0.1

0.2

0.3

0.4

2 4 6 8 10 12

Figure 3.3: Representation of accept-reject regions

The M-H algorithm simulates samples from a probability distribution by using

the joint density function and proposal densities for each parameter to be estimated

as presented in Algorithm 2 (Yildirim, 2012).

39



Algorithm 2 Metropolis-Hastings routine

1: Initialize x(0) ∼ q(x)
2: for iteration i = 1, 2, · · · do
3: Draw xcand ∼ q

(
x(i) | x(i−1)

)
4: Compute M-H ratio

α
(
x(cand) | x(i−1)

)
= min

{
1,
q
(
x(i−1) | x(cand)

)
π
(
x(cand)

)
q (x(cand) | x(i−1)) π (x(i−1))

}

5: Draw u ∼ U(0, 1)
6: if U < α then
7: Accept proposal: x(i) = xcand

8: else
9: Reject proposal: x(i) = x(i−1)

10: end if
11: end for

3.4.3 Gibbs Sampling Algorithm

The Gibbs sampling algorithm is a special case of the M-H algorithm and it

has been widely used when sampling from a multivariate posterior is not feasible, but

sampling from the conditional distributions for each parameter of interest is feasible

(Lynch, 2007). In contrast to the M-H algorithm, the Gibbs sampling has an ac-

ceptance rate of 100%, meaning that the M-H ratio is not computed. Instead, each

parameter θi sample is generated by calculating the conditional probability of a spe-

cific parameter given the current value of the remaining parameters and repeating the

process until reaching a predetermined number of iterations. Algorithm 3 presents the

Gibbs sampling routine (Lynch, 2007).

Algorithm 3 Gibbs sampling algorithm

1: Assign a vector of starting values S to the parameter vector θ
2: Set i = i+ 1

3: Sample
(
θj1 | θ

(j−1)
2 , θ

(j−1)
3 , · · · , θ(j−1)k

)
4: Sample

(
θj2 | θ

(j)
1 , θ

(j−1)
3 , · · · , θ(j−1)k

)
...

5: Sample
(
θjk | θ

(j)
1 , θ

(j)
2 , · · · , θ(j)k−1

)
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3.4.4 Population-Based Markov Chain Monte Carlo Methods

Another variation of MCMC methods include hybrid approaches, in which meta-

heuristic approaches are combined with the MH and Gibbs sampling algorithm. These

methods are called population MCMC. This subsection presents a variation of these

methods, where the evolutionary Markov chain Monte Carlo (EMCMC) is presented.

The EMCMC samples a population of Markov chains in parallel, where each

individual within the population is coded as a finite real-coded sequence. The pop-

ulation evolves by applying the genetic operators crossover and mutation (Liang and

Wong, 2001).

Formally, the EMCMC in its real-coded version is defined as follows: a distri-

bution on a space of finite real sequence is represented by Liang and Wong (2000) as

shown below.

f(x) = exp{−H(x)/τ}, (3.16)

where:

• x: d-dimensional vector x = (β1, β2, · · · , βd), βi ∈ R

• H(x): fitness function. It is defined as the negative of the log-density of x

3.4.4.1 Mutation

A chromosome xi is uniformly chosen from the current population x = {x1, · · · , xN},

then mutated to a new chromosome yk by reversing the values of some bits that are also

chosen randomly (Figure 3.4). A new population is proposed as y = {x1, · · · , yk, · · · , xN},

and it is accepted or rejected according to the Metropolis-Hastings rule. A new chro-

mosome is generated by adding a random vector ek (Liang and Wong, 2000):

yk = xk + ek, (3.17)
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where ek is usually chosen for the mutation operation to have moderate accep-

tance probability (Liang and Wong, 2001). The new population y is accepted with

probability min(1, rm) according to the Metropolis-Hastings rule:

rm =
f(y)

f(x)

T (x | y)

T (y | x)
= exp

{
(H(yk))−

H(xk)

tk

}
T (x | y)

T (y | x)
, (3.18)

where T (· | ·) denotes the transition probability between populations.

Figure 3.4: Representation of mutation operator

3.4.4.2 Crossover

Two chromosomes xi and xj are chosen from the current population x according

to some selection procedure, such as random selection, tournament, or roulette wheel

selection (Liang and Wong, 2000). The new population y is accepted with probability

min(1, rc) according to the Metropolis-Hastings rule:

rc =
f(y)

f(x)

T (x | y)

T (y | x)
= exp

{
−H(yi)−H(xi)

ti
− H(yj)−H(xj)

tj

}
T (x | y)

T (y | x)
, (3.19)

where T (· | ·) denotes the selection probability of (xi, xj) from the population x,

and P (· | ·) denotes the probability of (yi, yj) from the parents chromosomes (xi, xj).

Figure 3.5 illustrates the crossover operator.
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Figure 3.5: Representation of crossover operator

3.5 Illustration of MCMC Output Analysis in Track Geometry Degrada-

tion

As presented earlier in this chapter, MCMC simulates a Markov chain such as

its stationary distribution is the posterior distribution of the parameter vector θ. To

verify the MCMC convergence, the simulation process is divided into two parts: pre-

convergence involves the burn-in period, which is defined as the number of initial iter-

ations that are discarded from the simulation process (Figure 3.6). This step attempts

to eliminate samples that are strongly dependent to each other. The post-convergence

part, on the other hand, is used for inference purposes.

Output analysis in MCMC is important for the following reasons: the initial

estimations about the parameters usually are characterized as having poor quality,

and the determination of the burn-in period is critical for convergence. The burn-in is

the period that corresponds to the interval of iterations starting from the first iteration

in which the solutions are discarded in order to speed up the stationary distribution of

the Markov chain. However, there is not an exact rule to determine the burn-in length,

so an analysis regarding this point is important.
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Figure 3.6: Representation burn-in period

In track geometry degradation, as discussed in chapter 2, most of the studies

utilized frequentist approaches to estimate model parameters. Andrade and Teixeira

(2012, 2013) implemented MCMC for the estimation of the linear track geometry degra-

dation model parameters. The objective was to evaluate the uncertainty behavior of

the track infrastructure through its life-cycle. Despite the contribution in this area,

these studies did not discuss the MCMC output analysis, which is important to define

the convergence of the simulated Markov chain in the steady state. Elements such as

good or poor mixing in the parameters simulated values over the iterations, Kernel

densities, and autocorrelation plots, are necessary to evaluate the MCMC routines.

To illustrate the MCMC output analysis, a linear representation of track ge-

ometry degradation using U.S. class 1 track geometry inspection data is presented as

shown in equation 3.20.

σ = θ1 + θ2t, (3.20)

where:

• σ : standard deviation of surface (in)

• θ1 : intercept (in)

• θ2 : degradation rate (in/month)

• t : inspection time (month)

The parameters vector include the intercept and the degradation rate θ =

[θ1, θ2].
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In this example, the burn-in period was defined as 5000 iterations after a trial

and error procedure. Figures 3.7 and 3.8 show the trace and density for parameters θ1

and θ2 respectively. With regard to the prior distribution, non-informative priors were

considered. The motivation of using non-informative priors was to reduce subjective

assessments that can impact the posterior distribution. As presented in this chapter,

non-informative priors may lead to improper distributions. The prior distribution for

both parameters follows a lognormal distribution with parameters θ1 ∼ LN(0.1, 0.001)

and θ2 ∼ LN(0.1, 0.001) were defined.

a) Intercept b) Degradation rate

Figure 3.7: Kernel plot

a) Intercept b) Degradation rate

Figure 3.8: Trace plot

The MCMC convergence is another point to be analyzed in the MCMC output.

Time series plays an important role in this case, because it represents the algorithm

convergence through iterations. One of the drawbacks is that the time series are au-

tocorrelated, so the informative properties of the output are not the best. One way to
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increase the information of the time series is to eliminate the autocorrelation, by mak-

ing each iteration independent from the posterior distribution. The strategy consists

of lengthening each MCMC run by a factor m and taking every m-th iteration. This

process is known as thinning. In this example, the total number of iterations and the

thinning values were set as 50, 000 and 10 iterations, respectively. As seen in Figure

3.9, the autocorrelation values decrease as the lag increases for all the chains, ensuring

independence of the initial values.

a) Intercept b) Degradation rate

Figure 3.9: Autocorrelation plot

3.6 Remarks

This chapter presented the definitions of Bayesian inference and how it dif-

fers from frequentist approaches for parameter estimation. This chapter discussed

three different variations of Markov chain Monte Carlo (MCMC) techniques named

Metropolis-Hastings algorithm, Gibbs sampling algorithm, and evolutionary MCMC.

Bayesian analysis seems to have potential for handling complex degradation

models. As presented in this chapter, few contributions in the literature regarding

parameters estimation for track geometry degradation models have been made, so it is

still an open field that deserves more attention for capturing uncertainty of the model

parameters.
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Chapter 4

WIENER PROCESS FOR DEGRADATION ANALYSIS

4.1 Introduction

Degradation processes have played an important role in different disciplines

including biology, finance, and engineering, among others. Over the past decades, re-

searchers have been interested in analyzing the evolution of degradation data to deter-

mine the system’s failure rate, and from there, establish suitable maintenance policies

(Abdel-Hameed, 2010). As presented in Chapter 2, there are important contributions

in the literature in modeling track geometry degradation, in which stochastic processes

seek to account for the uncertainty of the degradation process. These models include

random field (Iyengar and Jaiswal, 1995), gamma process (Meier-Hirmer et al., 2006),

Dagum process (Vale and Lurdes, 2013), Markov chains (Yousefikia et al., 2014), and

Wiener process (Soleimanmeigouni et al., 2016). However, estimation of the model

parameters using Bayesian approaches and the time at which the degradation process

reaches a threshold for the first time have not been addressed.

This chapter introduces the concepts of stochastic processes, where a special

type of this models that is suitable for non-strictly monotonic increasing functions,

named the Wiener process. Also, the formulation of track geometry degradation as a

Wiener process and its first hitting time are defined.

4.2 Degradation in Reliability Analysis

Reliability is the measure of a system’s success in providing its function properly

during its designed life (Elsayed, 2013). Meeker and Escobar (1998) classified reliability

data in three categories: failure-time data with non-explanatory variables, failure-time

data with explanatory variables, and degradation data. Although time-failure data
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have been also utilized to the development of reliability models, it is shown that relying

on this type of data does not provide a big picture of the whole degradation process over

time (Sotiris, 2011). Therefore, the use of degradation data has gained more attention

because it provides more reliable and richer information (Meeker and Escobar, 1998;

Sotiris, 2011).

Degradation can be defined as the loss of functionality over time of a device or

system. Also, it is said that the system fails when the degradation reaches a threshold

level (Figure 4.1). The relationship between system’s failure and degradation data plays

an important role in reliability analysis because it helps the development of degradation

models that can be used to make predictions about failure time (Meeker and Escobar,

1998). In order to perform a degradation analysis, it is necessary to establish the failure

threshold, which is theoretically defined as the minimum allowable degradation value

before the system fails. Also, collect degradation data at different times, which can be

expressed in terms of the measure of a physical degradation in time or as a measure

of the system’s performance over time (Meeker and Escobar, 1998). Finally, determine

the failure time, which is defined as the moment at which the degradation data exceeds

the failure threshold.

There exist in literature a wide range of references that have focused on model-

ing degradation. These models can be classified in three groups: general path models,

stochastic process models, and other models. General path model was first introduced

by Lu and Meeker (1993). The idea is to incorporate mixed-effect models, consider-

ing the degradation as deterministic. On the other hand, there exist the stochastic

process models which is a more realistic representation of the degradation process,

because provide a more flexible environment to model degradation and failure time.

This is done by incorporating the inherent uncertainty from the degradation pro-

cess over time. Examples of stochastic processes include Wiener process (Kahle and

Lehmann, 2010), Gamma process (Meier-Hirmer et al., 2009), Markov chains (Shafahi

and Hakhamaneshi, 2009), and inverse Gaussian process (Pettit and Young, 1999),

among others.
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Figure 4.1: Representation of a degradation process with failure threshold

4.3 Review on Stochastic Processes

Consider a system that changes from state i to state j in time. Also, assume

that the system changes over time is non deterministic, but it is influenced by a random

phenomena instead. If Xt is referred as the system’s state in time t and is expressed in

terms of a random variable, then the collection of random variables is called a stochastic

process.

4.3.1 Random Variable

A random variable (RV) is defined as follows (Mikosch, 2000; Ibe, 2013):

Definition 4.3.1. A random variable X is a real-valued function defined over a sample

space S. The distribution function of X is

P {X ≤ x} = FX(x), −∞ < x <∞. (4.1)

This function has the following properties:

1. The probability outcomes are real values S ∈ R.
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2. FX(x) is a nondecreasing function. That is

FX(x1) ≤ FX(x2), for x1 < x2. (4.2)

3. 0 ≤ FX(x) ≤ 1.

4. FX(∞) = 1, FX(−∞) = 0

The collection of all possible outcomes is called sample space and it can be

classified into discrete or continuous.

4.3.1.1 Discrete Random Variables

A discrete random variable X is defined as a random variable which has sample

space (Figure 4.2) that is defined in a finite or countable infinite number of values. The

probability mass function (PMF) of X is

PX(x) = P [X = x], (4.3)

with

pX(x) =

pX(xi) ≥ 0 i = 1, · · · , n

pX(x) = 0 otherwise.
(4.4)

Additionally, the cumulative density function (CDF) FX(x) can be expressed as

follows:

FX(x) =
∑
k≤x

pX(k). (4.5)

4.3.1.2 Continuous Random Variables

A continuous random variable is a random variable defined for all real values

X ∈ (−∞,∞), where the probability density function (PDF) of X for any set of real
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Figure 4.2: Illustration of a random variable defined as a function in the sample space
S and takes values on R

numbers A is

P [X ∈ A] =

∫
A

fX(x)dx. (4.6)

In railway track geometry degradation, there is uncertainty in terms of the

geometry parameters and the track geometry parameters model. For example, the

parameter surface right (62 ft) is a random variable, because the actual value at a

specific location is only observed until inspection is performed. The ideal value for this

parameter is zero; however, the measurement values can vary based on the condition

of the track at that specific location or accuracy of the inspection device. Having said

that, the sample space of surface right (62 ft) at a location i, can be the set of real

values in which the mean is zero or near zero. Since this track geometry parameter can

take any value in a defined interval, it is said that it is a continuous random variable.

4.3.2 Stochastic Process

A stochastic process X is a family of random variables Xt, where t is often

represented as time, such that for any finite collection of values of t ∈ T , there is the

joint probability distribution associated with the random variables Xt1 , Xt2 , · · · , Xtn ,

defined in some space Ω (Mikosch, 2000). For the continuous case, time T can be

expressed as an interval, for example T = [a, b], [a, b)or[a,∞) for a < b. Therefore, X

is a continuous-time process. In contrast, in a discrete-time processes, T is a finite or
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Figure 4.3: Kernel density for surface right 62 ft

countable infinite set.

A stochastic process X is a function of two variables (Mikosch, 2000):

1. For a fixed instant of time, t, it is a random variable:

Xt = Xt(w), w ∈ Ω. (4.7)

2. For a fixed random outcome w ∈ Ω, it is a function of time:

Xt = Xt(w), t ∈ T. (4.8)

Equation 4.8 is called a sample path of the process X.

4.4 Stochastic Differential Equations

4.4.1 Motivation

Ordinary differential equations (ODE) have played an important role in mathe-

matics especially because the fundamental principles that govern physical phenomena

have been developed using this approach. The resulting phenomena models include

the heat equation and Black Scholes equation, among others (Calin, 2015). Equation
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4.9 describes a one-dimensional dynamical system and it is called an ODE (Ditlevsen

and Samson, 2013).

dx

dt
= a(x, t). (4.9)

If a(·) satisfies the condition that a unique solution exists, then x(t) = x(t;x0, t0)

is a system’s solution with the initial condition x(t0) = x0. x(t) can be interpreted

as the location of a one-dimensional particle in space at time t and dx
dt

represents the

change in location of the particle in a time interval t, t+ dt. The trajectory of a ODE

given the initial condition is smooth as presented in Figure 4.4.

Figure 4.4: Trajectory of a ODE initial condition x(0)

There are some comments regarding ODEs (Mikosch, 2000; Ditlevsen and Sam-

son, 2013):

• Solutions of ODEs are presented as functions. Each function represent the dy-
namics of a physical process over a period of time.

• ODE’s unique solution is obtained if the initial condition x(t0) = x0. That is,
once the system’s condition at t = 0 is available, the function xt is determined
in the future for t > 0.
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• Although closed-form solutions can be used, it is more common to rely on nu-
merical solutions to ODE.

The smooth path presented in Figure 4.4 can be perturbed by the influence of

random effects (also referred as white noise) (Figure 4.5). Equation 4.10 presents the

random effects.

Figure 4.5: Schematic representation of a trajectory of a ODE and a SDE given initial
condition x(0)

dXt = m(t,Xt)dt+ σ(t,Xt)dBt, (4.10)

where Bt is the standard Brownian motion.

The SDE differs from ODE in the sense that SDE includes stochastic process

in one or more differential equations. The SDE has been applied widely in many areas

including biology, medicine, engineering, finance, etc. (Kloeden and Platen, 1992).

4.4.2 Itô Integral

The Itô integral can be defined in a similar way to Riemann integral in differ-

ential calculus. While the Riemann integral considers the summation of deterministic
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infinitesimal changes in time dt, the Itô integral is taken with respect to infinitesimal

increments of the Brownian motion B(t) which are random variables (Calin, 2015).

The output of a Riemann integral, then, is a real number, whereas the output of a Itô

integral is a random variable.

Despite the main differences between the deterministic and stochastic integrals,

they have some common properties (Calin, 2015):

Consider 0 ≤ a < b and let Ft = f(Wt, t) be a nonanticipating process satisfying

the “non-explosive” condition

E
[∫ b

a

F 2
t dt

]
<∞. (4.11)

Theorem 4.4.1. Let f be a C2 function, that is, a function with 2 continuous derivates,

and Bt be the standard Brownian motion. Then, for every t

f(Bt) = f(B0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds. (4.12)

Equation 4.12 can be expressed in a differential form

df(Bt) = f ′(Bt)d(Bt) +
1

2
f ′′(Bt)dt. (4.13)

Equation 4.13 states that the stochastic process Xt = f(Bt) at time t evolves

as a Brownian motion with drift f ′′(B(t))/2 and variance f ′(Bt)
2.

For t = 1 and expanding f in a second Taylor approximation

f(x+ y) = f(x) + f ′(x)y +
1

2
f ′′(x)y2 + o(y2),

where o(y2)/y2 → 0 as y → 0. Similarly, for the example

f(B1)− f(B0) =
n∑
j=1

[
f(Bj/n)− f(B(j−1)/n

]
.

Using the Taylor approximation
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f(Bj/n)− f(B(j−1)/n) = f ′(B(j−1)/n)∆j,n +
1

2
f ′′(B(j−1)/n)∆2

j,n + o(∆2
j,n),

where ∆j,n = Bj/n −B(j−1)/n.

Therefore, f(B1)− f(B0) is equal to the sum of the following limits

lim
n→∞

n∑
j=1

f ′
(
B(j−1)/n

) [
Bj/n −B(j−1)/n

]
, (4.14)

lim
n→∞

1

2

n∑
j=1

f ′′
(
B(j−1)/n

) [
Bj/n −B(j−1)/n

]2
, (4.15)

lim
n→∞

n∑
j=1

o
([
Bj/1 −B(j−1)/n

])
. (4.16)

The Brownian motion increment satisfies the following expression

[
Bj/n −B(j−1)/n

]2 ≈ 1/n. (4.17)

Also, the limit in equation 4.14 is a simple process approximation to a stochastic

integral. Therefore, the limit is

∫ 1

0

f ′(Bt)dBt. (4.18)

4.4.3 Stratonovich Integral

An alternative method to the Itô integral is the Stratonovich integral. In general

a function f(t, ω) can be approximated using the following expression (Øksendal, 2003):

∑
j

f(t∗j , ω) · χtj ,tj+1
(t), (4.19)

58



where t∗j belong to the intervals [tj, tj+1], and define the limit

∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

S∑
j

f(t∗j , ω)[Btj+1
(ω)−Btj(ω)]. (4.20)

In stochastic integrals, the selection of t∗j changes the output, unlike the deter-

ministic counterpart, the Riemann-Stieltjes integral. Two choices can be made in order

to solve those integrals. The first option is to choose t∗j = tj, that is, as the left end

point, leading to the Itô integral defined in subsection 4.4.2. The second option is to

consider t∗j as the mid-point of the interval [tj, tj+1], that is, t∗j = (tj + tj +1)/2, leading

to the Stratonovich integral

∫ T

S

f(t, ω) ◦ dBt(ω). (4.21)

4.4.4 Strong Law of Large Numbers and Central Limit Theorem

Given a probability space and a random variable X ∈ R, which returns the

outcome of a random experiment, repetitions of the random experiment can be done

by introducing a sequence of random variables X1, · · · , Xn. Each random variable

contains the same probabilistic information as X. That is, the sequence X1, · · · , Xn is

identically distributed if (Evans, 2012)

FX1(x) = FX2(x) = · · · = FXn(x), ∀x. (4.22)

If it is also assumed that X1, · · · , Xn are independent, then that sequence of

random variables are said to be independent, identically distributed random variables.

4.4.4.1 Strong Law of Large Numbers

Theorem 4.4.2. Let X1, · · · , Xn be a sequence of independent, identically distributed

random variables defined on the same probability space. If m := E(Xi) for i = 1, · · · ,
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then

P

(
lim
n→∞

X1 + · · ·+Xn

n
= m

)
= 1. (4.23)

4.4.4.2 Central Limit Theorem

An important characteristic of the Brownian motion (to be discussed in section

4.5) is that the increments of a sample path are normally distributed. The justification

is made by using the central limit theorem. In general, the limit distribution of the

independent, identically distributed random variables X1, X2, · · · , Xn with mean µ and

variance σ2 <∞. Let

Zn =
(X1 + · · ·Xn)− nµ

σ
√
n

, (4.24)

and

Φ(b) =

∫ ∞
−∞

1√
2π
e−x

2/2dx (4.25)

denotes the standard normal function. With the previous equations, the central

limit theorem can be formulated as follows (Lawler, 2016):

Theorem 4.4.3. The distribution of Zn approaches a standard normal distribution

when n→∞, that is, if a < b, then

lim
n→∞

P {a ≤ Zn ≤ n} = Φ(b)− Φ(a). (4.26)

Equation 4.26 states that any distribution of X with finite variance, the scaled

random variable is approximately a normal distribution.

4.5 Wiener Process

The Wiener process is a stochastic process introduced by the biologist Robert

Brown in the 1820s (Mikosch, 2000). In his model, known as Brownian motion, Brown
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studied that the motion of microscopic particles in liquid are random depend on dif-

ferent perturbations, noise, etc. These perturbations are caused by the influence of

the molecules present in the liquid. The first mathematical representation of Brownian

motion was presented by Wiener (1923). The model represents the displacement of

the particle over a time interval as the sum of all independent effects on that particle

that are normally distributed with mean zero and variance proportional to the length

of the time interval.

The Wiener process has been applied in finance (Meyer and Saley, 2003; Bianchi,

2005), biology (Cohen and Moerner, 2006; Kadloor et al., 2012), engineering (Pandey

et al., 2005; Guerin et al., 2010; Yea and Xie, 2015; Soleimanmeigouni et al., 2016),

among other fields. The advantage of the Wiener process in degradation models is that

it provides a representation for non-strictly monotonically increasing functions, allow-

ing the incorporation of uncertainty into the model due to random noise, measurement

errors and other random perturbations to the degradation data.

The Brownian motion or standard Wiener process is defined as follows:

Definition 4.5.1. Bt = (Bt, t ∈ [0,∞)) is called a standard Brownian motion or a

Wiener process if (Mikosch, 2000):

• It starts at zero: W0 = 0

• It has stationary, independent increments

• For every t > 0, Bt is normally distributed (N(0, t)

• Does not have “jumps”, that is, it has continuous sample paths

Definition 4.5.1 is also illustrated in Figure 4.6, in which a single realization of

the standard Brownian motion, also known as the sample path, is presented.

The sample path presented in Figure 4.6 shows the variable time in the x axis

and the Brownian motion values as a dependent variable in the y axis. The path starts

at time zero (0), and its corresponding value for the Brownian motion is zero (0), that

is, ω0 = 0.
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Figure 4.6: Realization of the Brownian motion

The increments are also characterized for being stationary. In general, a station-

ary process refers to a process that does not change over time. Hence, the Brownian

motion increments are stationary if the expected function is constant and the covari-

ance function depends only on the distance |t − s|. However, that concept cannot be

extended to Brownian motion, which is not stationary because the variance increases

with time t.

The Brownian motion is said to have stationary increments if

ωt − ωs
d
= ωt+h − ωs+h ∀t, s ∈ T and h with t+ h, s+ h ∈ T. (4.27)

In addition, the Brownian motion is continuous in time with with independent

Gaussian increments, that is, that the random variables ωt−ωs and ωt−s are normally

distributed N(0, t − s) for s < t. That is, if for every time selection ti ∈ T with

t1 < · · · < tn and n ≥ 1 (Mikosch, 2000)

ωt2 − ωt1 , · · · , ωtn − ωtn−1 (4.28)
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are independent random variables. As a result, the Wiener process exhibits the

Markov property due to the independent increments.

Another characteristic presented in Definition 4.5.1 is that for any t > 0, all the

possible values of ω(t) are normally distributed with mean E(w(t)) = 0 and variance

σ2 = t. As shown in Figure 4.6, for t = 2, the distribution of the Brownian motion or

Wiener process evaluated at t = 2, ω(2) is N(0, 2).

The finite-dimensional distributions (fidis) of the standard Brownian motion are

defined as multivariate Gaussian distributions. In general, the Brownian motion is the

accumulation of a set of normally distributed random variables. Between each time

interval, the increment of the Brownian motion is normally distributed with mean 0

and variance σ2∆t. Also, Definition 4.5.1 states that Brownian motion, unlike Poisson

processes, has continuous sample paths, being more suitable to describe a process with

independent, stationary, and continuous increments.

Figure 4.7 presents different sample paths at various numbers of steps N = 10,

N = 100, N = 1000, and N = 10000 in the time interval [0, 1]. The figure shows

that the higher the number of iterations or the smaller the time step size, the more

uncertainty that is captured by the process.

4.5.1 First Hitting Time

The first hitting time (FHT) is a natural event for stochastic processes (Lee

and Whitmore, 2006). Examples of stochastic processes and their FHT include: in the

Markov chain context, the first hitting time is expressed in terms of the number of steps

required to the system to reach the absorbing state; the absorbing state is the analogous

to the threshold for Wiener process. For a Bernoulli process, the FHT is the number

of trials needed until success. For the gamma process, the FHT is the inverse gamma

distribution. For the Poisson process, the FHT has an Earlang distribution. Finally, for

the Wiener process, the FHT is expressed in terms of the inverse Gaussian distribution.

Lee and Whitmore (2006) presented an extensive summary stochastic processes and

first hitting time. The applications include engineering (Bian and Gebraeel, 2012; Hao
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Figure 4.7: Wiener process sample paths at different number of steps (N)

and Su, 2014), medicine (Pennell et al., 2010), biology (Sæbø et al., 2005), and social

sciences (Smith and Ratcliff, 2004), among others.

The FHT can be interpreted in degradation analysis as the moment at which

the system reaches a specified threshold (Figure 4.8).

In general, the first hitting time model is composed by (Lee and Whitmore,

2006): a) a parent stochastic process {W (t), t ∈ T,w ∈ Ω}, where T is the time space

and χ is the state space of the process (Wiener process in this research) and b) a

threshold set H expressed as

T = inf {t | W (t) ≥ a} , (4.29)
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Figure 4.8: Schematic representation of the threshold-regression model

with a ∈ H.

Lemma 4.5.1. Let ta be the first time the degradation model (represented by a Brown-

ian motion) Wt hits a predefined threshold level a. The distribution of ta is formulated

as (Calin, 2015)

P (ta ≤ t) =
2√
2π

∫ ∞
|a|/
√
t

e−y
2/2dy. (4.30)

Proof. Consider A and B as two events, where A represents the threshold level A, and

B represents the first hitting time ta. The probability of A can be represented by the

following expression

P (A) = P (A ∩B) + P (A ∩ B̄)

= P (A | B)P (B) + P (A | B̄)P (B̄).
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If a > 0, A = {w;Wt(w) ≥ a}, and B = {w; ta(w) ≤ t}, then

P (Wt ≥ a) = P (Wt ≥ a | ta ≤ t)

P (ta ≤ t) + P (Wt ≥ a | ta > t)P (ta > t).
(4.31)

If ta ≥ t, it can be concluded that the Brownian motion did not reach the

threshold level a, that is, Wt < a. Therefore:

P (Wt ≥ a | ta > 0) = 0. (4.32)

Likewise, if ta ≤ t, then Wta = a.

Since the standard Wiener process is a Markov process, the process starts at ta.

In addition, because of the symmetry of the probability density function of a normal

distribution, the Brownian motion Wt has equal chances to go up or go down after the

time interval t− ta, therefore

P (Wt ≥ a | ta ≤ t) =
1

2
. (4.33)

By substituting equations 4.32 and 4.33 into 4.31:

P (ta ≤ t) =
P (Wt ≥ a)− P (Wt ≥ a | ta > t)P (ta > t)

P (Wt ≥ a | ta ≤ t)
.

P (ta ≤ t) = 2P (Wt ≥ a)

P (ta ≤ t) =
2√
2π

∫ ∞
a

e−x
2/(2t)dx

=
2√
2π

∫ ∞
a/
√
t

e−y
2/2dy.

(4.34)

If a < 0, then the distribution of ta is the same as t−a:

P (ta ≤ t) = P (t−a ≤ t) (4.35)
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4.6 Wiener Process in Track Geometry Degradation

As shown in Chapter 2, railway track geometry degradation has a monotonic,

but not strictly increasing behavior. There are situations in which the degradation pa-

rameter can slightly reduce its value due to measurement errors or minor interventions

in the track. Stochastic processes, in general, offer a more flexible and robust environ-

ment that represents the increase in the degradation process, allowing a better adap-

tation of the data in their behavior. Although the Wiener process has been applied in

degradation models, it is a new topic in rail track degradation analysis. Chapter 2 also

concluded that stochastic rail track degradation has been modeled using the gamma

process (Meier-Hirmer et al., 2009) and Markov chains (Shafahi and Hakhamaneshi,

2009). There is one implementation using the Wiener process presented by Soleiman-

meigouni et al. (2016) (Figure 4.9). In addition to the Wiener process, shock events,

that is, sudden changes (jumps) in the degradation values were considered. The main

limitations of this paper is that track geometry degradation model parameters were

estimated using the maximum likelihood method which is a frequentist method that

provides a single point estimate, instead of the probability distribution of all the pos-

sible values for the parameters. Also, time to failure, a natural process in a stochastic

process, was not addressed.

Based on what it was presented above, track geometry degradation is modeled

as a Wiener process with drift.

Let Yt be the stochastic component of the degradation for a specific track ge-

ometry parameter. The Wiener process with drift is presented as follows

Yt = Y0 + µt+ σWt, (4.36)

where:

• Yt: degradation level at time t

• Y0: initial degradation
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Figure 4.9: Representation of track geometry with shock events

• µ: drift parameter (degradation rate) (in)

• σ: diffusion parameter

• Wt: standard Wiener process (or Brownian motion)

• t: time

As shown in equation 4.36, the Wiener process has two main components: the

standard Brownian motion (Wt) and the drift and diffusion parameters that are time

dependent and can be estimated using frequentist and Bayesian methods. In this

research, the Markov chain Monte Carlo (MCMC) approaches are used to estimate the

parameters’ posterior distributions.

In terms of time to failure in track geometry, this problem has been traditionally

addressed using defect data. Important contributions in this approach include He et al.

(2013); Zarembski et al. (2016); Alemazkoor et al. (2017). However, unless it is an

accident due to extreme events, track geometry failure is the result of some underlying

degradation process.

Therefore, this research considers the Wiener process to achieve two goals:
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1. To predict track condition for each maintenance cycle for each section of the
track, and

2. To determine the first hitting time, that is, the time at which the system “fails”
for the first time.

4.7 Remarks

This chapter introduced the concepts of stochastic process. These concepts

included stochastic differential equations (SDE), its differences from ordinary stochastic

equations (ODE), the Itô and Stratonovich integrals, and the concept of a sample

path. The chapter formally defined track geometry degradation as a Wiener process

with drift. Also, the time at which the degradation path first reaches a threshold,

called the first hitting time was defined. Based on the literature review performed,

time to failure has been traditionally estimated using defect data and the stochastic

processes utilized to model track geometry degradation have not been extended to the

estimation of the first hitting time. This dissertation defined two goals in terms of the

use of Wiener process in track geometry degradation. Chapters 6 and 7 will present

the results regarding the implementation of this method.
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Chapter 5

EXPLORATORY DATA ANALYSIS

5.1 Introduction

Before the implementation of the MCMC and its variants, an exploratory data

analysis (EDA) was carried out. EDA seeks to explore data for patterns and relation-

ships without requiring prior hypotheses (Velleman and Hoaglin, 2012). In general, the

EDA is an approach that by means of a variety of techniques (most of them graphical)

allows a first insight about how the data is characterized, whether there are anomalies

in the variables (outliers), whether there exist relationships within the variables, etc.

In this chapter, a detailed explanation about the data set utilized in this research

is presented, as well as the exploratory data analysis. The goal of this chapter is to

provide a better understanding of the track geometry parameters and the input data

that is used to the implementation of the hybrid Bayesian approaches and Wiener

process for predicting track geometry degradation and the first hitting time.

5.2 Data Set Description

In this research, an inspection data set for a U.S railroad was utilized. The data

set contains information regarding the track geometry parameters for one mile of track

measured foot-by-foot, between years 2013-2016, and it was collected using automated

inspection with the track geometry car. Each track foot is characterized in terms of 32

different attributes, where 20 of them correspond to variants of geometry parameters.

Examples of these variants include:

• Gage

• Crosslevel
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• Surface right (62 ft)

• Surface left (62 ft)

• Surface right (124 ft)

• Surface left (124 ft)

• Alignment right (62 ft)

• Alignment left (62 ft)

• Alignment right (124 ft)

• Alignment left (124 ft)

• Warp (62 ft)

Figure 5.1 presents a sample of the data at a specific inspection date for param-

eters crosslevel, surface left (124 ft), alignment left (124 ft), and warp.

During the period of interest, maintenance activities were performed, of which

tamping was one of the most common practices. As presented in Chapter 2, tamping is

a maintenance technique with the main goal of correcting the alignment of the rails so

they are parallel and level by using the tamping machine, that is located on top of the

tie. Then the tamping tines are placed into the ballast, squeezing the ballast under the

tie (Audley and Andrews, 2013). Apart from tamping, a major track reconstruction

activity was performed. A geocell layer was placed in the track substructure, separating

the subgrade and the ballast.

The geometry data is presented in terms of signals, and it is reported in tabular

form; there were no missing values, so it can be said that the data set for preprocessing

is structured. However, data availability is an important point to make, because only a

mile of track was available for analysis, in which a major reconstruction was performed

as presented in Figure 5.2. Having said that, the training data used to perform the

forecasting model considered only the inspection dates before the geocell layer was

placed. This is because since this practice is not frequent, it may significantly bias

the results because it is a considerably adjustment of the geometry parameters that
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Figure 5.1: Illustration of foot-by-foot measurements for some track geometry param-
eters

are not common considering tamping activities. The goal then, is to extract as much

information as possible that better describes the track geometry degradation and helps

predict its behavior from the available data set.
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Figure 5.2: Illustration of surface right (62 ft) data

5.2.1 Types of Data Set of EDA

The histograms and normal quantile plots and box plots are presented consider-

ing two different subgroups of the data set. One is considering longitudinal data, that

is, variables that are fixed at a specific track location but varies over time. Table 5.1

presents a sample of longitudinal data.

Table 5.1: Sample of longitudinal data

Location Inspection Date

Jun-13 Jul-13 Aug-13 · · · Sep-13 Mar-16 Apr-16
1 -0.28992 0.0293 0.00916 · · · 0.05035 0.06561 0.03784

On the other hand, the track geometry parameters can be also analyzed based
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on the condition of the whole track at a specific inspection time. In this case, cross-

sectional data is utilized. Table 5.2 presents a sample of cross-sectional data.

Table 5.2: Sample of cross-sectional data

Location Inspection date t

1 -0.289916992
2 -0.250447591
3 -0.196411133
4 -0.135559082
...

...
n− 3 0.036010742
n− 2 0.022705078
n− 1 0.012003581
n -0.003356934

Both types of data sets are important because they provide insight of the char-

acteristics of the track, as well as similarities of differences between a single parameter

that is analyzed over time at a specific location, versus the same parameter at a fixed

time but at different locations. This also provides an idea of the contribution of a

specific location of the whole available track length.

5.3 Graphical Methods for EDA

5.3.1 Histogram and Quantile-Quantile Plot

The histogram is a graphical method that shows the underlying distribution

based on frequency of a continuous random variable, as well as showing if there is an

indication of skewness, among others. On the other hand, the QQ plot presents the

data in such way that shows whether the data set comes from a normally distributed

population. This graphical method compares, based on quantiles, the observed data

points with data points predicted from a standard normal distribution. If there is a

systematic deviation from the line in the QQ plot, then it can be assumed that the

data are not normal (Thode, 2002).
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5.3.1.1 Histograms and QQ Plots for Longitudinal Data

Figures 5.3 and 5.4 show an example of histograms and QQ plot for six different

geometry parameters; all of them measured at a specific location of the track in the

2013-2016-year time frame. Figure 5.3 shows that data points for crosslevel at a specific

track location, has an S-shape distribution. For surface right (62 ft), it can be said

that most of the data points are located over the theoretical line. However, it has a

long left tail, as shown in both the histogram and QQ plot. For alignment right (62

ft), the histogram does not show the typical Gaussian shape. Instead, the QQ plot

shows that the data points follow an S-shape, in which center data and the tails are

not located over the theoretical line.
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Figure 5.3: Illustration of histogram and QQ plot for crosslevel, surface right (62 ft),
and alignment right (62 ft) at a specific track location

Figure 5.4 shows that data points for surface left (62 ft) rely over the theoretical
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line in the QQ plot. This parameter shows a more symmetric behavior compared to

surface right (62 ft) at the same location. For alignment left (62 ft), most of the data

points are located over the theoretical line, except from the points located at the right

most side, as opposite to alignment right (62 ft). Finally, for warp (62 ft), most of

the data points are concentrated in the interval [−0.1, 0.1] inches and located over the

theoretical line; however, there is an indication of a potential outlier as shown on the

left side of the QQ plot.
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Figure 5.4: Illustration of histogram and QQ plot for surface left (62 ft), alignment left
(62 ft), and warp (62 ft) at a specific track location

5.3.1.2 Histograms and QQ Plots for Cross-Sectional Data

Figure 5.5 and 5.6 present the histograms and QQ plots for track geometry

parameters crosslevel, surface right (62 ft), alignment right (62 ft), surface left (62 ft),

alignment left (62 ft), and warp (62 ft).
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Figure 5.5 shows that parameter crosslevel has a Gaussian shape in the left most

side of the histogram and QQ plot, and a lower density in the right most side of the

plots. This suggests that there is a subgroup in the measurements for this parameter

of the track that are different from the majority of the data points. As a result, a bi-

modal type distribution can be observed at a specific inspection date. This is explained

by a shallow curve in the track under study. For surface right (62 ft) the center data

points, which corresponds to the highest concentration of points for this parameter,

are located over the theoretical line, and the remaining points correspond to long left

and right tails. For alignment right (62 ft), the data points have a Gaussian shape as

presented in the histogram and the points rely on the theoretical line in the QQ plot,

except from a tail in the left side of the plot.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Crosslevel (in)

0

500

1000

1500

F
re

qu
en

cy

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-0.5

0

0.5

1

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

 Surface Right (62 ft) (in)

0

200

400

600

800

F
re

qu
en

cy

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-1

-0.5

0

0.5

1

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 Alignment Right (62 ft) (in)

0

100

200

300

400

500

F
re

qu
en

cy

-4 -3 -2 -1 0 1 2 3 4

Standard Normal Quantiles

-0.4

-0.2

0

0.2

0.4

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Standard Normal

Figure 5.5: Illustration of histogram and QQ plot for crosslevel, surface right (62 ft),
and alignment right (62 ft) at a specific inspection date

Figure 5.6 shows that surface left (62 ft) data points are concentrated in the
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interval [−0.2, 0.2] as shown in the histogram and is heavy tailed in both the left and

right sides of the distribution. The same pattern is presented in surface right (62 ft), in

which an S-shape is presented and even though the histogram shows a symmetric shape

pattern, a further analysis would be required to determine the underlying distribution

for this parameter. Similar to alignment right (62 ft), alignment left (62 ft) also

follows a normal distribution based on the histogram and QQ plot. Finally, warp (62

ft) presents a slight S-shape pattern in the QQ plot, skewed to the left side of the

distribution.
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Figure 5.6: Illustration of histogram and qq plot for surface left (62 ft), alignment left
(62 ft), and warp (62 ft) at a specific inspection date

5.3.2 Box Plot

Another important behavior to examine in a exploratory data analysis, is whether

there is presence of any potential ouliers in the data set. This can be done by using
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the blox plot. The box plot is a graphical method that summarizes the data by using

the median and the upper and lower quartiles, that is, the 25th and 75th percentiles.

The box plot is very useful because it helps describing the behavior of the data in the

middle and at the ends of the distributions. If the lower quartile is Q1 and the upper

quartile is Q3, then the difference (Q3 - Q1) is called the interquartile range (IQ). Any

values that are outside the box plot can be interpreted as potential outliers.

Similar to the histogram and QQ plots, the box plots are presented by viewing

the data set as longitudinal data (that is, a fixed track location in different time) and

cross-sectional data, which is done by observing the entire population (the mile of track

in this case) at a fixed inspection date.

5.3.2.1 Box Plot for Longitudinal Data

Figures 5.7-5.9 present the box plot for longitudinal data for parameters crosslevel,

surface right (62 ft), and alignment right (62 ft) for selected track locations. For the

three parameters, the box plots show that adjacent locations have the same or very

close median values. For the data subset presented, parameter crosslevel does not

present any outliers (Figure 5.7). However, for surface right (62 ft) (Figure 5.8), it

is shown that there is high variability in the distributions at different locations. For

alignment right (62 ft) there is a slight variation on the distribution for each location.

The lower whiskers in the box plots mean that geometry parameters values vary among

the least positive quartile group, this behavior is the most frequent for the three pa-

rameters. Finally, the box plots allow visualization any potential outliers in the data.

The potential outliers in Figures 5.8-5.9 are represented as red crosses, in which for

surface right (62 ft) presents a high number of those values that required an in-depth

analysis.

83



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Distance (ft)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

M
ea

su
re

m
en

t (
in

)

Figure 5.7: Illustration of box plot for crosslevel
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Figure 5.8: Illustration of box plot for surface right (62 ft)
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Figure 5.9: Illustration of box plot for alignment right (62 ft)

5.3.2.2 Box Plot for Cross-Sectional Data

By using cross-sectional data, it can be seen that each location of the track have

different characteristics and cannot be easily placed in a single category. This is shown

in the high number of potential outliers presented as red crosses on each plot. Figure

5.10 presents the box plot for multiple track geometry parameters. The figure shows

that the median values for all parameters are around zero and the presence of values

that are out of the upper and lower whiskers is very high compared to longitudinal data.

This case might be explained by the condition of the track which varies depending on

the location. Figures regarding box plots for other inspection dates are presented in

Appendix A.
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Figure 5.10: Illustration of box plot for selected geometry parameters at a specific
inspection time

5.3.3 Correlation Plot

Figure 5.11 presents the correlation matrix plot between pairs of geometry pa-

rameters. This plot displays, in the main diagonal the histograms for individual track

geometry parameters, and the upper and lower cells show the scatter plot and the

Pearsons correlation coefficients for each pair of parameters. Each histogram shows

the underlying distribution of the geometry parameters. Symmetric distributions ap-

pear to describe most of the parameters except crosslevel, where a bimodal distribution

is observed due to the presence of a shallow curve in the track under study. On the

other hand, no strong linear correlation was found for any of the variable pairs in the
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Figure 5.11: Correlation matrix and scatter plots between selected track geometry
parameters at a specific inspection date

5.4 Remarks

Based on the exploratory data analysis presented in this chapter, the following

conclusions can be made:

1. Due to high variability on the track geometry parameters and the non-strictly
monotonic increasing behavior of track geometry degradation, a stochastic ap-
proach to modeling track geometry degradation appears to be appropriate.

2. By dividing the data set into longitudinal and cross-sectional data, and per-
forming graphical normality test, it was possible to observe that track locations
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have different distributions for different geometry parameters. Parameters sur-
face right and left appear to be the parameters with the highest variability com-
pared to the rest of the parameters. This provide insights about the dominant
parameters in track geometry degradation.

3. From the box plots it was possible to observe that there are similarities in terms
of the distribution of the parameter values for adjacent locations of the track.

4. Surface right and left are the track geometry parameters with the highest varia-
tion compared to the other parameters. This is shown in the box plots, in which
they do not have consistent median values along the locations.
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Chapter 6

HYBRID MARKOV CHAIN MONTE CARLO AND WIENER
PROCESS IN RAILWAY TRACK GEOMETRY DEGRADATION

ANALYSIS

6.1 Introduction

This chapter implements the Metropolis-Hastings algorithm for parameter esti-

mation of the Wiener process model parameters for track geometry degradation. Also,

the simulation of the sample paths for multiple track geometry parameters is presented.

Based on the characteristics of the track geometry data, the Wiener process appears

to be suitable for modeling the degradation process. The results show the potential

of using this approach for the prediction of track geometry degradation. To imple-

ment the hybrid Bayesian-Wiener process in track geometry degradation, the following

methodology was conducted (Figure 6.1).

Data preprocessing

Wiener process 
parameters estimation 

using Markov chain 
Monte Carlo

Simulate sample paths

Figure 6.1: General overview for the implementation of the hybrid Bayesian-Wiener
process for a single track geometry parameter

6.2 Data Preprocessing

This stage consisted of arranging the data set into the format required for run-

ning the MCMC algorithm. The data set described in Chapter 5 was used for this case

study. Both cross-sectional and longitudinal data for each track geometry parameter

were utilized. The cross-sectional data, that is, taking all data points for each param-

eter at a specific inspection date, were used to divide the track into a specified number
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of sections. In this chapter, degradation is expressed in terms of the measure of the

track performance. For that reason, 150-foot and 500-foot sections length were consid-

ered to divide the track. After the sections were defined, a track quality index (TQI),

based on the standard deviation of each track geometry parameters were calculated.

As presented in Chapter 2, there are different approaches to measure the quality of

track sections, in which the standard deviation is the one that is most commonly used.

Once the TQI for each track section and track geometry parameter were calculated,

the data was arranged as longitudinal data, that is, the data was presented in such

way that the TQI over time for each track section was observed. Figures 6.2 and 6.3

present a sample of the degradation plots for multiple track geometry parameters at a

specific section.
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Figure 6.2: Degradation plot for multiple track geometry parameters at a specific 150-
foot track section
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Figure 6.3: Degradation plot for multiple track geometry parameters at a specific 500-
foot track section

After comparing the degradation values for each section it was observed that

parameter gage reported stable TQI values over time, so in terms of degradation, an

increasing or decreasing pattern was not observed for all track sections. Therefore, gage

was not considered for further analysis. For the remaining parameters, however, an

increasing degradation values in some of the sections were observed. Figures 6.2 and 6.3

show examples of sections with clear degradation and restoration patterns, in which it

was observed that the TQI values increased over time. The data also showed the times

at which maintenance activities were performed. Parameter surface left measured at

a 62 and 124 foot-chord appear be the dominant parameter in terms of higher TQI

compared with the rest of the parameters.

Since one of the goals of this dissertation is to predict track degradation and to
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predict the first hitting time only, the data points considered as input for estimating the

Wiener process parameters were the degradation points before a maintenance activity

was performed. That is, only data points for one maintenance cycle.

6.3 Metropolis-Hastings Algorithm Implementation and Output Analysis

To estimate the Wiener process model parameter vector θ = [µ, σ], a Markov

chain Monte Carlo technique based on the Metropolis-Hastings (MH) algorithm was

considered. As presented in Chapter 3, the MH algorithm simulates a Markov chain

in such a way that the stationary distribution of the Markov chain is the posterior

distribution of the model parameters. For the MH implementation, three elements are

defined: a) proposal density, b) prior function, and c) likelihood function.

Proposal Function

The MH algorithm can be defined as an extension of the accept-reject method, in

which parameter’s values are proposed and then accepted or rejected based on the MH

ratio. The proposal function, also known as the envelope function, should be spread

enough to cover the target density, but not too spread, making the acceptance rate too

high. In this case, the algorithm would accept samples that are not a close represen-

tation of the model parameters. There is not an exact procedure that formulates this

function, it is, in a high number of cases, a result of a trial and error procedure. This

procedure is tested based on the acceptance rate obtained. The literature recommends

an asymptotically acceptance rate of 0.234 (Roberts et al., 1997). In this research,

the proposal function is symmetric and is normally distributed ∼ N(chaini, sd), where

chaini corresponds to the parameter’s value at iteration i and sd is the standard devi-

ation tuned by a trial and error procedure.

Prior Function

The prior function incorporates the subjective component of the MH algorithm

(and Bayesian inference in general). It allows incorporation of prior knowledge to the

calculation of the posterior distribution. In this research, an adaptive prior function

94



was defined. Adaptive means that the prior distribution would change its shape as the

number of iterations increase, that is, as new data are available. This distribution starts

as a non-informative prior and the log normal density was defined. In each iteration,

the log-normal distribution parameters are updated with the current accepted values of

the chain, so this function changes from non-informative to informative prior. Equation

6.1 presents the general formulation of the probability density function for the prior

distribution.

f(θ | ν, s) =
1

θs
√

(2π)
exp

[
−(ln θ − ν)2

2s2

]
, (6.1)

where ν and s are the log mean and log standard deviation, respectively.

Likelihood Function

The likelihood function represents the probability of observing the data given

the parameters. Since the track geometry degradation is modeled based on a Wiener

process, degradation increments dy for p sample paths and time j are normally dis-

tributed with mean µ∆t and standard deviation σ∆t, the likelihood function is p

resented in equation 6.2.

f(dY | µ, σ) =

p∏
i=1

qi∏
j=1

1

σ
√

2π∆tij
exp

[
(dY − µ∆tij)

2

2σ2∆tij

]
, (6.2)

where p and q are the number of sample paths and number of measures on each

sample path, respectively.

MH Output Analysis

As presented in Chapter 3, output analysis plays an important role in Markov

chain Monte Carlo routines, because it allows verification of the algorithms’ conver-

gence. In this chapter, the output analysis for the Metropolis-Hastings algorithm is

presented for 150-foot track sections for parameters crosslevel, surface left (124 ft),

alignment left (124 ft), and warp (62 ft). This analysis is presented in terms of plots
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(Kernel density, trace, and autocorrelation plot). The output plots for 500-foot track

sections are presented in Appendix B.

In addition to the graphic output analysis for the Metropolis-Hastings algorithm,

the point estimates were calculated. Tables 6.1 and 6.2 present the summary statistics

for track geometry parameters crosslevel and surface left (124 ft). The point estimates

were calculated for each track section for parameters µ and σ, which include the mean

value, the standard Monte Carlo error, the mode of the distribution, the median,

and the mean square error (MSE), which was compared with the frequentist method

maximum likelihood estimation (MLE).

Crosslevel

The plots for both drift and diffusion parameters show that the values for each

chain are not dependent. Also, the point estimates provide different interpretations of

the degradation values increments. As shown in Table 6.1, sections 1, 5, and 7 reported

positive drift values. Also, for all the track sections, the standard Monte Carlo error

reported small values < 0.65 for drift parameter and < 0.85 for diffusion parameter.
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Figure 6.4: Crosslevel: MCMC posterior plots for drift parameter
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Figure 6.5: Crosslevel: MCMC posterior plots for diffusion parameter
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Surface Left (124 ft)

For surface left (124 ft), the MCMC output plots show that the chain values

reached the stationary distribution faster compared to crosslevel for drift parameter.

However, the autocorrelation plot for diffusion parameter shows that it took longer to

reach the stationary distribution compared to the drift parameter and to the diffusion

parameter for crosslevel. The Kernel density shows that the drift parameter follows

a symmetric density, whereas a skewed distribution appears to describe the diffusion

parameter. The point estimates reveal that the standard Monte Carlo error for both

drift and diffusion parameters are < 0.019 and < 0.02 respectively. Finally, sections 1,

3, 4, 5, and 6 reported positive drift values.
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Figure 6.6: Surface left (124 ft): MCMC posterior plots for drift parameter
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Figure 6.7: Surface left (124 ft): MCMC posterior plots for diffusion parameter
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Alignment Left (124 ft)

The output plots for this parameter show that the chain values for both drift

and diffusion parameters reached the stationary distribution faster than surface left

(124 ft). Also, the Kernel density has a symmetric shape for drift parameter and a

skewed shape for diffusion parameter. In terms of the standard Monte Carlo error, the

values are < 0.092 for drift parameter and < 0.011 for diffusion parameter. Finally,

sections 1, 5, and 6 reported positive drift values.
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Figure 6.8: Alignment Left (124 ft): MCMC posterior plots for drift parameter
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Figure 6.9: Alignment Left (124 ft): MCMC posterior plots for diffusion parameter
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Warp (62 ft)

The output analysis for plots in warp (62 ft) is similar to crosslevel in the sense

that both reached the stationary distribution quicker than the rest of the parameters.

Also, it is shown that the drift parameter has a symmetric Kernel density and the

diffusion parameter has a skewed density. The Monte Carlo error is < 0.0092 for drift

parameter and < 0.01 for diffusion parameter. Finally, sections 1, 5, and 6 reported

positive drift values.
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Figure 6.10: Warp (62 ft): MCMC posterior plots for drift parameter
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6.4 Wiener Process Sample Paths

After validating the convergence of the Metropolis-Hastings algorithm for the

Wiener process parameters, the Wiener process sample paths were simulated for each

maintenance cycle per track section. The total number of steps (N) was 10, 000, and

the total number of sample paths was 1000. Figures 6.12-6.15 present the sample paths

and the observed degradation for a specific track section considering the parameters

crosslevel, surface left (124 ft), alignment left (124 ft), and warp (62 ft).

To illustrate how the sample paths contained the observed degradation values,

two subplots are presented for each geometry parameter. The bigger subplot presents

a scaled version of the observed and simulated degradation points.
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6.5 Model Validation

To validate the model convergence, data points for each maintenance cycle and

for each track section were divided into two data sets: a training data set and a testing

data set. The training data set consists of approximately 60% of the total data points

and were utilized to estimate the Wiener process model parameters for each track

geometry parameter. Once the parameters were estimated, the Wiener process sample

paths were extrapolated from the last inspection date from the training set until the

last reported inspection date for the maintenance cycle (last inspection date for the

testing set) as presented in Figure 6.16.
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Figure 6.16: Illustration of training and testing data sets for a track section for param-
eter surface left (124 ft)

To measure the deviation of the observed data points from the predicted sample

paths, the mean squared error (MSE) was calculated. Table 6.5 presents the MSE for

150-foot sections included in the geocell zone for parameters crosslevel, surface left
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(124 ft), alignment left (124 ft), and warp (62 ft). As observed in the table, the

MSE reported values near to zero, bounding the training data points. Results show

how the Metropolis-Hastings algorithm is appropriate for estimation of the Wiener

process model parameters when using a small number of training data points for all

the experiments conducted.

Table 6.5: Mean squared error for testing data set

Section Crosslevel
Surface left

(124 ft)
Alignment
left (124 ft)

Warp
(62 ft)

1 7.32E-04 6.82E-04 5.26E-05 1.39E-03
2 4.02E-05 1.21E-02 5.79E-03 1.03E-03
3 1.26E-03 6.76E-04 2.09E-04 8.64E-04
4 8.05E-05 1.28E-04 1.30E-03 6.10E-05
5 3.34E-05 4.44E-04 1.23E-04 6.45E-05
6 4.83E-05 2.38E-03 3.01E-04 6.57E-05
7 9.60E-07 6.48E-04 3.11E-03 1.52E-05

6.6 Remarks

In this chapter, a hybrid Wiener process and Markov chain Monte Carlo (MCMC)

for predicting track geometry degradation was proposed. A data set regarding track

geometry inspection from a U.S. railroad was used. From this research the following

conclusions were made:

1. From the data preprocessing, it was observed that degradation patterns present
a non-strictly monotonic increasing behavior of track geometry degradation.
Therefore, a stochastic approach to modeling track geometry degradation was
appropriate.

2. The underlying degradation process was defined as a Wiener process with drift.
The Wiener process parameters were estimated using an adaptive Metropolis-
Hastings algorithm, where the lognormal distribution was updated during the
simulation process. This approach allows movement from non-informative to in-
formative prior as new data are available, allowing the prior to have an increasing
influence over the posterior distribution as the number of iterations increases.

3. The Metropolis-Hastings output analysis was presented in order to analyze the
algorithm convergence. The analysis shows that the generated Markov chains
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successfully reached the steady state distribution and the posterior distribution
of the parameters, given track geometry inspection data. This is concluded based
on the low values of the standard Monte Carlo error, as well as the autocorrelation
plots for both drift and diffusion parameters.

From the Kernel densities it is shown that drift parameter is represented by a
symmetric distribution and a right skewed distribution represented the diffusion
parameter for all track geometry parameters under study. In addition, the num-
ber of sections that reported a positive drift is equal to 3 for parameters crosslevel,
alignment left (124 ft), and warp (62 ft). However, parameter surface left (124
ft) reported 5 sections with positive drift values. This is also a confirmatory
analysis on the influence of surface parameter in track degradation compared to
the rest of parameters. Based on the results presented, Bayesian analysis-based
Markov chain Monte Carlo seems to have potential for handling complex degra-
dation models. The results suggest that track maintenance interventions can be
planned more accurately using this methodology.

4. The Wiener process was simulated in order to predict the track geometry degra-
dation. From the results it was observed that the simulated 1000 paths bounded
the observed degradation points. Parameter surface left (124 ft) reported sam-
ple paths that were more spread compared to the rest of the parameters. This
behavior is expected since the exploratory data analysis showed that variations
of surface parameter have higher variability.

5. To validate the Wiener process model, data points for each track section and each
maintenance cycle were divided into training and testing data set. The mean
squared error (MSE) was considered to measure deviations from the predicted
sample paths and the test data set, in which small MSE values were obtained.
These results show that the predicted sample paths can account for the uncer-
tainty of the degradation data which can be used for maintenance scheduling
purposes.
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Chapter 7

FIRST HITTING TIME IN RAILWAY TRACK GEOMETRY
DEGRADATION ANALYSIS

7.1 Introduction

This chapter estimates the first hitting time for the first maintenance cycle

of track geometry degradation sample paths. The underlying degradation paths are

modeled as a Wiener process with drift and the FHT follows an inverse Gaussian distri-

bution. The results provide a more robust representation of track geometry failure time

using degradation data. The methodology followed to estimate the FHT is presented

in Figure 7.1.

Data preprocessing
First hitting time 

estimation
Creation of confidence 

intervals

Figure 7.1: General overview for the estimation of the first hitting time for a single
track geometry parameter

7.2 Data Preprocessing

In this case study two data sets were utilized. The first data set is described in

Chapter 5 and the mile of track was divided into 150-foot and 500-foot sections, and

their corresponding TQI based on the standard deviation was calculated as presented in

Chapter 6. The second data set utilized consists of degradation data based on foot-by-

foot measurements for each track geometry parameter. The input data used in this case

study, therefore, correspond to the simulated sample paths from the Wiener process

with drift for the first maintenance cycle and for each track geometry parameter. The

schematic representation of the estimation of the FHT is presented in Figure 7.2.
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7.3 Estimation of the FHT for TQI

The probability density function (PDF) and the cumulative density function

(CDF) of the FHT were estimated for various degradation patterns in their first mainte-

nance cycle for each track geometry parameter. In this research, an arbitrary threshold

of 0.4 inches was established and the predicted sample paths from the Wiener process

with drift were extrapolated with a maximum number of months equal to 1000. This

number was also arbitrary but it is large enough to determine which sections for each

parameter reached the threshold, considering that tamping activities are carried out in

a time frame less than 20 months. As presented in Chapter 4, the FHT for a Wiener

process is the inverse Gaussian distribution.

To illustrate the comparison of the FHT at various parameters, a track section

of 150 feet is presented. This section was chosen because it was the one that a FHT

was able to estimate for all the track geometry parameters. Figures 7.3-7.6 show the
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FHT for parameters crosslevel, surface left (124 ft), alignment left (124 ft), and warp

(62 ft) respectively.

The PDF was estimated using the nonparametric approach Kernel density which

plots the density of the time at which each sample path reached the threshold (con-

tinuous line in Figures 7.3-7.6. A theoretical PDF was also calculated and plotted

(dashed line) in Figures 7.3-7.6 using the inverse Gaussian distribution. The scale pa-

rameter was equal to the drift parameter estimated for the Wiener process for each

track geometry parameter and section. The shape parameter was a transformation of

the diffusion parameter of the Wiener process.
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Figure 7.3: PDF and CDF of FHT for crosslevel
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Figure 7.4: PDF and CDF of FHT for surface left (124 ft)
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As shown in Figures 7.3-7.6, both simulated and theoretical PDF and CDF are

similar, so the simulated sample paths follow the inverse Gaussian distribution since

they are projected as a Wiener process. On the other hand, crosslevel and alignment

right (124 ft) reported high values of the scale parameter of the inverse Gaussian

distribution, that is, the specific section of track would take longer to reach the defined

threshold compared to the rest of the parameters if the track continues degrading as a

Wiener process.
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Figure 7.5: PDF and CDF of FHT for alignment left (124 ft)
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Figure 7.6: PDF and CDF of FHT for warp (62 ft)

Table 7.1 presents the skewness and kurtosis for the FHT of each track geometry

parameter. It can be observed that for all track geometry parameters, the probability
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density function is positive, so the PDF is skewed to the right. Also, the kurtosis shows

how heavy tailed or outlier prone the FHT is. For all the track geometry parameters

the kurtosis measure shows that the FHT is heavy tailed considering that the kurtosis

for a Gaussian distribution is equal to 3.

Table 7.1: Skewness and kurtosis for FHT

Parameter Section Skewness Kurtosis

Crosslevel

1 0.9488 4.2899
5 0.4315 3.5525
13 0.4662 3.7484

Surface left (124 ft)

1 1.1752 4.9987
3 0.8736 4.2463
4 1.6094 6.2097
5 1.0117 6.1094
6 2.0419 9.2104

Alignment left (124 ft) 1 0.5941 3.7454

Warp (62 ft)
1 1.7456 11.1826
5 0.7746 3.8961

7.3.1 Confidence Limits for FHT

In addition to the estimation of the PDF and CDF of the FHT for each sec-

tion and track geometry parameter, the FHT is also expressed in terms of confidence

intervals. For this purpose, the Wald test suitable for constructing confidence limits

for inverse Gaussian densities was utilized. In this research, three different confidence

levels were defined as presented in Table 7.2.
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7.4 FHT for Raw Data

In addition to estimate the FHT using the standard deviation of a 150-foot and

500-foot track sections and defining an arbitrary threshold, the FHT was also estimated

considering FRA safety standards. Since these standards can only be compared with

actual track geometry values, raw data was utilized in this application. Figure 7.7

presents the FHT for four adjacent locations for parameter surface left (62 ft). It

can be observed from the figure that adjacent locations have the same distribution of

failure time. Therefore, this approach can be used to predict the time at which both

TQI and raw data reach a maintenance threshold and for predicting the time until

track geometry parameters reach a safety threshold.
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Figure 7.7: Theoretical and simulated FHT at four adjacent locations for surface left
(62 ft)
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7.5 Remarks

This chapter presented the formulation and implementation of the first hitting

time (FHT) model in the context of track geometry degradation. For this case, analysis

for various track geometry parameters were considered.

1. The first hitting time was estimated using two approaches: (i) drawing the Kernel
density from the predicted sample paths and (ii) obtaining the theoretical density
using an inverse Gaussian distribution. From the two densities it can be observed
that both simulated and theoretical FHT are close to each other.

2. The estimation of the FHT for different track geometry parameters and differ-
ent track sections allows observation of dominant parameter for specific sections.
That is, given a specific threshold, it can be observed which geometry param-
eter first reaches the threshold and which locations of the track requires more
attention. This would be useful as an alternative approach to allocate budget for
maintenance purposes at different confidence levels.

3. The FHT was estimated using foot-by-foot measurements and the threshold level
were established based on FRA safety standards. It was observed that adjacent
track locations have the same FHT. These results show potential to use degrada-
tion data based on foot-by-foot measurements for the prediction of track geometry
defects.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

This dissertation presented an in-depth analysis of track geometry data for a

U.S. Class I railroad. Extensive literature review and various quantitative techniques

were re-evaluated. The merits of traditional techniques which have been previously

used in the literature were discussed. The current work formulates the degradation

process using Wiener process and develops first hitting time principles as a method to

determine the time for maintenance of rail track based on time history.

8.2 Conclusions

1. This research conducted a literature review on track geometry degradation mod-
els. This review provided a better understanding of the state-of-the-art regarding
the current practices for analyzing track degradation. Also, research gaps were
identified, such as the use of Bayesian approaches to estimate track geometry
degradation, the use of stochastic processes to predict not only the degradation,
but to estimate the first hitting time. This research attempted to bridge those
gaps by providing a more robust framework for predicting track geometry degra-
dation model parameters and exploiting the advantages of stochastic processes
for estimating the first hitting time.

2. This research conducted an exploratory data analysis (EDA) to provide initial
insights of the data set available. The EDA results showed that variations of
parameter surface appeared to be the parameter with the highest variability.
Also, it was observed from the box plots using cross-sectional data that adjacent
locations of the track have similar characteristics. This is an important conclu-
sion because the definition of the track section lengths can be increased without
loosing information. The results of the EDA were used as a confirmatory data
analysis tool for the case studies performed. That is, explanations regarding the
high variability of the model parameters, degradation paths, and first hitting
times were identified based on the previous knowledge from the EDA.
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3. A case study regarding the hybrid Bayesian inference and Wiener process with
drift was conducted. As presented in Chapter 3, there are contributions in
the literature for using Bayesian inference based on Markov chain Monte Carlo
(MCMC) to estimate track degradation model parameters. This research im-
proved those studies by:

(a) Formulating a variation of the Metropolis-Hastings algorithm as an adaptive
MCMC, in which the prior distribution, initially defined as noninformative,
became informative as the number of iterations increased. This was done
by including to the prior distribution parameters the current accepted val-
ues of the Markov chain. This is relevant because it allows incorporation
of noninformative priors when there is not enough knowledge of the track
degradation model parameters.

(b) Performing a detailed MCMC output analysis. Literature in track geometry
degradation have not addressed the convergence of MCMC algorithms which
is relevant in analyzing the model parameters. Graphical methods such as
Kernel density, trace, and autocorrelation plots were presented to illustrate
the independence of the samples over the iterations, as well as to indicate
the shape of the posterior distribution. Also, point estimates and standard
Monte Carlo errors were calculated, which allowed identification of track
geometry parameters with positive drift.

The Wiener process sample paths were simulated using the output from the adap-
tive Metropolis-Hastings algorithm. It was observed that the predicted sample
paths were able to capture the variability of the degradation process by bounding
the observed degradation data points.

4. A second case study was performed to estimate the first hitting time (FHT) for
the first maintenance cycle for each track geometry parameter. The case study
presented the conducted methodology in which three main stages were defined.
These stages include: (i) data preprocessing, (ii) first hitting time estimation,
and (iii) creation of confidence intervals.

The FHT was estimated using two approaches:

(a) Drawing the Kernel density by extrapolating the predicted sample paths
obtained in the previous case study, and collecting the times at which each
sample path reached the threshold

(b) Drawing the FHT by using an inverse Gaussian distribution which is the
analytic expression of the FHT in the Wiener process

Both densities were plotted together and it was observed that they were close to
each other, so the simulated sample paths were able to predict the FHT. Also,
it was concluded that parameter surface left measured in a 62-foot and 124-foot
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chord were the dominant parameters compared to the remaining parameters,
which required less time to reach the threshold.

5. From a policy making perspective, the results of this research provide information
regarding the track sections that require more attention and can be used as an
input for maintenance scheduling activities.

8.3 Recommendations

This dissertation provided major contributions for improving data analysis in

railway track geometry degradation. However, there are opportunities for improvement

as presented below.

1. The exploratory data analysis conducted in this research considered longitudinal
and cross-sectional data. Further analysis can include panel data in which groups
of locations of the track are observed over time.

2. In this research, the Metropolis-Hastings algorithm was utilized to estimate the
Wiener process model parameters. Possible extension of this approach include:

(a) The use of population-based Markov chain Monte Carlo methods, in which
metaheuristic methods such as genetic algorithms, particle swarm optimiza-
tion, and ant colony optimization, among others can explore regions in the
search space by exchanging information between Markov chains.

(b) The formulation and implementation of likelihood-free methods. The ap-
proximate Bayesian computation (ABC) is one of these methods and ac-
cording to the literature, is suitable because it is not required to make
assumptions about the likelihood function.

3. In terms of track geometry degradation, this research considered the Wiener
process with drift, which was able to predict the degradation values for individual
track geometry parameters. Extensions of this approach may include the use of an
adaptive drift function. That is, the drift parameter can be recursively updated
as new degradation points are available. Although this research predicted the
degradation paths for each track geometry parameter, future work can include
the formulation of the Wiener process with multiple hazards, in which more than
one track geometry parameter can be incorporated in the degradation model.
Also, the threshold level for estimating the first hitting time can be expressed as
a random variable.

4. This research considered the standard deviation of individual track geometry
parameters for a track section as a track quality index (TQI), and from there,
perform the hybrid Bayesian estimation and Wiener process for predicting track
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degradation and failure. Traditionally, failure time has been addressed using
track geometry defect data instead of foot-by-foot measurements. Understanding
that TQI values cannot be compared directly to FRA safety standards, massive
amounts of foot-by-foot track geometry data can be used to predict the failure
time. Therefore, it is recommended to develop innovative approaches to use
degradation data that can be utilized, for example, to estimate track failure
time.
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Appendix A

EXPLORATORY DATA ANALYSIS PLOTS

A.1 Foot-By-Foot Measurements
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Figure A.1: Illustration of crosslevel data at multiple inspection dates
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Figure A.2: Illustration of surface right (124 ft) data at multiple inspection dates
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Figure A.3: Illustration of surface left (124 ft) data at multiple inspection dates
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Figure A.4: Illustration of gage data at multiple inspection dates
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Figure A.5: Illustration of warp (62 ft) data at multiple inspection dates
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Figure A.6: Illustration of alignment left (62 ft) data at multiple inspection dates
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Figure A.7: Illustration of alignment right (62 ft) data at multiple inspection dates
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Figure A.8: Illustration of alignment right (124 ft) data at multiple inspection dates
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Figure A.9: Illustration of alignment left (124 ft) data at multiple inspection dates
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A.2 Box Plots for Longitudinal Data
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Figure A.10: Illustration of box plot for gage
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Figure A.11: Illustration of box plot for surface left (124 ft)
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Figure A.12: Illustration of box plot for alignment right (124 ft)
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Figure A.13: Illustration of box plot for alignment left (124 ft)
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Appendix B

MCMC OUTPUT PLOTS

B.1 Output Plots for 500-foot sections
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Figure B.1: Alignment left (62 ft): MCMC posterior plots for drift parameter
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Figure B.2: Alignment left (62 ft): MCMC posterior plots for diffusion parameter
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Figure B.3: Alignment left (124 ft): MCMC posterior plots for drift parameter
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Figure B.4: Alignment left (124 ft): MCMC posterior plots for diffusion parameter
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Figure B.5: Alignment right (62 ft): MCMC posterior plots for drift parameter
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Figure B.6: Alignment right (62 ft): MCMC posterior plots for diffusion parameter
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Figure B.7: Alignment right (124 ft): MCMC posterior plots for drift parameter
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Figure B.8: Alignment right (124 ft): MCMC posterior plots for diffusion parameter
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Figure B.9: Crosslevel: MCMC posterior plots for drift parameter
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Figure B.10: Crosslevel: MCMC posterior plots for diffusion parameter
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Figure B.11: Surface left (124 ft): MCMC posterior plots for drift parameter
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Figure B.12: Surface left (124 ft): MCMC posterior plots for diffusion parameter
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Figure B.13: Surface right (124 ft): MCMC posterior plots for drift parameter
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Figure B.14: Surface right (124 ft): MCMC posterior plots for diffusion parameter
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