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ABSTRACT

As the high-performance computing (HPC) community continues the push to-

wards exascale computing, power consumption is becoming a major concern for de-

signing, building, maintaining, and getting the most out of supercomputers. Energy

efficiency has become one of the top ten exascale system research challenges. Meeting

the goal of exascale performance with 20 Megawatts of power limit requires perfor-

mance, power, and energy optimization techniques at all levels, from the hardware to

the application. In the meanwhile, although advances in parallel architectures promise

improved peak computational performance, the use of software tools to drive paral-

lelism of the hardware still requires expertise that is not widely available. Domain

scientists are faced with a challenge to efficiently port applications to new parallel ar-

chitectures like Nvidia GPUs and Intel Many-Integrated Core (MIC) accelerators. The

fact that an increasing number of supercomputers are going to contain accelerators

poses more challenge to application developers, who will need to get their applications

ready for the supercomputers.

In this dissertation, we began with the study on how to achieve both automatic

parallelization using OpenACC and enhanced portability using OpenCL. We applied

our parallelization techniques on GPUs as well as an Intel MIC-architecture accelera-

tor to reduce the running time of 2D wave propagation simulations. The performance

and programmability of CUDA, OpenCL, OpenACC, and OpenMP implementations

of the wave propagation simulation are compared. Compared to CUDA and OpenCL,

we believe that OpenACC is preferable for domain scientists because programmers can

parallelize their code using simple directives, and therefore it speeds up the process

of parallelizing applications. OpenACC is shown to be able to achieve comparable

performance as CUDA and OpenCL on GPUs with much reduced coding effort. Our
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OpenMP implementation outperforms OpenCL and OpenACC on the Intel MIC ac-

celerator. Emerging software developments like the OpenACC facilitate exploiting

application parallelism offered by evolving hardware architecture. Our method of us-

ing OpenACC, OpenCL, and OpenMP to achieve efficient and effective parallelization

on different accelerators can be generally applied to benefit other domains.

For the energy tuning problem, we tackle the problem from using software tech-

niques first. We integrated an energy measurement framework to an existing poly-

hedral transformation framework called PoCC. Loop transformations supported by

PoCC have been shown to be effective in optimizing the performance of small kernels.

However, there have been few studies on how these transformations affect the power

and the energy. The energy measurement framework allows exploring the relationship

between tuning for power/energy and tuning for performance. A high correlation of

energy/performance in PoCC is observed but tuning for power is different from tuning

for execution time. We constructed predictive models that achieved high prediction

accuracy. In addition, we also demonstrate the potential of polyhedral transformations

in optimizing the 2D cardiac wave propagation application for both performance and

energy.

Then, we propose to minimize energy usage without impacting the performance

of HPC applications from using hardware techniques. We developed energy optimiza-

tion techniques that did not only reduce power, but also Energy-Delay Product (EDP)

and in some cases even Energy-Delay-Squared Product (ED2P). We took advantage

of the low transition overhead of CPU clock modulation and applied it to fine-grained

OpenMP parallel loops. The energy behaviour of OpenMP parallel regions is first

characterized by the memory access density. By characterizing memory access den-

sity, the best clock modulation setting is determined for each region. Finally, different

CPU clock settings are applied to the different loops within the same application. The

resulting multi-frequency execution of OpenMP applications achieved better energy

efficiency than any single frequency setting.

In the last chapter of this dissertation, we combined software and hardware
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techniques to obtain better energy efficiency for HPC applications. In particular, on

Intel Sandy Bridge architecture we applied concurrency throttling, i.e., reducing the

number of threads needed by an OpenMP application, with CPU clock modulation

and on IBM Power8 architecture we applied concurrency throttling with DVFS. In

both cases we observed improved energy efficiency. Lastly, we combined polyhedral

compilation techniques with CPU clock modulation and evaluated their interactions

under a power-capped environment.
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Chapter 1

INTRODUCTION

As the high-performance computing (HPC) community continues the push to-

wards exascale computing, power consumption has become a major concern for de-

signing, building, maintaining, and getting the most out of supercomputers and en-

ergy efficiency has become one of the top ten exascale system research challenges [93].

State-of-the-art technologies still have a big gap in achieving desired energy efficiency

in terms of performance per Watt. Table 1.1 lists the performance (in TFLOPS), power

(in KiloWatts), and energy-efficiency (in GFLOPS per Watt) of the three fastest super-

computers from the Top500 list [2] and the three most energy-efficient supercomputers

from the Green500 list [1]. Also shown in the table is a goal system that attains exascale

performance with the 20MW power limit set by the HPC community [9]. Meeting the

goal of exascale performance and the goal of 20 Megawatts of power requires an energy

efficiency of fifty GFLOPS/watt (billions of operations per second per watt). How-

ever the world’s “greenest” Shoubu supercomputer from RIKEN has not yet surpassed

seven GFLOPS/Watt. The immediate two runner-ups achieved just a little over six

GFLOPS/Watt. The world’s fastest supercomputer Sunway TailhuLight has reached

93 Petaflops but its energy efficiency is about six GFLOPS/Watt. The second fastest

supercomputer Milkyway-2 has reached 33 Petaflops of sustained performance but is

drawing the power at the rate of almost 20 Megawatts, resulting in an energy efficiency

of only 1.901. Titan, the third fastest supercomputer is only about 10% more energy-

efficient than Milkyway-2. Next-generation supercomputers step closer to the goal but

continuous efforts are needed to further optimize the performance and power. Summit

and Sierra, two supercomputers that are staged to replace Titan and Sequoia respec-

tively, will reach more than 100 Petaflops (one tenth of 1 Exaflops) peak computation
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Table 1.1: Performance, power, and energy efficiency of 6 top systems (as of June
2016) from the Top500 list and the Green500 list as well as a goal system
that achieves exascale performance with 20MW of power.

System Performance (TFLOP/s) Power (KW) GFLOPS/W
Exascale Goal System 1,000,000 20,000 50
Top500 NO.1 (Sunway-TaihuLight) 93,014.6 15,371 6.051
Top500 NO.2 (Milkyway-2) 33,862.7 17,808 1.901
Top500 NO.3 (Titan) 17,590.0 8,209 2.143
Green500 NO.1 1001.0 149.99 6.674
Green500 NO.2 290.5 46.89 6.195
Green500 NO.3 93,014.6 15,371 6.051

rate [36]. Summit will draw 10 MW of power, i.e. 10% more than Titan [67]. Ad-

dressing the power consumption issue requires developing energy efficiency techniques

at all levels, from the hardware to the application. Optimizing HPC applications for

energy has become as important as optimizing for performance. Controlling an appli-

cation’s energy use running on increasingly powerful compute nodes will continue to

be an important concern.

Before tuning an application for energy efficiency, it is necessary to understand

how energy consumption optimization is related to traditional performance (i.e., ex-

ecution time) optimization. Knowledge of the relationship between performance and

energy can guide the tuning effort on pre-exascale and exascale systems. For most

scientific applications, nested loops consume a significant portion of the total running

time. When tuning an application for better performance and energy usage, some com-

bination of loop optimizations, including loop tiling, loop unrolling, and loop fusion, are

usually performed on the program along with auto-parallelization. Determining which

set of optimizations produces the best results is challenging. Polyhedral auto-tuning

frameworks have shown promising results at simplifying that effort [70, 68, 69] for small

computation kernels, such as the Polybench programs [77]. The foundation of our auto-

tuning framework is a polyhedral compiler, capable of generating thousands of program

variants with the same semantics as the original program. In order for programs to be

auto-tuned using a polyhedral framework, the original program should contain Static
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Control Parts (SCoPs). Polybench is a suite of programs containing SCoPs. We added

energy measurement capability on top of an existing performance auto-tuning frame-

work to study the relationship between optimization for performance and for energy.

In this dissertation work, we use the Resource Centric Reflection daemon tool (RCR-

tool/RCRdaemon) developed at RENCI [74], to measure energy consumption at a fine

granularity for any OpenMP program. Fine-grain measurements enable attribution of

energy consumption to particular application regions and even to individual lines of

codes. This allows an accurate study of the correlation between execution time and en-

ergy consumption of an application. If the correlation study reveals that there is no or

little correlation between execution time and energy consumption of program variants,

then the machine learning model for predicting the best performing variant will not be

suitable for predicting the version that consumes the minimum amount of energy. On

the other hand, if a strong correlation between execution time and energy consumption

exists, then the auto-tuning framework for sifting out the best optimizations can be

extended to select the program version that consumes the least amount of energy.

Although polyhedral compilers are powerful in generating various code versions

for specially written small kernels like those found in the Polybench, their restrictive

requirements (SCoPs only) usually limit their application in optimizing larger and re-

alistic applications. One reason is that many applications do not contain SCoPs by

default. It is not uncommon for scientific codes to include indirect memory accesses.

However no indirect memory access is allowed in a SCoP therefore polyhedral compil-

ers would not be capable of dealing with applications with such code characteristics.

Fortunately there are realistic applications that are amenable to polyhedral compilers.

Such applications perform complex simulations without using a lot of branching and in-

direct memory access. This dissertation will show the effectiveness of using polyhedral

compilers to optimize a wave propagatioin simualation application for performance.

This realistic application simulates the cardiac wave propagation in a 2D grid and is

used for cardiac arrhythmia research. From our experience of polyhedrally optimizing
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a realistic application, we hypothesize that a large number of kernels from realistic sci-

entific applications can benefit from applying source-to-source transformations using

polyhedral compilers.

Several current and future top supercomputers feature accelerators that rep-

resent the state-of-the-art parallel architecutre innovations. For example, the Ti-

tan supercomputer features hybrid parallel architecture consisting of multi-core AMD

Opteron CPU and Nvidia Kepler K20x GPU. Two future supercomputers (Summit and

Sierra) will both include IBM Power9 multi-core CPUs and Nvidia Volta GPUs. On

Summit, more than 90% of floating point calculation power is expected to come from

Volta GPUs. The Milkyway-2 supercomputer contains Intel Xeon Phi coprocessors,

which are Many-Integrated-Core (MIC) architecture accelerators. Several future super-

computers like Aurora and Theta will include next-generation Xeon Phi processors [5].

It is worthwhile to prepare applications for getting good performance out of the GPUs

or Xeon Phi accelerators found on supercomputers, using various appropriate tools.

CUDA, OpenCL, and OpenACC are three major programming languages that target

GPUs. New developments on the OpenMP standard include the “target” construct

to support execution on GPUs. However, these new developments are still evolving,

and they are not as mature as OpenACC. OpenMP code traditionally runs only on

multi-core CPU architectures but the MIC architecture additionally supports OpenMP.

CUDA and OpenCL are low-level GPU programming languages while OpenACC and

OpenMP are high-level, directive-based language and language extension. Compared

to CUDA and OpenCL, OpenACC and OpenMP are better for domain scientists be-

cause programmers can parallelize their code using simple directives, and therefore

it speeds up the process of preparing applications for supercomputers. OpenCL and

OpenACC are portable languages and extensions in that the code generated by these

languages can run on both Nvidia GPUs and the Intel MIC architecure. OpenCL

is known for its portability and an OpenACC compiler can generate OpenCL code

that targets different platforms, including Intel Xeon Phi nodes. In this dissertation,
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the aforementioned wave propagation simulation application is used to show how dif-

ferent programming languages and language extensions can help prepare applications

for execution on modern parallel architectures, especially the newest HPC systems

that contain accelerators. In addition, performance and programmability of CUDA,

OpenCL, OpenACC, and OpenMP implementations of the cardiac wave propagation

simulation are compared. OpenACC is shown to achieve comparable performance as

CUDA and OpenCL on GPUs with much less code. Our OpenMP implementation

outperforms OpenCL and OpenACC on an Intel Xeon Phi node.

In our research, we found that performance optimizations that improve execu-

tion time save energy as a by-product of the improved performance. This is referred

to as a “race-to-halt” strategy. Other than this “race to halt” strategy that focuses

on performance improvement, research has employed Dynamic Voltage and Frequency

Scaling (DVFS) techniques to save energy. Ge et al. divided applications into fixed

intervals and determined a suitable frequency for each interval by using performance

counters [28]. Other work looked at applying DVFS during communication phases or

non-critical execution paths of MPI applications to lower power consumption without

affecting performance [96, 94, 95, 25, 99]. All of these approaches applied DVFS to

the coarse-grain phases of the application. For OpenMP code, parallel regions as iden-

tified by the “parallel” construct naturally divide an application into fine-granularity

phases, especially for code that involves multiple time-steps. None of the aforemen-

tioned DVFS approach applied energy control on a per-loop basis. This was likely due

to the overhead of switching the frequency using DVFS prevented it from being used

for small code regions.

Another method to reduce energy consumption of CPUs is CPU clock modula-

tion, also known as Duty Cycle Modulation, CPU throttling, or CPU clock skipping,

which squashes cycles in the CPU clock without changing the real frequency [96, 37,

110]. Using this technique allows individual cores to have the effective clock frequency

reduced, without changing the voltage or the memory system’s clock. The advantage

of CPU clock modulation over DVFS is the much lower transition overhead [76], since
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no voltage stabilization must occur. In addition, CPU clock modulation can be applied

on top of DVFS to provide more fine-grained energy control knobs that are otherwise

available with DVFS. When the CPU has significant pipeline stalls or idle instructions,

clock modulation reduces the energy required during the stalls.

Like DVFS, applying clock modulation to every parallel region can slow down

execution and lead to increased energy consumption. By characterizing OpenMP par-

allel loops as compute-bound or memory-bound first, the appropriate clock modulation

setting can be applied to each appropriate loop. Applications can have multiple par-

allel loops with different memory access densities. These types of applications have

loops that prefer distinct frequency settings per loop that results in the minimum en-

ergy or energy-delay product (EDP). Applications with a variety of different classes of

regions have the potential of benefitting from fine-grained per-loop clock modulation

to conserve energy without performance degradation.

For loops with high/medium memory access density, reducing the frequency

eliminates some of the energy during stalled pipeline cycles. For loops with low mem-

ory access density, setting the frequency to the maximum can avoid the unnecessary

delay of computation. Using the best frequency for different loops can have a lower

energy/EDP than any single frequency execution setting. A multi-frequency setting

profits from saving energy during CPU stalls (e.g. during cache misses) and maximizing

computation otherwise.

Another technique we investigated was concurrency throttling [49, 76], which

reduces the number of hardware threads being used, thus saving energy when parts of

the system are saturated. It can be combined with clock modulation to further reduce

energy consumption for some application phases on Intel architectures. As mentioned

earlier, Summit and Sierra supercomputers both feature IBM Power9 architecture and

Nvidia’s Volta GPU architecture. We believe it worthwhile to test the combined soft-

ware techniques (concurrency throttling) and hardware techniques (energy control) on

the Power architecture. At the time this dissertation research was performed, the IBM

Power9 was not in production, therefore this dissertation investigated its predecessor,
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the Power8 architecture. Similar to the Power9, the Power8 also featured 8-way simul-

taneous multithreading (SMT-8). However, since the Power8 did not support the CPU

clock modulation hardware feature, we combined per-core DVFS with concurrency

throttling1.

Future data centers and supercomputers will have to address the challenge of

running applications with limited power envelope due to budget concerns. This has

prompted new power management features in new parallel architectures. As an ex-

ample, power capping is a built in concept in the overall architecture design of IBM

Power8 architecture [24]. Optimizing application performance on power constrained

HPC systems arises as a new challenge. Power capping usually sets stage for power

shifting which redistributes power resources to different components within a compute

node [48]. In addition to realize intelligent balancing of critical power resource, power

capping can be applied for thermal control. In this dissertation, we study how applica-

tions perform under a set power limit on Intel SandyBridge architecture. Unlike IBM

Power architecture which relies an On Chip Controller (OCC) to cap the power con-

sumption implicitly according to thermal control algorithms, power capping on Intel

platforms can be done explicitly via privileged instructions. In addition, other power

management techniques like DVFS and CPU clock modulation can be applied on top

of power capping. Combined effects of power capping and clock modulation techniques

are investigated for several benchmarks in this work. We also combined polyhedral

compilation with clock modulation technique to find opportunities where polyhedral

optimized code could be further optimized for energy and energy efficiency (e.g. EDP).

The main contributions of this dissertation are as follows. First, we parallelized

and optimized a realistic scientific application on several parallel architectures using dif-

ferent programming tools. The lessons learned can benefit a broad range of developers

who aim to make their applications performant and energy efficient on supercomput-

ers involving accelerators like the Nvidia GPUs and the Intel accelerators. Second,

1 On Intel Sandy Bridge architecture, DVFS is not per-core but per-socket.
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to tackle the energy optimization issue, we studied the energy and time correlation

of programs in a polyhedral autotuning framework. Tuning for time with polyhedral

transformations can be used as a proxy for tuning for energy. A predictive model

for energy is also developed and verified to have good accuracy. Then, we studied

the energy characteristics of application loops in the context of being able to control

machine power usage. Although a whole application might prefer “racing to halt” to

get the best energy efficiency, the individual loops can have different preferences based

on their memory density. Several mini-applications are executed in a multi-frequency

fashion (i.e. different loops are executed at different frequencies using CPU clock mod-

ulation) to achieve the best energy-delay trade-off. Third, we show that combining

hardware techniques like CPU clock modulation and DVFS with software techniques

like concurrency throttling and polyhedral compilation achieves better energy and EDP

improvement. Our experiences using IBM Power8 architecture to evaluate its DVFS

features are encouraging for the OpenPower community. In addition, our experiments

with power capping, CPU clock modulation, and polyhedral compilation provide in-

sights on how applications would perform on future power constrained systems.

The rest of the dissertation is organized as follows. Chapter 2 gives the back-

ground necessary to understand the research in this dissertaiton. Chapter 3 discusses

the parallelization and optimization of 2D wave propagation simulation on modern

computational accelerators, including GPUs and Xeon Phi. Chapter 4 uses the poly-

hedral framework to evaluate execution time and energy consumption correlation. A

predictive model for energy that drives polyhedral optimizations applied to parallel ap-

plication is also covered. Chapter 5 shows how we utilize the energy control hardware

methods to optimize applications for energy. Chapter 6 combines software techniques

and hardware techniques used in previous chapters to further optimize benchmarks

for energy on both Intel and IBM multicore architectures. Evaluation of benchmark

performance in power-capped environment is also performed in this chapter. Chapter 7

concludes the dissertation.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter introduces the tools and techniques used in this dissertation such

as loop transformation tools, energy measurement tools, and energy control methods.

State-of-the-art studies that used these tools are discussed.

2.1 Source to Source Compilers for Loop Transformations

The Polyhedral Compiler Collection (PoCC)[79], a source-to-source polyhedral

compiler, was frequently used in this dissertation. This source-to-source compiler was

used in Chapter 4 and Chapter 6 to generate program variants with different opti-

mizations. It was also used in Chapter 4 to optimize application performance. Other

compilers that can perform polyhedral source-to-source transformations include CHiLL

and Orio.

2.1.1 PoCC and PolyOpt

PoCC requires that programs contain Static Control Parts (SCoP)[8, 23, 29] so

that polyhedral transformations can be applied. A SCoP consists of a set of consecutive

statements, which usually form a loop nest. The loop bounds, if statement conditionals,

and array accesses in the loop nest should all be affine functions of the loop iterators

and global parameters. For example, a valid affine expression for a loop bound in a

SCoP with two loops iterators i,j and two parameters N,P will be of the form a · i+ b ·

j + c · N + d · P + e, where a,b,c,d,e are arbitrary (possibly 0) integer numbers. The

following are examples that break the SCoP property:

• Non-affine for initialization or test condition, e.g., for(j = 0; j < i ∗ i; + + i).
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• if conditionals involving loop iterators that form a non-affine expression, e.g., if
(i * j == 0).

• if conditionals involving variables that are not a loop iterator or a parameter,
e.g., if (A[i][j] == 0).

• Non-affine array access, e.g., A[j % i] or A[B[i]].

In practice, code with excessive use of local variables, can make the polyhedral

compiler take a very long time to transform programs.

Polybench is a collection of programs that contain SCoPs and thus can be op-

timized with a polyhedral compiler. Inside the compiler, each SCoP is represented

by two matrices, which correspond to the loop nests’ iteration domain as well as the

statements’ dependencies. Loop transformations on such programs are equivalent to

manipulating such matrices. The transformed matrices can be converted back to se-

mantically equivalent, but optimized code.

We used PolyOpt (a Polyhedral Optimizer for the ROSE compiler) [78] to auto-

matically detect SCoPs in applications. PolyOpt is based on PoCC, but integrated into

the ROSE compiler. Aside from its capability to extract SCoP regions in an automatic

way, it fully supports polyhedral analysis and optimizations. PolyOpt supports loops

fusion, loop tiling, thread-level parallelization and vectorization. PolyOpt has better

support for side-effect free program features like math functions[8] and allows some

function calls within a SCoP. PolyOpt, although a powerful polyhedral compiler, still

may not be able to extract any SCoPs because of structural impediments of source

codes. Changes to the program may be required to expose the SCoPs for PolyOpt,

before loop transformations, parallelization, and vectorization can occur.

2.1.2 Other source-to-source compilers

Other source-to-source polyhedral compilers include CHiLL [15], Orio [61], PPCG [101],

LooPo [31], PLUTO [12] and R-stream[87] etc. CHiLL takes in the original code and a

transformation script as input and outputs a set of alternative implementations. The

transformation script, also called transformation recipe, describes how to optimize the
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code. For example, a CHiLL transformation script may include loop permutation, loop

tiling, and loop unrolling etc. Orio has similar functionality in transforming programs.

Instead of taking in a stand-alone transformation recipe, it takes in the original code

with annotated text for loops of interest. PPCG is a polyhedral parallel code gener-

ator that translates sequential static control code for parallel execution on a modern

GPU. LooPo and PLUTO both generate parallelized code for execution on modern

shared-memory systems. PLUTO is included in POCC. R-stream is a commercial

source-to-source compiler from Reservoir Labs. For our energy/performance correla-

tion study, CHiLL, Orio, PPCG, and LooPo could potentially be used instead of PoCC.

However, we chose PoCC with PLUTO because it has been extensively tested on our

benchmarks of interest, including the Polybench.

2.2 Energy Measurement Tools

Traditional energy measurement tools require hardware instrumentation and

provide coarse grained energy measurement. In contrast, software energy measurement

is more fine-grained. The Intel Sandy Bridge and Haswell architectures allow users to

track energy usage through the Running Average Power Limit (RAPL) interface [37].

Energy consumed by the chip can be tracked by a Model Specific Register (MSR),

specifically the MSR PKG ENERGY STATUS performance counter. This counter is

frequently updated and counts the energy in 15.3 micro-Joule (i.e. 1/216 Joule) units

on Sandy Bridge architectures and 61.2 micro-Joule (i.e. 1/214 Joule) units on Haswell

architectures. Based on RAPL, different software tools were developed to monitor

power usage of applications. In this dissertation work, we use RCRdaemon [75] to

monitor application energy. Other tools that can measure application energy based

on RAPL include LIKWID [100] and Intel Power Gadget[39]. The accuracy of these

tools relies on the exactness of RAPL. Hähnel et al. reported the identical curve

characteristics comparing RAPL with external measurement[32] while presenting their

HAECER framework for short-term energy measurements using RAPL.
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2.2.1 RCRdaemon

The RCRdaemon runs at supervisor level to access the hardware counters through

the MSR performance counters. For each monitored counter, it writes the current

value of the counter at least 1000 times a second into a shared-memory data structure.

This “blackboard” structure provides a hierarchical view of the system where various

current performance information is stored. The storage is only 8KB. The hardware

MSR PKG ENERGY STATUS counter is only 32 bits and can overflow in as little as

a couple of minutes. The RCRdaemon detects the overflow and supplies a 64 bit value

with the upper 32 bits being the number of overflows since RCRdaemon instantiation.

The stored information is in shared memory and is available to any OpenMP applica-

tions through a simple API that delineates a code region for measurement with a start

and end call. Each region is identified by its file name and line number. If a region

is executed multiple times, the energy is summed across all executions. All energy in-

formation is available during application shutdown. The execution time increase from

continuous monitoring of a 400-second OpenMP application is observed to be less than

8%.

2.2.2 LIKWID

LIKWID contains a set of command-line lightweight performance tools. It offers

likwid-powermeter to access RAPL energy counters and query Turbo mode steps on

Intel processors. It does not export an energy library for direct application invocation.

2.2.3 Intel Power Gadget

Like LIKWID, the Intel Power Gadget can also output current energy informa-

tion by querying RAPL energy counters. RCRdaemon differs from both the Intel Power

Gadget and LIKWID in that it manages energy information in a way that provides

access to all applications This is supported by the daemon querying the counters fre-

quently and calculating the energy as well as the APIs granting all applications access

to the energy information.
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2.3 Power Control Methods

Modern Intel CPU architectures provide three mechanisms to control power

usage. They are Dynamic Voltage and Frequency Scaling (DVFS), Duty Cycle Modu-

lation (DCM, also called Clock Modulation), and Power Capping. Similar to the APIs

that get the energy consumption information, energy control API calls are developed

and inserted into the source code to control the voltage and frequency for DVFS, the

clock modulation for DCM, and the power cap for Power Capping.

2.3.1 DVFS

DVFS refers to changing the frequency along with the paired voltage to put

machines into low-power states. For a given machine, only a limited set of fre-

quency/voltage pairs are supported. Users can invoke DVFS by writing the desired

frequency value to a file on the file system. The driver, i.e., acpi-cpufreq, is responsible

for detecting this change of frequency and for making the transition. Note that even

though the users only specify the change of frequency, voltage values will be automat-

ically changed. The frequency/voltage transition latency as well as the available set of

frequencies can be looked up from files on the file system when the DVFS driver is en-

abled. As an example, to set all CPU cores to 1.2GHz, a user can invoke the following

command that writes the frequency value (1200000 KHz) to the files (scaling setspeed)

associated with each cpu core.

echo 1200000|tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_setspeed

The above method of changing DVFS utilizes a shell script and is relatively coarse-

grained. A faster method of enabling DVFS changes is to open the scaling setspeed

file and overwrite its contents.

In order to achieve dynamic change of voltage and frequency scaling, i.e. dy-

namically decide what frequency should be used, “cpufreq governors” are usually set.

In Linux kernel, there are five CPUfreq governors: conservative, ondemand, userspace,

powersave, and performance. Powersave and performance set the CPU statically to

the lowest and the highest frequency, respectively. The userspace governor allows the
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user to set the desired frequency. Ondemand and conservative dynamically change the

frequency by sampling the CPU usage.

DVFS has a global effect on Sandy Bridge architecture, which means all the

cores in the same CPU must run at an identical frequency. Newer architectures like

Intel Haswell [46, 33, 47] and IBM Power8 [24] support separated voltage/frequency

domains therefore DVFS can be applied to cores individually and cores can operate at

different frequency levels.

2.3.2 Duty Cycle Modulation

The hardware implementation of clock modulation involves setting the stop-

clock internal signal to regulate the CPU’s normal “heartbeat”. Intel Xeon Proces-

sors support software-controlled clock modulation. The stop-clock cycle is controlled

through the IA32 CLOCK MODULATION model specific register (MSR). By control-

ling the number of cycles to be skipped for every 16 clock cycles, various effective

frequencies can be achieved.1 For example, skipping eight cycles changes the effec-

tive frequency to be half the original. There are 16 available frequencies ranging

from 6.25% to 100% of the maximum frequency, with a 6.25% interval. Once the

“MSR” kernel module is loaded (via modprobe), users can write the desired value of

IA32 CLOCK MODULATION to the MSR device file (found under /dev/cpu/cpu*/msr).

Root privilege is required to control the power level as modification of MSR device files

are protected. The Linux kernel has been locally modified to support a clock modula-

tion system call. Changing the frequency via CPU clock modulation is a light-weighted

process, requiring only a MSR write. The software controlled clock modulation can be

applied on a core by core basis. The core-specific control provided by clock modulation

1 Our tested Intel Sandy Bridge architecture was enabled to support sixteen frequen-
cies. In general, non-extended software controlled clock modulation supports eight
frequencies, with an interval of 12.5%. Extension to software controlled clock mod-
ulation is supported only if CPUID.06H:EAX[Bit 5] = 1. Also the CPU must have
ACPI feature to support both extended and non-extended software controlled clock
modulation, i.e. CPUID.01H:EDX[Bit 22]=1.
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allows for a much finer control over energy of an application. Modulating the CPU

clock does not change the actual frequency or voltage and can be combined with DVFS.

This permits an effective frequency well below the minimum DVFS frequency, provid-

ing more energy optimization options for applications. Table 2.1 shows the values to

use to set the desired frequency.

Table 2.1: Values to Write into IA32 CLOCK MODULATION MSR to Achieve Duty
Cycle Modulation.

Duty Cycle Level Binary Decimal Hexadecimal Effective Frequency
1 10001B 17 11H 6.25%
2 10010B 18 12H 12.5%
3 10011B 19 13H 18.75%
4 10100B 20 14H 25%
5 10101B 21 15H 31.25%
6 10110B 22 16H 37.5%
7 10011B 23 17H 43.75%
8 11000B 24 18H 50%
9 11001B 25 19H 56.25%
10 11010B 26 1AH 63.5%
11 11011B 27 1BH 69.75%
12 11100B 28 1CH 75%
13 11101B 29 1DH 81.25%
14 11110B 30 1EH 87.5%
15 11111B 31 1FH 93.75%
16 00000B 0 00H 100%

In DVFS, the transition to lower frequencies takes much longer than clock mod-

ulation due to the overhead of switching between the supported Voltage/Frequency

pairs using the on-chip voltage regulator. Energy savings are greater with DVFS (due

to combined frequency and voltage reduction, the power dissipation of a CPU is propor-

tional to the frequency and the voltage-squared) but the change of frequency overhead

is much lower with clock modulation, requiring only a MSR write. By setting the clock

modulation, no frequency and voltage transition must be involved, yet the effective

frequency is reduced. This advantage makes it more suitable for fine-grained energy

control of applications.
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2.3.3 Power Capping

Power Capping refers to putting a limit on the average power usage of the

package. It is done by writing the power limit value into yet another RAPL MSR –

MSR PKG RAPL POWER LIMIT. The power control is per package, i.e. over time

the power consumption of the whole package is capped by the power limit.

2.4 DVFS-Based Energy Saving Techniques

To optimize parallel applications for energy efficiency, the potential of DVFS

has been extensively studied. One scenario of applying DVFS takes advantage of the

work-load imbalance (slack) in MPI applications. Such systems include Jitter [41],

Adagio [85], and Green Queue [99]. Kappiah et al., use a runtime system Jitter to

predict the appropriate clock frequencies for upcoming iterations based on observations

of previous iterations. In Adagio, Rountree et al., [85] present a runtime system that

accurately predicts slack. Tiwari et al., [99], in Green Queue, combine inter-node

DVFS approach and intra-node DVFS approach and scale the DVFS technique to

1024 cores. The CPU clock modulation technique discussed should be applicable to all

this related work.

Another common use of DVFS is to divide applications into phases first and

then apply appropriate DVFS setting to each phase. Freeh et al., [26] choose differ-

ent frequency settings according to application profile to be applied to different MPI

phases. The MPI application is executed using multiple energy “gears” to realize energy

savings. Livingston et al. [51] present REST to dynamically detect the memory inten-

sive and compute intensive phases of MPI applications. Machine frequency is changed

via DVFS. Other work utilizes performance counters [50, 28] to build power/energy

models and use these built models to predict the optimal frequency setting for an

application. In this dissertation, a simple memory access related counter is used to

categorize OpenMP loops. Different energy settings were applied in fine granularity

using the clock modulation technique. Other DVFS use cases include combining con-

currency throttling to optimize for energy on multi-core platforms [19]. In contrast,
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concurrency throttling is combined with clock modulation to realize energy savings

in this work. Eyerman et al., studied the potential of fine-grain DVFS in saving en-

ergy for memory-intensive applications [22]. In absence of the hardware that supports

fine-grained DVFS, our work favors software clock modulation over DVFS.

2.5 Clock-Modulation-Based Energy Saving Techniques

While DVFS has been extensively studied, only a handful of work (including

our previous work [104]) has looked at employing clock modulation techniques to save

application energy. Sundriyal et al., [96] apply clock modulation in inter-node com-

munication phases of MPI applications to achieve significant energy savings with low

overhead. They also apply the same technique in point-to-point communications [94]

and collective communications [95]. Cicotti et al., [17] present Efficient Speed (ES), a

library and run-time that controls the speed of processor while minimizing the perfor-

mance impact. They achieved 16% energy decrease with less than 5% performance loss

for MPI applications. We present an equivalent infrastructure for power measurement

and control targeting OpenMP applications that achieves 10% energy savings with less

than 1% performance loss for many kernels. In other energy optimization work [110],

clock modulation techniques have been used to realize resource utilization management

on servers.

2.6 Concurrency Throttling

Concurrency throttling is a software mechanism to modulate the amount of con-

currency for regulating application runtime performance on systems with multi-core

processors. By reducing the number of threads used for executing the applications,

the concurrency level is regulated. This technique was used with DVFS for predict-

ing the best configuration setting, i.e., the frequency and concurrency level, on HPC

systems [19]. It has also been applied to realize energy savings for OpenMP bench-

marks, such as LULESH and BOTS [76]. In that work, Porterfield et al., developed a

run time system that automatically adjusted the concurrency level based on hardware
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performance counters, achieving energy reductions without performance lost. In this

dissertation, we combine clock modulation with concurrency throttling to achieve even

more energy/EDP improvements. Li et al., combined DVFS with dynamic concurrency

throttling (DCT) to achieve improved EDP in hybrid (OpenMP/MPI) programming

models [49]. In that work, they presented models and algorithms for energy efficient

execution of hybrid MPI/OpenMP applications. After characterizing energy-saving op-

portunities in these hybrid applications, they applied DCT and DVFS to leverage these

energy-saving opportunities without performance loss. In this dissertation, we focus on

applying concurrency throttling techniques with power saving techniques for OpenMP

applications on different architectures, including the Intel Sandy Bridge architecture

(with CPU clock modulation) and the IBM Power8 architecture (with DVFS).

2.7 Existing Performance-Energy Correlation Studies

Our work is not the first to show that “race to halt” can be the most energy

efficient [102]. Yuki et al., [109] developed a high-level energy model of power con-

sumption under Dynamic Voltage and Frequency Scaling (DVFS) and found it best

to run as fast as possible to completion. They pointed out that the constant power

of current machines were significant enough to render DVFS useless in saving energy.

Before them, Cho and Melhem[16] identified that DVFS might not help if the fraction

of total power unaffected by DVFS is large. We evaluated the energy effects of compiler

optimizations, rather than DVFS, by measuring the energy consumptions of hundreds

to thousands of program variants. In most cases where power saving techniques like

CPU clock modulation, power capping, and DVFS are not applied, program variants

trying to “race to halt” consumed the minimum amount of energy and that optimizing

for execution can be used as a proxy to optimizing for energy. Rahman et al.,[81]

studied the impact of application level optimizations from both the performance and

power efficiency perspective of various applications. They found that optimizing for

performance did not guarantee better power consumption. We observed tuning for per-

formance or tuning for power were both equally effective. Garcia et al.,[27] studied the
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energy consumptions of applications and proposed models characterizing application

energy consumption footprints.

2.8 Autotuning Frameworks Applied to Execution Time

In solving the problem of picking the right optimization sequence to apply to

computational kernels, Park et al. [70] built a predictive model that accurately finds

the optimization sequence which results in the best performance. The model was

initially built from extracting dynamic program features consisting of various hardware

performance counters. The model was later improved by replacing the fixed-length

dynamic performance counter features with variable length control-flow graphs [68].

The inclusion of the structural similarity between programs increased the accuracy of

the prediction models. The prediction model construction mainly involves the following

steps:

1. Extract control flow graphs from the original, unoptimized code version of the
benchmarks.

2. Annotate the nodes of the control flow graphs with histograms of instruction
counts in the code blocks.

3. Represent compiler transformations using fix-length feature vectors.

4. Calculate the graph similarities using the Shortest Path graph kernel (a graph
comparison algorithm).

5. Calculate the similarities between the compiler transformation sequences (repre-
sented as feature vectors).

6. Combine the graph similarities and compiler transformation sequences to derive
similarities of program variants.

7. Run Support Vector Machine (SVM) machine learning algorithms to construct a
prediction model.

Given a new test program and its compiler optimization sequences, the model

predicts the execution time for each optimization sequence. In this work, we extend

the model to predict the energy savings of different compiler optimizations over the

baseline program (without optimizations). We investigated energy savings prediction
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models because we empirically determined that execution time prediction models are

not adequate when used with power management techniques. When not considering

power management techniques, such as CPU clock modulation, the compiler trans-

formations that achieve the minimum execution time usually lead to the minimum

energy consumption. However, once we consider varying the CPU frequency, the min-

imum energy may be achieved from optimized variants of the program that do not

achieve a minimal execution time because the power consumption can be significantly

reduced without affecting performance much. In contrast to the execution time predic-

tion model which does not contain power information, the energy prediction model is

constructed from application energy consumption, which reflects the impact on power

consumption when a power saving technique is used. Therefore, the addition of power

management techniques is transparent to the energy model and does not change how

the model works. In other words, the energy model just views power management to

be yet another optimization and how the model works remain unchanged.

2.9 Related Work on Power-Capped Environments

There has been an increasing number of research on power capped environ-

ments. Bhalachandra et al., focused on combining CPU clock modulation and power

capping to achieve application speedup via MPI runtime, taking advantage of CPU

clock modulation’s per-core energy control [10]. They modulated the clock for differ-

ent processes from estimating the slack time and then investigated the performance

under a power bound. In MPI, slack time refers to how long processes not on the

critical paths are waiting for other processes on the critical paths. In this dissertation,

based on our previous work [105], polyhedral compilation, CPU clock modulation, and

power capping are combined to evaluate how compiler transformations interact with

modulated CPU frequency under a capped power limit. Marathe et al., developed a

run-time system called Conductor for power-capped system [54]. Conductor was capa-

ble of distributing power across nodes and cores within a HPC system. It intelligently
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selected thread concurrency levels and DVFS states under a power bound and bal-

anced power provisioning between nodes according to critical path analysis. Bailey et

al., predicted the upper-bound for applications under power-constraint system configu-

rations using linear programming formulation [6]. Again, DVFS state and the number

of OpenMP threads form the configuration space. Our work in this dissertation com-

bines the polyhedral transformation work and power management techniques like CPU

clock modulation and power capping, into an energy measurement framework. We are

among the first to study the relationship between power management techniques and

compiler transformations.
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Chapter 3

OPTIMIZING 2D WAVE PROPAGATION SIMULATION ON
MODERN COMPUTATIONAL ACCELERATORS

3.1 Introduction

Recent developments in the field of high performance computing have greatly

expanded the computational capabilities and application of Graphics Processing Units

(GPUs). Using GPUs to perform computations that are typically handled by a CPU

is known as General Purpose computation on GPUs (GPGPU). To name a few, GPUs

are now used in the fields of bioinformatics [92], signal processing [13], astronomy [90],

weather forecasting [57], and molecular modeling [20]. In addition to GPUs, Intel’s new

Many Integrated Core (MIC) architecture also provides a powerful parallel platform

for complex computations. The Intel Xeon Phi is the first accelerator based on the

MIC architecture and is expected to accelerate oil exploration, climate simulation, and

financial analyses, as well as other applications [56]. While new accelerators promise

improved computational performance, the use of software tools (like CUDA program-

ming language) to drive parallelism of the accelerators still requires expertise that is

not widely available. In addition, CUDA code will only run on NVIDIA GPUs, thereby

limiting its portability to other accelerators.

In this dissertation, we sought to overcome the limitations of CUDA by study-

ing how to achieve both automatic parallelization using OpenACC (a directive based

language extension similar to OpenMP) and enhanced portability using OpenCL. We

applied our parallelization schemes on GPUs as well as an Intel MIC-architecture accel-

erator to reduce the running time of wave propagation simulations. For results in this

chapter, we used a well-established 2D cardiac wave propagation model as a specific

case-study.
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Figure 3.1: (A): Cardiac tissue is modeled as a large geometrical network of nodes
that are electronically coupled (B): The electrical potential of the car-
diac cell membrane at each node is represented as a large set of partial
differential equations

An overview of the cardiac wave propagation model is shown in Figure 3.1.

Section 3.2.3 describes the details of the model. Models of cardiac wave propagation

often require a large number of computations at each model node at each time step to

compute the value of numerous ionic currents at the node. A computational approach

that uses parallel processing on GPUs or millions of cores provides a huge performance

increase over any sequential approach. For example, Neic et al., accelerated cardiac

biodomain propagation simulations using a cluster of GPUs which achieved up to 16.3×

speedups over parallelized CPU implementations [59]. Mirin et al., simulated thousands

of heartbeats at a resolution of 0.1mm using more than one million cores [58]. They

were able to simulate human heart function over 1200 times faster compared with any

published results in the field [84]. Unlike prior work that focused on either using one

programming language for parallelization on GPUs or multiple programming models

targeting CPUs [58, 84, 60, 59, 72, 71], we studied multiple parallelization approaches

for running 2D cardiac wave propagation simulations.

We first used OpenACC to automatically generate CUDA and OpenCL GPU

code that runs on NVIDIA GPUs. This allows programmers to develop using high-level

programming constructs and letting the OpenACC compiler automatically generate
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the lower level parallelization details of CUDA or OpenCL. In addition, we developed

low-level CUDA and OpenCL implementations for parallelization on NVIDIA GPUs,

as well as an OpenMP implementation of the same model for parallelization on Intel

CPUs, including Intel multicore processors and the Intel Xeon Phi. In this way we

could compare the performance of different parallelization techniques and parallel ar-

chitectures. By altering the number of threads in the OpenMP implementation, we

were able to achieve good speedups on Intel Xeon Phi accelerator.

The contributions of this work are two fold: 1) We parallelized a 2D cardiac

wave propagation model using both manual and automatic parallelization paradigms

using CUDA, OpenCL, and OpenACC. In particular, auto-parallelizing our model

using OpenACC is an excellent example of achieving parallelism in an efficient and

effective way. 2) We applied OpenCL, OpenACC, and OpenMP to the problem of

simulating cardiac wave propagation so that parallelism from different architectures

could be explored. We found that this approach provided excellent speedups of the

model on NVIDIA GPUs and the Intel MIC-architecture accelerator. Our results show

that OpenACC, OpenMP, and OpenCL are very powerful tools for solving computa-

tional models of wave propagation in multi-dimensional media using newly-available

computational accelerators.

3.2 Methods

3.2.1 High Performance Computing on GPUs

GPUs are massively parallel multi-threaded devices capable of executing a large

number of active threads concurrently. A GPU consists of multiple streaming multipro-

cessors, each of which contains multiple scalar processor cores. For example, NVIDIA’s

Fermi architecture GPU card Tesla C2050 contains 14 multiprocessors, each of which

contains 32 cores, for a total of 448 cores. In addition, most GPUs have several types

of memory, most notably the main device memory (global memory) and the on-chip

memory shared between all cores of a single multiprocessor (shared memory).

24



GPUs achieve high-performance computing through the massively parallel pro-

cessing power of hundreds or even thousands of compute cores. There are two popular

low-level programming languages for GPUs. The first language is CUDA (Compute

Unified Device Architecture) [18], a parallel programming model that delivers the high

performance of NVIDIA’s graphics processor technology to general purpose GPU com-

puting. Applications written using CUDA can run on a wide variety of NVIDIA GPUs.

The second language is OpenCL (Open Computing Language) [64], a framework that

is similar to CUDA. However, applications written in OpenCL can be executed across

heterogeneous platforms not just NVIDIA GPUs. Specifically, OpenCL applications

can run on AMD GPUs, NVIDIA GPUs, AMD CPUs, Intel CPUs, and Intel copro-

cessors, like the XEON PHI. Recent development of high-level directive-based GPU

programming allows the programmer to target GPU by placing pragmas in sequential

code and the compiler will generate either CUDA or OpenCL parallel code [30]. For

example, OpenACC [63] is a directive-based programming extension that can be used

to parallelize applications.

3.2.2 Many Integrated Core Architecture

A first-generation Intel MIC-architecture accelerator card (codenamed Knights

Corner) contains 60 or 61 cores, and each core supports 4 hardware threads (i.e., a 4-

Way SMT). A second-generation Intel Xeon Phi accelerator card (codenamed Knights

Landing) contains up to 72 cores (288 hardware threads). One notable feature is that

both generations of the MIC cards feature 512-bit wide SIMD vectors processing units

(VPUs) which provide fine-grained vectorization parallelism. A single instruction can

operate on 8 adjacent double-precision floating point data or 16 single-precision float-

ing point data. Intel MIC accelerators achieve high-performance computing through

the hardware threads and the wide vector registers. In contrast to GPUs, the MIC

accelerator does not require a host processor to execute the entire application. On the

other hand, GPU applications consist of a CPU part that orchestrates the execution of
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sections of the application, often referred to as threads that run on the GPU. The pro-

gramming languages for MIC accelerator include OpenMP, OpenCL, and MPI. In this

work, we use OpenMP and OpenCL to exploit the parallelism of one first-generation

MIC card.

3.2.3 Cardiac Wave Propagation Model

Our goal was to study the computational speedups for simulating cardiac elec-

trical wave propagation achieved by multiple hardware platforms and several program-

ming languages. We chose to work with a relatively straight-forward 2D implemen-

tation of a well-known cardiac action potential model (Beeler-Reuter).1 This model

simplified porting the code between hardware platforms and programming schemes.

Although the model is not as complex as models used in state-of-the-art simulations

[60, 59], we used it as a case-study that could provide a simplified, systematic approach

for comparing modern parallel programming tools. Our experience in parallelizing

this model can provide insights for others seeking to parallelize other more complex

cardiac models [97] and other propagation models, such as convection and diffusion

models [91, 111], seismic wave propagation models [98], and tumor growth and drug

transport models [107].

In our cardiac wave model, as shown in Figure 3.1, cardiac tissue is modeled

as a large geometrical network of nodes that are electrically coupled. The electrical

potential of the cardiac cell membrane at each node is represented as a set of partial

differential equations (shown in Equation 3.1).

Cm
∂Vm
∂t

= ∇ ·D∇Vm − Iion (3.1)

Transmembrane potential (Vm) at each node in a rectilinear 2D grid (Nx · Ny) is

computed using a continuum approach with no-flux boundary conditions and finite

difference integration [4, 43]. In diffusion models, flux is the amount of a chemical

1 Action potential is the change in electrical potential associated with the passage of
an impulse along the membrane of a cardiac muscle cell.
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Figure 3.2: Simulation of a single rotor. Top: An image showing cardiac electrical
wave propagation as spatial fluctuations of transmembrane potential. A
single rotating wave (rotor) is shown. Bottom: Action potentials at one
node are shown as the temporal variation of the transmembrane potential
at a node.

(e.g., potassium) that passes near a point in space per unit area per unit time. No-

flux boundary condition means the chemicals do not go through the walls, i.e., the

boundaries in our cardiac model. Standard Euler time-stepping was used. Cardiac

membrane ionic current kinetics (Iion, µA/cm2) were computed using the Drouhard-

Roberge formulation of the inward sodium current (INa) [21] and the Beeler-Reuter

formulations of the slow inward current (Is), time independent potassium current (IK1),

and time-activated outward current (Ix1) [7]. These currents are represented as complex
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Figure 3.3: Simulation of rotor breakup and fibrillatory activity. Top: An image
of transmembrane potential showing complex wave activity. Bottom:
Action potentials at one node are shown as the temporal variation of the
transmembrane potential at a node.

ordinary differential equations. We simulated functional wave reentry (one rotor), and

rotor wave breakup with subsequent fibrillatory wave activity. Figure 3.2 shows an

example of simulating reentrant activity with one rotor, and Figure 3.3 shows rotor

breakup and fibrillatory activity. For wave reentry, the fiber orientation was typically

set at 33 degrees; diffusion coefficient along fibers was 0.00076cm2/ms and diffusion

across fibers was 0.00038cm2/ms. For rotor breakup and fibrillatory wave activity, the

fiber orientation was set to 0 degrees; diffusion coefficient along fibers and across fibers

were both 0.00055cm2/ms. All simulations were checked for accuracy and numerical
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stability by comparing with the sequential implementation’s simulation results.

The general approach for solving the model is shown in Algorithm 1. The

differential equations were evaluated independently at each grid node at each time

step. Therefore, within each time step there is no data inter-dependency, which fits

the modern parallel architectures quite well. There is potential for programming tools

that exploit data-level parallelism to provide dramatic computational speedups.

3.2.4 GPU Implementations

Algorithm 1 Generalized code block that is evaluated at each time step to com-
pute transmembrane potential (Vm). Xstep (Ystep) is for iterating nodes in X (Y)
dimension of the 2D grid.

for Xstep = 1→ Nx do
for Y step = 1→ Ny do

brgates(); //update ionic gating equations
brcurrents(); //update ionic currents

end for
end for
bcs(); // set boundary/ghost nodes’ potentials
for Xstep = 1→ Nx do

for Y step = 1→ Ny do
Vmdiff(); //update diffusion terms for next time step

end for
end for

As shown in Algorithm 1, the general algorithm loops through each node in a

2D grid. Xstep is the coordinate of the X direction and Ystep is the coordinate of the

Y direction. Inside the loop, the same set of functions is evaluated at each node. The

temporal loop is outside the nested spatial loops. Because of the sequential structure

of the program, total computational time is proportional to the domain area, which

means that large spatial domains require significantly longer computational times.

Parallel implementations of N by N dimensional cardiac models are relatively

straightforward because once diffusion currents have been computed there is no data

dependency between neighboring nodes for a particular timestep. Because of this,
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the differential equations that represent myocyte electrophysiology (the brgates() and

brcurrents() functions) can be evaluated at each node, in almost any sequence.

CUDA and OpenCL Implementations.

We parallelized the cardiac model using CUDA and OpenCL. In CUDA and

OpenCL, multiple threads execute the same instructions but the data processed by

these threads might be on different nodes. Take CUDA, for example, a GPU device

is conceptualized as a grid containing a large number of equally-shaped blocks, into

which the threads are grouped. The parameters of dimGrid and dimBlock define

how the blocks (threads) align in the grid (block). Each thread block in the grid

executes on a multiprocessor and threads in the block execute on multiple cores inside

the multiprocessor. The simulation input set is a 2D grid containing Nx · Ny nodes

(Nx columns and Ny rows of nodes). We mapped one GPU thread to one node. To

achieve maximum parallelism, the optimal setting for block size must be identified. As

mentioned before, inside each GPU there are many multiprocessors and each contains

multiple cores. When the GPU code is executing on a GPU, all of the blocks are evenly

assigned to the multiprocessors. If a multiprocessor contains 32 cores and a block has

64 threads, the first 32 threads will start executing on 32 cores first, then the next

set of 32 threads will be swapped in at some later stage. Assigning large number of

threads in one block may increase the occupancy of a multiprocessor, thereby keeping

all cores busy. On the other hand, due to the limited resources like registers and shared

memory that are available in a GPU, a larger block may increase the pressure on these

resources. To find the best block size for our model, we tested our code using various

block sizes (i.e. different BlockX and BlockY values) and node numbers (i.e. different

Nx and Ny values) for different GPUs. We found that the sweet spot for our cardiac

model is 128× 1 for both CUDA and OpenCL implementations running on both GPU

cards.

The CUDA implementation of our cardiac model is computationally efficient

and provides substantial speedups compared to a sequential CPU implementation.
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However, CUDA code can only run on supported NVIDIA GPUs. To address this lim-

itation we developed an OpenCL version of the model to support GPU parallelization

across platforms. In this work, the OpenCL implementation was tested on the Intel

MIC accelerator card in addition to NVIDIA GPUs. The general architecture of our

OpenCL implementation is the same as the CUDA implementation. One thread was

used to solve the equations at one node in the model.

OpenACC Implementation.

Since we identified the most computationally expensive part of the sequential

program, we can add OpenACC directives to offload the code block to run on accelera-

tors like GPUs and other accelerators. The code with OpenACC pragmas is displayed

in Algorithm 2 with OpenACC pragmas.

In the code block with OpenACC pragmas, “#pragma acc data” specify which

data should be copied to the accelerator (using “copyin”) and to/from the accelerator

Algorithm 2 The sequential program with OpenACC pragmas.

#pragma acc data copyin(constarr,D,Dp,Afield) copy(datarr)
for T = 0→ final do

#pragma acc loop independent vector(32) worker(2) gang(256)
for Xstep = 1→ Nx do

#pragma acc loop independent vector(32) worker(2) gang(256)
for Y step = 1→ Ny do

brgates(); //update ionic gating equations
brcurrents(); //update ionic currents

end for
end for
#pragma acc parallel vector length(1) num workers(1) num gangs(1)
bcs(); // set boundary/ghost nodes’ potentials
#pragma acc loop independent vector(32) worker(2) gang(256)
for Xstep = 1→ Nx do

#pragma acc loop independent vector(32) worker(2) gang(256)
for Y step = 1→ Ny do

Vmdiff(); //update diffusion terms for next time step
end for

end for
end for
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(using “copy”). The “#pragma acc loop” specifies the loop that should be parallelized

by the OpenACC compiler. The “vector”, “worker”, and “gang” constructs specify

the thread configurations similar to block size and grid size in OpenCL/CUDA. For

example, Algorithm 2 is configured to have a grid size of 256 (gang) and a block size

of 32×2 (vector,worker). Note bcs function needs to be executed in serialized manner,

thus the thread configuration specifies the vector length, the number of workers, and

the number of gangs to be 1. The pragmas shown in Algorithm 2 are about all that

were needed to drive the generation of efficient parallel code.

3.2.5 OpenMP Implementation

We parallelized the sequential CPU code using OpenMP [65] to provide more

perspectives in showing the speedups of parallel GPU implementations. We have two

versions of the OpenMP implementation with different number of threads configured for

CPUs and the MIC accelerator, respectively. Using OpenMP directive, we can specify

as many threads as the number of cores in a single machine so that the best speedup

results would be achieved (on this single machine). For the OpenMP implementation

running on the CPU, we used a machine that contained 8 cores. In this case, we created

8 CPU threads, and these threads divided among themselves all the computations.

With these multiple threads, one of the spatial loops shown in Algorithm 1 could be

parallelized. In the case of the MIC card, we created as many threads as the number of

hardware threads available. In exploiting the vectorization power of the MIC card, we

performed loop unswitching optimization to the OpenMP code. The optimization was

used because the array accesses involved step%2 in every statement of the computation

region. Loop unswitching yielded better vectorized code in this case.

3.3 Results

In this section, we report the results of experiments with our CUDA, OpenCL,

and OpenACC GPU implementations. We also report the results of comparing per-

formances of the GPU implementations with OpenMP implementation. In the end of
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this section, we report the speedups from the Intel MIC accelerator.

3.3.1 CUDA and OpenCL Implementations

Hardware

Our GPU implementations of the model were tested on two different GPU cards:

a Fermi-architecture GPU card Tesla C2050 and a Kepler-architecture GPU card Tesla

K20. In the following sections, we refer to them as Fermi GPU and Kepler GPU

respectively. CPU-based implementations were also tested on the machines that hosted

each GPU card. The machines hosting the Fermi GPU had 2 Intel E5530 2.4GHz Quad

Core Nehalem processors (8 cores total) and 24GB memory. The machine hosting the

Tesla K20 GPU card had 2 AMD Opteron 6320 2.8GHz eight core processors (16 cores

total) and 16GB memory.

The Fermi GPU had 14 multiprocessors, each with 32 cores (448 cores total)

clocked at 1.15GHz and 3GB global memory. The Kepler GPU card had 13 multipro-

cessors, each multiprocessor containing 192 cores (2496 cores total) clocked at 706MHz.

It had 4800MB global memory. The peak double precision floating point performance

for Fermi GPU and and Kepler GPU was 515GFlops and 1.17TFlops respectively.

These hardware configurations were also used for the experiments comparing against

OpenMP implementations.

Scalability and Performance

The computational performance of the GPU implementations (running with the

best block size configuration 128× 1) was studied by increasing the grid size and mea-

suring total run time on each hardware platform. Simulations of reentrant activity

(one rotor) and rotor breakup and fibrillatory activity were studied. Our GPU imple-

mentation accommodates large grid size for both simulations. We tested grid sizes up

to a maximum of 2048 × 2048. To ensure appropriate comparisons, the same model

parameters were used for simulations running on CPUs and GPUs for each model. The

CPU results were obtained from running on the machine that hosted the Fermi GPU.
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For the single rotor simulations, we studied grid sizes ranging from 256× 256 to

2048 × 2048. A total time of 100 milliseconds was simulated and dt was varied from

0.025 milliseconds to 0.003125 milliseconds, requiring from 4, 000 to 32, 000 steps for

simulations to finish. The number of nodes visited per second ranged from 1024 to

655350. Square grids were used with an edge size of 10cm.

Figure 3.4: Speedups from running on the Fermi-architecture Tesla C2050 GPU and
the Kepler architecture Tesla K20 GPU using OpenCL and CUDA for
reentrant activity (one rotor) simulation.

Figure 4.5 shows the speedups achieved by the Fermi GPU and the Kepler GPU

over the sequential CPU implementation. In the figure, the X axis is the grid size from

256 × 256 to 2048 × 2048, and the Y axis is the relative speedup value, computed as

CPU time/GPU time. The four bars represent the combinations of runs: OpenCL

implementation running on two GPUs and CUDA implementation running on two

GPUs.

For both CUDA and OpenCL GPU implementations, the Fermi GPU provided

speedups of at least 80× when running large grid sizes, such as 1024×1024 and 2048×
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2048. The Kepler GPU provided more than 220× speedups for the 2048 × 2048 grid

size. For each GPU card we observed that larger grid sizes provided larger speedups.

Comparing the performance of the Fermi GPU with that of the Kepler GPU, we could

see Kepler GPU was more than 2× faster than the Fermi GPU. The increase of the

number of cores from 448 to 2496 and the improvement of double-precision performance

were among the main factors contributing to the speedups. Since the Kepler results

were obtained by running exactly the same code that ran on the non-Kepler GPUs,

optimizations specific to Kepler GPU would have given even more speedups. Although

the GPU kernel functions were equivalent for the OpenCL and CUDA implementations,

OpenCL implementation was slightly faster than CUDA implementation on the two

GPUs. One reason is that our OpenCL implementation predefined the total number

of threads to be one while executing a kernel function that needed to be serialized;

however, our CUDA implementation needed a conditional statement to allow only one

thread to run that kernel function which incurred overhead. Another reason may be a

difference in the runtimes of OpenCL and CUDA. Overall, both CUDA and OpenCL

GPU implementations provided very good speedups on two different GPUs. It took

the GPU implementations about 15 (to 30) minutes to finish the largest simulated grid

size (2048×2048) on Kepler GPU or Fermi GPU – the sequential CPU implementation

took more than 2 days to finish. We noticed that although we copied back from GPU

to CPU the transmembrane voltage values every constant timesteps (5 milliseconds

of simulation), the IO overhead was insignificant, especially for large grid size. So we

excluded the IO time from the total running time for GPU implementations. The

transmembrane voltage values for all nodes reside in GPU global memory. There is no

need to copy the voltage values back to CPU in every single timestep. Fortunately, the

GPUs we used contained enough global memory to hold the voltage values for each

node even for the largest grid containing 2048×2048 nodes. For larger grid sizes, values

will have to be copied back to and from the CPU as the entire grid is computed.

Rotor breakup simulations were used to study performance during greater com-

putational loads. In these tests, we set the model parameters to simulate the breakup
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of a single rotor into multiple rotors, resulting in electrical activity that is much more

complex than that of a single rotor (shown in Figure 3.3). The computational load

for such simulations is typically higher because more nodes are active per unit time.

Despite the fact that the rotor breakup simulation is much more complex, we observed

similar significant speedups from GPUs.

3.3.2 OpenACC Implementation

The hardware used to test our OpenACC implementation was a machine hosting

a Kepler GPU. To compile OpenACC code, we used the HMPP 3.3.3 compiler from

CAPS.2 The compiler transforms OpenACC code to either CUDA or OpenCL code as

specified by the user.

Figure 3.5: Speedups of hand-written GPU code (Man CUDA, Man OpenCL) over
the sequential baseline vs. speedups of OpenACC targeting CUDA and
OpenCL (ACC CUDA, ACC OpenCL) over the same baseline. All GPU
codes were run on the Kepler GPU.

2 As of June 2016, the compiler from CAPS is not available because CAPS went out
of business. PGI compilers should be used for reproducing the experiments.
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The speedups of automatically generated GPU code (CUDA/OpenCL) and

hand-written GPU code (CUDA/OpenCL) are shown in Figure 3.5. The tests were

run on Kepler GPU and the same reentrant activity as above was simulated. We can

see from the figure that OpenACC code targeting CUDA and OpenCL achieved more

than 150 times speedup over the sequential implementation with the largest input size

and over 100 times speedup with the second largest input size. Although automatically

generated GPU code did not achieve the same speedup as hand-written GPU code, the

amount of modification to the original sequential code from OpenACC was trivial and

significantly less than the hand-written counterpart. We believe OpenACC to be a

quick way of exposing parallelism of potential applications and could serve as a transi-

tion between sequential CPU implementations and a more performant, but harder to

code GPU implementation.

3.3.3 OpenMP Implementation

To get a deeper perspective on the speedups achieved by our GPU implementa-

tion, we conducted additional tests with a parallel CPU implementation of the model

using OpenMP. The OpenMP implementation was run on the hardware platform that

hosted Fermi GPU and with the same reentrant activity (one rotor) simulation input

files. We achieved an average speedup of 7.15 over sequential CPU implementation

using 8 CPU threads, which is almost 90% of full occupancy on each core.

Figure 3.6 shows the speedup results over OpenMP for hand-written CUDA and

OpenCL implementations running on the Fermi GPU and the Kepler GPU. All GPU

implementations provided more than 10 times speedup over the multi-core OpenMP

implementation running over large input size on Fermi GPU. The speedup for both

CUDA and OpenCL implementations increased quickly from about 12 times to more

than 30 times running on Kepler GPU with the increase of problem size. The maximum

speedup of 31 over OpenMP was achieved by running OpenCL implementation on the

Kepler GPU.
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Figure 3.6: Speedups on Fermi GPU (NVIDIA C2050) and Kepler GPU (NVIDIA
K20) over the 8 core OpenMP implementation. Reentrant activity (one
rotor) was simulated.

3.3.4 Implementations on MIC Architecture

We used an Intel Xeon Phi 5110P coprocessor to test our hand-written OpenCL

code, automatically generated OpenCL code (by OpenACC), and the OpenMP code

written for the Intel MIC architecture. The coprocessor contained 60 cores and sup-

ported 240 threads. The memory of the coprocessor was 8GB. The machine hosting the

coprocessor had 32 GB of memory and the CPU was Intel Xeon E5 clocked at 2.63GHz.

We used OpenCL 1.2 library (provided by Intel ICC compiler v14.0.0) for OpenACC

and OpenCL implementations. The compiler we used to compile our hand-written

OpenCL code was GCC. We used the CAPS compiler to compile OpenACC code to

generate OpenCL code that ran on the Intel MIC card. For OpenMP implementation,

we used the Intel ICC compiler versioned 14.0.0.

Figure 3.7 shows the speedups achieved on MIC accelerator from the three im-

plementations. The OpenMP implementation was the fastest of the three. It achieved
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Figure 3.7: Speedups on MIC-architecture Xeon Phi coprocessor using hand-written
OpenCL, OpenACC-generated OpenCL, and OpenMP implementation
over the sequential implementation. Reentrant activity (one rotor) was
simulated.

more than 120× speedup for the largest simulation size. For smaller simulation size like

512 and 1024, it achieved more than 100× speedup. The MIC OpenMP implementa-

tion was vectorized with a factor of at least four because if we disable the vectorization,

the speedup obtained was four times less. The MIC OpenCL implementation remained

identical to the implementation tested on GPUs, thanks to its portability. It provided

decent speedups on the MIC while offering good portability. For the largest simula-

tion size, more than 70× speedup was achieved. As the OpenCL library improves, we

expect the speedup number to get better. In contrast to the GPUs, OpenACC only

provided a maximum of 35× speedup on the MIC. For these experiments, OpenMP

was better than OpenACC for achieving good performance on the MIC.
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3.4 Discussion

In this section, we first summarize the optimizations applied to different imple-

mentations. Then we compare different programming languages with various metrics.

In the end, we compare with the related work and summarize this work.

3.4.1 Summary of Effective Optimizations for Different Implementations

Although it was straightforward to port the cardiac model to run on accelerators,

optimizing the code was not trivial.

For CUDA and OpenCL implementations on GPU, we applied two other effec-

tive optimizations before optimizing the block size:

1) Eliminating atomic operations. A direct port of the sequential code con-

tained 9 equations that represent the updates (writes) from a current node to the 8

neighboring nodes and itself, as shown in Figure 3.8(a). When the ported GPU code

is executed, multiple GPU threads will update the same model node, causing a race

condition. Before optimization, atomic operations (in CUDA) and kernel isolations (in

OpenCL) were used to avoid racing updates. Atomic operations are expensive and ker-

nel isolations bring synchronization overhead. To address this limitation, we came up

with a neighbor-update-free strategy, as shown in Figure 3.8(b). In this optimization

strategy, each node “collects” (reads) update requests from the neighbors and performs

the update to the node itself. No two GPU threads will update the same memory lo-

cation, therefore only the center node is updated by the GPU thread that is mapped

to the node. 2) Coalescing memory accesses. Coalesced memory accesses on GPUs

means the data requests (e.g. by 32 threads) consisting of contiguous (e.g. 256 bytes

for double) aligned memory space could be fulfilled by one memory access. More than

one memory access will be needed otherwise. Every node of our model is associated

with 13 attributes. These attributes of all model nodes (N by N, for example) can be

stored in two ways: A[N][N][13] or A[13][N][N]. Storing attributes using A[N][N][13]

is like storing a 2D array (A[N][N]) of structures containing 13 struct-members. In

contrast, storing attributes using A[13][N][N] is like storing a structure of 2D arrays.
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We achieved coalesced memory access by changing Array of Structures (AoS)

to Structure of Arrays (SoA). Without coalesced memory access, the speedup numbers

would get cut by at least a half.

0 1 2

3 4 5

6 7 8

(a) This figure shows that a GPU thread
(mapped to the center node Node 4) writes
to all the neighboring nodes and Node 4. A
red node means its value is changed by the
GPU thread.

0 1 2

3 4 5

6 7 8

(b) This figure shows that a GPU thread
(mapped to the center node Node 4) reads
values from all neighboring nodes and up-
dates Node 4. A red node means its value is
changed by the GPU thread.

Figure 3.8: This figure shows two ways of executing a critical piece of code of the
model on GPUs. Suppose a GPU thread is mapped to the center node.
This code involves updating each model node’s potential with its neigh-
boring nodes’ potentials from a previous iteration.

We obtained the OpenACC implementation from adding pragmas to a sequen-

tial implementation that incorporated the above two optimizations. Added with the

optimization for gang, worker, and vector configuration, we achieved good speedups

from OpenACC on GPUs.

For the MIC OpenMP implementation, we applied a loop unswitching optimiza-

tion to the dominant time-step loop in addition to the above optimizations so that the

vectorization power of a MIC card could be better exploited. The loop unswitching

strategy improved the speedup results by approximately 40%.
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For the sequential and OpenMP version that run on CPUs and serve as the

baselines, we passed O3 optimization flag to the compiler so that the implementations

were well optimized to be good baselines.

3.4.2 Code Metrics to Compare CUDA, OpenCL, OpenACC, and OpenMP

Table 3.1: Comparison of multiple metrics between different parallel programming
implementations for the cardiac wave propagation model.

Language Code-Change
Estimated Time to
Program

Platforms

CUDA 500 Weeks NVIDIA GPUs
OpenCL 500 Weeks GPUs, CPUs, MIC accelerator
OpenACC 10 Days GPUs, CPUs, MIC accelerator
OpenMP 10 Days CPUs, MIC accelerator

In this section, we compare metrics like lines of source code change to the

original implementation, portability, time taken to program, of each CUDA, OpenCL,

OpenACC, and OpenMP implementation. Table 3.1 describes information for each of

the different programming languages and extensions.

The Code-Change (second column) reports the estimated number of lines of

code change for the kernel computation functions from the sequential C code. There

are about 220 lines of computation code in the sequential CPU implementation. The

CUDA and OpenCL implementation needed to replace almost every statement of the

original CPU implementation. For CUDA and OpenCL, we need to include GPU

initialization and data preparation code. This includes initialization of GPU, data

initialization for GPU, and data movement between GPU and CPU. The code change

was mostly addition and replacement of statements. The OpenACC implementation

only required 10 additional statements to the sequential code. For OpenACC, all data

movement and initialization are automatically handled in the generated CUDA and/or

OpenCL code. The programmer only needed to figure out the correct pragmas and as-

sociated pragma attributes to add. The OpenMP implementation was also obtained by

only placing a few pragmas around the parallel code regions. Considering the difficulty
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of programming using the languages (third column), The difficulty of programming in

either CUDA or OpenCL is about the same, and would take an experienced program-

mer weeks to get the program correct and optimized for GPUs. In our case, it took

us months to to implement and tune our best CUDA version. In contrast, OpenACC

and OpenMP programming mostly involved figuring out where to place the pragmas

and what parameters should go with these pragmas. It did not require the program-

mer to be an experienced GPU programmer, in contrast to CUDA programming. It

took us less than a week to get efficient OpenACC and baseline OpenMP implemen-

tations. We also compare the portability of these implementations (fourth column).

The CUDA implementation can only run on NVIDIA GPUs while OpenCL can run

across different architectures include GPUs, CPUs and accelerators like Intel Xeon Phi

coprocessor. Since an OpenACC implementation can be compiled to OpenCL code,

it can target the same architectures as OpenCL can. The OpenMP program can run

on CPUs and Intel’s Xeon Phi coprocessor (accelerator). In addition, the most recent

OpenMP specification [66] introduced the standards of a new “target” directive for

GPU execution.

Combining the performance results and the above metrics, we can see the

OpenCL implementation achieved the best speedups and portability on GPUs; the

OpenACC implementation, taking the minimum amount of effort to program, also

achieved very good speedups on GPUs and the same portability as OpenCL imple-

mentation did. For Intel MIC architecture, the OpenMP implementation was the

performance champion. We attribute this partially to the performance differences be-

tween the compilers and the (OpenCL) libraries used to generate the executables. As

OpenACC compilers improve, we expect the performance of OpenACC applications

will be on par to coding in lower level languages to implement parallelism.

3.4.3 Related Work

The first published simulation of 2D wave propagation in cardiac arrhythmias

model using GPU hardware was performed on an Xbox 360 and resulted in a speedup
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of more than 20× for specific model parameters [86]. Our work, based on our previous

work [103, 106], is the first to report the simulation results of the 2D wave propagation

using CUDA, OpenCL, and OpenACC to manually ( CUDA/OpenCL) and automat-

ically (OpenACC) take advantage of the power of modern computational accelerators

like GPUs and Intel Xeon Phi coprocessor. Wienke et al. were the first to report

the experiences with real-world applications using OpenACC [108]. Their OpenACC

implementation achieved a fraction of 80% of the best performance offered by OpenCL

implementation for one application and only 40% for a more complex medical program.

As shown in Figure 3.5, our OpenACC implementation achieved about 70% of the best

hand-written CUDA/OpenCL implementation. In this work, we also showed that the

OpenACC implementation outperformed a non-optimized hand-written OpenCL code

on the Intel MIC accelerator (Figure 3.7). Hart et al. first showed that OpenACC

could be used in massively-parallel, GPU-accelerated supercomputers [34].

Work that compared OpenACC, OpenCL, and CUDA include the acceleration

of hydrocodes [35] and the acceleration of financial applications [30]. Our case study is

focused on a different codebase (2D wave propagation). While the work of accelerating

hydrocodes showed that OpenCL performed the worst, we reported that the OpenCL

implementation could achieve both good performance and portability. In fact, manual

OpenCL often outperforms manual CUDA implementations. Different from the work of

accelerating financial applications, we went a further step to compare the performance

of the OpenCL, OpenACC, and OpenMP implementation on the Intel MIC accelerator.

There is also related work that focused on comparing the different implementations of

the OpenACC directive-based language itself [83, 82]. Oliveira et al. compared the

CUDA, OpenCL, and OpenGL implementations of the cardiac monodomain equations

[62]. In their work, the OpenCL implementation was slower than the CUDA implemen-

tation. Our work showed that both the hand-written OpenCL code and the OpenACC

generated OpenCL code are competitive with CUDA code while achieving portability.
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3.5 Summary

This work presents our efficient GPU implementations of a wave propagation

model that achieve good scalability on modern computational accelerators. More im-

portantly, we auto-parallelized the sequential code version of the model using Ope-

nACC, the speedup of which was impressive–as much as 150× faster than the sequen-

tial version. By using OpenACC, modifications to the original sequential program were

kept to a minimum. We have also compared the performance of parallel GPU compu-

tations with parallel CPU computations (using OpenMP). Our GPU implementation

was as much as 200× faster than the original sequential CPU code. The OpenMP

code achieved 7.15× speedups over the sequential CPU code on average as displayed.

Comparing with the OpenMP code, our GPU implementation reached more than 30×

speedups on the Kepler GPU. We also tested with different implementations on In-

tel MIC architecture accelerator where the OpenMP implementation achieved the best

speedup of any OpenMP implementation of more than 120× and the portable OpenCL

implementation achieved more than 70× speedup.

We conclude that emerging software developments, like the OpenACC directive-

based programming language, facilitate exploiting application parallelism offered by

evolving hardware architecture. Our method of using OpenACC, OpenCL, and OpenMP

to achieve efficient and effective parallelization on different accelerators can be generally

applied to benefit other domains using wave propagation.
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Chapter 4

ENERGY TUNING USING THE POLYHEDRAL APPROACH

Understanding the impact of energy consumption and execution time that com-

piler optimizations have is important for the tuning of tune applications. To answer

the question whether one can simultaneously optimize for energy and performance us-

ing polyhedral compilers, we performed experiments using both the light-weight fine-

grained RCRdaemon energy measurement tool and the Polyhedral Compiler Collection

tool, or PoCC. Using this setup, we can measure both the energy consumption and the

performance of a large number of program variants constructed by applying various

optimizations. The studies were performed on both an Intel Sandy Bridge architecture

system and a Xeon Phi architecture system. We studied the impact of optimizations

on energy and performance on a variety of benchmarks. We also studied energy and

performance of the cardiac wave propagation application we used in Chapter 3.

4.1 Methods

PoCC could generate thousands of parallelized OpenMP program variants with

different optimizations of the same benchmark. We used a version of the ROSE source-

to-source compiler [80] that was modified and used to find OpenMP parallel regions

and add RCRtool API calls around them. ROSE tracks original file names and source

line number, allowing simple parallel region identification. The overhead of the RCR-

daemon is negligible on both Sandy Bridge and Xeon Phi architectures. It enables us

to measure the energy consumption of the application with a granularity of about one

millisecond. When the program finishes execution, the elapsed time, the amount of

energy used (in Joules), and the average computed power (in Watts) of each parallel
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regions and the whole application are output. Additional information such as processor

temperature is also available after application shut-down.

The Intel MIC architecture in the Intel Xeon Phi chips is a recent addition

to the Intel processor offering. The Xeon Phi works as a coprocessor typically on a

host server with architectures like Sandy Bridges. The Phi accelerator cards we had

available contain 61 cores, each core supports 4 hardware threads. One notable feature

is the 512-bit wide SIMD vectors providing fine-grain vectorization and high floating-

point performance for each thread. With the wide vector registers, a single instruction

can operate on 8 adjacent double-precision floating point data or 16 single-precision

floating point data. The cores, threads and vector unit combine to achieve well over a

Teraflop from a single socket.

RCRdaemon can collect power information either natively on the accelerator or

on the host. Users can track power usage natively in microWatts through the sysfs

system file (/sys/class/micras/power), which is updated every 50 millisecond. RCRtool

monitors the power at user level and computes the energy consumption over time. The

RCRTool provides a consistent API on the Xeon Phi as well as the Sandy Bridge. On

the host, RCR collects power information of the coprocessor using the MICAccessSDK

API provided by Intel. The granularity is the same 50 milliseconds.

4.2 Benchmarks and Experimental Setup

We evaluated three kinds of programs for energy auto-tuning with polyhedral

framework: the Polybench benchmark suite, the LULESH program [42], and the car-

diac wave propagation application developed and frequently used by our collabora-

tors [43]. PoCC was used to optimize Polybench and, PolyOpt was used to optimize

LULESH and the cardiac simulator.

4.2.1 Polybench

Previous work has obtained significant speedups with the polyhedral framework

for the Polybench programs[70, 68, 69]. We extended this work to examine whether the
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best tuned variants are also the most energy efficient. Using PoCC, program variants

were generated using different combinations of optimizations from the following five

groups:

• Loop fusion: smartfuse, maxfuse, nofuse

• Loop unrolling factor: 1, 2, 4, 8

• Loop tiling: 1, 16, 32, 64. Note that the number of different flags depends on the
level of nested loops

• Loop vectorization: on, off

• Loop parallelization: on, off

The Tiling Hyperplane method[11] is used to perform loop tiling. Loop fusion is per-

formed to minimize loop overheads. Depending on reuse patterns, fusion can increase

or decrease locality. Similar to Park et al., [69] 1) nofuse results in no loop fusion 2)

smartfuse only fuses statements that carry data reuse and are at similar nesting levels

3) maxfuse performs all legal loop fusion. Good loop fusion optimizations improve

temporal locality. All three fusion types are evaluated. For a triply nested loop, ap-

plying all possible combinations of the above optimizations generated 5135 program

variants. The ROSE source-to-source compiler was used to add energy profiling calls to

each variant automatically. GCC(4.4.6) generated the final executable. During the ex-

ecution of an application, periodic queries to the RCRtool blackboard provide energy

consumption information. Figure 4.1 gives the workflow for measuring energy con-

sumption of Polybench programs using the polyhedral compiler framework enhanced

with energy measurement capability. We used the ROSE source-to-source compiler to

add the APIs because phase entries and exits are very clear in the source code level

for OpenMP applications. Note that binary instrumentation can alternatively be used

to add energy profiling instrumentation, as in work done by Cicotti et al. [17].

4.2.2 LULESH

LULESH[42] is a mini-version of Arbitrary Lagrangian-Eulerian 3D (ALE3D), a

multi-physics numeric simulation software tool. We used the OpenMP implementation
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Figure 4.1: The workflow of obtaining energy consumption of polyhedral optimized
Polybench programs.

v1.0 for our experiments. The original LULESH uses a block structured mesh accessed

via an indirect reference pattern[42]. To make LULESH amenable to transformations

by a polyhedral compiler, we modified it to resolve all indirect array accesses. Al-

though doing this oversimplified LULESH, it allowed us to study the energy and time

relationship of polyhedral compilation techniques with LULESH.

LULESH OpenMP implementation contains 30 parallel regions, 6 of which take

up more than 60% of the total application time[74]. We manually converted the two

most significant parallel regions to two SCoPs so that they could be passed to our poly-

hedral framework. Static Control Parts (SCoP) refer to code regions that are amenable

to polyhedral transformations. A SCoP should conform to certain constraints. For ex-

ample, indirect memory access and complex function calls are not allowed in a SCoP.

The largest SCoP that we obtained from manual conversion contained too many depen-

dences and we found it hard for the polyhedral compiler to finish transformation and

parallelization: when all the temporary variables were eliminated from the most com-

putationally intensive loop to create a SCoP, the resulting code was greatly expanded
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and required hours of compilation to generate just one variant. In this work, opti-

mizing the 2nd (largest) SCoP of LULESH was the focus. 200 program variants were

produced by applying loop fusion (maxfuse and smartfuse), loop tiling, vectorization,

and parallelization. The execution time and energy of each was measured.

4.2.3 Cardiac Wave Propagation

In addition to the Polybench programs and LULESH, the 2D monodomain

cardiac wave propagation simulation application (named brdr2d) from Chapter 3 was

used as a benchmark for experiments in this chapter. Recall that its model involves

solving a set of ODEs and PDEs and is well-known in the computational cardiac

modeling community[43]. The sequential C implementation was more than 1K lines.

One loop nest took more than 90% of the total application execution time. This

dominate loop nest is an ideal situation for the polyhedral compiler. The loop nest was

inside a while loop and was executed many times. This code structure is not unique

to cardiac wave propagation simulation. Computationally dominate loops are often

found inside either while loops that execute until some termination condition or inside

a simulation time-step loop. LULESH also falls into this category with multiple loop

nests within a time-step loop.

While PolyOpt sometimes cannot extract any SCoPs from a program, it does

output information useful to the user so that they can manually transform the ap-

plication to modify loops into SCoPs. For the application brdr2d, PolyOpt generated

enough information so that we were able to transform two loops into SCoPs. To expose

the SCoPs the following changes were required. The computation part of brdr2d was

fully inlined removing all function calls. Then, all array indexes were changed to be

affine functions of the loop iterators. This involved loop unswitching. Loop unswitch-

ing moves a conditional inside a loop nest outside and duplicates the loop body for the

if and else clauses of the conditional. Here, loop unswitching is used to to specialize

modular operations like step % 2. Finally, the number of dependencies was reduced
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Figure 4.2: A simplified version of the original LULESH loop nest and the same loop
nest transformed using loop unswitching.

by forward substitution of temporary variables. After these changes, PolyOpt auto-

matically detected the code region and applied various transformations to the SCoPs.

Figure 4.2 shows a simplified version of the original and the transformed loop nest.

Program variants were generated to explore data locality and parallelism us-

ing loop fusion (smartfuse/maxfuse), different tiling sizes, vectorization and auto-

parallelization. For those variants when parallelization was “on”, OpenMP pragmas

were automatically generated for each variant. The original sequential C implementa-

tion had all required OpenMP pragmas manually added to serve as a baseline. Four

different input files for brdr2d were used to study how the performance of the program

variants is impacted by different input sizes.

4.2.4 Experimental Setup

The tests ran on a 2-socket 8-core Intel Xeon E5-2680 processor with 20MB

(40MB total) L3 cache. PoCC v1.2 was used to generate program variants. The extra

large data set (specified in Polybench) was used. A few modifications were made to
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ROSE (version timestamped 1370387370) to insert the energy API calls. GCC v4.4.6

was the backend compiler. Every executable was compiled with the -O3 optimization

flag. To protect against low start-up energy/power measurements, the system was

warmed up with a computational intensive program before any test was executed.

We also performed experiments on a Xeon Phi coprocessor. The Phi architecture

accelerator card contained 61 cores clocked at 1.09GHz. Each core had 512KB of

L2 cache. Each program variants was compiled with the ICC v14.0.0 compiler to

generate the final executable, producing OpenMP programs that ran natively on the

Phi. The polyhedral framework was first used to examine the energy usage (and the

execution time) of the Polybench programs and LULESH on the Intel Sandy Bridge

architecture. In particular, LULESH was rewritten to allow easy manipluation in a

polyhedral compiler framework. A more realistic application, brdr2d, was then studied,

which was run on both the Intel Sandy Bridge and the Intel Xeon Phi architecture.

4.3 Execution Time and Energy Consumption Correlation

The experiments in this section verify the relationship between execution time

and energy consumption.

4.3.1 Polybench

The Polybench v3.2 benchmark suite contains 30 programs. Because of the large

number of variants created, the energy consumption of three (covariance benchmark,

2mm benchmark, and stencil seidel-2d benchmark) were chosen for closer examination.

Figure 4.3(a) shows the relationship between the execution time and the energy usage

for the 5135 variants of the covariance benchmark, sorted by execution time. The

left y-axis shows the energy consumption (in joules) and the right y-axis shows the

execution time (in seconds).

There is clear correlation between the time and the energy in this graph. The

energy line ( blue plus and mostly below the execution time) generally follows execution

time. The best optimized program variant for covariance for time (bottom right in the
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figure) consumed the least amount of energy. The energy line has many places where 2

runs that take the same amount of time consume significantly different energy. These

appear as spikes in the graph. Examining the covariance optimization results closer, we

noticed that the higher energy usage value always had the “maxfuse” flag set. The last

jump in Figure 4.3(a) is at variant 4236, above which all executions have “maxfuse”

set. The executable with “maxfuse” requires significantly more power than with either

“smartfuse” or “nofuse”. For the executables where no performance improvement is

gained, this has noticeable energy costs. However, when the polyhedral framework finds

the correct tiling size, the “maxfuse” flag produces a significantly faster executable

(note the change in the execution curve that occurs at variant 4236). We believe

that “maxfuse” exposes more instruction-level parallelism to the hardware resulting

in faster execution. For poor tile sizes this results in an increase in the number of

concurrent memory accesses and an increased power demand by the application. With

the proper tile size execution time and energy is minimized. The “smartfuse” and

“no fuse” options produce executables that run at lower power and may be beneficial

if peak power usage is a constraint, but longer execution times (up to 2×) result in

significantly higher overall energy costs. The interaction between optimizations can

have significant impact on their effectiveness for both time, energy and power.

We can see a similar correlation between execution time and energy occurs for

the 2mm benchmark (as shown in Figure 4.3(b)). No single optimization has a large

effect on power as “maxfuse” did in the previous example. The spikes that do occur

(especially the left side) are from poor tiling configurations. Power is approximately

constant for all the runs, so energy consumption is a function of execution time.

For the stencil benchmark seidel-2d, Figure 4.3(c) shows when the execution

time becomes lowest, the energy consumption is also minimal. The jump in the energy

curve occurs for all variants with parallelization turned on. Power for non-parallel

variants is less than 60 Watts. Power for the parallel variants are between 110 and 135

Watts. No other optimizations have as significant effect on the power or energy usage.
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(a) The relationship between the execu-
tion time and the energy consumption of
all covariance Polybench program variants
on Sandy Bridge Processor (sorted by exe-
cution time). The spikes that happen at
around variants 750, 1950, and 4236 are
caused by “maxfuse” loop transformation.
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(b) The correlation between the execu-
tion time and the energy consumption of
2mm Polybench on Sandy Bridge Proces-
sor (sorted by execution time). The spikes
that happen at around variants 500 and
1000 are caused by bad tiling configuration.
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(c) The correlation between the execution
time and the energy consumption of stencil
seidel-2d Polybench on Sandy Bridge Pro-
cessor (sorted by execution time). Jumps
in energy usage (and decreased execution
time) are results of turning parallelization
on.
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(d) The correlation between the execu-
tion time and the energy consumption of
LULESH program on Sandy Bridge Pro-
cessor (sorted by execution time).

Figure 4.3: Execution time and energy consumption correlation of Polybench pro-
grams (covariance, 2mm, and seidel-2d) and LULESH.
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(b) Time and energy correlation on Xeon
Phi

Figure 4.4: Graphs showing the correlation between the execution time and the en-
ergy consumption of brdr2d on a Sandy Bridge processor and on a Xeon
Phi architecture (both sorted by execution time).

4.3.2 Modified LULESH

For 200 variants of LULESH, Figure 4.3(d) shows the energy used and execution

time. The energy curve mirrors the execution time. A slight (< 2%) run-to-run vari-

ation in the energy, presents a minor opportunity for energy tuning beyond execution

time. LULESH optimizations overall provide almost a 2× reduction in execution time

(22.9 vs 12.1 seconds - 47% reduction) and a significant decrease in energy (3650 vs

2185 Joules - 40% reduction). No single optimization resulted in a significant increase

in power, although the power required did rise slightly (from 160 Watts to 180 Watts

- 12% increase).

4.3.3 The Cardiac Wave Propagation Application

brdr2d contains two symmetric SCoPs (because of loop unswitching). Each

SCoP contained 42 statements. The number of dependencies between these statements

was 638 (there were no loop carried dependencies). PolyOpt detected and applied loop

fusion (maxfuse or smartfuse) and loop tiling transformations (various tile sizes) as well

as vectorization and auto-parallelization to the SCoPs. The fastest 84 program variants

were chosen for study on both the Sandy Bridge processor and Xeon Phi coprocessor.
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The other program variants did not finish execution before preset timeouts. 49 of the

84 considered programs had “maxfuse” flag turned on.

Figure 4.4 compares execution time and energy consumption (for input size of

2048) for the cardiac simulation application on the Sandy Bridge processor and on a

Xeon Phi card. Both Figure 4.4(a) and Figure 4.4(b) show that the energy tracks the

time. Saving energy consumptions is consistent with improving performance on both

processors. The brdr2d application has a small number of loops and one dominant

loop. In Figure 4.4(a), the effect of fusion (smartfuse and maxfuse) on power was

small (less than 10 Watts difference). Some variants with “bad” tile sizes required

less power/energy (indicated by the energy drops). Overall the effect of fusion was

insignificant. Figure 4.4(b) has the time line above the energy line for the left half but

below for the right half. We noticed for the Phi, that the “smartfuse” option clearly

used lower power than “maxfuse” (at least 20 Watts). However, the performance of

“maxfuse” was much better than “smartfuse” and the overall execution time and energy

use for “maxfuse” was lower (up to 5×). On our Xeon Phi, the “maxfuse” optimization

setting combined with a good tiling size exposed more parallelism that the processor

could take advantage of. The fastest execution times occurred with “maxfuse” and

good tiling sizes.

4.4 Polyhedral Optimization Results on a Cardiac Wave Propagation Ap-

plication

Optimizing brdr2d on the Sandy Bridge Processor and on a Phi coprocessor

show the advantage of using a polyhedral framework to optimize for both execution

time and energy.

4.4.1 Results on Sandy Bridge Processor

To better understand the optimization variants of brdr2d they were executed

with four different input sizes. Figure 4.5 compares the best variant for each input size

relative to the base-line OpenMP version. As shown in Table 4.1, the best optimization
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Table 4.1: This table shows the best program optimization for different input size.

Input Size Best Optimizations
256 maxfuse, 1× 128 tiling size, parallelization
512 maxfuse, 1× 256 tiling size, parallelization
1024 maxfuse, 1× 256 tiling size, parallelization
2048 maxfuse, 1× 256 tiling size, parallelization
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Figure 4.5: Graph showing the performance improvement and energy savings of the
optimal program variant over the baseline OpenMP implementation for
different problem size on Sandy Bridge Processor.

was different as the input size grew. For the problem size of 256, a tile size of 1× 128

resulted in the fastest execution, For the larger input sizes,the variant with tile size

1 × 256 was fastest. As we increased the input size the optimized variants’ relative

performance and energy consumption improved (256 - 2.5% to 2048 - 21%). As the

loop size increases, the loop nest becomes a more dominant portion of the execution

and the relative performance from optimization improves. For the smaller input sizes,

the data fit into various cache levels and the benefits of loop optimizations for data

locality are ineffective.
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4.4.2 Results on Intel Xeon Phi

To show the benefits of using polyhedral optimization techniques on the Phi

accelerator card, the performance of a manual OpenMP implementation can be com-

pared with the best PolyOpt/PoCC generated OpenMP program variant (shown in

Figure 4.6(a)). The speedups were calculated against a sequential Sandy Bridge exe-

cution.

The best PoCC variant of brdr2d, is over 20% faster than the manual OpenMP

version written for the Xeon Phi card for small sizes. For the largest input size, 2048,

the best PolyOpt/PoCC variant is still slightly faster than the manual OpenMP imple-

mentation and has an absolute speed up of over 150×. The optimal tiling size changes

as the input grows. In each case, 1 × size is preferred for maximum vectorization.

As the problem size grows, non-tiled vectorization improves, reducing the effectiveness

of tiling. This shows that manually choosing the right optimization combination is

complicated and requires deep knowledge of the algorithm, the input, and the archi-

tecture. As expected the two main performance drivers for the Phi are parallelization,

for threads, and vectorization, within threads.

The polyhedral optimizations also improves energy. Figure 4.6(b) shows the

relative speedups and the normalized energy savings offered by the polyhedral transfor-

mations and auto-parallelization. The energy savings approximately match the relative

speedups, ranging from 20% down to 3% as size increases (and baseline vectorization

improves).

4.5 Predicting the Optimization for Lowest Energy

We have shown that the optimization that leads to the minimum execution

time also leads to the minimum energy in the polyhedral optimization space. Existing

models that accurately predict the best compiler optimization sequence for execution

time should also work for energy consumption. In this section, we provide the results

of applying the model to autotune applications for energy.

58



 40

 60

 80

 100

 120

 140

 160

256 512 1024 2048
 40

 60

 80

 100

 120

 140

 160

S
p

ee
d

u
p

s

Problem Size

Manual
Polyopt

(a) Graph showing the comparison between
speedups of manual OpenMP implementa-
tion and the best PolyOpt/PoCC generated
OpenMP program variant over the sequen-
tial implementation on MIC architecture.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

256 512 1024 2048
 0

 0.05

 0.1

 0.15

 0.2

 0.25

S
p

ee
d

u
p

s

N
o

rm
al

iz
ed

 E
n

er
g

y 
S

av
in

g
s

Problem Size

Speedups
EnergySavings

(b) Graph showing the performance im-
provement and energy savings of the op-
timal PolyOpt/PoCC generated program
variant over the baseline OpenMP imple-
mentation for different problem size on
MIC architecture.

Figure 4.6: Polyhedral Optimization Results on MIC architecture

4.5.1 Energy Prediction Model Construction

Following the workflow shown in Figure 4.1, the execution time, power, and

energy consumption were collected for all benchmarks from Polybench v4.0, including

11,192 polyhedral optimized versions. For each benchmark, the number of different

combinations of the polyhedral optimizations applied are listed in Table 4.2. Different

polyhedral combinations can result in the same code being generated. Table 4.2 also

lists the number of unique program variants for each benchmark.

The control flow graphs were then extracted using the LLVM compiler from

the original 29 benchmarks, resulting in 29 graphs. These graphs are represented such

that the node labels contains the histograms of instruction counts in the basic blocks of

the code. Similar to Park et al., [69], each node in the control flow graph contains the

total number of instructions, the number of add/sub/mul/div instructions, the number

of load/store instructions, the number of comparisons, and the number of conditional

and unconditonal branches. The optimization sequences are encoded into fix-length
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Table 4.2: This table shows the number of loop nests, the number of polyhedral com-
binations applied, and the unique number of variants for different bench-
marks.

Benchmarks Loop Nests Level
Polyhedral
Combinations

Unique Number
of Variants

2mm 3 520 374

3mm 3 520 375

adi 2 136 34

atax 2 136 48

bicg 2 136 63

cholesky 3 520 198

correlation 3 520 269

covariance 3 520 373

deriche 2 136 9

doitgen 4 2056 992

durbin 2 136 8

fdtd-2d 2 136 50

floyd-warshall 3 520 19

gemm 3 520 249

gemver 2 136 79

gesummv 2 136 62

gramschmidt 3 520 53

heat-3d 3 520 335

jacobi-1d 1 40 8

jacobi-2d 2 136 50

ludcmp 3 520 9

lu 3 520 65

mvt 2 136 93

seidel-2d 2 136 16

symm 3 520 9

syr2k 3 520 249

syrk 3 520 249

trisolv 3 520 40

trmm 3 520 157

Total - 11,192 4535

feature vectors as well. Loop fusion, loop tiling, and loop vectorization are included

in the feature vectors. For all polyhedral optimized versions, loop parallelization is

applied and we omitted loop unrolling search space in order to avoid exceeding the

memory of Matlab, which is used to construct the model. Four loop fusion related
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optimizations and four loop tiling sizes are considered for each loop in a loop nest. We

used three bits to distinguish between the three following fuse optimizations: “nofuse”,

“smartfuse”, and “maxfuse”. We used one bit to represent whether vectorization is

applied. For loop tiling, we used one bit to indicate whether to apply loop tiling. When

loop tiling is applied, we used four groups of three bits (total 12 bits) to represent at

each loop nest level (up to four) what tiling size should be used (three bits represent

four tiling sizes) at each loop nest.

The construction of the machine learning model relies on the similarities be-

tween each pair of training instances (program variants). In order to get this big

similarity matrix (11,192 by 11,192), we derive it from the control flow graph similar-

ity and optimization sequence similarity. The pair-wise control-flow graph similarities

are calculated using the shortest path graph kernel which takes into account the node

label similarities (i.e. instruction histograms). The optimization sequence similarities

are calculated using XNOR operation. XNOR counts the number of common bits (cor-

responding to whether the particular optimization is applied or not). To derive each

entry of the similarity matrix, the following formula is used:

k < (pi, om), (pj, on) >= k < pi, pj > ×k < om, on >

In the above equation, k refers to the similarity function that takes two paraemters

of the same type as input. pi and pj refer to program variants while om and on refer to

the optimization sequences. The number of unique tuples (pi, om) is equal to the total

number of program variants (11,192). This matrix is important in that it is fed into a

SVM machine learning algorithm to construct a predictive model. How we derive the

matrix directly affects the model generated.

In setting up the experiments, the model is always trained from 28 benchmarks,

leaving the remanining one out for testing, i.e. we perform leave one out cross valida-

tion. We repeat the training and testing process for each benchmark, leaving it out and

training on the rest. We report the results of top1 and top5 predictions. Top1 refers

to the optimization sequence that is predicted to consume the least amount of energy.

Correspondingly, in the top5 case, five optimization sequences that are predicted to
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consume the least amount of energy are chosen. The selection of optimizations is based

on the predicted energy consumption. We evaluate the prediction results of the best

(top1) or five best (top5) optimizations by investigating how close the predicted best

optimization combinations come to the optimal combination.

4.5.2 Prediction Results

Table 4.3 shows the energy prediction results for each benchmark. In this table,

energy savings are calculated by comparing the energy consumption of the compiler

transformed program variants to the energy consumption of the original sequential pro-

gram. The percentage is calculated by dividing the predicted energy savings over the

optimal energy savings. This value means the achievable energy improvement in our

explored optimization space. For example, the best transformed variant from the top5

predicted compiler transformations reduces energy by 4.8× while the optimal compiler

transformation reduces energy by 5.9×. So, the percentage of optimal energy im-

provement achieved from the top5 predicted compiler transformations in our explored

optimization space is given by 4.8/5.9. The top five predicted optimization sequence

achieved 82.98% of the optimal energy savings (× reduction in energy consumption)

on average. With the 1-shot model, the predicited best optimization sequence achieved

74% of the optimal achievable energy savings.

The results of predicting the minimum power variant are presented in Table 4.4.

Here the optimal and predicted power are relative to the sequential version’s power con-

sumption. Since the polyhedral optimizations we study here include parallelization, the

power consumption of all transformed program variants is found to be larger than that

of the sequential version. The model will predict the best parallelized version that

consumes the least amount of power. In Table 4.4, if the power increase has an op-

timal/minimal value (or predicted value) of 1, it means the power is identical to the

sequential version’s power. If the value of power increase is 2.5, it means the best

program variant’s consumed power is 2.5× more than the consumed power of the se-

quential version. The further the predicted power increase is from the minimal power
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Table 4.3: This table shows the results of the model when predicting the energy
savings of compiler transformations. The “percentage” corresponds to the
achievable energy savings given by the model compared to the best energy
savings.

Benchmarks
Optimal
Energy
Savings

Predicted
Energy
Savings
(Top5)

Percentage
(Top5)

Predicted
Energy
Savings
(Top1)

Percentage
(Top1)

2mm 5.9× 4.8× 81.36% 4.1× 69.50%

3mm 5.9× 4.5× 76.27% 4.5× 76.27%

adi 6.2× 6.2× 100.00% 0.5× 8.06%

atax 1.5× 1.4× 93.33% 1.3× 86.67%

bicg 2.5× 2.5× 100.00% 2.5× 100.00%

cholesky 6.6× 5.8× 87.88% 5.8× 87.88%

correlation 31.0× 25.4× 81.94% 24.5× 79.03%

covariance 46.8× 24.1× 51.50% 24.1× 51.50%

deriche 0.9× 0.6× 66.67% 0.6× 66.67%

doitgen 7.3× 2.0× 27.40% 2.0× 27.40%

durbin 1.0× 1.0× 100.00% 1.0× 100.00%

fdtd-2d 1.1× 0.9× 81.82% 0.8× 72.73%

floyd-warhsall 3.1× 3.0× 96.77% 3.0× 96.77%

gemm 6.5× 5.5× 84.62% 3.3× 50.77%

gemver 4.5× 4.5× 100.00% 3.4× 75.56%

gesummv 2.9× 2.9× 100.00% 2.7× 93.10%

gramschmidt 9.5× 0.7× 7.36% 0.7× 7.36%

heat-3d 1.3× 1.3× 100.00% 1.2× 92.31%

jacobi-1d 1.5× 1.5× 100.00% 1.5× 100.00%

jacobi-2d 1.0× 1.0× 100.00% 1.0× 100.00%

ludcmp 0.9× 0.9× 100.00% 0.9× 100.00%

lu 21.4× 19.3× 90.19% 17.2× 80.37%

mvt 5.1× 4.2× 82.35% 3.2× 62.75%

seidel-2d 4.5× 4.2× 93.33% 3.9× 86.67%

symm 2.0× 1.2× 60.00% 1.2× 60.00%

syr2k 3.7× 3.6× 97.30% 3.2× 86.49%

syrk 22.2× 12.9× 58.11% 10.1× 45.50%

trisolv 1.7× 1.5× 88.24% 1.4× 82.35%

trmm 41.2× 41.1× 100.00% 41.1× 100.00%

Average 8.61× 6.50× 82.98% 5.89× 73.99%

increase, the lower the percentage of power achieved by the model, compared to the

power consumed by the best transformed version of the program in the explored space.
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For example, the best variant of the covariance benchmark has a power consumption

increase of 2, which means the best program transformation (with parallelization) in-

creased power by 2×. The predicted power increased by 2.5, which means that the

power consumed by the compiler transformation that is given by our trained model

increased power by 2.5×, compared to the sequential version. The percentage is calcu-

lated by dividing the minimal power increase (i.e., 2×) by the predicted power increase

(i.e., 2.5×). Therefore, our model achieves 80% of the achievable minimal power con-

sumption as compared to the best transformed variant. The table shows that the model

achieved 77.03% of the achievable minimal power consumption in 5-shot and 75.31%

in 1-shot prediction on average.

However, our model is not as effective at predicting EDP. We discovered this

by training our model using an application’s EDP and only achieved 65% out of the

optimal EDP on average. We believe this is due to the combined effect of mispredicting

both energy and time. The combined effect of miss predicting energy and miss predict-

ing execution time makes combining these predictions into an Energy-Delay Product

prediction less reliable.

4.6 Discussion

When OpenMP appliations run on modern parallel architectures like the Intel

SandyBridge processor, run-to-run variance is bound to have an impact on both perfor-

mance tuning and energy tuning when using constructed predicting models that don’t

take this variance into account. Runtime variance can be seen as noise in the data used

for training a model. Such runtime variability can come from hardware or software.

Each processor chip is manufactured under slightly different conditions. Some proces-

sors are more efficient than others. An efficient chip may run over-clocked more of the

time than a non-efficient chip. Location on a board or within a system, may affect

the amount of cooling a chip receives which also impacts the clock frequency. Where

the OS schedules an application can have significant impact on performance. Thread

binding to cores impacts memory access latency. Remote memory access significantly
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Table 4.4: This table shows the results of the model when predicting the power con-
sumption increase (compared to the sequential version’s power) of poly-
hedral transformed code. The closer the predicted power increase is to the
minimal/optimal power increase, the better the transformed variant was.

Benchmarks
Minimal
Power
Increase

Predicted
Power
Increase
(Top5)

Percentage
(Top5)

Predicted
Power
Increase
(Top1)

Percentage
(Top1)

2mm 2.5× 2.5× 100% 2.5× 100%

3mm 2.5× 2.5× 100% 3.33× 75%

adi 2.5× 2.5× 100% 2.5× 100%

atax 1× 2.5× 40% 2.5× 40%

bicg 1.67× 2.5× 66.67% 2.5× 66.67%

cholesky 1× 2.5× 40% 2.5× 40%

correlation 1× 2.5× 40% 2.5× 40%

covariance 2× 2.5× 80% 2.5× 80%

deriche 1× 1× 100% 1× 100%

doitgen 1.67× 2× 83.33% 2× 83.33%

durbin 1× 1× 100% 1× 100%

fdtd-2d 1× 2.5× 40% 2.5× 40%

floyd-warshall 1× 1× 100% 1× 100%

gemm 2.5× 3.33× 75% 3.33× 75%

gemver 1× 2.5× 40% 2.5× 40%

gesummv 2.5× 2.5× 100% 2.5× 100%

gramschmidt 2.5× 3.33× 75% 3.33× 75%

heat-3d 2.5× 2.5× 100% 2.5× 100%

jacobi-1d 1.11× 1.11× 100% 1.11× 100%

jacobi-2d 1× 2.5× 40% 2.5× 40%

lu 1× 1.11× 90% 1.11× 90%

ludcmp 2.5× 2.5× 100% 2.5× 100%

mvt 2.5× 2.5× 100% 2.5× 100%

seidel-2d 1.11× 2.5× 44.44% 2.5× 44.44%

symm 1.11× 1.11× 100% 1.11× 100%

syr2k 2.5× 3.33× 75% 3.33× 75%

syrk 2× 3.33× 60% 3.33× 60%

trisolv 1.11× 2.5× 44.44% 2.5× 44.44%

trmm 2.5× 2.5× 100% 3.33× 75%

Average 1.7× 2.3× 77.03% 2.36× 75.31%

increases memory latency and possibly network congestion. The OS scheduling where
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Table 4.5: Jacobi-2D Autotuning execution times

Run Number nofuse nofuse1X16 nofuse1X32 nofuse1X64
1 5.33 5.15 5.09 5.30
2 5.14 5.08 5.13 5.14
3 5.37 5.35 5.20 5.31
4 5.04 5.12 5.18 5.34
5 5.41 5.33 5.16 5.08
6 5.24 5.22 5.37 5.02
7 5.06 5.16 5.20 5.08

Average 5.22 5.20 5.19 5.18

an application runs and what applications are running simultaneously impact perfor-

mance. The existence of run-to-run variance means that the “best” program version

predicted by the model is at best one of the “best” versions [73]. Table 4.5 presents

execution times for each of 7 runs of the fastest 4 program variants for Jacobi-2D

polybench on the two socket 2.7 GHz E5-2680 SandyBridge system. For each run,

the fastest program variants is in boldface. If only one run is used, any of the four

transformed code versions could be picked as “best”. When each experiment is run

7 times, on average the nofuse1X64 set is almost 1% faster than the nofuse set. In

preparing training data for our prediction framework, the experiments were repeated

at least five times to mitigate the run-to-run variance.

Running a single parallel application repeatedly on the same Intel Sandy Bridge

system shows socket temperature’s effect on the execution time and the energy con-

sumption. It also shows the execution and energy consumption differences of consecu-

tive runs of an application. Figure 4.7(a) has 4 values plotted for each of the 100 runs

of the original LULESH OpenMP application. The execution time is the thick red line

on the bottom (scale on the right). It is around 26 seconds. The jagged black line

(mostly in the middle) is the energy consumed by each run (scale on the left). Each

run has a variation between consecutive runs of almost 100 Joules (or about 2%). More

interesting are the temperature values (socket 0 - black plus signs at the top; Socket 1 -
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blue crosses slightly lower), which start off at 46◦C and 42◦C respectively and over the

first 6-12 runs, rise to respective steady-states of around 72◦C and 59◦C. The energy

used by the early lower-temperature runs is significantly less than that of the later runs

(between 200 and 300 Joules – 4-6%). By sorting the data by execution time, we get

Figure 4.7(b). Note that the graphs have different scales to exaggerate the time differ-

ences – temperature is on the same scale in both graphs. A strong relationship between

energy usage and execution time is evident, in Figure 4.7(b). Execution time varies

between 27 and 25.5 seconds (6% variation) while energy generally falls from 4250 to

4050 joules(5% variation). Energy consumption generally tracks execution time. Out-

liers exist for runs when temperature had not reached the final steady state. There are

also minor fluctuations between runs with the same time/temperature, which may be

related to minor temperature differences, energy measurement inaccuracies, or other

hard to measure differences. The time to reach steady-state temperature is about 5

minutes, with the bulk of the temperature rise in the first one or two minutes. Tem-

perature has a very clear impact on the amount of energy used by an application. The

lower the temperature, the less energy (and power) is used. When the system is idle,

the temperature difference between the two sockets is about 4◦C, but as the system

becomes active, the difference is 13◦C. The test system is a half-height blade, with the

two processors in line. The air flows over one socket before reaching the second socket.

The warmer air doesn’t allow the second core to cool as much and it runs noticeably

hotter. Also, LULESH has some known execution variabilities due to memory allo-

cation, which can explain the 6% variation in execution time over the 100 runs. For

a constant temperature, the power level and energy consumption are well correlated

with time. Approximately 1% jitter exists between runs that are at the same temper-

ature. To minimize the temperature’s effect on the execution time, we pre-warmed up

the machine everytime a set of benchmarks were run by running a compute-intensive

program.

In addition to collecting the execution time, power, energy, and temperature for

the entire application, we collected this information for various loops of the application.

67



 3900

 4000

 4100

 4200

 4300

 4400

 0  20  40  60  80  100
 0

 20

 40

 60

 80

 100

E
n

e
rg

y
 (

jo
u

le
s

) 

T
im

e
 (

s
e

c
o

n
d

s
) 

a
n

d
 T

e
m

p
. 

(c
e

ls
iu

s
)

Execution

Time
Energy

Socket 0 Temperature
Socket 1 Temperature

(a) in execution order

 3900

 4000

 4100

 4200

 4300

 4400

 0  20  40  60  80  100
 25

 25.5

 26

 26.5

 27

 27.5

E
n

e
rg

y
 (

jo
u

le
s

) 

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
o

n
d

s
)

Execution

Time
Energy

Socket 0 Temperature
Socket 1 Temperature

(b) sorted by time

Figure 4.7: Time/Energy/Temperature for 100 runs of LULESH

Region Mean Power Region Mean. Power

3 152.84 6 163.51
7 174.70 9 149.61
13 144.91 18 160.07

Table 4.6: Power for selected regions of LULESH

We observed vast differences between the measured power consumption of the loops.

Figure 4.8(a) shows the amount of computation time spent in each of the 30 parallel

regions and in serial regions of LULESH application. The percentages are calculated

for all 100 runs. A box graph is used to show the repeatability of the execution time

results and the variance in the power calculations for the same regions. Six loops

each accounted for greater than 5% of the execution time and the run-to-run variance

of these regions was small. Attempting to measure power at this level introduces

sampling errors. For the Intel SandyBridge, loops less than one millisecond do not

result in consistent values. Figure 4.8(b) highlights the errors with reported power

usage ranges from almost 600W down to 0W. Note power usage varies tremendously

between the various runs. All of the outliers (high and low) are the result of sampling
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errors on loops that execute for short amounts of time, i.e., the execution time of these

loops is around the same order of the time to do an MSR update. Intel states in their

documentation that the energy counter should be sampled every millisecond or longer.

For the six regions (in blue) that exceed 5% of the total computation, the results

are consistent and the uncertainty boxes are small. In practice, the energy MSR is

updated sporadically and some time between observations is needed. Looking at only

the average power for the six most significant regions in Table 4.6, one finds significant

variation between the individual parallel regions. Region 13 uses 17% less power than

region 7. The amount of work being done can affect the power usage significantly. In

order to get accurate power and energy readings for loops such as those in polybench

kernels, we made sure that the dataset chosen was large enough.

In summary, the existence of variance makes it difficult for machine learning

models to accurately learn from data. The temperature has a clear impact on both

the execution time and the power consumption of an application. Actions such as

pre-warming the machine before timing and power runs need to be taken to mitigate

the temperature’s effect. Individual loops within an application have vastly different

execution time and power cosumption. Power and energy measurement should be

carried out on loops that run long enough to minimize measurement error.

4.7 Summary

In this chapter, we studied the correlation of energy consumption and execution

time of transformed variants of a program using an autotuning framework that utilizes

a polyhedral compiler to generate different versions of a set of programs. We observed

that, without considering power management features like DVFS and CPU clock mod-

ulation, the execution time can be a good indicator for relative energy consumption.

Although in most auto-tuning cases (without considering DVFS and/or CPU clock

modulation) the minimum execution leads to minimum energy consumption, similar

conclusions cannot be drawn for power consumption. In this chapter, we extended an

existing execution time prediction model for the prediction of both power and energy.

69



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Misc

0.
00

0.
05

0.
10

0.
15

0.
20

Loop Number

T
im

e 
F

ra
ct

io
n

(a) Execution time fraction for LULESH OpenMP parallel regions and misc.
sequential regions.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 App

0
20

0
40

0
60

0

Loop Number

P
ow

er
 (

W
at

ts
)

(b) Power for LULESH OpenMP parallel regions and the entire application.

Figure 4.8: Execution time and power consumption of LULESH parallel regions

The energy prediction model is necessary for the prediction of energy consumption

when power management techniques are considered. Both the power and energy pre-

diction model achieved more than 78% of the achievable minimal power and energy

consumption.
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Chapter 5

OPTIMIZING OPENMP APPLICATIONS FOR ENERGY
EFFICIENCY USING CPU CLOCK MODULATION

We now turn to the goal of exploring whether and how energy and energy-delay

product (EDP) optimization of applications can be realized with power management

techniques available on modern processors (e.g. Intel Sandy Bridge). In particular,

we study CPU clock modulation, a less well-studied power saving technique, that has

advantages over DVFS. The potential profit from CPU clock modulation needs to be

determined for each loop within an application, as it could lead to significant energy

benefit with little to no degradation in performance. We developed a framework that

can support the exploration of energy measurement/control as well as performance

monitoring. We utilize all the functionality of this framework to discover places CPU

clock modulation could offer energy savings. This framework allowed us to find the

appropriate clock modulation settings for individual loops to reduce overall application

energy usage. In summary, this chapter explores hardware techniques to lower energy

consumption of applications and improve energy efficiency at the same time.

5.1 Motivation

High-performance computing (HPC) applications consist of multiple parallel

loops of different types, such as compute-intensive or memory-intensive loops. Each

type of loop achieves the best energy efficiency (e.g. smallest EDP) at a different

operating frequency. We use Energy-Delay Product (EDP) throughout this chapter

as a metric for energy efficiency. The lower the EDP, the better the energy efficiency.

EDP takes into consideration energy consumption and execution time, that is, power

management techniques are expected to lower application energy consumption without
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Figure 5.1: This figure shows the energy, Time, and EDP of a memory-intensive
LULESH loop when varying frequency using DVFS. Values normalized to
2.7GHz.

much increase of the execution time. As a motivating example, two parallel loops from

LULESH application are shown in Figures 5.1 and 5.2.

Figure 5.1 shows the normalized energy consumption, execution time, and EDP

of a memory access intensive LULESH loop with changing frequencies achieved using

DVFS. For a loop with high memory access density and limited computation, if fre-

quency is reduced, the power required falls faster than the execution time increase.

This results in a lower EDP. The decrease continues until very low frequency settings

beyond which the execution time increases significantly. The minimum EDP occurs at

1.4GHz, with 43.2% energy savings and 15.4% time increase. This LULESH loop indi-

rectly accesses arrays, resulting in a non-contiguous array access pattern and frequent

cache misses. The CPUs are idle waiting for data, allowing the power to be reduced

without large performance loss. For energy efficiency, this loop can run at reduced

CPU clock frequency.

Figure 5.2 shows the normalized execution time, energy consumption, and EDP

of a compute-intensive LULESH loop. Reducing frequency has a significant impact on the

execution time of this loop. While energy consumption is marginally reduced (because

of power/frequency decrease), the EDP rises because of the substantial performance
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Figure 5.2: This figure shows the energy, Time, and EDP of a compute-intensive
LULESH loop when varying frequency using DVFS. Values normalized to
2.7GHz.

degradation. The execution time increases proportionally to the decrease in the effec-

tive frequency. The lowest EDP occurs at the maximum clock rate suggesting that the

loop should run at full speed.

Figures 5.1 and 5.2 show that for high memory access density loops, running at

a significantly reduced frequency setting achieve both optimal energy and energy-delay

product (EDP). But, for compute-intensive loops, running at lower frequencies leads

to poor energy efficiency due to increases in execution time. LULESH contains two

memory-intensive loops, taking up more than 25% of the total execution time, and two

compute-intensive loops, taking up more than 40% of the total execution time. Hence,

executing LULESH with a fixed frequency will lead to non-optimal energy efficiency.

Benefits can be maximized by setting the frequency that is best for each individual

loop.

5.2 Approaches

In order to change frequencies correctly for different parallel loops to improve

energy efficiency, loops from various benchmarks were characterized. The characteriza-

tion helped find energy saving opportunities where frequency control could be applied
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with little to no negative impact. We chose CPU clock modualtion to drive the fre-

quency change after comparing with DVFS for fine-granularity energy control. Before

CPU clock modulation could be applied to appropriate loops, the impact of changing

the frequency via CPU clock modulation was studied first for various loops.

5.2.1 Loop Characterization

For this research, we developed low-overhead clock modulation power saving

techniques and easy-to-use energy measurement and control APIs to explore when

clock modulation saves energy. Parallel loops are characterized to determine the clock

modulation setting that has the best energy/delay trade-off. Loop characterization is

facilitated by RCRtool’s capability of monitoring the uncore subsystem. The uncore

system on the Intel Sandy Bridge architecure is responsible for managing cache co-

herency, controlling QPI memory traffic between different sockets, and fulfilling the

memory request of cores within a socket [38]. The uncore subsystem offers a set

of counter registers that record all memory requests from cores to the Last Level

Cache (LLC). Memory transaction monitoring is supported using 44-bit wide coun-

ters (Cn MSR PMON CTR{3:0}). Last-Level-Cache (LLC) activity is used to sepa-

rate loops into memory-bound/compute-bound and balanced. Memory Access Density

(MAD) is computed by examining TOR OCCUPANCY memory counter updates dur-

ing loop execution. This counter collects statistics on how many memory requests

by all cores have to be serviced via the L3 cache. These memory requests are put

into the Table of Requests (TOR). The MAD metric essentially records how fast the

TOR OCCUPANCY counter grows. Higher values usually result from increased cache

misses/memory references. For example, if the MAD metric is 50, it means 50 memory

requests per-cycle from all cores are put into the Table of Requests. This metric pro-

vides insight into application’s memory characteristics. Loops are then categorized

using this memory access density metric. We also designed a runtime energy control

program that monitors the memory access density while running an application. De-

pending on the measured memory access density metric, the machine frequency level
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is changed accordingly via clock modulation.

5.2.2 Multi-Frequency Execution For Energy Optimization

In this dissertation, multi-frequency execution refers to executing applications

with different clock frequencies for each parallel loop. The frequency is lowered when

entering memory intensive loops and reset exiting. Reducing the CPU frequency when

executing loops with instruction stalls due to memory latency can reduce power con-

sumption of those loops while not not significantly impacting total execution time.

Fine-granularity Energy Control

To support multi-frequency execution of applications (with different Duty Cy-

cle Modulation setting), an API that invokes writes to IA32 CLOCK MODULAION

MSR is needed. This is achieved by setting the MSR for each core using root privi-

lege. In HPC environment, applications rarely get root access. To get around that, we

modified the Linux kernel to add a system call that supports the setting of values in

Table 2.1. Each setting is accomplished by using inline assembly code that executes

the wrmsr privileged instruction1. With this modification, any application can perform

a frequency change via Duty Cycle Modulation. Although this poses security issues,

this technique is only used for our proof of concept and a more secure technique could

be developed. The two above approaches (system call vs. root writing msr device files)

are equivalent in terms of transition latency, which is mostly related to user/kernel

context switches for both system call and kernel driver approach. In order to com-

pare CPU clock modulation based per-loop power management with DVFS, the DVFS

set frequency and reset frequency API calls were placed around memory intensive loops

in LULESH. Inside the API, the file /sys/devices/system/cpu/cpu*/cpufreq/scaling cur freq

is modified to contain the target frequency. The Linux ACPI driver takes care of the

1 Privileged instructions are enforced by hardware. Applications running in Ring 3
are prohibited from executing such instructions even with root privilege. Only the
operating system (which runs in Ring 0) can execute such instructions.
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actual frequency transition. For CPU clock modulation, we developed API calls that

change machine frequency by setting appropriate values to msr files located under the

/dev/cpu directory.

DVFS and CPU Clock Modulation Comparison

Oftentimes DVFS is considered to achieve better application energy efficiency.

We show that fine-grained energy control using CPU clock modulation achieves equiv-

alent or better energy efficiency compared to DVFS when applied to the LULESH

application.

Figure 5.3 shows the LULESH application’s normalized execution time, energy,

and EDP obtained by executing the memory intensive loops with clock modulation

settings varying from 50% to 68.75% (Figure 5.3(a)) and frequencies varying from

1.2GHz to 2.6GHz (Figure 5.3(b)). The compute-intensive region is kept at 100% for

CPU clock modulation and 2.7GHz for DVFS. The baseline was executing at fixed

2.7GHz throughout without setting CPU clock modulation.
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Figure 5.3: This figure shows normalized metrics of multi-frequency execution of
LULESH application over the default single frequency execution. 100%
and 2.7GHz are the default single-frequency execution for clock modula-
tion and DVFS, respectively.
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From Figure 5.3 we can see that CPU clock modulation could achieve the same

or even better EDP than DVFS. Although DVFS is known for its quadratic potential of

saving energy, CPU clock modulation is seen to outperform DVFS by just changing the

frequency linearly with finer-granularity of energy control. For example, as shown in

Figure 5.3(a), running LULESH with 100% and 62.5% clock modulation (2.7GHz and

1.68GHz) results in 8.6% EDP savings with only 2% performance slowdown. Running

LULESH with 2.7GHz and 1.8GHz DVFS frequency only improved EDP by 5%, but

incurred 3.3% performance slowdown, as shown in Figure 5.3(b). In LULESH, the

compute-intensive loops directly follow the memory intensive loops. For this situation,

fine-grained energy control is needed because it transitions the system to a low power

state quickly upon entering the memory intensive loops and to a default power state

when exiting. CPU clock modulation is able to put the system into low power mode and

to reset with little delay, allowing the loops to execute at appropriate clock frequencies.

5.3 Benchmarks and Experimental Setup

To study the effectiveness of clock modulation at reducing energy consumption,

a variety of OpenMP benchmarks were used. Some of the programs consist of single

loops, Polybench OpenMP. Two benchmarks simulate realistic applications, LULESH

and miniFE. Another benchmark suite, NAS Parallel Benchmark, and a realistic appli-

cation, brdr2d, the cardiac wave propagation simulation application, were also tested.

LULESH

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH)

[42] is chosen and its OpenMP implementation (v1.0), best for the Intel Sandy Bridge

architecture, was used for this evaluation [52]. This OpenMP implementation has

12 parallel loops, resulting from application of loop fusion to the original OpenMP

implementation. Half of the 12 parallel regions take up more than 90% of the total

application time, each of them taking up approximately 10% to 25% of the application’s
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execution time. The remaining loops take up less than 10% in total, and none of them

take up more than 5% of the total application time.

miniFE

The Mantevo Suite Release 2.0 [53] contains eight miniapps representing a vari-

ety of real applications. Only three of the miniapps have OpenMP versions. Of these,

we choose miniFE, which implements algorithms from an implicit finite-element appli-

cation. It assembles a sparse linear system from the steady-state conduction equation

and solves the linear system using un-preconditioned conjugate-gradient algorithm.

miniFE contains a variety of parallel loops mimicking the structure of a large finite-

element application.

Polybench

For the research in this chapter, we used the Polybench programs for energy

behavior characterization. However, the polyhedral optimization space was not studied.

Parallelized OpenMP versions [14] of these programs were used for evaluation.

brdr2d

We also studied brdr2d, an open-source 2D monodomain cardiac wave prop-

agation simulation used in Chapter 3 and 4. This application was parallelized and

optimized using various programming languages and techniques including OpenMP,

OpenACC, and a polyhedral compiler. In this chapter, the OpenMP version was eval-

uated. The application has an outer while loop that typically executes an inner parallel

loop nest thousands of times. The inner loop nest accounts for more than 90% of the

total execution time.

NAS Parallel Benchmark

The NAS Parallel Benchmarks (NPB) are a set of programs for benchmarking

the performance of parallel supercomputers. The benchmarks consist of several kernels

and pesudo applications. We used SNU NPB Suite, which is based on NPB3.3 version.
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The SNU NPB benchmark suite contains OpenMP implementations of 10 benchmarks

[88]. We chose input sizes from the two largest SNU NPB input classes (C & D)

for evaluation so that the benchmarks could execute long enough to produce stable

execution time and power consumption readings.

Experimental Setup

All tests were performed on an M620 Dell Blade with 2 Intel Xeon E5-2680

(Sandybridge) CPUs containing eight cores each and 64 GB of main memory with

hyper-threading disabled. The default clock speed is 2.7GHz. The cache size is 20MB

per socket (40MB total). The blade runs 2.6.32-431 version of the Linux kernel that

supports MSR accesses. Energy measurements tend to be sensitive to temperature [74].

To mitigate temperature effects, pre-measurement runs warmed the system up and all

tests were run consecutively. Each test was repeated at least five times. The Intel ICC

compiler (v14.0.2) was used unless otherwise stated, and the O3 optimization flag was

turned on for each test.

5.4 Results

In this section, we report our loop characterization results on whether loops are

more memory intensive or compute-intensive. These results also show how the energy

efficiency of the loops are impacted by changing the effective CPU frequency using the

clock modulation technique.

5.4.1 Application Power Characterization Results

The understanding of energy and performance characteristics of loops across

different benchmarks and within applications is critical to optimization. Using the

energy measurement tool, RCRtool, the energy and performance of loops with different

CPU clock modulation settings were measured. The impact to the energy and the

energy-delay product (EDP) of different loops exhibits three different types of loops.

We name these types of loops Mem-Int, Comp-Int, and Balanced according to whether

the loops are memory access intensive, compute intensive, or a balance of compute and

79



memory. Table 5.1 describes the characteristics of each loop type when changing the

frequencies.

Table 5.1: This table describes the characteristics of three types of loops when varying
the frequencies.

Loop Type Energy Characteristics

Mem-Int
High memory access density. Running at lower frequencies does
not increase execution time. Power is reduced and EDP is
significantly lowered.

Comp-Int
Low memory access density. No slack exists and slowing frequency
increases execution time. EDP increases for any reduced
computation rate. Should be run at full frequency.

Balanced

Balanced memory access and computation. Such loops provide
a little slack, i.e., lowering frequency slightly saves energy with
relatively low performance degradation. Energy can be reclaimed
from some computation bubbles during memory intense phases.

LULESH includes three of these types of loops. Various Polybench loops also fall

into all three categories. The Mantevo application, miniFE, only contains Comp-Int

and Balanced loops. The brdr2d application contains one dominant loop with balanced

memory access and computation. Similar to the Polybench loops, kernels and pseudo

applications in NPB fall into three categories.

High Memory Access Density Loops

As we have seen in Figure 5.1, when reducing the frequency of a loop with high

memory access density and limited computation, the power required falls faster than

the execution time increases. This results in a reduced energy-delay product (EDP).

The decrease continues until very low frequency settings where execution time increases

significantly. In this section, we show how the EDP changes when the frequency is

changed by setting the CPU clock modulation instead of setting DVFS frequencies.

Figure 5.4(a) shows the normalized energy consumption, execution time, and

EDP of one memory access intensive LULESH loop by varying the clock modulation.

While lowering effective frequency generally leads to longer execution time, the loop
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Figure 5.4: Characteristics of high memory access density loops in LULESH, MG bench-
mark, fdtd-2d Polybench, and jacobi-2d Polybench are shown. The
normalized metrics are energy, time, and energy-delay product (EDP).
Lower is better. The baseline is 100% clock modulation setting.

with high memory access was affected only a little (2.3%) by a low frequency setting,

e.g. clock modulation level of 68.75%, as shown in Figure 5.4(a). With the time

being roughly the same, the power is reduced linearly changing the effective frequency

from 100% to 62.5%. It went down from about 150 Watts to 85 Watts for two sockets.

Therefore, the energy curves display a sharp decrease on the right half of Figure 5.4(a).

The minimum EDP occurs at 50% clock modulation setting, with 47.3% energy savings
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and 12.5% time increase. The EDP curve follows the energy curve closely until the

time curve surges. This LULESH loop incurs high memory access traffic because the

arrays are accessed indirectly. With such a non-contiguous array access pattern, cache

misses frequently happen and the CPUs become idle, waiting for data. Power is greatly

reduced without large performance loss.

For the NPB MG benchmark, the curves in Figure 5.4(b) look very similar to

Figure 5.4(a). The minimum EDP occurs at 50%, with 44% energy savings and 19.8%

time increase.

Figures 5.4(c) and 5.4(d) depict similar graphs (Time, Energy, and EDP) for

fdtd-2d Polybench and jacobi-2d Polybench, respectively, when varying the clock

modulation setting from 37.5% to 100%. fdtd-2d saves 24.4% energy at a 81.25%

frequency setting while only slowing down by 5.5%, resulting in a 20.2% reduction in

EDP. The EDP minimum for fdtd-2d occurs at a 56.25% clock rate. It achieves 41.2%

energy savings with a 15.8% execution time increase and a 31.8% EDP improvement.

We save saves 24.3% energy for jacobi-2d at an 81.25% frequency setting while only

slowing it down by 5.3%, resulting in a 20.3% reduction in EDP. jacobi-2d has a

minimum EDP occuring with a 62.5% clock rate. It achieves 39% energy savings with

a 13.8% execution time increase, for a 30.5% EDP improvement.

Figure 5.4 shows that for high memory access density loops, running at a signif-

icantly reduced power setting achieves both optimal energy and energy-delay product

(EDP). LULESH contains two such loops, taking up more than 25% of the total execu-

tion time. By reducing frequency for indirect access (LULESH) and stencil operations

(Polybench programs and MG benchmark) overall energy and EDP can be improved.

Loops with Balanced Memory Access and Computation

Compared to loops with high memory access density, the execution time of loops

with balanced memory access and computation is affected slightly more when reducing

the frequency. Since there is still a considerable amount of memory accesses in these

loops and so the performance downgrade is not large enough to offset the reduction in
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(b) This figure shows the metrics of a
miniFE loop when varying clock modulation

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

37.5%
43.75%

50%
56.25%

62.5%
68.75%

75%
81.25%

87.5%
93.75%

100%

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

N
o

rm
al

iz
ed

 M
et

ri
cs

Clock Modulation

Time
EDP

Energy

(c) This figure shows the metrics of
cholesky Polybench when varying clock
modulation
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(d) This figure shows the metrics of brdr2d
application when varying clock modulation

Figure 5.5: Loops with balanced memory access and computation in LULESH, miniFE,
cholesky Polybench, and brdr2d realistic application are shown. The
normalized metrics are energy, time, and EDP (lower is better). The
baseline is 100% clock modulation setting.

power consumption. The best EDP for all programs is achieved between 68.75% and

81.25% clock skipping settings.

Figure 5.5 shows the normalized execution time, energy, and EDP of loops

with balanced memory access and computation in LULESH (Figure 5.5(a)), miniFE

(Figure 5.5(b)), cholesky from Polybench (Figure 5.5(c)), and brdr2d (Figure 5.5(d)).

In all three benchmarks, the energy consumption and EDP were reduced when the

effective frequency was changed from large to smaller values. LULESH achieved minimal
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EDP at 68.75%, miniFE at 81.25%, cholesky at 75%, and brdr2d at 75%. When the

effective frequency is set to very small values, the EDP curve begins to rise due to large

execution time increases.

The balanced loop in LULESH consumes greater than 10% of total execution

time, providing an opportunity to save about 2% total application energy by reducing

the clock frequency for this loop. The miniFE loop takes about 50% of total execution

time, potentially saving nearly 10% total execution energy.

Low Memory Access Density Loops

Compute intensive loops correspond to loops with low memory density. Similar

to Figure 5.2, reducing frequency using CPU clock modulation has a significant impact

on the execution time of such loops. While the energy consumption may still be reduced

(because of the power decrease), the energy-delay product (EDP) will get higher due

to a substantial performance downgrade.

Figure 5.6 shows the normalized execution time, energy consumption, and EDP

of compute-intensive loops in LULESH, miniFE, and doitgen and covariance of Poly-

bench. In all figures the execution time increases are proportional to the decreases of

the effective frequencies. The EDP curve immediately rises. The EDP curve is flat

at 93.75% in Figure 5.6(d) and rises for any lower values. In constrast to Figures 5.4

and 5.5, the energy curves are much less sharp and tend to be flat in Figure 5.6. In

Figure 5.6(a), the minimum energy occurs at 56.25% with a total savings of 14.2%.

The execution time was increased by 80% and the EDP more than 50%. These results

show that these kinds of loops should be run at full speed.

Polybench Loops: A Collection of All Three Types of Loops

Figure 5.7 shows the normalized time, energy, and EDP of the Polybench kernels

running at the best non-full speed setting. The figure sorts the kernels by normalized

EDP in increasing order from left to right. In addition to showing the detailed values

in Figure 5.7, Table 5.2 shows each benchmark’s Memory-Access Density value in the
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(c) This figure shows the metrics of doitgen
Polybench when varying clock modulation
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(d) This figure shows the metrics of
covariance Polybench when varying clock
modulation

Figure 5.6: This figure shows low memory access loops in four benchmarks: LULESH,
miniFE, doitgen Polybench, and covariance Polybench. The normal-
ized metrics are energy, time, and EDP (lower is better). The baseline is
100% clock modulation setting.

last column. Five programs have approximately 20% EDP improvements running at

a setting of either a 75% or 81.25%. These programs are shown on the left of the left

vertical line in the figure. The average memory concurrency is high (44.4, as shown in

Table 5.2) for these loops, while the computation is low (execution increases between

3% and 5%). The second group of six programs in between the two vertical lines are

run at a higher optimal clock rate (87.5%). These programs have approximately the

same average memory concurrency (43 to 53), but more parallel computation. Their
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Figure 5.7: Graph showing the normalized time, energy, and EDP of polybench pro-
grams running at the best non-full speed setting.

performance degradation is between 4% and 7%. The clock squashing is increasing

execution time, but EDP is still reduced by 8% to 13%. One program, gesummv, has

very high concurrency (53) but enough computation so that the best clock frequency

is 93.75%. It runs at almost full speed and EDP is reduced by 7%. For the rest of

the programs (to the right of the right vertical line), the memory concurrency is low

enough that the execution time is almost entirely a function of the CPU speed and

any reduction in frequency result in EDP being either flat or worse than executing

the program at full speed. The last row shows that for these programs the EDP is

increased to 1.028 on average.

5.4.2 Multi-Frequency Execution Results

By changing frequencies during application execution specific to different loops,

overall energy consumption can be improved with little execution time impact, achiev-

ing a better energy-delay product (EDP). We use the phrase “MultiFreq execution”
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Table 5.2: This table shows the normalized time, energy, and EDP of polybench pro-
grams running at the best non-full speed setting. The Mem-Value col-
umn shows each benchmark’s memory access density. Mean-High, Mean-
Balanced, and Mean-Low give the average for three sets of kernels divided
by the vertical lines in Figure 5.7.

Benchmarks Freq. Setting Time Energy EDP Mem-Value
durbin 75.00% 1.03 0.71 0.73 33
adi 81.25% 1.05 0.75 0.79 45
jacobi-2d-imper 81.25% 1.05 0.76 0.80 47
fdtd-2d 81.25% 1.05 0.76 0.80 47
lu 81.25% 1.04 0.78 0.81 50
jacobi-1d-imper 87.50% 1.04 0.84 0.87 48
cholesky 87.50% 1.04 0.85 0.88 48
mvt 87.50% 1.04 0.85 0.89 43
floyd-warshall 87.50% 1.06 0.84 0.89 47
gemver 87.50% 1.07 0.86 0.92 47
gesummv 93.75% 1.01 0.92 0.93 53
covariance 93.75% 1.04 0.95 0.99 19
gemm 93.75% 1.04 0.95 0.99 16
gramschmidt 93.75% 1.04 0.95 0.99 25
ludcmp 93.75% 1.05 0.94 0.99 28
dynprog 93.75% 1.06 0.94 1.00 18
2mm 93.75% 1.05 0.95 1.00 17
3mm 93.75% 1.06 0.95 1.00 17
syrk 93.75% 1.06 0.95 1.01 17
trmm 93.75% 1.06 0.96 1.01 31
correlation 93.75% 1.07 0.97 1.04 14
doitgen 93.75% 1.08 0.96 1.04 4
fdtd-apml 93.75% 1.07 0.97 1.04 17
trisolv 93.75% 1.08 0.96 1.04 17
atax 93.75% 1.08 0.97 1.05 42
bicg 93.75% 1.08 0.98 1.05 33
seidel-2d 93.75% 1.09 0.97 1.05 11
reg detect 93.75% 1.09 0.97 1.06 3
syr2k 93.75% 1.07 0.99 1.06 24
symm 93.75% 1.09 0.99 1.08 36
Mean-High 80% 1.044 0.752 0.786 44.4
Mean-Balanced 88.54% 1.043 0.86 0.897 47.7
Mean-Low 93.75% 1.068 0.962 1.028 20.56
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to describe an execution of the program where multiple effective clock frequencies are

used during the execution of a single application.

The LULESH and miniFE benchmarks both contain memory-bound and compute-

bound loops. They are used to show the EDP benefits of multi-frequency execution.

miniFE is part of the Mantevo Suite Release 2.0 [53]. It implements algorithms from

an implicit finite-element application.

LULESH contains two loops with a high memory access density. Lowering the

frequency while executing these loops changes their execution time only minimally.

Since these two loops take up around 25% of total application time, 40% energy savings

with a 16% of execution time increase for the two loops translates into 10% energy

savings with only 4% of execution time increase for the entire application.

Table 5.3 compares the average execution time, energy consumption, and EDP

of three multi-frequency LULESH executions with those of the single-frequency LULESH

executions in the context of clock modulation. The top rows show the single frequency

runs that minimized time (minT), energy (minE) and EDP (minEDP). The bottom

rows are multi-frequency results, where the two high memory-access-density loops were

run with reduced frequency (50%, 62.5%, and 68.75%) and rest of the code at maxi-

mum frequency. All values are normalized to the execution that led to minimum time

(minT row). The MultiFreq-2 version of LULESH using multiple frequencies across

different loops saved 10.3% energy and only increased execution time 2%. In the most

aggressive scenario, the MultiFreq 1 version saved 11.8% with less than 5% execution

time increase. MultiFreq 3, the least aggressive still saved 8.6% energy and resulted in

a slowdown of only 1.5%. Comparing to the best single-frequency EDP version, multi-

frequency execution achieved a better EDP (8.6% vs. 5.7%) with a greatly reduced

performance penalty (2% vs. 15.7%). Multi-frequency execution’s EDP was generally

better and the performance penalty impact was much smaller.

Table 5.4 shows results from generating multi-frequency versions for the memory

intensive loop in miniFE. The most aggressive setting, MultiFreq 1, reduces energy by

10.7%, but only runs for 2.9% longer. At this setting, EDP is improved by 8.1%. The
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Table 5.3: This table compares the execution time, energy consumption, and EDP
for LULESH

Version Duty Cycle Level Time Energy EDP

minT 100% 1.000 1.000 1.000

minE 56.25% 1.542 0.743 1.145

minEDP 81.25% 1.157 0.816 0.943

MultiFreq 1 100% & 50% 1.049 0.882 0.925

MultiFreq 2 100% & 62.5% 1.020 0.897 0.914

MultiFreq 3 100% & 68.75% 1.015 0.914 0.928

Table 5.4: This table compares the execution time, energy consumption, and EDP
for miniFE

Version Duty Cycle Level Time Energy EDP
minT 100% 1.000 1.000 1.000
minE 62.5% 1.351 0.763 1.031
minEDP 81.25% 1.153 0.819 0.945
MultiFreq 1 100% & 81.25% 1.029 0.893 0.919
MultiFreq 2 100% & 87.5% 1.023 0.923 0.944
MultiFreq 3 100% & 93.75% 1.000 0.954 0.954

least aggressive setting, MultiFreq 3, increased execution time by only 0.04%, yet still

saved 4.6% energy. When the results are compared to the best cases running at a single

frequency, energy is minimized at a lower frequency (62.5% clock - 23.7%), but at a

noticeable performance cost (35.1%) and an increased EDP (3.1%). The best EDP

running at a single frequency (81.25%) is only 5.5% better than running full speed,

but by going to a multi-frequency execution EDP savings over the default full speed

execution can be increased by 8.1%.

We also investigated the multi-frequency execution potential of the NAS Paral-

lel Benchmarks (NPB). These benchmarks are thought of as generally compute heavy

codes. We summarize whether multi-frequency execution benefits each benchmark in

Table 5.5. If a multi-frequency execution of a benchmark is not beneficial (in terms

of EDP), we report its normalized time, energy and EDP to be 1 and Duty Cycle

Level 100%. Otherwise, we report the normalized time, energy and EDP that could be

achieved with the combination of frequency (lower frequency applied to memory-bound
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code regions). Half of the ten NPB benchmarks benefited from multi-frequency exe-

cution (lower EDP achieved). For MG and SP, less than 10% execution time increase

yielded more than a 16% EDP improvement. LU benchmark achieved 10% EDP reduc-

tion with less than 5% performance slowdown. The BT and CG (Class D) benchmarks

slightly improved EDP with 1% and 5% performance slowdown, respectively. Since

the clock modulation latency is at least the OS context-switch latency, problem size D

is required for achieving EDP improvement.

Table 5.5: This table shows the potential benefits of multi-frequency for NPB bench-
marks.
Version Duty Cycle Level Time Energy EDP
BT (Class C) 100% & 75% 1.014 0.945 0.958
CG (Class C) 100% 1 1 1
CG (Class D) 100% & 93.75% 1.051 0.940 0.989
EP (Class C) 100% 1 1 1
FT (Class C) 100% 1 1 1
IS (Class C) 100% 1 1 1
LU (Class D) 100% & 87.5% 1.058 0.852 0.902
MG (Class D) 100% & 75% 1.098 0.759 0.834
SP (Class D) 100% & 75% 1.091 0.748 0.816
UA (Class C) 100% 1 1 1

Energy and the energy-delay product (EDP) can be reduced by changing fre-

quency for each parallel region with little performance impact. By setting the ap-

propriate frequency for each parallel loop, an application can save energy and reduce

EDP. Previous work statically or dynamically adjusted frequencies for MPI program

phases using DVFS [26, 51], we distinguish our work by applying clock modulation to

OpenMP application phases, which are usually more fine-grained than MPI phases.

5.4.3 Memory Access Density Based Runtime Energy Control

We have shown that our memory access density metric accurately indicates when

frequency can be safely reduced. We developed a simple runtime control program that

monitors the metric and reduces the frequency if the metric is above a threshold.
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The sample interval and the threshold are all empirically determined. We show that

applications can automatically get improved EDP using our memory access density

based runtime energy control.

In this experiment, we tested MG and SP of the NPB benchmark suite. Ta-

ble 5.6 compares the execution with runtime energy control versus static energy con-

trol for both benchmarks. Static-single means the application is run with a single and

maximum frequency. Static-multiple means the application is statically determined to

run with multiple frequencies. Dynamic means the machine frequency is dynamically

changed while running the application, determined by the memory access density value.

Table 5.6: Comparison of dynamic energy control with static energy control of MG
and SP NPB benchmark is shown. All metrics are relative to those of
static-single.

Benchmarks Time (s) Energy (J) EDP (J·s)
MG/static-single 1 1 1
MG/static-multiple 1.097 0.759 0.833
MG/dynamic 1.071 0.791 0.848
SP/static-single 1 1 1
SP/static-multiple 1.091 0.748 0.816
SP/dynamic 1.056 0.876 0.925

We can see that for both SP and MG, the dynamic runtime change of frequency

resulted in improved EDP, compared to the single static execution of benchmarks.

Although the dynamic approach does not save as much energy as the static-multiple

case, the execution time with dynamic execution is lower for both benchmarks. For

MG benchmark the dynamic approach achieves 20% energy savings and 15% EDP

improvement with only 7% performance slowdown. For SP benchmark the dynamic

approach reduces energy consumption by 12.4% and EDP by 7.5% with 5.6% perfor-

mance slowdown.

Runtime energy control of applications using memory access density metric

achieves automatic energy savings without the need of source code change. We are
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working on improving the runtime energy control strategy to have more precise fre-

quency change given a memory access density value.

5.5 Discussion

The pros and cons of energy control techniques need to be studied when they

are used to execute programs with multiple frequencies. Frequency transition latency

is an important aspect of the energy control techniques. CPU clock modulation and

DVFS regulate the CPU frequency in two different mechanisms. The former requires

only a change of a control register’s content while the latter also involves changing

the physical voltage and current. In our proposed multi-frequency execution of an

application, frequency change requests occur often. Therefore it is helpful to know

how long it takes for the system to fulfill the frequency transition request. Measuring

how long the energy control APIs take is not enough and may be inaccurate. There

is inherent delay between when the software finishes executing the frequency change

requests and when the hardware realizes the change. Because such delay is not directly

measurable, we use an open-source statistical tool called FTaLaT [55] to show that the

CPU clock modulation frequency transition is actually much faster than DVFS.

5.5.1 Frequency Transition Latency Comparison

Intuitively, because changing the frequency by DVFS involves physical regu-

lation of voltage too, the latency between requesting a frequency and fulfilling it is

relatively larger than software controlled clock modulation. We show this by compar-

ing the latency of changing the frequency using DVFS and clock modulation. The

estimation of latency is obtained from the FTaLaT (Frequency Transition Latency)

tool. The FTaLaT tool by default only supports the latency estimation of DVFS

frequency change. We extended this tool to support the latency estimation of clock

modulation frequency change2.

2 The extension can be found at https://github.com/weiwangudel/ftalat. A pull re-
quest is under review.
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FTaLaT estimates the transition latency for each pairs of frequencies supported

on a system. It uses a sophisticated statistical approach to separate the real tran-

sition delay from measurement noise. There are two main steps involved. The first

step measures the execution time of a kernel with the start frequency and the target

frequency. The second step sets the CPU frequency to target, and iteratively measure

kernel execution time until a change of kernel execution time is detected with a certain

confidence interval.

We replaced every DVFS frequency change function in the original FTaLaT

code with our CPU clock modulation energy control function. Using the exact same

approach, we accurately estimate the transition latency of CPU frequencies supported

by clock modulation. Table 5.7 and Table 5.8 show the estimated frequency change

latency in microseconds for each pair of the supported frequencies. We can see that

the frequency transition latency for DVFS is about 30-40 microseconds. In sharp

contrast, the latency for switching between 16 levels of clock modulation is less than

2 microseconds. Thus, the CPU clock modulation transition is roughly 15× to 20×

faster than frequency transition using DVFS.

Table 5.7: This table shows DVFS frequency change latency in microseconds.

hhhhhhhhhhhhhhhhhhTo (GHz)
From (GHz)

1.2 1.4 1.6 1.8 2.1 2.3 2.5 2.7

1.2 0 29 28 29 28 29 29 29
1.4 35 0 29 30 29 30 28 30
1.6 35 35 0 29 28 28 27 29
1.8 36 35 33 0 27 27 28 27
2.1 39 37 36 35 0 28 27 28
2.3 40 39 37 37 35 0 28 27
2.5 41 40 38 38 36 34 0 28
2.7 41 41 41 39 36 36 34 0

In summary, CPU clock modulation has lower frequency transition overhead

than DVFS and can achieve the same or better energy efficiency than DVFS when

applied in a fine-grained manner. Furthermore, it supports per-core energy control
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Table 5.8: This figure shows the latency of changing clock modulation frequency in
microseconds.PPPPPPPPPTo
From

5 6 7 8 9 10 11 12 13 14 15 16

5 0.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.6 0.6
6 1.3 0.0 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3 0.6 0.6
7 1.3 1.3 0.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.6 0.6
8 1.3 1.3 1.3 0.0 1.3 1.3 1.3 1.3 1.3 1.3 0.6 0.6
9 1.3 1.3 1.3 1.2 0.0 1.3 1.3 1.3 1.3 1.3 0.6 0.6
10 1.3 1.3 1.3 1.3 1.3 0.0 1.3 1.3 1.3 1.3 0.6 0.6
11 1.3 1.3 1.3 1.3 1.3 1.3 0.0 1.3 1.3 1.3 0.6 0.6
12 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.0 1.3 1.3 0.6 0.6
13 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.0 1.3 0.6 0.6
14 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.0 0.6 0.6
15 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 0.0 0.5
16 1.3 1.2 1.3 1.2 1.2 1.3 1.2 1.2 1.2 1.2 0.6 0.0

and could be applied on top of DVFS. In this work, we favor CPU clock modulation

due to these two advantages over DVFS.

5.5.2 The Need for Unprivileged Energy Control

Previously we have shown that energy efficiency is improved with software con-

trolled clock modulation. Greater energy efficiency can be achieved with unprivileged

control.

Motivation

Unprivileged energy control refers to changing CPU frequencies without go-

ing through the operating system’s kernel space. The frequency transition latency is

greatly reduced because applications can request the desired frequency without incur-

ring a context-switch overhead. Depending on the required granularity of performing

energy control, existing techniques like clock modulation may be severely limited by

the overhead of executing a privileged wrmsr instruction. Taking software clock mod-

ulation as an example, even though energy control by an application is enabled by a
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new system call,3 the overhead is dominated by the OS context switch. At the lower

level, the value of the IA32 CLOCK MODULATION msr controls the clock modula-

tion setting. The instruction to change this msr is still privileged, meaning that only

the kernel code could execute this instruction. Table 5.9 shows the time it takes to

execute 1 million pairs of setting/resetting frequency control code.

Table 5.9: This table shows the overhead of executing 1 million pairs of energy
changes via system call. The overhead is in seconds per million pairs.

Changing From Clock Modulation level (Freq.) X
to Clock Modulation level 16 (2.7GHz)

Time (Seconds)

X=5 (0.84GHz) 33.7456
X=6 (1.01GHz) 27.239
X=7 (1.18GHz) 22.8995
X=8 (1.35GHz) 22.011
X=9 (1.52GHz) 24.2508
X=10 (1.69GHz) 21.3569
X=11 (1.86GHz) 20.2146
X=12 (2.03GHz) 17.551
X=13 (2.19GHz) 17.6344
X=14 (2.36GHz) 6.78666
X=15 (2.53GHz) 6.31159
X=16 (2.7GHz) 4.81499

Each pair of the API call involves 8 msr writes. We see that even if there is zero

latency in changing the clock modulation setting, the overhead of executing the APIs

is in the order of microseconds. This overhead needs to be reduced. The proposed

solution is to make only the writing to the IA32 CLOCK MODULATION msr register

unprivileged. Applications perform msr-write operation to this register in a way similar

to performing arithmetic operations. By doing this, the software introduced overhead

(including the kernel/user context switch) is greatly reduced. However, unprivileged

energy control should be performed only in trusted environment. Such unprivileged

3 We implemented a prototype system call that supports CPU clock modulation on
an Intel SandyBridge architecture running Linux 3.2.63.
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energy control mechanism violates security policies of an operating system. Neverthe-

less, more energy saving opportunities can be created by unprivileged clock modulation

energy control. In addition, security risk can be minimized by only allowing the change

of current core clock rate to be unprivileged (changing other cores that the code does

not run on would still be privileged).

Preliminary Study of Clock Modulation and Decoupled Access-Execution

Model

The benefits of unprivileged clock modulation control are many folds. For ex-

ample, it can be used on top of DVFS energy control. Doing so extends the range

of attainable machine frequencies without adding extra transition overhead on top of

DVFS frequency change. Unprivileged clock modulation, if implemented, also makes

Decoupled Access-Execution (DAE) model more advantageous. However, since there is

no support for unprivileged energy control using clock modulation, we apply existing

clock modulation techniques to DAE and use the results to explain why the privileged

energy control will not benefit DAE.

The idea of the decoupled access-execution model [89, 44, 40, 45] is to perform

data prefetch in fine-granularity access phases and then performing computation with

the prefetched data in the execution phase. The CPU frequency can be lowered during

the access phase because the CPU is idle waiting for data. In task-based decoupled

access-execution model [44, 40, 45], the granularity of the access phase of a task is

2 to 30 microseconds and the execution phase is 5 to 320 microseconds on a 4-core

SandyBridge architecture. As we have shown before, the frequency transition over-

head is on the order of microseconds. Therefore, existing energy control mechanisms

prevent decoupled access-execution model from being helpful in practice. Table 5.10

shows the execution time, energy, and power of running libQ benchmark with coupled

access-execution model and decoupled access-execution model. In DAE, energy control

API calls are inserted before and after the access task. The table shows that decou-

pled access-execution model with energy control resulted in significant overhead (20×
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slowdown) compared to the traditional coupled access-execution (CAE) model. This

is because the overhead of executing the energy control API is on the same order of

manginitude as the access phase and execution phase, which are repeatedly called in a

loop.

Table 5.10: This figure shows the execution time, energy, and power of coupled access-
execution (CAE) model and decoupled access-execution (DAE) model for
libQ benchmark. In DAE model, energy control APIs are called before
and after the access phase.
Benchmarks Time (s) Energy (J) Power (Watts)
libQ (CAE) 154.94 8280.21 53.44
libQ (DAE) 3162.55 252608.55 79.88

With the presence of an instant frequency transition mechanism, e.g. enabled

by unprivileged msr-write to the IA32 CLOCK MODULATION register, frequency

transition can be achieved on the order of nanoseconds, i.e., a few instructions. Such

reduction in frequency transition latency directly benefits decoupled access-execution

model in that the model practically achieves greatly improved application energy effi-

ciency.

In summary, using the existing energy control API incurs significant overhead

and renders the DAE model useless. Unprivileged energy control would benefit various

applications with respect to improving energy efficiency. Although it raises some new

issues, the benefits it brings outweigh the disadvantages.

5.6 Summary

In this chapter, we optimized OpenMP applications for energy efficiency by

per-loop energy control. Loops are categorized into three types according to how their

performance and power respond to reduced frequencies. The improved energy-delay

product is obtained by lowering the CPU frequency via clock modulation during the

execution of memory intensive loops. For compute intensive code regions, the maximum

frequency is chosen. CPU clock modulation is observed to have less overhead than
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DVFS in supporting multi-frequency execution of applications, which requires fast

transition from the existing frequency to the target frequency.
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Chapter 6

COMBINING SOFTWARE AND HARDWARE TECHNIQUES FOR
ENERGY OPTIMIZATION

6.1 Introduction

In Chapter 4, we investigated energy autotuning from the software perspective

where a compiler transformation framework is used to generate application energy tun-

ing space. Regular applications, including scientific kernels were transformed, vector-

ized, and parallelized to maximize the performance achieved by polyhedral compilers.

The energy autotuning process predicted with up to an 83% accuracy the best op-

timization sequence that would result in the best energy consumption. In Chapter

5, we studied energy optimization from the hardware perspective where we leveraged

the CPU clock modulation power management feature on modern Intel CPUs. We

observed that applications with fine-granularity loops fall into three categories when

considering whether their energy efficiency would be improved by lowering the CPU

frequency (either by DVFS or clock modulation). Our focus in this chapter is to

combine software and hardware techniques to achieve better energy efficiency of ap-

plications. In particular, we experiment with concurrency throttling (reducing the

number of OpenMP software threads) along with modulating CPU clock frequency for

application performance and energy. In order to study how combined techniques work

on an IBM Power8 architecture, we apply concurrency throttling and DVFS1 to sev-

eral benchmarks. Aside from combining concurrency throttling with hardware power

management techniques, we also study how compiler transformations are impacted by

1 CPU clock modulation hardware feature is not supported on IBM Power8
architecture.
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the CPU clock modulation technique. Lastly, such impact is studied in a power-capped

environment where the CPU power consumption is limited by a preset threshold.

6.2 Approach

This section describes experiments combining software techniques (like polyhe-

dral optimizations and concurrency throttling) with hardware techniques (like DVFS,

CPU clock modulation, and power capping) on modern Intel and IBM multicore ar-

chitectures.

6.2.1 Combining Clock Modulation with Concurrency Throttling

Clock modulation reclaims energy consumed by cores waiting for data to arrive

during computation. It can be combined with other power saving techniques to save

additional energy. Concurrency throttling, a technique that reduces the number of

threads to mitigate resource contention, has been shown to be an effective approach

to reduce energy consumption of several benchmarks including LULESH and BOTS [76].

Combining clock modulation and concurrency throttling reclaims energy by two meth-

ods: 1) active cores waiting for data and 2) inactive cores that will otherwise cause

memory bandwidth contention. Benchmarks that benefit from concurrency throttling

can be improved by combining it with clock modulation to achieve more energy savings

and EDP improvement. Concurrency throttling for parallel regions is done manually

and the best configuration (i.e. how many threads to use) is often determined statically

via exhaustive search.

If a parallel loop has a lot of memory accesses and can benefit from clock modu-

lation, we hypothesize that the number of threads executing the parallel loop could be

reduced to reduce memory bandwidth contention. If the memory is being fully utilized,

the performance impact will be minimal (eliminating thrashing could actually improve

performance), and the power consumption will be greatly reduced (by idling cores).

Clock modulation and concurrency throttling save energy in different ways and can be

used together for significant combined improvement.

100



6.2.2 Combining DVFS with Concurrency Throttling on IBM Power8 Ar-

chitecture

The IBM Power8 architecture features up to 8-way simultaneous multi-threading

(SMT) per-core [24]. Users can configure the SMT level without restarting the system

via a shell command. In addition, the Power8 architecture supports per-core DVFS con-

trol. Physical cores on the same chip could be configured to have different frequency and

voltage combinations. The interface is supported by the ACPI-like powernv-cpufreq

kernel module. There are 69 DVFS frequencies available on the Power8 architecture

from 2.061GHz to 4.332GHz. Different from previous evaluations [3], we character-

ized application performance under both different DVFS and concurrency settings.

Similar to Chapter 5 where we performed per-loop energy efficiency optimization, our

analysis on the Power8 architecture is performed at the granularity of loops rather

than the entire application. The fine granularity of measurements made it possible

to combine DVFS and concurrency throttling to improve application performance and

energy. We also compared application performance with SMT-8 and SMT-4 using the

same amount of threads. We tested three OpenMP benchmarks: Graph500, LULESH

2.0, and miniFE. The results from running applications with different frequency and

thread settings helped us identify memory-bound regions that could benefit from dy-

namic runtime frequency change. We invoke energy control API calls before and after

these code regions so that the best performance and energy efficiency is achieved.

6.2.3 Polyhedral Transformation and Clock Modulation

In Chapter 5, we showed that applications were affected differently while reduc-

ing the CPU frequency via clock modulation. We applied polyhedral transformations

to the original polybench application and studied how these transformed variants of

the programs would react to CPU clock modulation with respect to their execution

time, power, and energy consumption.
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Figure 6.1: fdtd-2d Polybench results when applying both concurrency throttling
and clock modulation.

6.2.4 CPU clock modulation under power capping constraints

Results in Chapter 4 show that polyhedral transformation like loop tiling and/or

loop fusion could significantly increase the application power consumption. Under a

power-capped environment, the power consumption of the entire CPU is set to a limit.

We study how compiler transformations that increase application power are affected by

such a power bound. In addition to just evaluating polyhedral transformations under a

power cap, we also changed the CPU clock modulation setting and observed how CPU

clock modulation affected the performance and power of different compiler transformed

code variants.

6.3 Results

In this section, we report on experimental results of combining software and

hardware techniques for application energy optimization.

6.3.1 Clock Modulation with Concurrency Throttling

We begin with the results of combining CPU clock modulation with concur-

rency throttling for improved energy efficiency, and then report our findings on the
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Figure 6.2: LULESH results when applying both concurrency throttling and clock
modulation.

relationship between the memory access density and concurrency throttling.

Case 1: Concurrency Throttling is Beneficial

Figure 6.1 shows the energy and execution time of fdtd-2d when varying the

number of threads from 2 to 16 and the clock modulation setting from 75% to 100%.

Static concurrency throttling and clock modulation are applied to the whole program

and the energy/time of its loop nest are reported. Note, fdtd-2d only contains one loop

nest. Execution time on this loop is basically constant for all thread counts 4 and above.

Looking at the performance for a fixed number of threads, as the clock frequency is

reduced, it produces flat performance (maximum 7.4% increase for setting the clock to

75%). Comparing the normal execution (16 threads - 100% clock frequency) with the

energy optimal choices (4 threads - 75% clock frequency), 54% of the energy is saved

with only a 6.7% execution time increase. Adding clock modulation accounted for 10%

energy savings even after concurrency throttling reduced the energy consumption by

44%. The tests where repeated using the GCC v4.4.6 compiler and the results were

roughly equivalent when varying the number of threads and clock modulation.

For LULESH, concurrency throttling and clock modulation are applied to the

whole program and the energy/time of one loop with high memory access density are
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reported. Figure 6.2 shows a similar energy and execution time plot when varying

the number of threads and the clock modulation. The minimum energy is achieved

using 6 threads and a 75% setting of clock modulation. Execution time is reduced when

reducing the number of threads. This loop suffers from memory bandwidth contention.

Concurrency throttling mitigates such contention and improves performance. Looking

at the performance for a fixed number of threads as the frequency is reduced, again it

shows flat performance (maximum 6.6% increase for setting the clock to 75%). Energy

consumption using 6 threads is driven down by 22% when setting the frequency to

75%.

Having identified the energy-saving potential of combining clock modulation and

concurrency throttling, the two techniques are applied to the loops with high memory

access density in LULESH. Up to 13% energy reduction and 17% EDP improvement are

obtained using both techniques. Table 6.1 compares the metrics obtained from the

default execution, the concurrency throttling execution (thread number changed from

16 to 6), and the combination of concurrency throttling and clock modulation execution

(thread number changed to 6 and frequency reduced to 75%). Energy savings from

clock modulation was an additional 7% to the 6% saved by concurrency throttling.

Clock skipping increased execution time 3%, but when combined with concurrency

throttling was still faster than the original execution. Overall, combining concurrency

throttling and clock modulation lowered EDP by 17%, while concurrency throttling

alone lowered EDP by 13%.

Table 6.1: LULESH with Concurrency Throttling (CT) and/or Clock Modulation
(CM).

Version # of Threads Duty Cycle Level Time Energy EDP
Default 16 100% 1.00 1.00 1.00
CT 6 100% 0.92 0.94 0.87
CT+CM 6 75% 0.95 0.87 0.83

miniFE has similar results when combining concurrency throttling and clock

modulation. Figures 6.3(a) and 6.3(b) show the energy and execution time plot when
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Figure 6.3: miniFE results when applying both concurrency throttling and clock
modulation.

varying the number of threads and the clock modulation for the memory intensive

loop in miniFE. The minimum energy setting occurs with 8 threads and a 75% clock

frequency, but the minimum time is achieved with 14 threads running at full clock

frequency. The minimum EDP is achieved using 10 threads and a 81.25% setting of

clock modulation. Compared to 16 threads and 100% setting, 33% energy is saved with

11% execution time increase. Since the loop takes up about half of the application

execution time, a hybrid execution saves about 17% energy with less than 6% perfor-

mance overhead. Table 6.2 compares the three different miniFE runs with different

thread number and clock modulation settings for the memory intensive loop. When

combining clock modulation and concurrency throttling, 21% energy is saved with only

6% performance increase, resulting in 16% EDP improvement.

Table 6.2: miniFE with Concurrency Throttling (CT) and Clock Modulation (CM).

Version # of Threads Duty Cycle Level Time Energy EDP
Default 16 100% 1.00 1.00 1.00
CT 10 100% 1.02 0.86 0.88
CT+CM 10 81.25% 1.06 0.79 0.84
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Figure 6.4: brdr2d results when applying both concurrency throttling and clock
modulation.

Case 2: Concurrency Throttling is not Beneficial

Concurrency throttling does not reduce execution time and EDP for all high

memory density loops. Figure 6.4 shows that for brdr2d, reducing the number of

threads increases the execution time and the energy consumption. Reducing the num-

ber of active memory references, reduces memory concurrency and overall performance.

Clock modulation and reducing the effective clock rate from 100% to 75% does, how-

ever, decrease energy consumption by reclaiming energy consumed during stalls in the

ALU. The minimum energy is achieved with 16 threads and a 75% effective clock rate.

Memory Access Density and Concurrency Throttling

Similar to our study on how memory access density is related to program’s

preference for the Duty Cycle Modulation setting, we varied the number of threads

for Polybench and recorded the preferred number of the threads to achieve the best

Energy-Delay Product (EDP). Figure 6.5 shows the results of these experiments. We

can see that benchmarks that prefer lower frequencies in Figure 5.7 also prefer less than

16 threads to achieve optimal EDP, except cholesky. For fdtd-2d and floyd-warshall,

the EDP improvement is larger than 45%. All but three benchmarks that prefer higher

frequencies in Figure 5.7 prefer using 16 threads. The three benchmarks are trisolv,
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Figure 6.5: Graph showing the time and EDP of Polybench running with a thread
configuration that achieves the best energy efficiency.

atax, and reg detect and they perform best with 14, 14, and 12 threads, respectively.

From Figures 5.7 and 6.5 we can see that benchmarks are likely to benefit from

concurrency throttling and clock modulation if their memory access density is high.

There is great potential to derive a model that predicts the clock modulation setting

and thread number configuration based on the memory access density metric. We built

a decision tree model that predicts the clock modulation setting using memory access

density metric and source code features of the loops. Using Leave-One-Out-Cross-

Validation, we achieved an accuracy of 90%. This means given a new application, we

can determine the right clock modulation setting as well as the best thread count for

that program with a high accuracy. We run the application once to collect our memory

access density metric. Then we use the constructed decision tree model to predict the

best frequency and number of threads to use for each application.
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Figure 6.6: Comparing the application performance with varying number of threads
per core and SMT settings

6.3.2 Combining software and hardware techniques on IBM Power8 sys-

tem

To evalulate whether combining DVFS and concurrency throttling is beneficial

on IBM power8 systems, the experiments were performed on a TYAN GN70-BP010

Power8 system. The Tyan Power8 system has 4 processor cores and therefore supports

up to 32 hardware threads on the SMT-8 configuration.

OpenMP Thread Concurrency Throttling

Figures 6.6(a) and 6.6(b) show the execution times when changing the number

of OpenMP threads per core for Graph500 and LULESH. Applications do not always

achieve the best performance with 8 threads per core. For example, LULESHperforms

best with 4 threads per core. Graph500, on the other hand, is able to leverage all 8

threads per core. For the Graph500 benchmark, SMT-4 performs similarly to SMT-

8. SMT-4 can potentially lead to better energy efficiency for applications that are

memory-intense like LULESH and miniFE.
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Figure 6.7: miniFE contains loops that respond differently when applying concur-
rency throttling and DVFS

DVFS

Figures 6.7(a) and 6.7(b) show the execution times when changing the DVFS

frequency for the Graph500 benchmark and miniFE. A lower frequency leads to longer

execution time for both benchmarks. However, applications slow down quite differently

when reducing the frequency. Memory bound applications like miniFE provide energy

saving opportunities for DVFS. Running at 2.061GHz, the Graph500 benchmark slows

down by 1.6× while miniFE only slows down by 1.2×.

Combining DVFS and Concurrency Throttling

miniFE contains a dominant loop that is memory-bound. This loop (Loop1 in

Figures 6.8(a) and 6.8(b)) is insensitive to reducing the frequency and the number

of threads. The same two figures show that loops in miniFE behave differently when

the frequency and the number of threads are reduced. Given this observation, we

executed miniFE with 16 threads and mixed frequencies. Just before entering Loop1,

the DVFS frequency is set to the minimum possible setting. The frequency is reset

to the maximum immediately after Loop1. Table 6.3 shows that we achieve slight

performance improvement (1.1%) by combining concurrency throttling and DVFS on
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Figure 6.8: miniFE contains loops that respond differently when applying concur-
rency throttling and DVFS

the Power8 architecture.

Table 6.3: Applying DVFS and Concurrency Throttling improves performance and
energy

Executables
Total Number
of Threads

DVFS
Frequency

Execution Time

miniFE baseline 32 4.322 GHz 108.68 seconds
miniFE with DVFS &
Concurrency Throttling

16
4.322 GHz &
2.061GHz

107.49 seconds

6.3.3 Polyhedral Transformation with CPU clock modulation

The impact of CPU Clock Modulation on the execution time, power consump-

tion, and energy consumption of compiler transformed program variants is shown be-

low.

Impact on Execution Time

Figure 6.9 shows the execution time of the program variants of four polybench

programs with two Duty Cycle Modulation settings: 16 (full frequency) and 12 (75%
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Figure 6.9: This figure shows the impact of changing Duty Cycle Modulation on
the execution time of compiler transformed versions of the jacobi-2D,
fdtd-2D, 2mm and gesummv polybench kernels.

frequency). The X axis in all the graphs is sorted by the execution time under full fre-

quency. The execution time of 50 compiler transformed program variants of jacobi-2D

(Figure 6.9(a)) varies from 5 seconds to about 85 seconds with full frequency. For some

fastest program variants of jacobi-2D, reducing the frequency by 25% percent (setting

duty cycle to 12) only slightly increases the execution time. These program variants
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had the loop tiling compiler transformation applied and a good tiling size played a key

role in leading to the minimum execution time. Similar results were obtained for the

other polybench stencil program fdtd-2D. Curves for fdtd-2D (Figure 6.9(b)) are in

similar shape as those in jacobi-2D benchmark. Although the fastest program variant

in full frequency case is not the fastest with duty cycle setting of 12, we suspect that

this is due to the run-to-run execution variance. Figures 6.9(c) and 6.9(d) show the

execution time of program variants for 2mm and gesummv polybench, respectively.

Although the number of program variants varies between these four benchmarks, they

are similar with regard to the impact of duty cycle modulation on the execution time.

The fastest program variants are still the fastest when reducing the frequency by 25%

using clock modulation.

Reducing the effective frequency of the CPU by modulating the duty cycle level

from 16 to 12 causes different performance impacts to compiler transformed program

versions. A strong negative correlation between the performance slowdown and the

Memory Access Density (MAD) metric explains why compiler transformed programs

react differently to reduced frequency. Figure 6.10 shows that the jacobi-2D benchmark

has a high correlation between the performance slowdown when reducing the frequency

and the observed memory access density (MAD) metric. The X-axis of Figure 6.10(a)

is the same as in Figure 6.9(a). The Y-axis gives the observed slowdown of each of the

program variants when changing the duty cycle setting from 16 to 12 (i.e. reducing

the speed by 25%). Figure 6.10(b) shows a fitted trend line. The function is 1.26284−

0.00485301 ∗ x+ 0.0000261512 ∗ x2 and yields a R-squared value of 0.9229. In addition

to showing that program variants respond differently when reducing the frequency,

Figure 6.10 shows that the MAD metric is highly correlated with the performance

slowdown.

Impact on Power Consumption

We now look at CPU clock modulation’s impact on the power consumption

of the four polybench programs, as shown in Figure 6.11. Note that the figures are
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Figure 6.10: This figure shows the correlation between the Memory Access Density
metric and the performance slowdown of jacobi-2D benchmark.

sorted in the same order as in Figure 6.9. For jacobi-2D and fdtd-2D polybench (Fig-

ures 6.11(a) and 6.11(b), the fastest executables happen to consume the largest amount

of power. Although the two stencil programs have been very consistent in showing the

fastest compiler transformed program consumed the highest amount of power and that

the same executable consumed the least amount of energy, this is hardly the case for all

benchmarks. Figures 6.11(c) and 6.11(d) show that the fastest program variants did

not consume the maximum amount of power, in constrast to the jacobi-2D and fdtd-2D

stencil benchmarks. For all benchmarks, almost every executable’s power consumption

is reduced by 50 Watts to 60 Watts due to reduced CPU clock frequency.

Impact on Energy Consumption

Figure 6.12 shows the energy consumption of program variants of four polybench

programs under two duty cycle modulation settings. For all benchmarks the energy

consumption in DC12 (75% frequency) case is much lower than that in DC16 (100%)

for all program variants. Looking at the energy consumption together with Figure 6.9,

it is not surprising that in most cases the fastest programs consume the least amount

of energy.
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Figure 6.11: This figure shows the impact of changing Duty Cycle Modulation on the
power consumption of compiler transformed versions of the jacobi-2D,
fdtd-2D, 2mm and gesummv polybench kernels.

Summary

In summary, applying loop tiling with good tile sizes usually gives the fastest

programs with relatively high power consumption, but still consume the least amount

of energy. When reducing the CPU frequency via clock modulation, the power and

energy consumption for all transformed programs decreases while the execution time
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Figure 6.12: This figure shows the impact of changing Duty Cycle Modulation on the
energy consumption of compiler transformed versions of the jacobi-2D,
fdtd-2D, 2mm and gesummv polybench kernels.

increases.

6.3.4 CPU clock modulation under power capping constraints

We now experiment with a power cap of 30 Watts for each socket (60 Watts cap

for two sockets). Surprisingly, we observed speedups for some program variants when

reducing the CPU frequency by modulating the CPU clock.
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Table 6.4: The execution time, energy and power consumption of jacobi-2D bench-
mark with 60 Watts power cap and different DC setting.

DC Level Time (seconds) Energy (Joules) Power (Watts)
10 136.65 5712.81 41.81
12 111.36 5103.09 45.82
14 102.49 4971.64 48.51
16 118.91 5602.35 47.12

Table 6.5: The execution time, energy and power consumption of jacobi-2D bench-
mark with different DC setting but no power cap.

DC Level Time (seconds) Energy (Joules) Power (Watts)
10 136.50 5735.15 42.01
12 110.94 5132.13 46.26
14 98.12 4890.33 49.84
16 85.91 4776.52 55.60

Table 6.4 shows the results obtained with one program variant of jacobi-2d

benchmark under a power cap. The program took 118.91 seconds to finish execution

with a duty cycle level of 16 but ran about 15% faster with a reduced frequency (duty

cycle level of 14). The power was slightly increased and the energy consumed is about

12% less. Running with a duty cycle level of 12 also yielded faster execution than the

default case. This phenomenon is non-existent in non power-cap case. Table 6.5 shows

exactly the same executions without the power cap. The fastest execution among all

duty cycle modulation settings is 16, and it took only 85.91 seconds to run. All other

duty cycle settings all were 14% to 58% slower.

The two tables show that power capping offered performance improvement op-

portunities to applying CPU clock modulation for some applications.

The above program variant of jacobi-2d is a special case in that its execution

time is relatively long. We hypothesize from our results on the power consumption

under no power cap condition that the value of 55.6 Watts indicates that the program

variant was most likely running in sequential fashion. In other words, parallelization

and loop tiling transformation were not turned on. For the optimal case where the
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program variants of jacobi-2D ran much faster with high power consumption, we see

completely different situation.

Tables 6.6 and 6.7 show the execution time, energy and power consumption

of the best jacobi-2D program variants with the power cap and without the power

cap. When there is no power cap, reducing the frequency via Duty Cycle modulation

affected performance slightly, but we see significant decreases in power, resulting in

great energy savings, as expected. When there is a power cap of 60 Watts, all settings

from 10 to 16 reached the power cap. They all finished around the same time of 21

seconds. Although no clear speedup is observed in this case, running with Duty Cycle

level of 14 was about 1.5% faster than running with a higher Duty Cycle level (20.92

seconds vs. 21.22 seconds).

Table 6.6: The execution time, energy and power consumption of the fastest jacobi-
2D program variants with different DC setting and 60 Watts power cap.

DC Level Time (seconds) Energy (Joules) Power (Watts)
10 21.31 1174.35 55.10
12 21.22 1173.67 55.31
14 20.92 1157.27 55.32
16 21.22 1168.4 55.07

Table 6.7: The execution time, energy and power consumption of the fastest jacobi-
2D program variants with different DC setting but no power cap.

DC Level Time (seconds) Energy (Joules) Power (Watts)
10 5.44 647.45 118.96
12 5.41 649.21 120.06
14 5.35 750.03 140.31
16 5.18 902.20 174.02

6.4 Summary

In this Chapter, we combined software and hardware techniques to optimize

applications for energy. We found that combining CPU clock modulation with concur-

rency throttling on Intel Sandy Bridge architecture achieved better energy efficiency
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than applying either one alone. On IBM Power8 architecture, DVFS combined with

concurrency throttling resulted in performance improvement. When combining CPU

clock modulation with polyhedral transformation, we observed that program variants

with high memory access density are less impacted by clock modulation and there-

fore are good candidates for improving energy efficiency. For these program variants,

reducing the CPU frequency decreases power consumption significantly but only in-

creases the execution time modestly. When applying CPU clock modulation under a

power limit, we observed that certain program variant could be sped up by reducing

the frequency and therefore improved the energy efficiency.
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Chapter 7

CONCLUSION

Today, the impact of high performance computing is ubiquitous thanks to ad-

vances in parallel architectures and the programming languages that expose their com-

puting power. In this dissertation, parallelization and optimization of a 2D wave prop-

agation simulation application is performed on modern parallel architectures including

NVIDIA GPUs and an Intel MIC accelerator. The programming languages used to

harness the parallel architectures include CUDA, OpenCL, OpenACC and OpenMP.

Low-level CUDA and OpenCL implementations of the simulation achieved as much as

220× speedups on a NVIDIA GPU over the sequential implementation that runs on a

CPU. Without any code modification, the OpenCL implementation can run on an Intel

Xeon Phi accelerator and a speedup of more than 70× is observed over the sequen-

tial implementation. High-level OpenACC implementation involved minimum source

code changes to the sequential version but the CUDA and OpenCL code automatically

generated from the OpenACC code achieved speedups that are comparable to those

achieved by manually written CUDA and OpenCL code. Although both manually

written OpenCL implementation and automatically generated OpenCL implementa-

tion could run on Intel’s MIC architecture, their performance does not outperform our

OpenMP implementation. A speedup of more than 120× over the sequential CPU

implementation is achieved. Similar to OpenACC implementation, the amount of code

changes using OpenMP is much less than that using CUDA and OpenCL. We conclude

that high-level programming languages like OpenACC and OpenMP require much less

work than low-level programming languages like CUDA and OpenCL while achieving

similar speedups.
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As HPC enters the exascale era, system power and energy are are becoming

increasingly critical. Understanding the relationship between energy optimization and

performance optimization as well as developing energy optimization techniques are

two aspects of addressing the power wall problem. Maximizing energy savings re-

quires keeping the power consumption to a minimum while performance continues to

improve. On the other hand, saving energy requires minimizing performance impact

when performance optimization is less likely.

Using a polyhedral compiler on a variety of small benchmarks and small ap-

plications has shown a high degree of correlation between execution time and energy

consumption. Individual optimizations can however have significant impact on the

power required by an application. For example, the Polybench program, covariance,

when transformed with the “maxfuse” option resulted in a 20+% power increase. With

the correct tile size “maxfuse” also resulted in the 50+% time decrease. The “max-

fuse” optimization increases power consumption, but reduces total energy required

to complete the computation due to the decrease in execution time. Understanding

how power and energy are used at the small scale can contribute to the understand-

ing of power/energy requirements of Exascale applications. Polyhedral optimization

techniques can provide significant increases in performance, but currently require sig-

nificant user modifications for realistic applications in order to construct polyhedral-

friendly SCoPs that have reasonable compilation times. On small realistic applications,

like LULESH and brdr2d, polyhedral transformations can be searched to find effective

tiling sizes for SCoPs within the applications. Polyhedral optimizations combined with

energy measurement capability allows for energy and power auto-tuning of benchmarks.

Given a program and its optimizations, the constructed machine learning model can

predict the energy and power consumption of each optimization with an accuracy of

around 80%. Auto-tuning faces a challenge from run-to-run variance. Variance comes

from different sources such as OS scheduling, temperature, and energy measurement

granularity. Actions such as warming up the processors and repeating runs should be

performed to minimize the impact of run-to-run variance on the auto-tuning process.
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Energy management and optimization are necessary to maximize the effective-

ness of every Joule or Watt. Frequency control via either CPU clock modulation or

DVFS to minimize the energy consumption at the loop level is a promising energy

management strategy. These methods require fine-grained control. The lower tran-

sition overhead of CPU clock modulation compared to DVFS on Intel SandyBridge

archiecture allows CPU frequency adjustment for every loop. Applying these methods

to several mini-apps, we were able to achieve energy savings ranging from 4.6% to

11.4% with execution time increase of less than 1%. The energy-delay product (EDP)

improvement varied between 4.6% and 10.8%. These results show that CPU clock mod-

ulation can effectively reduce application energy usage while keeping the performance

impact low. The ideal loop for applying CPU clock modulation usually incurs intensive

memory access and/or high cache misses (consider indirect memory accesses), resulting

in high values from memory-traffic hardware counters. Since the processor is less busy

during the execution period of the memory intensive loop, frequency can safely be re-

duced to save energy. When the same loop finishes execution, CPU clock modulation

quickly transitions the frequency of the CPU to the default or maximum operating

level. As of now CPU clock modulation is implemented via privileged instructions on

modern Intel CPUs. It is expected that CPU clock modulation can benefits more use

cases if it were implemented via unprivileged instructions. Unprivileged frequency con-

trol using CPU clock modulation will feature nano-seconds frequency transition delay

since only a few instructions are required for modulating the CPU clock.

When hardware techniques like CPU clock modulation and DVFS are combined

with software techniques like concurrency throttling and polyhedral transformations,

more energy saving opportunities are possible. Concurrency throttling saves execution

time and energy for application phases that over-use a shared hardware component (e.g.

memory bandwidth). Concurrency throttling and CPU clock modulation save energy in

complimentary ways. Concurrency throttling saves energy by idling un-needed threads

and CPU clock modulation saves energy by eliminating un-needed CPU cycles. For

LULESH, the combined techniques result in a 13% energy reduction, a 5% performance
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improvement, and a 17% overall energy-delay product (EDP) improvement on Intel

SandyBridge architecture. On the IBM Power8 architecture, concurrency throttling

is applied with DVFS. No performance slowdown is observed with fewer number of

active cores (due to concurrency throttling) and lower frequencies of the active cores

(due to DVFS). Polyhedral transformations applied to a set of scientifc kernels resulted

in semantically equivalent versions with varing performance and power signatures. For

versions that contain memory access intensive code regions, CPU clock modulation can

be applied to increase energy efficiency. Under power-capped environments where the

entire CPU is limited to consume a threshold power, applying CPU clock modulation

can increase the performance of some polyhedral-transformed code. On a SandyBridge

system, setting a power cap of 60 Watts and reducing the CPU frequency resulted in

a 15% speedup for a transformed version of the jacobi-2D polybench program.
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