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Abstract 

A potential method to determine whether two varieties of edible oils can be differentiated by 

Fourier transform infrared (FTIR) spectroscopy is proposed using digitally generated data of 

adulterated edible oils from an infrared (IR) spectral library.  The first step is the evaluation 

of digitally blended data sets. Specifically, IR spectra of adulterated edible oils are computed 

from digitally blending experimental data of the IR spectra of an edible oil and the 

corresponding adulterant using the appropriate mixing coefficients to achieve the desired 

level of adulteration.  To determine whether two edible oils can be differentiated by FTIR 

spectroscopy, pure IR spectra of the two edible oils are compared to IR spectra of two edible 

oils digitally mixed using a genetic algorithm for pattern recognition to solve a ternary 

classification problem.  If the IR spectra of the two edible oils and their binary mixtures are 

differentiable from principal component plots of the spectral data, then differences between 

the IR spectra of these two edible oils are of sufficient magnitude to ensure that a reliable 

classification by FTIR spectroscopy can be obtained. Using this approach, the feasibility of 

authenticating edible oils such as extra virgin olive oil (EVOO) directly from library spectra 

is demonstrated.  For this study, both digital and experimental data are combined to generate 

training and validation data sets to assess detection limits in FTIR spectroscopy for the 

adulterants.  

Keywords: edible oils, adulteration, genetic algorithms, variable selection, classification, 

mixture analysis 
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Introduction 

Edible oils are an important component of the human diet due to their high nutritional 

value serving as a major source of fatty acids and fat-soluble vitamins in many diets.1,2 These 

oils are primarily composed of triglycerides which contain saturated, monounsaturated and 

polyunsaturated fatty acids.3 The relative quantity of each fatty acid is related to the specific 

variety of the edible oil.4 For example, safflower oil has more polyunsaturated fatty acids 

than extra virgin olive oil.  Edible oils are used in cooking and are also ingredients in many 

preprocessed foods because of their sensory characteristics.  

Adulteration of edible oils is an important chemical analysis problem as the most 

frequently adulterated food is extra virgin olive oil (EVOO).5 Adulteration of a more 

expensive edible oil by either substitution or blending with less expensive cooking oils is of 

concern to government and regulatory officials.  Adulterated EVOO, which does not meet the 

International Olive Council’s standards for the composition of monounsaturated fatty acids, 

free fatty acids, trans fatty acids, peroxides, and esterified fatty acids6, cannot be detected by 

either the consumer or retailer because the adulterated cooking oil is often comparable in 

appearance and flavor to EVOO. In addition, adulteration of EVOO by less expensive edible 

oils such as peanut oil (which contains allergens) poses a serious health risk. The successful 

classification of edible oils by their variety (e.g., discrimination of EVOO from peanut oil) is 

a crucial first step in solving this problem.  

Analysis of edible oils for purposes of discrimination or authentication is often 

performed using separation techniques such as gas chromatography/mass spectrometry 

(GC/MS) or liquid chromatography/mass spectrometry (LC/MS)7, 8.  However, GC/MS and 

LC/MS are time consuming, expensive, and labor intensive.  For this reason, there is interest 

in using Fourier transform infrared (FTIR) spectroscopy to authenticate edible oils. FTIR 

spectroscopy is fast, sample preparation is simple, and infrared (IR) analysis (unlike GC/MS 
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and LC/MS) can be performed in the field.  Although an edible oil contains hundreds of 

constituents, an IR spectrum of an edible oil sample can serve as a chemical fingerprint9. 

However, analysis of these fingerprints by pattern recognition methods is necessary to extract 

information from the IR spectrum about the variety of the edible oil10-13.  In these studies, 

principal component analysis was used to discriminate known edible oils and to classify 

unknown edible oils as well as to detect the presence of adulterants in edible oils.        

In a previous study14, pattern recognition methods were applied to the infrared (IR) 

spectra of ninety-seven edible oil samples from twenty plant-based varieties collected over a 

three-year period. The ninety-seven edible oil samples selected for this study encompassed 

multiple brands and manufacturers representing supplier to supplier variation and seasonal 

and batch variation within a supplier.  Using a hierarchical classification scheme, the twenty 

plant-based varieties of edible oils were divided into four distinct groups. Edible oils from 

different oil groups could be reliably discriminated, whereas the discrimination of edible oils 

within the same group was problematic.  Adulteration of the plant-based edible oils by other 

oils in the same group (e.g., EVOO by almond oil) could not be reliably detected using 

Fourier transform infrared (FTIR) spectroscopy, whereas adulteration of edible oils by other 

oils that were not part of the same oil group (e.g., EVOO adulterated by corn or canola oil) 

could be detected at concentration levels as low as 10% (v/v) which was consistent with 

previously published studies using partial least squares regression. A unique aspect of this 

study was the incorporation of edible oils collected systematically over three years, which 

introduced a heretofore unseen variability in the chemical composition of the edible oils.  

This work also demonstrated that previously published studies15-18 (which relied on a single 

sample or brand to represent each variety of edible oil) provide an overly optimistic estimate 

of the capability of FTIR spectroscopy to discriminate plant based edible oils by variety as 

well as detect the presence of adulterants in edible oils. 
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In this study, a potential method to determine whether two varieties of edible oils can 

be differentiated is proposed using digitally generated data of adulterated edible oils from an 

IR spectral library.  The first step is the evaluation of digitally blended data sets. Specifically, 

IR spectra of adulterated edible oils are computed from digitally blended experimental data of 

the IR spectra of an edible oil and the corresponding adulterant using the appropriate mixing 

coefficients for the computed spectra to achieve the desired level of adulteration.  To 

determine whether two edible oils can be differentiated by FTIR spectroscopy, pure IR 

spectra of the two edible oils are compared to IR spectra of the two edible oils digitally mixed 

using pattern recognition techniques to solve a ternary classification problem.  If the IR 

spectra of the two edible oils and their binary mixtures are differentiable, then differences 

between the IR spectra of these two edible oils are of sufficient magnitude to ensure that 

discrimination of these two edible oils can be achieved by FTIR spectroscopy. Using this 

approach, the feasibility of authenticating edible oils such as EVOO directly from IR library 

spectra has been demonstrated.  For this study, both digital and experimental data were 

combined to generate training and validation data sets to assess detection limits for the 

adulterant 

Experimental 

A spectral database of 3720 IR spectra of both pure and adulterated edible oils was 

collected using an iS50 Thermo-Nicolet FTIR spectrometer equipped with a diamond ATR 

accessory and a DTGS detector.  The pure edible oil samples (99 in total) comprising the 

library spanned 20 distinct plant-based edible oil varieties (see Table 1).  This sample cohort 

was obtained from supermarkets in the greater metropolitan Newark, DE area over a three-

year period to account for brand, lot, year, storage and seasonal variability for a particular 

manufacturer. To further characterize these edible oils, the peroxide value of each edible oil 

sample was measured using a Milwaukee Lab Mi490 Photometer (Milwaukee Instruments, 
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Rocky Mount, NC).  Table 1 lists the twenty oil types that comprise the 99 samples collected, 

the number of samples collected for each edible oil and the number of spectra per edible oil. 

For each resolution, a total of 377 IR spectra were collected with 1508 IR spectra collected in 

total for the pure edible oils.  A representative IR spectrum of an edible oil from the library is 

shown in Figure 1.    

Each pure and adulterated edible oil sample was analyzed at 4 cm-1, 6 cm-1, 8 cm-1, 

and 16 cm-1 resolution. The adulterated samples in the library were prepared by mixing 

EVOO, extra light olive oil (ELOO) or sesame oil with less expensive edible oils (corn, 

canola, almond, peanut, sunflower, hazelnut, grapeseed, safflower, and vegetable) using a 

digital pipette to prepare adulterated mixtures by v/v in known amounts from 5% to 90%. For 

example, a 10% adulterated mixture of EVOO with corn oil as the adulterant was prepared by 

mixing 900 L of extra virgin olive oil and 100 L of corn oil in a 15 mL sterile falcon tube 

using a Thermolyne MaxiMixPlus vortex mixer.  416 IR spectra of EVOO, ELOO, or sesame 

oil adulterated by corn oil, canola oil, almond, peanut, sunflower, hazelnut, grapeseed, 

safflower, and vegetable oils were also collected at 4 cm1, 6 cm-1, 8 cm-1, and 16 cm-1 

resolution for a total of 1664 IR spectra (see Table 2). Ternary mixtures (which consist of two 

adulterants added to EVOO, ELOO, or sesame oil) were also prepared. The adulterants used 

in the ternary mixtures included corn, canola, almond, hazelnut, vegetable, grapeseed and 

safflower oils. 128 FTIR spectra of the ternary mixtures were also collected at 4 cm-1, 6 cm-1, 

8 cm-1, and 16 cm-1 resolution for a total of 512 spectra (see Table S1).  The FTIR IR spectra 

(4000 cm-1 to 400 cm-1) of each pure and adulterated edible oil sample were collected in 

triplicate, quadruplicate, or quintuplicate, each at 64 scans. All FTIR spectra in the database 

were baseline corrected using OMNIC and normalized to unit length with MATLAB 

(MathWorks, Natick, MA).  Apodization of the spectra was performed using OMNIC 

(Thermo-Nicolet) and the Happ-Genzel function. 
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Preparation of Digitally Blended Spectra from IR Spectra of Edible Oils 

Digital blending refers to the proportion of each edible oil that comprises the digitally 

simulated adulterated oil mixtures.  Digital blending was performed on unprocessed IR 

spectra. To obtain a digital blend representing an 80% EVOO and 20% corn oil mixture, the 

IR spectrum of an EVOO sample is multiplied by 0.8 and added to an IR spectrum of a corn 

oil sample that is multiplied by 0.2.  Gaussian distributed noise is then added to the IR 

spectrum of each digital blend to homogenize the spectral data.  For each spectrum, noise is 

only added to the regions which contain IR bands (402 cm-1 to 1525 cm-1, 1600 cm-1 to 1850 

cm-1 and 2750 cm-1 to 3150 cm-1).  For a training set of digitally blended IR spectra, the

largest absorbance value at each wavelength is identified, and one thousandth of this value is 

multiplied by Gaussian distributed random noise which has a mean of zero and standard 

deviation of one.  If the largest absorbance value is less than or equal to zero, noise is not 

added to the blended spectrum at that particular wavelength. For the pattern recognition 

studies that were undertaken to demonstrate equivalency between real data and digitally 

blended data, the full spectral range (4000 cm-1 to 400 cm-1) was employed. 

Genetic Algorithm for Pattern Recognition Analysis 

Wavelengths characteristic of the variety of the edible oil were identified using a 

genetic algorithm for pattern recognition, which takes advantage of both supervised and 

unsupervised learning to identify spectral features that optimize the separation of the spectra 

by edible oil type in a plot of the two or three largest principal components of the data19-24. 

Because principal components (PCs) maximize variance, the bulk of the information encoded 

by the wavelengths selected by the pattern recognition GA was about the differences between 

the assembly plants.  A principal component (PC) plot that shows separation of the data by 

assembly plot can only be generated using wavelengths whose variance or information is 

primarily about the differences between these assembly plants.  Thus, the fitness function of 

Accepted Manuscript 
Version of record at: https://doi.org/10.1002/cem.3469



This article is protected by copyright. All rights reserved. 

the pattern recognition dramatically reduces the size of the search space as it limits the search 

to these types of wavelengths.  In addition, the pattern recognition GA was able to focus on 

those classes and/or samples that were difficult to classify by boosting the weights of the 

samples or classes that were consistently misclassified. Over time, the algorithm learns its 

optimal parameters in a manner similar to a neural network. The pattern recognition GA 

integrates aspects of artificial intelligence and evolutionary computations to yield a "smart" 

one-pass procedure for wavelength selection and pattern classification.  Further details about 

the configuration of the pattern recognition GA including the reproduction and mutation 

operators can be found elsewhere25-28.   

For this study, the fitness function of the pattern recognition GA was modified to 

allow for incorporation of model inference into the variable selection process. The goal was 

to identify variables that minimize the error across the entire model (PC plot of the data). 

This was accomplished by assessing the uncertainty of the sample scores in the principal 

component plot using the jack-knife29 to generate estimates of dispersion.  During each 

generation, the fitness function of the pattern recognition GA evaluates thousands of principal 

component plots, one for each feature subset (i.e., chromosome) in the population of 

solutions.  For each principal component score plot, the corresponding training set samples 

are removed one at a time, and the score matrix and loading matrix for the resampled (i.e., 

jackknifed) training set is recomputed.  Due to the rotational ambiguities of PCA, the loading 

matrix for each resampled training set must be rotated using a Procrustean rotation30 to match 

the loading matrix associated with the score plot containing all the samples.  For each training 

set sample, scores across all leave-one-out score plots are projected onto the original principal 

component plot of the feature subset which is then scored using the fitness function.  Thus, 

information about the level of confidence in the classification of each training set sample is 

directly incorporated into the variable selection process with the jack-knifed scores for each 
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sample effectively comprising an error cloud to depict the uncertainty associated with each 

training set sample. 

Results and Discussion 

To determine whether two edible oils can be differentiated by FTIR spectroscopy, the 

IR spectra of the pure edible oils was compared to the IR spectra of their mixtures (which 

simulate an adulterated edible oil). The focus of these studies was EVOO (which is 

frequently a target of adulteration), with each comparison formulated as a three-way 

classification problem: EVOO, adulterated EVOO and adulterant (corn oil, canola oil or 

almond oil).  The EVOO-adulterant mixtures used for the training and validation set for both 

the experimental and digitally blended data span a large concentration range.  For each 

comparison, it is assumed that the IR spectra of the adulterated mixture can be represented by 

the IR spectra of EVOO and the other edible oil (adulterant), with the weights of the 

constituents defining the mixing proportion of each edible oil comprising the mixture.  If the 

IR spectra of EVOO and the adulterant adhere to a linear mixture model then the results of 

the three-way classification study for both the experimental and blended data would be 

similar. 

To identify the wavelengths in each three-way classification problem that convey 

information about the degree of adulteration for both the experimental and digitally blended 

data, the pattern recognition GA was applied to each of these data sets.  Each data set 

(EVOO/Corn, EVOO/Canola, and EVOO/Almond) was autoscaled and analyzed by the 

pattern recognition GA using the same set of parameters (number of chromosomes, selection 

pressure, configuration of initial population, and Kc).  Figures 2 and 3 show the plots of the 

two largest principal components of the 118 FTIR spectra (see Table 3) and the 8 and 17 

spectral features identified by the pattern recognition GA for the three-way classification 

problem: EVOO, EVOO-corn oil mixtures, and corn oil.  EVOO, corn oil, and the binary 
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mixtures of EVOO-corn oil cluster in separate regions of the PC plot for both the 

experimental data (see Figure 2) and digitally blended data (see Figure 3). The first principal 

component appears to be correlated to the amount of adulterant (i.e., corn oil) in each sample.  

The predictive ability of the 8 and 17 spectral features identified by the pattern 

recognition GA was assessed using an external prediction set of 12 EVOO-corn oil spectral 

mixtures whose composition varied from 0% to 40% corn oil.  The plant-based edible oil 

samples used to prepare the EVOO-corn oil mixtures comprising the prediction set were 

excluded from the training set.  Figures 4 and 5 show the plots of the 12 prediction set spectra 

projected onto the principal component score plot of the 118 IR spectra comprising the 

training set and the 8 and 17 spectral features identified by the pattern recognition GA.  All 

12 FTIR spectra in the prediction set for both the experimental data (see Figure 4) and 

digitally blended data (see Figure 5) were correctly classified as each spectrum is located in a 

region of the principal component score plot that contain samples tagged with the same class 

label.  Clearly, EVOO can be differentiated from corn oil.  The detection limit for corn oil in 

EVOO from the principal component score plot is approximately 10% for both the 

experimental data and digitally blended data which agrees with the detection limits 

previously reported for corn oil using PLS31.  Furthermore, the agreement between the results 

obtained for the experimental data and digitally blended data suggests that digitally blended 

data can be used to assess whether two varieties of edible oils (e.g., EVOO versus corn oil) 

can be differentiated by FTIR spectroscopy through a ternary classification study. 

Figures 6 and 7 show the plots of the two largest principal components of the 115 IR 

spectra comprising the training set (see Table 4) and the 9 and 11 spectral features identified 

by the pattern recognition GA for the three-way classification problem: EVOO, EVOO-

canola oil mixtures, and canola oil.  EVOO, canola oil, and the binary mixtures of EVOO-

canola oil cluster in separate regions of the PC plot for both the experimental data (Figure 6) 
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and digitally blended data (see Figure 7).  Again, the first principal component appears to be 

correlated to the amount of adulterant (i.e., canola oil) in each sample.  The discriminating 

relationship developed from these 9 and 11 spectral features was successfully validated using 

the 15 FTIR spectra comprising the prediction set for both the experimental and digitally 

blended data (see Figures 6 and 7).  The plant-based edible oil samples used to prepare the 

adulterated EVOO mixtures comprising the prediction set were again excluded from the 

training set. The detection limit for canola oil in EVOO from the principal component score 

plot of the FTIR spectra is again 10% in agreement with PLS32. 

Figures 8 and 9 show principal component score plots of the 100 IR spectra 

comprising the training set (see Table 5) and the 5 and 25 spectral features identified by the 

pattern recognition GA for the three-way classification problem: EVOO, EVOO-almond oil, 

and almond oil.  The first principal component does not appear to be well correlated to the 

amount of almond oil in the mixtures.  Furthermore, several EVOO-almond oil samples in the 

training and prediction set for both the experimental data (see Figure 8) and digitally blended 

data (see Figure 9) are not correctly classified.  The absence of spectral features in the 

experimental and digitally blended data that can differentiate EVOO from EVOO adulterated 

with almond oil (as well as the first principal component being only weakly correlated to the 

amount of almond oil in the samples) would indicate that EVOO and almond oil have similar 

IR spectra and (thus) would be difficult to discriminate by FTIR.  Furthermore, detecting 

adulteration of EVOO by almond oil would be problematic. The agreement between the 

results for the experimental data (see Figure 8) and digitally blended data (see Figure 9) for 

EVOO-corn, EVOO-canola, and EVOO-almond oil indicates that one can differentiate two 

edible oils by sample type (i.e., variety) using FTIR spectroscopy if the pure IR spectra of the 

two edible oils and their digitally blended spectra can be discriminated in a ternary 

classification problem.  For this comparison, it is crucial that samples representing each 
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edible oil account for seasonal and batch variations within each supplier as well as variations 

between suppliers to avoid obtaining overly optimistic results.    

Conclusions 

In this study, a basic methodology for assessing the suitability of discriminating two 

edible oils from their FTIR spectra is described.  The FTIR spectra of the pure edible oils are 

compared to the FTIR spectra of their mixtures using library spectra and digitally blended 

data.  Each comparison is formulated as a three-way classification problem.  For each 

comparison, it is assumed that the IR spectra of the mixture can be represented by the IR 

spectra of the two edible oils in question, with the weights of the constituents defining the 

mixing proportion of each edible oil that comprises the mixture.   If the IR spectra of the two 

edible oils and their digitally blended mixtures are differentiable, then differences between 

the IR spectra of these two edible oils are of sufficient magnitude to ensure that a reliable 

classification of these two edible oils by FTIR spectroscopy can be obtained.  Using this 

approach, the feasibility of authenticating edible oils such as EVOO directly from library 

spectra has been demonstrated.   

The FTIR spectral library described in this study is a flexible platform as it allows 

chemists to test new data analysis methodologies. Experimental designs can be constructed 

using similar edible oils (e.g., EVOO and sunflower oil) or oils with relatively distinct spectra 

(e.g., EVOO and corn oil).  One can progress from simple classifications of mixtures (e.g., 

extra virgin olive oil that is adulterated with corn oil), quantitative mixture analysis (relative 

concentrations of adulterants in edible oils) to quantitative determinations of intrinsic 

properties of edible oils (e.g., peroxide number to assess rancidity).  The effect of spectral 

resolution on the outcome of a classification or calibration can also be investigated using this 

spectral library.  
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Table 1. Pure Edible Oils in the Spectral Library 

Pure edible oil 

Oil 

Type ID 

Number of 

samples 

Number of 

spectra 

Extra virgin olive oil 1 26 83 

Extra light olive oil 2 8 27 

Olive oil 3 8 26 

Avocado oil 5 2 9 

Peanut oil 6 4 19 

Corn oil 7 9 42 

Grapeseed oil 8 9 36 

Safflower oil 9 2 9 

Hazelnut oil 10 2 9 

Canola oil 13 9 36 

Canola-vegetable blend 16 1 3 

Vegetable oil 17 4 14 

Canola-Sunflower-soybean blend 18 1 9 

Sunflower oil 19 1 3 

Sweet almond oil 23 2 6 

Almond oil 27 4 15 

Extra virgin sesame oil 28 3 15 

Toasted sesame oil 32 1 3 

Walnut oil 33 2 10 

Avocado-olive-flaxseed blend 34 1 3 

99 377 
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Table 2. Adulterated Edible Oils in the Spectral Library 

Binary Mixtures Oil Type ID Number of spectra 

ELOO-corn mixture 40 45 

EVOO-corn mixture 44 60 

EVOO-peanut mixture 45 24 

Sesame-sunflower mixture 47 24 

Sesame-canola mixture 48 21 

Sesame-corn mixture 49 26 

EVOO-almond mixture 51 36 

Sesame-grapeseed mixture 55 18 

ELOO-hazelnut mixture 54 18 

Sesame-vegetable mixture 58 18 

EVOO-canola mixture 60 78 

ELOO-canola mixture 61 24 

ELOO-safflower mixture 62 24 

416 

Table 3. Training and Prediction Sets for Experimental and Blended Data 

Number of spectra in training set/prediction set 

EVOO 73/0 

Corn 33/0 

EVOO-corn 12/12 

Total 118/12 
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Table 4. Training and Prediction Sets for Experimental and Blended Data 

Number of spectra in training set/prediction set 

EVOO 73/0 

Canola 27/0 

EVOO-canola 15/15 

Total 115/15 

Table 5.  Training and Prediction Set for Experimental and Blended Data 

Number of spectra in training set/prediction set 

EVOO 73/0 

Almond 12/0 

EVOO-almond 15/15 

Total 100/15 
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Figure 1.  A representative IR spectrum of an edible oil (corn oil) from the IR spectral library 

is shown.  The IR spectrum was collected using an iS50 Thermo-Nicolet FTIR spectrometer 

equipped with a diamond ATR accessory and a DTGS detector.  
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Figure 2.  Plot of the two largest principal components of the 118 IR training set spectra 

(black) and the 8 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, corn oil and EVOO-corn oil mixtures (10% corn oil to 40% 

oil). The total cumulative variance explained by the two largest principal components for the 

experimental data is 98.57%. P = EVOO, C = corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 

20 = 20% corn oil, and 40 = 40% corn oil. 
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Figure 3.  Plot of the two largest principal components of the 118 IR training set spectra 

(black) and the 17 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, corn oil and EVOO-corn oil mixtures. The total cumulative 

variance explained by the two largest principal components for the digitally blended data is 

97.18%.  P = EVOO, C = corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 20 = 20% corn oil, 

and 40 = 40% corn oil. 
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Figure 4.  Projection of the 12 prediction set spectra (grey) onto the PC-plot developed from 

the 118 training set spectra and 8 features identified by the pattern recognition GA for the 

experimental data.  P = EVOO, C = corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 20 = 20% 

corn oil, and 40 = 40% corn oil. 
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Figure 5.  Projection of the 12 prediction set spectra (grey) onto the PC-plot developed from 

the 118 training set spectra and 17 features identified by the pattern recognition GA for the 

digitally blended data.  P = EVOO, C = corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 20 = 

20% corn oil, and 40 = 40% corn oil. 
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Figure 6.  Plot of the two largest principal components of the 115 IR training set spectra 

(black) and the 9 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, canola oil and EVOO-canola oil mixtures (10% canola oil to 

40% oil). The total cumulative variance explained by the two largest principal components 

for the experimental data is 96.82%. The prediction set spectra are represented in grey. P = 

EVOO, R = canola oil, 10 = 10% canola oil, 15 = 15% canola oil, 20 = 20% canola oil, 30 = 

30% canola oil and 40 = 40% canola. 
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Figure 7.  Plot of the two largest principal components of the 115 IR training set spectra 

(black) and the 11 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, canola oil and EVOO-canola oil mixtures (10% canola oil to 

40% oil). The total cumulative variance explained by the two largest principal components 

for the blended data is 95.62%. The prediction set spectra are represented in grey. P = EVOO, 

R = canola oil, 10 = 10% canola oil, 15 = 15% canola oil, 20 = 20% canola oil, 30 = 30% 

canola oil and 40 = 40% canola. 
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Figure 8.  Plot of the two largest principal components of the 100 IR training set spectra 

(black) and the 5 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, almond oil and EVOO-almond oil mixtures (10% almond oil 

to 40% oil). The total cumulative variance explained by the two largest principal components 

for the experimental data is 85.29%. The prediction set spectra are represented in grey. P = 

EVOO, A = almond oil, 10 = 10% almond oil, 15 = 15% almond oil, 20 = 20% almond oil, 

30 = 30% almond oil and 40 = 40% almond. 
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Figure 9. Plot of the two largest principal components of the 100 IR training set spectra 

(black) and the 25 spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, almond oil and EVOO-almond oil mixtures (10% almond oil 

to 40% oil). The total cumulative variance explained by the two largest principal components 

for the digitally blended data is 78.7%. The prediction set spectra are represented in grey. P = 

EVOO, A = almond oil, 10 = 10% almond oil, 15 = 15% almond oil, 20 = 20% almond oil, 

30 = 30% almond oil and 40 = 40% almond. 
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