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VARIANCE SPECTRA ANALYSIS AND APPLICATIONS TO NATURAL WATER SYSTEMS

INTRODUCTION

As an introduction to Fourier analysis, i.e., the
analysis of data in terms of sinusocidal functions, and to
vafiance spectra analysis, i.e., the frequency analysis of
variance, consider the following least squares fitting problem:
A set of data points gj is obtained which are samples of a
function g (t) at g(0), gét), g( 2A t)..... gl{(K-1) & ¢t),
and for convenience assume N is an even integer. As an example,
consider daily average water temperature over a year. Since
there are physical reasons for expecting a yearly periodicity

in the data, it is required to fit the function:

B0 Bew A cos (2T ¢+ BUSINETI/N) e o, No

to the data g, in such a way that the least mean square error
J

is obtained. That is the criteria to be satisfied is to minimize

N-} 2
2. Ly %] (1)
l=5.

with respect to AU’ Al, Bl. Taking partial derivatives of eq. {
with respect to AQ, Al’ Bl’ and setting the result egual to zero

yields the following simultaneous linear equations:

N-i | N-i N-1§
%}N + A‘Z‘: ces(ﬁ) + BtZSH&{Jd) =JE=:%,J.

*Manhattan College, Bronx, N.Y.
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where A = ZTT/N.

The following general relations; called orthogonality
relations, are truezti}

N1 ' . _ o k#£2

_;:Zc: s jha) sin (jR4) = N k=2 %o
N-t

2 Si%(}k.&) cos (JR4) = o

. = o k#&

z Cos(}kg) Cos(s‘id)' = N, k=R #£0
J=o = N k=2 = ©

Therefore the eqguations become
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are the least mean square choice for Ag . Al, Bl' Notice in this

case the solution of the simultanqguﬁ equations is trivial.

UNITS OF FREQUENRCY

In the previous example, the data is taken daily over a
period of one year. To include the explicit units of time in the
analysis, some conventional normalizations are used. The period
of sin{x}) is 2T radians i.e., sin {(x + 27 } = sin (x).

Since the argument of sin must be unitless, a radians has the



dimensions L/L {length of circumference of a circle subtended

by the angle in question) / {length of the radiy:s of the circle)
and 2% corresponds to one complete revolution or period. If

the independent variable being considered is time = +t, then the
argument of the gin must be multiplied by a guantity such that

the resulting product has units radians: for example $iy(wt)

where w has units radians / time. Anocther normalization often
uged is sin (27 ft )} where £ has units cvecle/time and 27 is

the conversion from cycles to radians. Further, if the period of
interest is T then the normalization is sin (2T t/T )}, which has

period T, i.e., sin (2 (&t +T ) /T3y = sin (27 /T + 27 )

H

sin (2 W t/T). So that for period T, the corresponding freguency
is £ = 1/T cycles/time and the radian frequency is w = 27 /T
radians/time.

Continuing the example, g{t: is temperature and t 1is inﬁdays.
Let g{i A t) = g5 where 3 = 0, 1, ... N-1 correspond to the
data at time ¢t = 0, & t, 24¢t, ... , (N~1) A t days. Using this
notation, the period is T = N A t days sc that the approximation

A
g {J & t) can be written:
A iasy ( 2n e 2\
a(jat) = %ﬁ%ﬁ%isﬂ@%g?gat) + B sin ?JM‘) (2;
The sinusocids have period T = 366 days and frequency £ = 1/T =

1/366 cycles/day. Eg. {2 ) can be put into a more convenient

form using a simple trigonometric identity:

%_f\‘s&é;) = j%_f + fi% ﬁﬁ&é\% jét “@55
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where C‘ e ‘/ A"‘ + Bf‘
Gﬂ - e (ESD/A‘)

Cl is called the amplitude of the sinusoid and 81 is the
phase in radians. Cl is the amplitude of the yearly cycle in
the temperature data and a plot of C; versus fregquency or

period is usually drawn to illustrate this dependence.

FINITE FOURIER SERIES

At this point it is natural to ask whether there is any
significant 1/2 year period, 1/3 year period, 1/4 year period,
etc.; or equivalently, any significant frequency components
at 2 cycles/year, 3 cycles/yr, 4 cycles/yr, etc. These frequencies
are called the harmonics of the fundamental fregquency 1 cycle/year
and such an analysis is called a harmonic analysis of the data.
The answer can be obtained by fitting sinusocids at these higher
frequencies to the data. Further, if enough sin and cosine terms
are added so that the number of unknown Fourier coefficients is
egual to the number of data points, then exact equality rather
than a least mean square approximation can be achieved.

The specific form of the Fourier series which achieves
egquality between the N data points g{(j A t) and the Fourier

. L. (2)
series is :

WI-! .
‘}(jAt) = 52: + 22 Ak cos(?.._:_f_il")at) + Bksm(?.i‘}‘_‘)at)
=i
+ Awg ccs(".‘;!._'.‘.;at) (3)

2
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where: ;\ K-} cos
k.2 (jat) o 2Tk \at (4)
By N 2; ¥l1at) sty \ = JA)

The N data points g (J A t) are transformed into N

Fourier coefficients Ag, Al’ By «ov 1 AN/2s and all the

1
information contained in the record g (0), g ( At), g (24 t),
oo g [ (N-1) A t] is also contained in the Fourier coefficients.
Eg. 3 , gives the data in terms of the Fourier coefficients

and eq. 4 gives the Fourier coefficients in terms of the data.

The amplitudes and phases are given as follows:

N/2
. Cs 2k -
9 (yat) = > * ; Ci cos(? yat GR)
21
where
C,,= Aa
¢ - % 7,! . .
CN{Z = AN/‘
e
and
-
G
\G& = twn ( zéﬁk) k:ng“v %at

e%zo,
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EXAMPLES :

The amplitude of the Fourier coefficients for the vyearly
temperature records and daily average dissolved oxygen data from
the Delaware Estuary are shown in Fig. 1 (3)

As a sececnd example, consider 3 days of solar radiation data,
sampled every 1/2 hour. The fundamental period of the data is

T

4

3 days and the sampling interval At = 1/48 day. Thepe are
N

4

T/ At = 144 data points. ¥Fig. 2 presents an idealization
of the data that has been used for photosynthetic oxygen analysis
in streams, and the actual data, as well as the calculated ampli-
tudes of the Fourier coefficients in each case.

Consider the actual record of solar radiation intensity and
the calculated Fourier coefficients. The components corres-
ponding to 1 cycle/day, and 2 cycles/day are quite large.

But the other components are not zero. In fact they are due to
the random fluctuations associated with real sclar radiation, .
e.g. the effect of clouds passing overhead. 1In order to analyze
their significance, it is necessary to characterize these

random influences in some way.

BATA WITH RANDOM COMPONENTS - THE PERIODOGRAM

The first statistics that are usually calculated from a
set of data with random components is the mean and variance.

From egq. (4} it is clear that:
Ny
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. C
= ;_-%2 Cp + 25w, (5)
k=
This result, known as Pargeval's theorem (4) , forms the basis

of Variance spectra analysis. Eg. 5 is a formula which gives
the variance in a record as a sum of components, each of which
is associated with a particular frequency. To write this sum

in the form of an integral, define the pericdogram I

k as:
T Z
Ik = %At iAk + Bk) k: g’z/ IN‘IZ_‘
Ny | A
IM!% = EAt \ 2/2.)

The units of Ik are variance/freguency, and the integral of Ik

from k = 0 to N/2 gives the total variance in the record, i.e.
Nt’]&



The periodogram plays the same role in Variance analysis as the

amplitudes play in Harmonic analysis, that is/I .is the wvariance

k
density at the freguency K/T. A plot of Ik versus the frequency
k/T is called the periodogram of the data, and it was first
introduced into data analysis by Schusterx (5) in 1898.

There is one major difficulty with periodogram analysis and

that is the statistical behavior of the Ik if the data being

analyzed has significant random components.

Consider the following data points: nj, 1 =0, ..., N-1,
where n, are independent Gaussian random variables with zero mean
J
< . 2 : 2z ;
and variance = . To estimate o from the data, the sample
A2
variance O is used:
N-1
A ' ¢
z - P TL
c N 1
J=o
A2 . .
It is easy to show that O has a chi square distribution with
A -
N degrees of freedom. The coefficient of variation of o2 is 2/N
A

. . 2
80 that as N increases CTz approaches the actual variance U °.

If, however, the periodogram of n, is obtained, I k = 1, ... , N/2,

k’

it is shown in the appendix that I has a chi sguare distribution

k
with 2 degrees of freedom, and the coefficient of wvariation is ¥FE7§ = 1.
30 that N increases, the Ik do not fluctuate less violently and
do not eventually approach the theoretical wvalue, which in this
case 1is 26‘21\.\. t.

. Fig. 3 presents two pericdograms for N = 25 and N = 50.
Notice the large scatter of the estimates; the mean value is shown

as a dotted line in both cases. Notice also that in the case of

N = 50, there are twice as many estimates as the N = 25 case.



Thus increasing the record length increases the number of estimates
‘but not their statistical stability. o

A solution to this dilemma has been provided by Daniell (1946)
who suggested that the Ik be averaged in groups of 2L + 1

Thus, the estimate of the actual Ik at freguency Xk/T , which is

A "
called the modified periodogram Ik ; is given as the average of the L

adjacent raw periocdogram estimates Ik i.e.:
A ksl
= I
I T 2 T

A
Now I is a chi square random variable with 2( 2L + 1 )} degrees

of freedom and the coefficient of variation of Iy is:

“\ J:a(zui / 2Ley

A reasonable value for L would be L = 5 and the resulting
estimate has a coefficient of variation of 1/ Jll = . 30.

For the modified periodogram, an increase in the length of the
record available can be used either to obtain twice as many
estimates of the variance spectra with the same coefficient of
variation, or to double the wvalue of L and increase the
statistical stability of the estimates of the variance spectra.
Therefore, using the modified periodogram, a consistant estimate
of the variance spectra can ke obtained and the sampling fluctua-~

tions of this estimate can be specified.
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APPLICATIONS OF VARIANCE SPECTRA ANALYSIS

The applications that have been proposed for spectral
analysis can be put into three categories: 1) To verify
theoretical models of random processes by comparing the theo-
retical spectra to the spectra estimated from the data. An
example of this type, taken from Taylor, is shown in Fig.

The spectrum of longitudinal wvelocity in turbulent flow is
compared to a theoretical pxédiction. 2) To unravel the
periodicities inherent in a data record in order to understand
further at what frequencies the major contributions to the
variance occur and what their causes might be. 3) To predict
the variance spectra of the output of a linear system given the
variance spectra of the input. Examples of these applications

will be presented during the lecture.

ACKNOWLEDGEMENT ; The assistance provided by Prcf. Robert V. Thomann

of Manhattan College is gratefully acknowledged.

APPENDIX

DISTRIBUTION OF THE PERIODOGRAM

To calculate the probability distribution of the periodogram Ik'

congider a sequence nj, 3 = 0, 1, «.. , N-1, of independent

. . . \ . 2
Gaussian random variables with zero mean and variance = 7.
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The Fourier coefficients for this sequence have the form:

A N1 :

aM 2 N ¢os zrrluz (&)
= N 2- %l SN (== ‘EA&>

Egk j:u

The probability distribution of Ak and B, is found as

k
follows: n, 3 = 0, ... , N-1, are independent Gaussian
4
random variables and Ak ¢ Bk being linear combinations of inde-
pendent Gaussian random variables are therefore themselves

Gaussian random variables. It can also be shown that Ak and By

are uncorrelated and therefore, being Gaussian, are independent (73
The periodogram Ik is defined as the sum of the sguare of two
independent Gaussian random variables. It, therefore, has a

chi square distribution with 2 degrees of freedom i.e. an ex-

ponential distribution. Finding the expected value of Ik :

E(T) - Yat [ e(ay) » e(82)]

from Eq & :
N-i M-
E&Alw} - %; 2‘2 E(Mm CM(?WH)CGS(Z’:«L)
L“"n e @
N~ ‘
- & £ {mt) cos” (2Tk)
N* j=s ( ) ( N }
= i%_—z %i cos (%ﬁ‘q
W y=s
. 20°



and similarly:

E(By) - 2%
N
so that:
':'.‘"i = N f45-'2 =

20 at

Hence the distribution function of Ik is:

1

@ob{Ik > 9‘}

the standard deviation is:

exp |

2607 At

and the coefficient of wvariation of Ik

C.V. (Ik) = s.d. (Ik)

E

(L)

SR S
zotat

}
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ANALYSIS OF VARIABILITY IN WASTE TREATMENT PLANT
PERFORMANCE USING TIME SERIES TECHNIQUES (a)

by

Robert V. Thomann (b)

Introduction

As nationwide interest has focused on water guality and
pellution control, regulatory agencies have become increas-
ingly aware of the need to continually examine the performance
characteristics of waste treatment plants. Regulations regard-
ing the efficiency of plants may specify ranges in effluent
waste load, maximum discharge loads or specifications of allow-
able seasonal wvariations. For exzample, the Delaware River

(1) reguire that the average

Basin Commission Regulations
number of pounds of ultimate carbonaceous oxygen demand in
waste effluent to the Delaware Estuary for any five consecutive

days during any month shall not exceed hy more than fifty per-

cent a waste allocation established by the Commission. An
average of an unspecified number of samples is to be obtained
monthly from May 1 through December 31. Design engineers

will be regquired more and more to examine and estimate the
expected variation in waste load from a given treatment process.
Estimates of average performance while . necessary will not be
sufficient.

The reasons for increased attention to waste load varia-
bility are found in the effect that such variability has on
stream water quality. It has always been known that treatment
plant performance is variable. Detailed analysis of the varia-
tion and the development of means for predicting the effect
of seasonal or random oscillations on river guality has not
been carried out to any great extent.

(a) Presented at ASCE Second Nat. Symposium on Sanitary Engineer-
ing Research, Development and Design, July 15, 1969
(b) Assoc. Prof. Civil Engineering, Manhatten College, Bronx, N.Y.



2.

Several statistical techniques can be applied to the time
variations of waste treatment processes. The analyses in this
paper are restricted to municipal plants. The purposes of time
series analysis of existing municipal waste treatment plant
data aré to a) gain further insight into the nature of the
variability of flow and biochemical oxygen demand (BOD) b)
develop additional measures of performances of treatment plants
which may prove useful in estimating future variability and c¢)
relate the behavior of the treatment plant to resulting stream
guality variations.

Begause the variables under consideration are functions
of time, care must be taken in the data analysis. Periodicities,
trends and persistence in the records must be recognized and
incorporated in any analysis scheme. For example, if there is
a strong periodicity in the data, plotting on normal probability
paper is not appropriate and may give misleading results. The
techniques of classical statistics must therefore be used with
caution when dealing with time variable guantities.

Observed Treatment Plant Variability

In order to provide a setting for the analyses to follow,
a visual examination of the time series of several plants is
helpful. Data were obtained from eight plants ranging in flow
from less than 10 MGD to 140 MGD and included municipalities
with a relatively large percentage of industrial wastes. The
plants were not limited geographically and included sources
in California, Pennsylvania and Ohio among other locations.
The two smallest plants had many data gaps especially in BOD
values which precluded complete application of the techniques
discussed below. However, some statistical analyses was per-
formed on the data from these two plants. Sufficient data
records were available from six of the eight plants to permit
a complete examination of the time variable behavior. In all
cases, one year of average daily data was used as the basic
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analysis unit. The initial step in the analysis approach was
to therefore review machine plotted data to qualitatively de-
termine significant periodicities or other trends.

Figure 1 is a time series plot of the final effluent 5=
day BOD (lbs/day) for 1965 from a California activated sludge
plant. This plant is subjected to a dominant seasonal influence
resulting from canning operations. The substantial increase in
' load toward the latter part of 1965 reflects this additional
input. There are other less well defined oscillations of higher
frequency (shorter period) superimposed on the general trend of
the series. This plot illustrates the hazards of failing to re-
cognize time dependence in the data. A calculation of the over-
all mean and variance for the vear would reflect the effects of
the two month increase. The variance would be distorted on the
high side and unless the seasonal oscillation was recognized,
the variance could be misinterpreted.

Figure 2 shows a detailed time series plot of the first
one-~half year of data for a mid-West primary plant. The annual
mean and range of +1 standard deviation are shown. It is clear
that significant short term oscillations exist in the record.
Inspection indicates that the data are not distributed normally
so that the estimate of the standard deviation, while important
as a measure of dispersion should not be utilized with a Gaussian
density function. The purpose of time series analyses is made
clear by this example. If one attempts to follow the gscilla-
tion by eye, confusion results. The periodicity persists for
a time, but then the maximum or minimun occasionally "dis-
appears" or the periodicity does not persist or one notes that
other oscillations appear to be superimposed on the approximately
7-10 day periocdicity. Time series analysis represents a methodo-
logy which draws on a number of statistical techniques to aid
in understanding this and other types of time variable phenom-
ena.



Theoretical Background
A complete review of the technique of time series analysis
is given by Bendat and Piersol(2) and will not be repeated here.
Applications have alsc been made to the analysis of stream and
estuarine water quality data(3:4,5) Only the general outline of
the theory is presented. Equally spaced data is assumed through-
out.
For records with reasonably well-defined periodicities (see
Fig. 1) it is advantageous to first perform an harmonic or
Fourier analysis. The purpose of this analysis is to determine
guantitatively the amplitudes and phase angles of the important
periodic components and the contribution to the total variance
of each of the harmonics.
If then the x (t) is represented as
M

x{ed= X + Z,, ’/:'}4‘ sn’((z‘:wt) + (’:’); a@(cwiﬁ) ;Xﬁ_{é) (1)
L=

where ¢ is the fundamental freguency = &ﬁf?’ where T is the
fundamental period (365 days in this work), t is time, i is the
harmonic number, ¥ is the mean value, X5 is the residual varia-
tion not accounted for by the M harmonics and ﬁﬂ and 8; are the

Fourier or harmonic coefficients and are given by

[

V.= g..“i X, sin(cwt
A RN e, ¢ (cet) (2a)

A
B, = afne i X é,m.x(cw'f)
i (2v})

where N is the total number of data points.
With A; and Bj determined from the observed data, the ampli-~
tude and phase angles for the ith harmonic are given hy

e
Cf‘ = ;f '/:}i + BL

<

(32)

- - -,,(_-'(1 l:}{
@L - tan /Bg (Bb)



The variance accounted for by the ith harmcnic is

ol = , G;L/Q ) ¢ <« Mg

wltz e 5 (=42 (#)

This analysis is relatively easy to program and provided that M
is not too large, the analysis uses only a small amount of time
on a medium size computer. For larger M, specialalgorithms can
be used that compute the Fourier coefficients. 1In any event, the
analysis provides a rapid means for estimating the amplitude,
phase angle and variance of any dominent periodicities. Harmonic
analysis can then be followed by construction of the residual re-
cord X%fﬁg with subseguent random process analysis of that record.
For records that appear to oscillate randomly, i.e. where no
periodicities are evident and for residual records after harmonic
removal, a series of analyses can be performed which essentially
detect any statistical persistence and the distribution of variance
over frequency. The determination of persistence is given by the
auto-correlation function which is computed by

;’Z},
f”"“} = i z ,(’ ® x ;

Fz fif;‘“ ¥l =0 (5)
where x (t) is here understood to have zero mean)°t'is the "lag
number"” and the maximum number of lags is m. The Fourier trans-
formation of Ry, {({”) yields the power spectrum (more properly
the variance spectrum) given by the computational formula

G, (8} = ah 5&*’3

4

ant

o N . e
é ‘Fe,q, Q“‘“*(i%)?" (""") ﬁh’i] (6)

A=



where h is the time interval between samples, k is the discrete
harmonic number and 3@ is the so-called Nyquist frequency given

by

g’c, = 5/3}1

and represents the highest frequency about which information will
be obtained. 1In this work, h = 1 day and éc is one cycle per
2. days. A final smoothing of the estimate given by Eg.(6) is
necessary,(Z)

The importance and utility of spectrum analysis is that it
is an estimate of the distribution of variance over frequency.
The labelling of the abscissa 1s either in terms of fregquency or
period. The ordinate is variance/cycle per time. Thus, in the
records analvzed here, h = 1 day, m {(the maximum number of lags)
is 30 so that the frequencg scale is cycles/60 days and runs from
0 to 30. The period scale therefore extends from infinitely long
pericds to a period of 2 days. The choice of the maximum number
of lags depends on several factors including recognition of con-
fidence limits on the estimates. The value of m = 30 provides
for a reasonable statistical estimate. The total area under the
spectralcurve is egual to the total variance of the record. Any
fractional area between two freguencies therefore represents the
fraction of the total wariance occuring in the continuous (as
opposed to discrete) frequency band.

The abowve analysis dealt with the spectrum of single records.
Often it is of interest to examine the cross-correlation and

cross-spectral relationships between two variables both of which

are vagying as functions of time. It is important to recognize
that two times series may be correlated only at particular
frequencies through a specific phase shift.
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’ o
The cross-correlation functlon ﬁxﬁliﬁr} i1s given formally
by .
igx ifc;‘:} . f{m “1:;:” X {&) E? g‘t +°) Q{ +
J I A (8)

where T is the record length. The Fourler transform of g&j(qu

is the cross-spectral density function

e
éxg (5-’} = 2 g_..;g ’e,xg ({V) ﬁf? (“‘gﬁ§¢> 5,/{9 (9}
which is a complex function. The real part ny (5-) is called
the cospectrum and the imaginary part Qxy (5.) is the quadrature
spectrum. Computional formulse are given in (2}.
- A useful measure of the degree of correlation between

two time series is the coherency function given by

| ;\53‘3—0
; Q?x$<§j !

4 Gal3) Gy (¥)
k= . 4
where ¥ 1s the coherency s §§}4$igg } is the modulus

of é&g§£§;} and is glven as

- - o \ v/
16y ) = 679 -Gy ()

Note that in an analogous fashion to simple correlation, the
coherency function is bounded between zero and one.

In addition to gaining insight into the time variable behavior
of treatment plants, time series analyses can form an important
input into theoretical models of waste plants and models of stream
and estuarine water quality. This is illustrated in Figure 3. If

data were available on the influent and effluent of a primary plant,
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one could consider the plant to be a "black box" and compute the
overall behavior of the plant'from its measured input and output.
A similar analysis can be made of a secondary plant or any stage
between raw influent and a treatment process. Thus, one knows the
input and output of a complicated system and is attempting, with-
out writing down a deterministic model, to obtain information on
how the "black box" transforms an input into an output.

Figure 4 is an example of where oné knows the input, say the
waste effluent spectrum, and in addition has a determinisitic model
of the "black box" and wishes to predict the output dissolived
oxygen (DO) spectrum. Here one operates on the input to produce
an output in contrast to the previous example where input and out-
put are known and the "model" connecting the two is desired.

The relationship between a single random input and output of

8 fixed parameter linear system is given by (2)

Cy8)= [ 6 () (11)

Gy = HES) G(5) (12)
where H (f§ ) is a complex valued function called the frequency
transfer function. One can compute this transfer function in two
ways: (a) by observing input and output spectra and cross~spectra
and using Eq. (12), or (fi) by constructing a theoretical model of
the system from which H (ﬁ- } can be detefmined analyticallg,in—
dependent of measured data. Eq (12) is generally to be preferred
for estimating H (iﬁ ) since it provides an unbiased estimate. The
frequency transfer function provides information on how the system
attenuates and phase shifts the input. Procedure for calculating

H (i} ) from measured data are given in (2).
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Where a theoretical model of a stream or estuary is available,
the transfer function H ( £ ) can be obtained analytically (6) and
can be used to predict the distribution of variance of BOD or dis-
solved oxygen (DO). For a non-dispersive stream, the modulus of
H{4 ), designatediﬁ ( & )}represents the amplitude attenuation

and for BOD is given by

} }1’(:5')} = Fip ("k{z){/“)
L Q (13)
where x ls distance downstream from the outfall, }(A,is the BOD
decay coefficient, u is the stream veloclty, @ is the river flow

and the subscript, L, represents BOD. For DO

L }/' £ ) i . .. . ,f" A
[, = =% (etp (o Kexfu) = p( Cxsui))

m’j{m

B)
wWhere Ky 1is the regeration coefficient, Kq is the deoxygenation
coefficient and the subscript D represents DO deficit.

Thus for DO, the amplitude attenuation is zero at the outfall,
builds to a maximum at some dlstance downstream and then decreases
again to zero. Egs. (11) and (12} show that the output spectrum

is given by the input spectrum times the square of the transfer
function modulus. It is interesting to note that Eq. {(14) is the
same form as the classical Streeter-Phelps equation but has a quite

different interpretation.

Results of Analyses
In order to provide inltlal insight into plant behavior,
several preliminary statistical analyses were performed., These
included computation of means, i;; standard deviations, s, co-

efflcient of variation }s/i and estimates of probability density
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functions., With respect to the latter analyses, no consistent
pattern emerged from the eight plants. Probability histograms
ranged from almost uniform to normal and log-normsal density
functions. Thls was to some extent a consequence of the period-
icitis inherent in several of the records.

Table 1 shows some of the statistical properties of the re-
cords. The coefficients of variation for the BOD from the second-
ary plants are interesting and reflect wide variability in the re-
cords. A value of greater than 1 (s=%) was computed for one plant
and three other secondary plants had values greater than 0.5. This
is important since 1t 1s an indication of the variability to.be
expected in downstream water guality. It is also obvious that a
meaningful probability density function for the secondary effluent
must be everywhere positive. ,

Figure S graphlcally displays some of the statistical analy-
ses. The upper plot indicates a general tendency for the co-
efficient of variation (e.V.) to increase as the size of the plant
(as measured by the % reduction of the mean) increases up to the
secondary treatment range. The €.V, holds falrly constant from the
raw waste (0% reduction) to the primary treatment range. Another
and different measure of the performance of the plants is given in
the lower plot of Figure 5. This graph shows the % reduction of
the variance versus the % reduction of the mean. In both cases, the

reduction is referenced to the incoming waste. Thére is a general



11.

tendency for the plants at the primary treatment level tc be some-
what more efficient in the reduction of variance than in the re-~
duction of the mean. In one case however, @lant #U4) there was an
increase of the primary effluent variance over the variance in the
raw waste. At the secondary treatment level, variance reduction

is about equal to reduction of the mean. These simple results in-
~ dicate the wide range in flow and BOD variability and highlight the

need to further investigate plant behavior.

Only Plants #3-#8 had sufficient BOD data to permit further
detailed time series analysis. As indicated previocusly, where do-
minent periodicities are evident in the data, an harmonié analysis
should first be performed to obtain information on amplitudes,
phase angles and varlance. Figure 1 illustrated such a record
for plant #4 which is subject to seasonsl waste load fluctuations.
Eqs. (2a) and (2b) can be used to obtain the necessary coefficients.
The results of the harmonic analysis of this record are shown in
Table 2. Note that in terms of pounds/day in the effluent, the co-
efficlent of variation 1s 1.03. The dominance of the seasonal
variation 1s evident in the total variance of 82.3% accounted for
by the first five harmonics. It can also be noted that because
the phenomena is not sinusoidal, but instead is s time function
with a positive increase over only one-guarter year (from day 180-

270), the harmonics 2-5 are important. The higher harmonics modify
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the 365 day harmonic by "flatening” cut the record at the begin-
ning and end of the year. The amplitude of the second harmonic
is particularly interesting.

Spectral plots of the effluent BOD at Plant #I hefore and
after harmonic removal are shown in Figure 6. The "before har-
monic removal"” spectrum represents an analysis of the record as
shown in Figure 1. The "after harmonic removal" spectrum is a re-
sult of the analysis of the residual record after the dominant
seasonal influence was removed. It is seen that the removal of
the first five harmonics accounts for the major portion of the
low frequency variance (from zero to about 4 cycles/60 days). A
dominant peak in the spectrum occurs at a periocd of 7 days with
secondary peaks at 3.5 and 2.3 days, the principsl harmonics of
the 7 day period. There is alsc some indication of a 30 day peak
which is noticeable only after the removal of the dominating in-
fluence of the low frequency components, It is also interesting
to note that the residual standard deviation of 14,500 lbs/day is
st111 444 of the annual mean,

Figure 2 illustrated the waste load from Plant #06 which in-
dicated a dominant short terﬁ oscillation. Figure 7 shows the
influent spectrum and primary effluent spectrum for one year of
date. at Plant #6. The dominant influence of the seven-day peak
is obvioug, indeed the peak is almost as significant as the low
frequency end of the spectrum. This is in contrast to the spectra
of Plant #4, shown in Figure 6. The results of the harmonic analy-
8is of the influent and effluent data for Plant #6 are given in
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Table 3. It is seen that harmonics 1-5 account for significantly
less variance than the case of Plant #4 (Table 2). The dominance
of the 7-day period is evident in that approximately 25% of the
total varlance is accounted for by this harmonic.

Figure 8 shows the 7-day and 3.5 day periodic components for
the primary effluent of Plant #6, computed from the harmonic
analysis. The figure indicates the interaction of these two
periods. Although the 7-day oscillation has a peak positive
value of almost 50,000 1lbs/day, the effect of the 3.5 day oscilla-
tion is to modify the peak due to a difference in phase angles.
The sum of the two periodicités shows a tendency to "flatten out"”
the discharge during the middle of the week at about 35,000 1bs/
day.

Figure 9 is a plot of the primary effluent spectrum for Plant
#6, before and after harmonic removal. The area or variance under
the spectrum after removal is about 55% of the variance before re-
moval., It is important to note that even after removal of the dis-
crete harmonics #52, 104 and 156 that peaks still exist in these
regions of the spectrum. This illustrates the difference between
discrete frequency components as obtained from Fourier analysis
and estimates of the variance contained in a continuous frequency
band. This also illustrates the usefulfimss of spectral analysis
since one can therefore estimate the total variance contained in a
given frequency band. Thus for the frequency region surrounding

the 7, 3.5 and 2.3 day peaks, 1t is estimated that about 30% of the



1y,

total residual variance is contained in this_part of the spectrum.
As aﬁ order of magnitude theﬁ, about 50-60% of the total variance
of the criginal record is due to a 5 day on and é day off phenomen-
on. Any waste sampling program or water guality analyslis will ob-
viously havé to recognize this varlabllity.

Harmonic and spectral analyses on the remaining plants gen-
erally indicated periodicities similar to those that were evident
in the plants just discussed but not as dominant. Figure 10 shows
the influent, primary and secondary effluent BOD mg/l spectra for
Plant #3. The relative weakness of the seven day phenomenon is
evident in the influent and for the secondary effluent is entirely
absent. Further investigation to increase the resolution of the
spectrum in ﬁhe seven day region may provide further insight.
Plants #5, 7 and 8 generally tended to show peaks in the same region.
In all cases, the effects of seasonal influences aslthough present
were not as dominant as the case of the seasonal canning operation

given by Plant #4.

Cross -~ Spectral Analysis

Various analyses were carried out on the relationships between
flow, influent BOD and effluent BOD as given by estimation of the
cross-spectra for Plants #3, 5, 7 and 8. In general, the results
indicated negligible coherency (as computed from Eq. 10) between
flow and influent BOD although for Plant #3 there was a tendency at
the low frequency end for flow to be inversely correlated to in-

fluent BOD. Figure 11 shows the coherenciles for three pairs of
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records for Plant #3. With the raw influent BOD fg/1) as the input
forceing function and primary effluent BOD (mg/l) as the response
function (see Figure 3), coherencles are statistically significant
at the 5% level over a wide range of frequencies. This significance
level is the level above which one could expect to obtain s coher-
ence value by chance alone. Thus, there is a 5% probability that
a coherence level greater than about 0.35 will be obtalned by chance.
With primary effluent BOD as the input and secondary effluent as
the output, cocherencies are significant only in two regions of the
frequency domain., The most interesting region is the seven day
period. Finally, the coherency between raw influent BOD and second-
ary effluent BOD is everywhere lnsignificant indicating that the
secondary effluent BOD variability is not significantly influenced
by the raw influent variability.

Figure 12 shows a similsr plot for Plants #5 and #8 where
again significant coherencles were computed between influent and
primary effluent and low coherencies between influent and second-

ary effluent.

 DISCUSSION OF RESULTS

Treatment =»:: Plant Behavior

The harmonic analyses indicated the need to critically ex-
amine a plot of the time series to determine important "lines" in
the spectrum. The magnitude of the 5 day en and 2 day off phenom-
.enon, especially in Planﬁ #6, 1s particularly important. It shows
the quasi-deterministic nature of waste effluents which must be
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recognized in any sampling program. The spectrum analysis results
also indicated that the varlance of the effluents tends to be con-
centrated in the low frequency end in addition to the varliance
concentration at the 7, 3.5 and in some cases 2.3 day periods. The
order of magnitude of the coefficients of varistion is indicltive.
of the wide variabillty in load. The coherency analyses indicated
the relative independence of secondary effluent varisbility from
raw influent variability. One could speculate that this independ-
ence results from Introduction of the blological treatment step.
This treatment process introduces a new and essentlally different
type of variance due to purposefully stimulated blological sctivity.
The secondary settling step does not appear to provide the necess-
ary additional reduction in variance similar to that provided by
the primary tanks.

In order to further understand the nature of the plant be-
havior, =a "blask box" analysis can be carried out using the results
of the cross-spectral analysis. Thus Eq. (12) is used where 633{$)
and . &:(4)* are known and the complex frequency transfer function
H {f) is computed. The modulus of H ({ ) is the amplitude
attenuation and indicates in a gross way, the manner in which a
linear treatment plant operates on a given input.

The results for Plant #3 are shown in Figure 13 and‘for Plant
#5 in Figure 14. There is a tendency for the amplitude attenua-
tion of the frequencyAtransfer function to behave as if "plug flow"
was dominant between the raw influent and primary effluent. If
complete plug flow were present, the amplitude gsttenuation would

be & constant over all frequencies, For the treatment step from
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primary effluent to secondary effluent, the estimate for Plant #3
indicates a tendency for this step to reflect some mixing. One 1is
led to thls conclusion because the amplitudeattenuation decreases
to zero at high frequenckws in systems that exhibit mixing. It is
not possible with the data at hand to determine the degree of mix-
ing.

These results indicate how one can utilize spectial analysis
to verify theoretical developments of treatment plant behavior. Ir
plug flow is assumed for the primary treatment step of a particular
plant and & mathematical model 1s constructed on that assumption,
then a good check on the validity of the assumption is to compute

the amplitude attenuation from the observed spectra and cross-spectra.

el ater Qualit

In addition to gaining insight into plant behavior, the other
motivation for examining treatment plant variabllity lies in the
effect of load variations on the reeeiving water body. A variety
of mathematical models exist for streams and estuaries which re-
late waste load input to a water quality output, say dissolved
oxygen. The stream models as noted previously permit direct analy-
tical computation of the modulus of the frequency transfer function.
Eq. (14) gives H(3) for DO deficit in a non-dispersive river. As
shown by that equation, H (§) } 1s independent of frequency and
all oscillations are transmitted downstream. The only change in
the 6sc111ations results from the blochemical and reaseration re-

actions. This is consequence of the "no-mixing" assumption often
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made for streams.

To illustrate the use of a waste effluent spectrum, a hypothe-~
tical river system was subjected to the primary effluent spectrum
of Figure 7. The following conditions were assumed: Q = 1000 MGD,
Kd = Kr = 0.2/day and Ka = O.4/day. Using Eq.(11l) which assumes
linearity, single input and no extraneous "noise", the output DO
spectrum can be computed as a function of distance downstream.
Figure 4 1llustrates the system. The results are shown in Figure
15.

At the outfall, Eq. (14) indicates a DO spectrum of zero.
Figure 15 shows the build-up of the spectrum to a maximum at 4
days travel time., At 15 days travel time, the spectrum approaches
zero, The seven day peak in the effluent spectrum is reflected in
the DO oscillation, The maximum effect of the peak occurs at the
location of the critical DO deficit, an unfortunate consequence.
The approximate maximum amplitude of DO due to the seven day peak
would be about 1.6 mg/l, a substantial amount. The spectrum itself
does not provide information on the phase angle. The results of
the harmonic analysis however would indicate that the minimum DO
value due to the seven day effluent peak would occui on Sunday,
at a location equivalent to four days travel time,

For estuaries, where tidal mixing assumes an important role,

it can be shown that the modulus is a function of frequency. The
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congeguence of this dependence is that the estuary, through tidal
dispersioggwill dampen out high frequency osclllations in the
waste load input. The range over which high frequencles are
damped depends on a number of factors, including the magnitude
of the tidal dispersion. Under intensive dispersion, approaching
completely mixed systems, the seven day oscillation (higher fre-

quencies) could be damped completely.

CONCLUSIONS

Times series analyses have been applied to several waste
treatment plant records to determine the degree of variability
in plant performance and to obtain further insight into treatment
plant behavior. The results indicate a high degree of vari-
ability in secondary effluent BOD as measured by the coefficient
of variation. Values ranged from 0.2 to 1.1. The distribution
of this variance over frequency showed a strong seasonal depend-
ence for a plant subjected to a seasonal canning loed. Five day-
on and two day-off oscillations were also noted in the pover
spectrum of several plants. For one plant, the order of megni-
- tude of the ampliitudes of this weekly oscilllation was about
35,000 1lbs/day or about 20% of the mean loéd. The variability
in effluent load should be incorporated in any sampling program and
efforts should be made in treatment plant design to minimize
varlability. As an illustration assume that the residual waste
load is normally distributed and one wishes to estimate the ex-

tent of an effiuent ssmpling program. If the GV is 1.0 and one
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cented to be 959 certain that a messurad mesn would differ from

no more than 50%, a total of 36 samples would

At & sampling interval of one dsy, approximately

?3..

¥ a regulatory agency would be necessary.

e

Y samples would be

regulred, This exn-

inlrements would apply only to the random
component of the effluent, Total sampling reguirements would

ggve to dnclude incorporation of any deterministic phenomenon.

The results of the time series snalyses also indlcate the
effect that load vardablility can have on the water guality of a
stream. Indeed, in the final analysis, this ig the primary rea-

gon for being concerned with plant variations. Dissolved oxygen

variations of 1.0 mg/l or greater appear to be possible from a

pathematical model of the stream and the observed treabment plant
spectrum. The theory indicates that the maximum DO variability

will oceur at the loccation of the cribical DO deficit.
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TABLE 2

RESULTS OF HARMONIC ANALYSIS OF EFFLUENT ROD (LBS/DAY), PLANT #4

Mean - 33,200, Std., Dev. = 34,300

Period A By Ci %
Harmonic (Days} (1000 lbs/day) (1000 lbs/day 1000 1bs/day Variance
1 365 - 13.25 - 21.56 25.3 27.2
2 182.5 - 9.17 25.65 27.2 31.5
3 121.7  18.02 - 1.98 18.1 13.9
4 51.2 - 9.38 - 10.21 13.9 8.1
5 73.0 - 1.35 6.09 6.2 1.6

P

Total Variance Due to Harmonics, 1-5 82,3
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Fig{ 15. Computed DO spectrums for hypothetical stream, input of Fig. g



