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ABSTRACT

One of the central objectives of atomic, molecular and optical physics is de-

scribing complex correlations in atomic structure. There has been an increasing need

for high quality high-precision atomic data and software in several scientific commu-

nities, including atomic, plasma and astrophysics. Having an accurate atomic theory

is indispensable for experiments involving studies of fundamental interactions, astro-

physics, atomic clocks, plasma science, quantum degenerate gases, quantum informa-

tion, precision measurements, and others. The need for high-precision calculations of

atomic properties of systems in the middle columns of the periodic table has become

increasingly urgent due to its relevance in new experiments probing physics beyond the

Standard Model.

The ultimate goal of the work described in this thesis is to develop methods

and codes to enable accurate computation of atomic properties of atoms and ions

with complex electronic structure. We apply our newly developed code package for

reliable calculations of atomic properties of systems that were not possible before.

This includes calculations correlating all 60 electrons in the highly charged Ir17+ ion,

calculations predicting clock transitions and analyzing systemic effects that could affect

the accuracy and stability of Cf15+ and Cf17+ ions, calculations predicting the 3C3D

line intensity ratio in Fe16+, calculations detecting the lowest lying odd parity atomic

levels in neutral Ac, and calculating properties of negative ions La− and Bi−. The

new code package will also be used to produce large volumes of atomic data for a new

online portal being developed at the University of Delaware.

xiv



Chapter 1

INTRODUCTION

In this work, a new relativistic atomic code capable of very-large scale, high-

precision calculations of atomic properties is developed and used for calculations of

several complex ions that were not possible with previous codes. This atomic code uti-

lizes the configuration interaction (CI) method, and allows to combine configuration

interaction with either many-body perturbation theory (CI+MBPT) or the all-order

method (CI+all-order), to analyze atoms and ions of interest. The main motivation for

this work is the recent rapid development in experiments involving studies of funda-

mental interactions, astrophysics, atomic clocks, plasma science, quantum degenerate

gases, quantum information, precision measurements, and others.

In the first part of this thesis, the theoretical frameworks that lay the foundation

for the code package are discussed in enough detail to understand the functionalities

of the code. The basics of atomic structure theory is briefly summarized, starting

from the non-relativistic many-electron Hamiltonian and an N -electron antisymmetric

wave function, we solve Schrödinger’s equation to obtain the energy of the system of

interest. This is extended to include relativistic effects by introducing the relativistic

Hamiltonian. The Hartree-Fock method is introduced in the non-relativistic regime,

and then extended to the Dirac-Hartree-Fock method when relativistic effects are taken

into account. Then the CI method and the Davidson method [1] are introduced. Next,

the hybrid approaches CI+MBPT and CI+all-order are introduced, treating core-core

and core-valence correlations with MBPT/all-order and treating valence-valence corre-

lations with CI. Valence perturbation theory (CI+PT) is introduced as an extension to

the CI method, which is primarily used to treat very complicated open-shell systems

where the usual CI+MBPT and CI+all-order methods would not work. The CI+PT
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method allows for perturbative treatment of the valence correlations on top of the

CI calculations. Finally, radiative transitions between states of an atomic system are

discussed; the density matrix formalism is introduced, and then the expressions for

multipole transition probability rates are derived.

In the second part of the thesis, the complete CI/CI+MBPT/CI+all-order code

package is described. Here, the components of the complete set of codes are introduced,

including codes that were not released in the initial CI+MBPT public distribution to

Computer Physics Communications in 2015 [2]. These include 3 codes that realizes

the CI+all-order method, as well as a new code that realizes the CI+PT method for

extreme-scale CI calculations. Next, we describe the code developments done in this

work. This includes the modernization and parallelization of the main codes in the

package, namely the CI code conf, the CI+PT code conf pt, and the matrix element

code dtm, which are the most computationally expensive portions of the entire code

package. Memory usage, optimization, and parallelization schemes are discussed for

these codes.

In the final part of the thesis, we showcase the recent calculations done with our

newly developed parallel CI/CI+MBPT/CI+all-order code package. It is important

to note that most of the calculations done here were not possible with the attained

accuracy with previously existing codes. Highly charged ions (HCI) such as Ir17+, Cf15+,

and Cf17+ are attractive candidates for the development of novel atomic clocks with very

high sensitivity to the variation of the fine structure constant α. In our most demanding

calculations, we correlate all 60 electrons in Ir17+. M1 transition energies between

same parity states have been measured to good agreement with previous calculations

[3], and E1 transition rates between opposite parity states were found to be drastically

lower than previously predicted [4]. Our calculations explain the lack of observed E1

transitions in the last 5 years, and provide a path towards detecting the corresponding

clock transitions [4]. We also predicted properties of the Cf15+ and Cf17+ ions, including

the wavelengths of clock transitions, and analyzed a number of systematic effects that

affect the accuracy and stability of these optical clocks, including electric quadrupole,

2



micromotion, and quadratic Zeeman shifts of the clock transitions. Our calculation

correlating all 10 electrons in Fe16+, including full Breit and QED [5] corrections,

predicted the transition rates of the resonance line 3D [2p53d 3D1 − 2p6 1S0] and the

intercombination line 3C [2p53d 1P1−2p6 1S0] with 1-2% accuracy, ruling out basis set

convergence in theoretical calculations as a potential explanation for the discrepancy of

the observed intensity ratios with advanced plasma models. For the neutral Ac atom,

we calculated the energy levels and lifetimes of the two lowest odd-parity states 7s27p

2P o
1/2 and 7s27p 2P o

3/2 with good agreement with experimental measurements, resolving

discrepancy of other theory values with experiments. For La−, we identified all of

the 11 observed resonances in its photodetachment spectrum attributed to transitions

to quasibound states [6], as well as predicted one more peak just outside the range

of the prior experiment, which was validated after it was observed at the predicted

wavelength. This is the first time our approach has been used to predict properties of

quasibound states in any system. For Bi−, our calculations found excellent agreement

with recent experiments for the binding energies and 6p4 3P2 →3P0 transition energies

and rates [7].

The main motivation of the work done in this thesis is to develop a new mod-

ern atomic code package free of the limitations of existing available codes. This code

package is capable of precise prediction of properties of even complicated systems and

suitable to run on modern computational facilities. We plan to release the new code

package to the user community. Here, we briefly summarize the atomic structure codes

that have been available for public use in the last few decades. The NIST Multicon-

figuration Hartree-Fock and Multiconfiguration Dirac-Hartree-Fock (MCHF/MCDHF)

database contains collections of transition data from different relativistic theories by

different computational methods, as well as the atomic structure codes used for the cal-

culations of the data [8]. The MCHF/MCDHF database includes access to ATSP2K,

a large scale, non-relativistic MCHF + Breit Pauli atomic structure package [9], and

the GRASP2K package, which implements the fully relativistic MCDHF method for

large-scale calculations [10, 11]. Some other generally applicable, documented atomic
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structure codes include CIV3, which calculates configuration interaction (CI) wave

functions and electric-dipole oscillator strengths [12]; SUPERSTRUCTURE, which

calculates bound state energies in LS coupling and intermediate coupling as well as

associated radiative data [13]; the COWAN code, which calculates atomic structures

and spectra via the superposition-of-configuration method [14, 15]; HULLAC, which

calculates atomic structure and cross sections for collisional and radiative atomic pro-

cesses using methods such as CI and the parametric potential method [16]; the ATOM

programs, which compute atomic processes, including photoionization, Auger and ra-

diative decay, elastic scattering and ionization, using HF and its generalization to the

random phase approximation (RPA) with exchange [17]; and the Flexible Atomic Code

(FAC), which computes various atomic properties such as energy levels, radiative tran-

sitions, collisional excitations, ionization by electron impact, and photoionization [18].

All of these codes have been developed decades ago, with some more recent updates

to some codes, including MPI parallelization. Modern applications require much more

accurate treatment of the electronic correlations, and larger ranges of atomic properties

that can be calculated with these codes. An initiative has been taken to develop much

more modern codes with the release of the CI-MBPT code package in 2015 [2], and the

AMBiT CI+MBPT code package in 2018 [19]. The AMBiT code package features hy-

brid MPI+OpenMP parallelization to take full advantage of modern high-performance

computing (HPC) architectures, allowing for calculations of much more complicated

systems than before.

The work done in this thesis resumes the development of the CI/CI+MBPT/CI+

all-order code package, porting the previous serial code package to latest HPC architec-

tures via modern computational methodologies, enabling the codes to run on large-scale

computational facilities in order to treat complex systems, such as atomic systems with

open d- and f -shells, beyond the original code’s capabilities. Furthermore, the modern

code package will be a part of a larger project: the development of an online portal

that will provide the scientific community with access to a database of high-precision

atomic properties and a package of application codes that can be used to compute
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these properties.

A major motivation for this work is the development of atomic clocks, which

is essential for the search for variation of fundamental constants. Modern theories

aimed at unifying gravity with the other three fundamental interactions suggest that

the fundamental constants could vary in an expanding universe [20]. Development of

ultra-precise atomic clocks with fractional sensitivity δα/α ∼ 10−18 yr−1 have already

allowed for laboratory tests of the temporal variation of the fine structure constant

α = e2/~c, and novel clock schemes based on the 229Th nuclear transition [21, 22] and

optical transitions in highly-charged ions [23, 24, 25, 26, 27, 28] that may achieve the

accuracy at the next decimal point, 10−19, are being considered. Optical atomic clock

transition energies ∆E depend on the fine-structure constant α as

∆E(α) = ∆E0 + ∆q

[(
α

α0

)2

− 1

]
, (1.1)

where α0 is the current value of α [29], ∆E0 is the transition energy corresponding to

α0, and the differential sensitivity parameter ∆q [30, 31] can be precisely calculated.

The atomic clock maps out small fractional α deviations of any cause or type (tempo-

ral, spatial, slow drift, oscillatory, gravity-potential dependent, transient or other) to

fractional frequency deviations

∆E −∆E0

∆E0

= K
α− α0

α0

, (1.2)

where K = 2∆q/∆E is the dimensionless enhancement factor. Experimentally, one

can detect the variation of α by monitoring the ratio of two clock frequencies with

different values of K. One would look for clocks with the best stability, total systematic

uncertainty, and highest values of ∆K = K1 −K2 for clocks 1 and 2. Highly charged

ions (HCI) such as Ir17+, Cf15+, and Cf17+ are attractive candidates for the development

of novel atomic clocks with very high sensitivity to the variation of the fine structure

constant α [23, 28, 32]. Therefore, extensive theoretical and experimental studies must

be done on highly charged ions (HCI) in order for these novel clocks to become a reality.

For example, while the M1 transitions in Ir17+ between same parity states have been
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measured to good precision [3], the clock transitions, or in fact any E1 transitions

between opposite parity states have not yet been identified. These E1 transitions were

expected to be observed in recent experiments since their predicted transitions rates

[33] were well within the experimental capabilities. The lack of observations for the

E1 transitions brought serious concerns about the accuracy of theoretical predictions.

We have completed extensive work on several HCI, such as Ir17+ [4], Cf15+ [34], and

Cf17+ [34] in this work. HCI have numerous long-lived optical transitions suitable

for clock development with very low uncertainties, estimated to reach the 10−19 level

[25, 35, 36]. Recent developments in quantum logic techniques for HCI spectroscopy in

which a cooling ion provides sympathetic cooling, as well as control and readout of the

internal state of the HCI ion, made rapid progress in the development of HCI clocks

possible [37, 38].

Another motivation of this work is in astrophysics. Properties of Fe and Fe

ions are essential for astrophysical studies [39, 40, 41, 42]. The code developed in

this work will calculate energies and various multipole transition properties making

it of use for plasma physics and astrophysics. The work done in this thesis enabled

massive computations of a very large number of states (over 100) and their respective

transitions. This scale of calculations were not previously possible, making the code

usable for large-scale data production needed for astrophysics and plasma science.

For example, for the last four decades, there has been a disagreement between the

observed intensity ratios and advanced plasma models of the resonance line 2p53d

3D1 − 2p6 1S0 and the intercombination line 3C 2p53d 1P1 − 2p6 1S0 of Fe XVII ions

[43]. These lines are crucial for plasma diagnostics of electron temperatures, elemental

abundances, ionization conditions, velocity turbulences, and opacities. L-shell soft

X-ray fluorescence of Fe16+ ions was recently measured in an electron beam ion trap

following resonant photo-excitation using synchrotron radiation provided by the P04

beamline at PETRA III [43]. The experiment measured the 3C/3D oscillator strength

in an attempt to explain this puzzle. We carried out a precision calculation using our

newly developed parallel CI code to predict these transition rates with 1-2% accuracy.
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We verified that the energies of all 18 states considered agree with the NIST database

within the estimated experimental uncertainty of 0.05%, and the theoretical 3C − 3D

energy difference of 13.44 eV is in agreement with the experiment to 0.3% [43].

The organization of the thesis is as follows: a summary of atomic structure

theory and methods used in this work is given in Chapter 2; a description of the

programs in the new parallel CI+MBPT/CI+all-order code package is given in Chapter

3; calculations done for the development of optical atomic clocks using highly charged

ions Ir17+, Cf15+ and Cf17+ are discussed in Chapter 4; calculations for the 3C/3D line

intensity ratio in Fe16+ is discussed in Chapter 5; calculations for neutral Ac are done

in Chapter 6; calculations done to predict quasibound states of negative ion La− and

bound states of Bi− are done in Chapter 7; and a conclusion of the thesis is given in

Chapter 8.
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Chapter 2

THEORY

The study of atomic structure continues to be an exciting field, with increasingly

precise measurements and improved computational methods allowing more and more

detailed comparisons between experiment and theory. Accurate theory predictions are

needed to propose, guide, and analyze experiments. The aim of this chapter is to give

a brief overview of concepts that will be necessary for a better understanding of the

contents of this work. The main focus will be computational methods for high-precision

relativistic calculations for many-electron atomic systems. We will begin by describing

a general many-electron system with a non-relativistic Hamiltonian. We’ll find that

for increasingly large systems, it will be impossible to write an analytical solution,

making it necessary to introduce approximation methods, such as the configuration

interaction method, many-body perturbation theory, and the coupled-cluster method.

In this chapter, we will introduce major concepts and theory utilized in this work,

leaving detailed discussion and derivations to the original sources. A detailed discussion

on these topics can be found in references [44, 45, 46, 47]. Atomic units are used

throughout the thesis, unless otherwise stated.

This chapter begins with a description of the methods used for atomic structure

calculations, and ends with a description of radiative transitions relevant for determin-

ing transition rates, lifetimes, and branching ratios. In Sections 2.1.1 and 2.1.2, we

introduce the non-relativistic theory of atomic structure; in Sections 2.1.3 and 2.1.4,

we expand our understanding of atomic structure to include relativistic corrections; in

Section 2.1.5, we introduce second quantization to describe many-electron systems in

terms of creation and annihilation operators; in Section 2.1.6, we introduce the configu-

ration interaction (CI) method, expanding the many-electron wave function as a linear
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combination of Slater determinants constructed from a predetermined basis set; in Sec-

tion 2.1.7, we describe basis sets and basis set convergence, particularly the B-spline

basis set used in our calculations; in Section 2.1.9, we describe the Davidson method,

which is an iterative diagonalization procedure used to find the low-lying energy eigen-

values and eigenvectors of the CI Hamiltonian matrix; in Sections 2.1.10 and 2.1.11,

we describe methods combining CI with many-body perturbation theory (CI+MBPT)

and the all-order method (CI+all-order), respectively, to treat core and valence interac-

tions in different regimes (MBPT or all-order); in Section 2.1.12, a method combining

CI with valence perturbation theory (CI+PT) is described to treat cases where the CI

space is too large to run a full CI calculation, so second-order perturbation theory is

used to calculate weights of configurations used to determine the most important con-

figurations; in Section 2.2.1, we describe the density matrix formalism, used to express

matrix elements between many-electron states using one-electron matrix elements; and

in Section 2.2.2, we derive the expressions for the multipole transition rates.

2.1 Atomic structure

In quantum physics, the state of an N -electron atom or ion is described by a

wave function Ψ(x1, . . . ,xN), where xi = (ri, σi) represents the space and spin coordi-

nates, respectively, of the i-th electron. This wave function is continuous in the range

(−∞,∞) for the space coordinates, and takes only values ±1/2 (+1/2 for “spin up”

and −1/2 for “spin down”) for the spin coordinate. The wave function is a solution to

the Schrödinger equation

HΨ(x1, . . . ,xN) = EΨ(x1, . . . ,xN), (2.1)

where the Hamiltonian operator H is an operator that includes all the interactions

relevant for the atomic system. Bound state solutions of this equation only exist if

the wave function is square integrable, and only for discrete values of the total energy

of the system E. The form of the Hamiltonian operator H depends on the quantum

mechanical model used for the atomic system, and will be discussed in the upcoming

sections.
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2.1.1 The non-relativistic Hamiltonian

The starting point for non-relativistic calculations is often the time-independent

Schrödinger’s equation using an electronic Hamiltonian for an atom of the form

H =
N∑
i

h(i) +
N∑
i<j

1

rij
, (2.2)

where

h(i) =
N∑
i

(
−1

2
∇2
i −

Z

ri

)
. (2.3)

Here, H describes the ith electron moving in the presence of the Coulomb field generated

by the nucleus of charge Z, rij = |ri − rj| is the distance between the ith and jth

electrons, and ri is the distance between the ith electron and the nucleus. The one-

electron terms describe the kinetic and potential energies of the electrons with respect

to the nucleus, and the two-electron terms describe the Coulomb potential energy of

the electrons.

This Hamiltonian assumes a couple of approximations described in Ref. [47].

First, the adiabatic approximation is assumed, such that the nuclear and electronic mo-

tion are separated due to the time-scale separation between the nucleus and electrons.

This is a good approximation since the nucleus is at least about 2000 times heavier

than an electron, and therefore moves about
√

2000 times slower. As the slow nucleus

moves, the fast electrons follow it and their distribution around the nucleus is not

much different than in the case of a stationary nucleus. Next, the Born-Oppenheimer

approximation is assumed, such that the electrons move in a field generated by a point

charge nucleus of infinite mass, with its location fixed at the origin of the coordinate

system.

We seek solutions to the N -electron Schrödinger equation (Eq. 2.1) correspond-

ing to electrons that are completely antisymmetric with respect to the interchange of

any two coordinates

Ψ(r1, . . . , ri, . . . , rj, . . . rN) = −Ψ(r1, . . . , rj, . . . , ri, . . . rN). (2.4)
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It is also important to note that there is no exact analytical solution to Eq. 2.1

for atoms and ions more complex than hydrogen. If we consider the rubidium atom,

with Z = 37, the wave function would depend on 3× 37 = 111 variables. Using a basis

set of only 10 functions for each variable, it would require 10111 functions to define

the wave function of rubidium. Thus, it is more practical to look for approximations

of the exact solutions and methods for systematically improving the accuracy of these

approximations. These approximation methods build the framework for this work and

are described in detail in Sections 2.1.2 – 2.1.12.

One straightforward approach to solving the many-electron Schrödinger equa-

tion is to assume the independent-particle approximation, where all interactions be-

tween electrons in the Hamiltonian are neglected, and each electron in the atom is

assumed to move independently in the nuclear Coulomb field and in the average field

of the remaining electrons. With this central field approximation, the N -body problem

is separated into N one-body problems, separating the N -electron wave function into a

product of N one-electron functions. We approximate the electron-electron interaction

by a central potential U(r), and construct an N -electron wave function as an anti-

symmetric product of one-electron orbitals, with the constraint that the wave function

remains normalized.

A completely asymmetric product wave function can be written in the form of

a Slater determinant

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψk1(x1) ψk1(x2) . . . ψk1(xN)

ψk2(x1) ψk2(x2) . . . ψk2(xN)

. . .

ψkN (x1) ψkN (x2) . . . ψkN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

From the properties of determinants, all spin-orbitals ψi(x) have to be different, since

the determinant vanishes if two columns are identical. It follows that the quantum

numbers of the orbitals must be distinct (this is also known as the Pauli exclusion

principle).
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From here on, we follow closely Ref. [44] in describing the non-relativistic Hamil-

tonian and solving for its eigenvalues. In the independent-particle approximation, we

write the Hamiltonian as H = H0 + V , with

H0(r1, r2, . . . rN) =
N∑
i=1

h(ri) =
N∑
i=1

(
−1

2
∇2
i −

Z

ri
+ U(ri)

)
, (2.6)

V (r1, r2, . . . rN) =
1

2

∑
i 6=j

1

rij
−

N∑
i=1

U(ri), (2.7)

where U(r) is a mean field approximation to the electron interaction potential. In

order to evaluate the matrix elements of many-particle operators between Slater deter-

minants, the Slater-Condon (SC) rules (Appendix A) are utilized. With these rules,

one can work out the expectation values of H for the closed-shell case, using Slater

determinant wave functions:

E0 =
∑
a

(h0)aa +
∑
a

Uaa, (2.8)

V =
1

2

∑
ab

(gabab − gabba)−
∑
a

Uaa, (2.9)

E =
∑
a

(h0)aa +
1

2

∑
ab

(gabab − gabba), (2.10)

where we introduce the short-hand notation

hij = 〈ψi|h|ψj〉 =
∑
σ

∫
d3xψ∗i (x)h(x)ψj(x), (2.11)

and

gijkl = 〈ψiψj|g|ψkψl〉 =
∑
σ1σ2

∫∫
d3x1d

3x2ψ
∗
i (x1)ψ∗j (x2)g(r12)ψk(x1)ψl(x2). (2.12)

Here, gabab is known as the direct matrix element and gabba is known as the exchange

matrix element of the Coulomb interaction g(r12) = 1/r12, respectively. In Eqs. 2.8

– 2.10, the sums over indices a and b extend over all one-electron spin-orbitals in the
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set {ψa, ψb, · · · , ψn}. The sum over index a represents the sum over the entire set of

quantum numbers {na, la,ma, σa} for all electrons, where na is the principle quantum

number, la is the angular momentum quantum number, ma is the magnetic quantum

number, and σa is the spin quantum number, for the spin-orbital φa(x). The goal is

then to determine the energy of the system via Eq. 2.10.

The one-electron spin-orbitals ψ(x) = ψ(r, θ, ϕ, σ) are decomposed into radial,

angular, and spin components

ψnlmσ(x) = ψnlmσ(r, θ, ϕ, σ) =
1

r
Pnl(r)Ylm(θ, ϕ)χσ, (2.13)

where Pnl(r) is the radial function, Ylm(θ, ϕ) is a spherical harmonic, and χσ is a spinor.

The spinors χσ satisfy the orthonormality relations

χ†αχβ = δαβ. (2.14)

The one-electron matrix elements in Eq. 2.10 can be evaluated as

(h0)aa =

∫ ∞
0

drPnala

(
−1

2

d2Pnala

dr2
+
la(la + 1)

2r2
Pnala −

Z

r
Pnala

)
. (2.15)

This integral is often denoted by I(nala), which after integrating by parts, can be

expressed as

I(nala) = (h0)aa =

∫ ∞
0

dr

[
1

2

(
d2Pnala

dr2

)2

+
la(la + 1)

2r2
P 2
nala −

Z

r
P 2
nala

]
. (2.16)

To obtain expressions for the two-electron Coulomb matrix elements in Eq. 2.10,

let us first derive the general expression for two-electron matrix elements

gabcd =

∫∫
d3r1d

3r2ψ
∗
a(r1)ψ∗b (r2)

1

r12

ψc(r1)ψd(r2). (2.17)

We can expand 1/r12 in partial waves

1

r12

=
∞∑
k

rk<
rk+1
>

Pk(cosω), (2.18)
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where r< is the lesser of, and r> is the greater of, the two radial distances r1 and r2

separated by an angle ω. Next we can use the addition theorem for spherical harmonics

Pk(cosω) =
4π

2k + 1

k∑
q=−k

Y ∗kq(θ1, φ1)Ykq(θ2, φ2), (2.19)

to write 1/r12 in terms of products of spherical harmonics

1

r12

=
∞∑
k

4π

2k + 1

rk<
rk+1
>

k∑
q=−k

Y ∗kq(θ1, φ1)Ykq(θ2, φ2), (2.20)

or in terms of products of C-tensors

1

r12

=
∞∑
k

rk<
rk+1
>

k∑
q=−k

(−1)qCk
q (r̂1)Ck

−q(r̂2), (2.21)

where a C-tensor is defined as

Ck
q (r̂) =

√
4π

2k + 1
Ykq(θ, φ). (2.22)

Expanding the many-electron wave functions into their individual components, we can

then express the two-electron matrix element as

gabcd =
∞∑
k=0

∫ ∞
0

dr1

∫ ∞
0

dr2 Pnala(r1)Pnblb(r2)
rk<
rk+1
>

Pnclc(r1)Pndld(r2)

×
k∑

q=−k

(−1)q
∫
dΩ1 Ylama(θ1, φ1)Ck

q (θ1, φ1)Ylcmc(θ1, φ1)

×
∫
dΩ2 Ylbmb

(θ1, φ1)Ck
−q(θ2, φ2)Yldmd

(θ2, φ2).

(2.23)

Here we can define a Slater integral Rk(abcd) to be the double integral on the first line

Rk(abcd) =

∫ ∞
0

dr1

∫ ∞
0

dr2Pnala(r1)Pnblb(r2)
rk<
rk+1
>

Pnclc(r1)Pndld(r2). (2.24)

These Slater integrals can be written in terms of multipole potentials vl(a, b, r), defined

by

vk(a, b, r1) =

∫ ∞
0

dr2Pa(r2)Pb(r2)

(
rk<
rk+1
>

)
. (2.25)
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This allows us to write the Slater integrals as

Rk(a, b, c, d) =

∫ ∞
0

drPa(r)Pc(r)vk(b, d, r)

=

∫ ∞
0

drPb(r)Pd(r)vk(a, c, r).

(2.26)

Note that the functions vk(a, a, r) can be written in a simpler notation as vl(a, r), and

that the function v0(a, r) is the potential at r due to a spherically symmetric charge

distribution with radial density Pa(r)
2.

We can express the integrals on the second and third lines of Eq. 2.23 as matrix

elements of C-tensors

〈lama|Ck
q |lcmc〉 =

∫
dΩ1 Ylama(θ1, φ1)Ck

q (θ1, φ1)Ylcmc(θ1, φ1), (2.27)

〈lbmb|Ck
−q|ldmd〉 =

∫
dΩ2 Ylbmb

(θ1, φ1)Ck
−q(θ2, φ2)Yldmd

(θ2, φ2). (2.28)

We can then express the general two-electron matrix element, Eq. 2.23, as

gabcd =
∞∑
k=0

Rk(abcd)
k∑

q=−k

(−1)q〈lama|Ck
q |lcmc〉〈lbmb|Ck

−q|ldmd〉. (2.29)

Next, we can use the Wigner-Eckart theorem to express the two matrix elements as

reduced matrix elements of the C-tensors:

gabcd =
∞∑
k=0

Rk(abcd)
k∑

q=−k

(−1)q
6

−

lama

lcmc

k q
6

−

lbmb

ldmd

k−q 〈la‖Ck‖lc〉〈lb‖Ck‖ld〉

=
∞∑
k=0

Rk(abcd)
k∑

q=−k

(−1)k
6

−

lama

lcmc

k q -
6

−

lbmb

ldmd

k q 〈la‖Ck‖lc〉〈lb‖Ck‖ld〉

=
∞∑
k=0

(−1)k
6 6
-− +

lcmc ldmd

lama lbmb

k
Rk(abcd)〈la‖Ck‖lc〉〈lb‖Ck‖ld〉,

(2.30)
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where

〈l1‖Ck‖l2〉 = (−1)l1
√

(2l1 + 1)(2l2 + 1)

 l1 k l2

0 0 0

 ,

〈l2‖Ck‖l1〉 = (−1)k〈l1‖Ck‖l2〉.

(2.31)

Here, diagrammatic techniques (Appendix B) were used to sum over magnetic quantum

numbers q, going from line 2 to line 3.

With the general form of gabcd, we can evaluate the direct matrix element term∑
ab

gabab and the exchange matrix element term
∑
ab

gabba of the total energy, Eq. 2.10.

The direct matrix element gabab can be expressed as

gabab =
∞∑
k=0

(−1)k
6 6
-− +

lama lbmb

lama lbmb

k
Rk(abab)〈la‖Ck‖la〉〈lb‖Ck‖lb〉. (2.32)

Next, we sum over magnetic quantum numbers mb and spin quantum numbers σb

∑
mbσb

gabab =
∑
mbσb

∞∑
k=0

(−1)k
6 6
-− +

lama lbmb

lama lbmb

k
Rk(abab)〈la‖Ck‖la〉〈lb‖Ck‖lb〉

= 2
∞∑
k=0

(−1)k
6

- ?&%
'$

− +

lama

lama

k
lb Rk(abab)〈la‖Ck‖la〉〈lb‖Ck‖lb〉

= 2(2lb + 1)R0(abab)

= 2(2lb + 1)

∫
dr1

∫
dr2 Pnala(r1)Pnblb(r2)

1

r>
Pnala(r1)Pnblb(r2).

(2.33)

Here, the sum over the spin quantum number σb gives an overall factor of 2. The sum

over the magnetic quantum number mb converges the right line of the diagram on line

1 into the loop on line 2.

16



Similarly, we can sum over the quantum numbers mb and σb for gabba

∑
mbσb

gabba =
∑
mbσb

∞∑
k=0

(−1)k+la+lb+k
6 6
-− +

lbmb lbmb

lama lama

k
Rk(abba)〈la‖Ck‖lb〉〈lb‖Ck‖la〉

=
∞∑
k=0

δσaσb(−1)k+la+lb � -lama lama− +

k

lb

&%
'$

Rk(abba)〈lb‖Ck‖la〉2

=
∞∑
k=0

〈lb‖Ck‖la〉2

2la + 1
Rk(abba).

(2.34)

We can then express the total energy, Eq. 2.10, as

E =
∑
a

(h0)aa +
1

2

∑
ab

(gabab − gabba)

=
∑
nala

∑
maσa

(h0)aa +
1

2

∑
nala

∑
maσa

∑
nblb

∑
mbσb

(gabab − gabba)

=
∑
nala

∑
maσa

{
I(nala) +

∑
nblb

(2lb + 1)

(
R0(abab)−

∞∑
k=0

ΛlaklbRk(abba)

)}
,

(2.35)

where we define

Λlaklb =
〈lb||Ck||la〉2

2(2la + 1)(2lb + 1)
=

1

2

 la k lb

0 0 0

 . (2.36)

Since the term in the braces in the final line of Eq. 2.35 is independent of the quantum

numbers ma and σa, we can sum over these indices by multiplying by 2(2la + 1),

resulting in

E =
∑
nala

2(2la+1)

{
I(nala) +

∑
nblb

(2lb + 1)

(
R0(abab)−

∞∑
k=0

ΛlaklbRk(abba)

)}
. (2.37)

Expressing the Slater integrals in terms of multipole potentials (Eq. 2.25), we

obtain

R0(abab) =

∫ ∞
0

dr1P
2
a (r1)

∫ ∞
0

dr2P
2
b (r2)

1

r>
=

∫ ∞
0

P 2
a (r)v0(b, r), (2.38)
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Rk(abba) =

∫ ∞
0

dr1Pa(r1)Pb(r1)

∫ ∞
0

dr2Pb(r2)Pa(r2)
rk<
rk+1
>

=

∫ ∞
0

Pa(r)Pb(r)vk(b, a, r),

(2.39)

where vk(a, a, r) ≡ vk(a, r).

With these new designations, we can express the total energy as

E =
∑
a

2(2la + 1)

∫ ∞
0

dr

{
1

2

(
dPa(r)

dr

)2

+
la(la + 1)

2r2
Pa(r)

2 − Z

r
Pa(r)

2

+
∑
b

(2lb + 1)

(
P 2
a (r)v0(b, r)−

∞∑
k=0

ΛlaklbPa(r)Pb(r)vk(b, a, r)

)}
.

(2.40)

2.1.2 The Hartree-Fock method

In this section, we will describe the Hartree-Fock method, restricting the deriva-

tion to atoms. To determine the best possible orbitals in the independent-particle

model, we invoke the variational principle to look for Slater determinants Ψ that min-

imizes the expectation value of the Hamiltonian with respect to the orbitals, with the

constraint that the wave function remains normalized:

EHF = min
Ψ

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

≥ E0. (2.41)

The Ritz variational principle guarantees that EHF is always greater than or equal to

the exact ground-state energy E0 of the system of interest. We assume that the orbitals

are orthonormal, so Ψ is normalized and

EHF = min
Ψ
〈Ψ|H|Ψ〉. (2.42)

Using the Slater-Condon rules, we can write the expectation value of the Hamiltonian

as

〈Ψ|H|Ψ〉 =
N∑
a=1

haa +
1

2

N∑
ab

(gabab − gabba). (2.43)
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We add to the expectation value the orthonormalization condition using Lagrange’s

undetermined multipliers and minimize the energy functional L with respect to the

radial functions Pnala(r) corresponding to a fixed value of l, i.e. la = lb

L = 〈Ψ|H|Ψ〉 −
∑
nanbla

λnala,nblaNnala,nbla

= E −
∑
nanbla

λnala,nblaNnala,nbla ,
(2.44)

where the normalization constant is expressed as

Nnala,nbla =

∫ ∞
0

drPnala(r)Pnbla(r) = δna,nb
. (2.45)

The variational principle can then be expressed as:

δL = δ

(
E −

∑
nanbla

λnala,nblaNnala,nbla

)
= 0. (2.46)

We require that energy functional L be stationary with respect to variations δPnala , and

that the variations δPnala vanish at the origin and at infinity. With these constraints,

we solve and obtain

−1

2

d2Pnala

dr2
+
la(la + 1)

2r2
Pnala(r)− Z

r
Pnala(r)

+
∑
nblb

(4lb + 2)

(
v0(b, r)Pnala(r)−

∑
l

Λlallbvl(b, a, r)Pnblb(r)

)

= εnalaPnala(r)+
∑
nb 6=na

εnala,nblaPnbla(r),

(2.47)

where

εnala =
λnala,nala

4la + 2
and εnala,nbla =

λnala,nbla

4la + 2
. (2.48)

It can be shown that the orbitals associated with different principal quantum

number n and the same angular quantum number l are orthogonal, no matter what

value is chosen for the off-diagonal Lagrange multiplier λnala,nb,la [44]. One can take

advantage of this fact and choose εnala,nbla = 0 for all values of na, nb and la.
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Here we can define the Hartree-Fock potential VHF by specifying its action on a

radial orbital Pa(r).

VHFPa(r) = VdirPa(r) + VexcPa(r), (2.49)

where

Vdir(r)Pa(r) =
∑
b

(4lb + 2)v0(b, r)Pa(r) (2.50)

Vexc(r)Pa(r) = −
∑
b

(4lb + 2)
∑
l

Λlbllavl(b, a, r)Pb(r). (2.51)

Here the direct potential Vdir is a multiplicative operator describing the potential due

to the spherically averaged charge distribution of all electrons. The exchange potential

Vexc is an integral operator since it integrates over the function it acts upon. Using

these operators and the choice of εnala,nbla = 0, one can rewrite the HF equations as

−1

2

d2Pa
dr2

+

(
VHF −

Z

r
+
la(la + 1)

2r2

)
Pa(r) = εaPa(r). (2.52)

This set of radial equations, describing electrons moving in a central potential

V (r) = −Z/r+U(r), is known as the Hartree-Fock equations. Here, the optimal aver-

age central potential is the HF potential VHF. To solve the HF equations, one typically

expands the orbitals in terms of some known basis function, then solve the equations

iteratively. One must solve the HF equations for some initial orbitals, solve the re-

sulting eigenvalue problem, compute new operators using the resultant orbitals, then

repeat the process. Once the HF equations are solved, the energy can be determined

from Eq. 2.10, which can be written as

E =
∑
a

(h0)aa +
1

2

∑
ab

(gabab − gabba)

=
∑
a

εa −
∑
a

(VHF)aa +
1

2

∑
ab

(gabab − gabba)

=
∑
a

εa −
1

2

∑
ab

(gabab − gabba),

(2.53)
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where we have used the fact that (VHF)aa =
∑
b

(gabab−gabba). We can express the energy

in terms of Slater integrals as

E =
∑
a

(4la + 2)

[
εa −

∑
b

(2lb + 1)

(
R0(abab)−

∑
l

ΛlallbRl(abba)

)]
. (2.54)

2.1.3 The relativistic Hamiltonian

Relativistic calculations follow closely with the non-relativistic methods de-

scribed in the previous sections, with several modifications and caveats. First, the

2-component non-relativistic orbitals ψnlmσ(r), which are products of radial func-

tions Pnl(r), spherical harmonics Ylm(θ, ϕ), and 2-component spinors χσ, are replaced

with 4-component relativistic orbitals ϕnκm(r), which are products of radial functions

(Pnl(r), Qnl(r)) and spherical spinors Ωκm(θ, φ), where κ ≡ jl specifies the angular

momentum quantum numbers n and j by κ = ∓(j + 1/2) for j = l± 1/2. The advan-

tages of having a relativistic theory include automatically accounting for the energy

separation of nl leading into fine structure nlj with j = l ± 1/2. This separation is

typically not important in light atoms, but at the level of precision we need, relativistic

methods are needed even in light atoms, just as they are important in heavy atoms or

HCI where this separation is large [44]. Second, the Breit interaction is included along

with the Coulomb interaction in the electron-electron contribution of the Hamiltonian.

The Breit interaction results from transverse photon exchange between electrons, and

is relatively smaller than the Coulomb interaction on the order of α2Z2. One major

caveat is that the contributions from negative-energy states, which are associated with

positron states, in the spectrum of the Dirac equation are omitted from the Hamilto-

nian and the MBPT sums entirely. In the expression for the relativistic Hamiltonian,

the operators are restricted to be for positive-energy solutions associated with electron

states for the Dirac equation (this Hamiltonian is also known as the no-pair Hamilto-

nian). Since positron states are not present, effects of virtual electron-positron pairs

are omitted and must be found from a separate QED calculation [48].
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In order to include relativistic effects, we typically start with the many-body

non-relativistic Hamiltonian

H(r1, r2, · · · , rN) =
N∑
i=1

h0(ri) +
1

2

∑
i 6=j

1

rij
, (2.55)

and choosing the one-electron Hamiltonian h0 to be the Dirac Hamiltonian hD

h0(r) = hD(r) = cα · p+ βc2 − Z

r
. (2.56)

Here, α and β are the usual Dirac matrices:

α =

 0 σ

σ 0

 , β =

 I 0

0 −I

 , (2.57)

where σ = (σx, σy, σz) is a vector with components of 2× 2 Pauli spin matrices and I

is the 2× 2 identity matrix given by

σx =

 0 1

1 0

 σy =

 0 −i

i 0

 σz =

 1 0

0 −1

 I =

 1 0

0 1

 .

(2.58)

Everything else follows as in the non-relativistic case. An average central field

potential U(r) is introduced, and we write our corresponding one-electron Hamiltonian

as

h(r) = cα · p+ βc2 − Z

r
+ U(r). (2.59)

The resulting Dirac-Coulomb Hamiltonian and its expectation energy can then be

written as in Eqs. 2.6 – 2.10. Although the expressions are the same as from the

non-relativistic case, here we must use Dirac orbitals rather than the non-relativistic

orbitals. The four-component one-electron Dirac orbital ϕa(r) can be written in terms

of radial functions and spherical spinors as

ϕa(r) =
1

r

 iPa(r)Ωκama(θ, φ)

Qa(r)Ω−κama(θ, φ)

 , (2.60)
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where a = nκm, and a short-hand notation Ωκm = Ωjlm is utilized with κ = ∓(j+1/2)

for j = l ± 1/2. The spherical spinors are given by

Ωl±1/2,l,m(θ, φ) =

 ±√ l±m+1/2
2l+1

Yl,m−1/2(θ, φ)√
l∓m+1/2

2l+1
Yl,m+1/2(θ, φ)

 , (2.61)

where Ylm(θ, φ) are spherical harmonics.

Analogously with the non-relativistic case, the goal is then to calculate the total

energy

E =
∑
a

(h0)aa +
1

2

∑
ab

(gabab − gabba), (2.62)

now using Dirac orbitals ϕ(r), given by Eq. 2.60, and using for the one-electron part

of the Hamiltonian the Dirac Hamiltonian, given by Eq. 2.56.

The one-electron matrix element can be expressed by the radial integral

I(naκa) = (h0)aa = 〈a|h0|a〉 =

∫ ∞
0

dr

{
Pa

(
−Z
R

+ c2

)
Pa + cPa

(
d

dr
− κ

r

)
Qa

−cQa

(
d

dr
+
κ

r

)
Pa +Qa

(
−Z
r
− c2

)
Qa

}
,

(2.63)

and the general two-electron matrix element can be expressed as

gabcd =
∑
kq

(−1)q〈κama|Ck
q |κcmc〉〈κbmb|Ck

−q|κdmd〉Rk(abcd), (2.64)

where we define a relativistic Slater integral as

Rk(abcd) =

∫ ∞
0

dr1 [Pa(r1)Pc(r1) +Qa(r1)Qc(r1)]×∫ ∞
0

dr2
rk<
rk+1
>

[Pb(r2)Pd(r2) +Qb(r2)Qd(r2)] .

(2.65)

The angular matrix elements in the two-electron matrix elements are given by

〈κama|Ck
q |κbmb〉 =

∫
dΩ Ω †κama

Ck
q (r̂)Ωκbmb

=
6

−

jama

jbmb

k q 〈κa‖Ck‖κb〉,
(2.66)
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where we utilized the Wigner-Eckart theorem to reduce the angular matrix elements.

These reduced matrix elements are given by

〈κa‖Ck‖κb〉 = (−1)ja+ 1
2

√
(2ja + 1)(2jb + 1)

 ja jb k

−1
2

1
2

0

Π (la + k + lb), (2.67)

where

Π (l) =

 1, if l is even

0, if l is odd
. (2.68)

The general two-electron matrix element can then be written

gabcd =
∑
k

(−1)k
6 6
-− +

jcmc jdmd

jama jbmb

k
〈κa‖Ck‖κc〉〈κb‖Ck‖κd〉Rk(abcd)

=
∑
k

6 6
-− +

jcmc jdmd

jama jbmb

k
Xk(abcd),

(2.69)

where

Xk(abcd) = (−1)k〈κa‖Ck‖κc〉〈κb‖Ck‖κd〉Rk(abcd). (2.70)

Summing over mb for the direct Coulomb matrix element gabab, we obtain∑
mb

gabab = (2jb + 1)R0(abab). (2.71)

Summing over mb for the exchange Coulomb matrix element gabba, we obtain∑
mb

gabba = (2jb + 1)
∑
k

ΛκakκbRk(abba), (2.72)

where

Λκakκb =
〈κa‖Ck‖κb〉2

(2ja + 1)(2jb + 1)
=

 ja jb k

−1
2

1
2

0

2

Π (la + k + lb). (2.73)

We can then express the total energy as

E =
∑
a

(h0)aa +
1

2

∑
ab

(gabab − gabba)

=
∑
naκa

(2ja + 1)

{
I(naκa) +

1

2

∑
nbκb

(2lb + 1)

(
R0(abab)−

∑
k

ΛκakκbRk(abba)

)}
.

(2.74)
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To find the optimal wave functions, we require that the total energy be station-

ary with respect to the radial functions, which are orthogonal for different principal

quantum numbers n and same angular quantum number κ, just as in the non-relativistic

case. We require that the radial functions follow the normalization condition

Nnaκa,nbκa =

∫ ∞
0

dr [Pnaκa(r)Pnbκa(r) +Qnaκa(r)Qnbκa(r)] = δnanb
, (2.75)

and invoke the variational principle,

δ(E −
∑
ab

δκaκbλnaκa,nbκaNnaκa,nbκb) = 0, (2.76)

with respect to variations in the radial functions δPa(r) and δQa(r). Again we require

that these variations vanish at the origin and at infinity. The variational condition

leads to the “Dirac-Hartree-Fock” (DF) equations(
VHF −

Z

r
+ c2

)
Pa + c

(
d

dr
− κ

r

)
Qa = εaPa +

∑
nb 6=na

εnaκa,nbκaPnbκa , (2.77)

−c
(
d

dr
+
κ

r

)
Pa +

(
VHF −

Z

r
− c2

)
Qa = εaQa +

∑
nb 6=na

εnaκa,nbκaQnbκa , (2.78)

where

εa =
λnaκa,naκa

2ja + 1
and εnaκa,nbκa =

λnaκa,nbκa

2ja + 1
. (2.79)

Here the DF potential VHF is defined by its action of a radial function Ra(r), which can

either be the large component radial function Pa(r) or the small component function

Qa(r), by

VHFRa(r) =
∑
b

(2jb + 1)

(
v0(b, r)Ra(r)−

∑
k

Λκakκbvk(b, a, r)Rb(r)

)
. (2.80)

As in the non-relativistic case, the first term is the direct potential Vdir, which is a

multiplicative operator that describes the potential due to the spherically averaged

charge distribution of all electrons, and the second term is the exchange potential Vexc,

which is an integral operator since it integrates over the radial function. Here, the

relativistic screening potential is defined by

vk(a, b, r) =

∫ ∞
0

dr′
rk<
rk+1
>

[Pa(r
′)Pb(r

′) +Qa(r
′)Qb(r

′)] . (2.81)
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As with the non-relativistic case, we choose εnaκa,nbκa = 0 since the radial func-

tions belonging to different principle quantum numbers n and the same angular quan-

tum numbers κ are orthogonal for arbitrary values of the Lagrange multiplier εnaκa,nbκa .

Thus the HFD equations become a set of coupled, non-linear eigenvalue equations,

which can be solved self-consistently to obtain the optimal orbitals and associated en-

ergy eigenvalues. Once the DHF equations are solved via Eq. 2.74, the total energy

can be calculated in terms of DF eigenvalues as

E =
∑
a

(2ja+1)εa−
1

2

∑
ab

(2ja+1)(2jb+1)

(
R0(abab)−

∑
k

ΛκakκbRk(abba)

)
. (2.82)

2.1.4 The Breit interaction

The Breit interaction results from transverse photon exchange between electrons

and is included along with the Coulomb interaction in the electron-electron contribution

of the Hamiltonian. The electron-electron Coulomb interaction is replaced by the sum

of the Coulomb and Breit interaction,

1

r12

→ 1

r12

+ b12, (2.83)

where the “frequency-dependent” Breit operator associated with the exchange of a

transverse photon between two electrons in states a and b is given by [49]

b12(k0) = −α1 ·α2

r12

cos(k0r12) +α1 ·∇1α2 ·∇2

[
cos(k0r12)− 1

k2
0r12

]
, (2.84)

where k0 = |εa − εb|/c. The static form (k0 = 0) of the direct matrix element of the

frequency-dependent Breit interaction is given by

b12 = −α1 ·α2

r12

+
α1 ·α2 − (α1 · r̂12)(α2 · r̂12)

2r12

, (2.85)

where the first term is referred to as the magnetic, or Gaunt, term [50], and the second

term is referred to as the retardation term [51, 52, 53]. The magnetic term of the Breit

operator is known to dominate in atomic calculations [54, 55] and is much simpler than

the whole Breit operator. For this reason, the retardation term was neglected in the
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original CI/CI+MBPT/CI+all-order code package. However, the full Breit operator

has since been implemented in the latest version of our codes.

The lowest-energy shift associated with the Breit interaction is given by

B(1) =− 1

2π2

∫
d3r1

∫
d3r2

∑
ij

∫
d3keik·(r1−r2)

(
δij −

kikj
|k|2

)
×
[

1

k2
φ∗a(r1)αiφa(r1)φ∗b(r2)αjφb(r2)− 1

k2 − k2
0

φ∗a(r1)αiφb(r1)φ∗b(r2)αjφa(r2)

]
.

(2.86)

The integral over d3k can be carried out and the energy shift can be written in the

form B(1) = babab − babba, where babab is the two-particle direct matrix element, and

babba is the two-particle exchange matrix element. The direct matrix elements babab

and exchange matrix elements babba are evaluated using the static limit k0 → 0. The

differences between the frequency-dependent Breit interaction and its static form are

of relative order α2Z2 and therefore important for highly charged ions. Note that in

our implementation of the full Breit operator in the CI/CI+MBPT/CI+all-order code

package, we only use the static limit k0 → 0.

The two-particle matrix elements bijkl can be separated into the Gaunt interac-

tion part mijkl and the retardation interaction part rijkl. This separation is convenient

when considering angular reduction of the Breit interaction matrix elements.

The Gaunt interaction is given by

mijkl = −
∫∫

d3r1d
3r2

|r1 − r2|
φ∗i (r1)αφk(r1) · φ∗j(r2)αφl(r2), (2.87)

and the retardation interaction is given by

rijkl =
1

2

∫∫
d3r1d

3r2

|r1 − r2|
φ∗i (r1)α · r̂12φk(r1)φ∗j(r2)α · r̂12φl(r2). (2.88)

The matrix elements mijkl and rijkl are expanded in vector spherical harmonics,

and then orthonormality properties are used to carry out angular integration. These

matrix elements are complicated in form and are given in Refs. [44, 56].

It is found that for precision calculations of heavy atoms, it is sufficient to

include only the exchange part of the Breit potential of the core and neglect valence-

valence Breit interaction [54]. Interactions between electrons are typically reduced to
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the valence-valence interaction, and the interaction of the valence electrons with the

atomic core. The core-valence interaction is typically described by the HF potential,

which includes direct and exchange Breit terms. The Breit correction to the interaction

between valence electrons is on the order of α2, where α is the fine structure constant.

For heavy atoms, this correction is usually below the accuracy of modern calculations.

The Breit correction to the direct term of the HF potential turns to zero if the core

includes only closed shells, since it is averaged to zero when summation over the closed

shell is done. However, the Breit correction to the exchange interaction of the valence

electrons with the core does not turn to zero, and is on the order of R2, where R is

the overlap integral between the upper component of a valence orbital and the lower

component of a core orbital. The largest integrals R correspond to the innermost core

orbitals, where small components are on the order of αZ. Therefore, the dominant

Breit correction is the one to the exchange core potential. The exchange interaction

between valence electrons and the innermost core electrons is significantly screened if

the core relaxation is allowed. Therefore, it is very important that the Breit correction

to the core potential is calculated self-consistently. In some cases, the core relaxation

can reduce the final Breit correction to the valence energies by an order of magnitude.

When solving the DHF equations with the Coulomb-Breit interactions, one

has to keep in mind that the Breit approximation is not completely relativistic, so

some caution may be necessary [54]. One can use projectors to the positive energy

states, which can be done with the help of the kinetic balance condition for the small

components of the Dirac orbitals. The resulting corrections in the DHF equations are

not linear in the Breit interaction, but higher order terms can be eliminated using a

scaling parameter λ. However, in practice, the higher order terms are usually small

enough to be neglected.

2.1.5 The Second Quantization formalism

So far we have described the many-particle theory using the formulation of the

Schrödinger equation, which is referred to as first quantization. It is often convenient
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to replace this description of states using Slater determinants by the equivalent second

quantization formalism, with which we express states and operators in terms of opera-

tors that create or annihilate particles. The rules of second quantization are similar to

those of the harmonic oscillator studied in quantum mechanics [46, 57, 58]. Following

closely to Ref. [44], the one-electron state |i〉, described by its wave function ψi(r) in

first quantization, is now represented in second quantization by an operator a†i acting

on the vacuum state |0〉

|i〉 = a†i |0〉. (2.89)

The vacuum state |0〉 is the state in which there are no electrons, and is assumed to

be normalized 〈0|0〉 = 0. The adjoint of the state |i〉 is given by

〈i| = 〈0|ai. (2.90)

The operators a†i and ai are called creation and annihilation operators, respec-

tively, and are assumed to satisfy the following anticommutation relations

{a†i , a
†
j} = 0 {ai, aj} = 0 {ai, a†j} = δij. (2.91)

A general N -particle state described by a Slater determinant wave function

formed from an antisymmetric product of orbitals ψaψb · · ·ψn, is represented in second

quantization as

|ab · · ·n〉 = a†aa
†
b · · · a

†
n|0〉. (2.92)

A general one-particle operator is represented in second quantization as

F =
N∑
i=1

f(ri)→
∑
ij

〈i|f |j〉a†iaj. (2.93)

This operator acting on a state |ab · · ·n〉 gives

F |ab · · ·n〉 =
∑
ij

〈i|f |j〉|ab · · · j → i · · ·n〉, (2.94)

where the state |ab · · · j → i · · ·n〉 refers to the state |ab · · ·n〉 with the operator a†j

replaced with the operator a†i . The state j is one currently occupied in |ab · · ·n〉 and
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the state i can be one that is either identical to j or one not occupied in |ab · · ·n〉.

The matrix element of F , between states |a′b′ · · ·n′〉 and |ab · · ·n〉, vanishes if the

states in the sets {ab · · ·n} and {a′b′ · · ·n′} differ in more than one place, due to the

Slater-Condon rules described in Appendix A.

A general two-particle operator is represented in second quantization as

G =
1

2

∑
i 6=j

g(rij)→
1

2

∑
ijkl

gijkla
†
ia
†
jalak, (2.95)

where

gijkl = 〈ψiψj|g|ψkψl〉 =

∫∫
d3r1d

3r2ψ
†
i (r1)ψ†j(r2)g(r12)ψk(r1)ψl(r2). (2.96)

As with the matrix elements of the one-particle operators, the matrix elements of the

two-particle operators follow the Slater-Condon rules described in Section A.

We can also define the normal product of a set of operators to be the product

rearranged such that core creation (excited state annihilation) operators are always on

the right of core annihilation (excited state creation) operators. When rearranging,

the product gains a phase (−1)N , where N is the number of operator transpositions

done. Normal products are designed by enclosing the operators between either a pair

of colons : a†iaj :, a pair of brackets {a†iaj}, or a pair of brackets n[a†iaj].

Under the formalism of second-quantization, we can write the Dirac-Hartree-

Fock Hamiltonian described in Sections 2.1.3 – 2.1.4, in second quantization as

H =H0 + V,

H0 =
∑
i

εi {a†iai},

V =
1

2

∑
ijkl

gijkl {a†ia
†
jalak}+

∑
ij

(VDF − U)ij {a†iaj}.

(2.97)

where εi is the eigenvalue of the Dirac equation hD(r)φi(r) = εiφi(r) with

hD(r) = cα · p+ βc2 − Z

r
+ U(r), (2.98)

gijkl is a two-electron matrix element of the Coulomb + Breit potential g(r12) = 1/r12+

b12, (VDF)ij =
∑
a

(giaja − giaaj) is the one-electron matrix element of the Dirac-Fock
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potential VHF, and Uij is the one-electron matrix element of the central potential U(r).

Here, the summation index a ranges over only core states, and the summation indices

i, j, k, l range over all one-electron states. The {· · · } designates normal products with

respect to the closed core. The operators in the Hamiltonian are restricted to ones

for positive-energy solutions to the Dirac equation, which are associated with electron

states, and positron states are omitted from the Hamiltonian, resulting in the no-pair

Hamiltonian. To account for the small effects of virtual electron-positron pairs, which

are omitted in the atomic structure calculation, one must carry out a separate QED

calculation [48].

2.1.6 The Configuration Interaction method

The basic idea of configuration interaction (CI) is to diagonalize the N -electron

Hamiltonian in a basis of N -electron functions, or Slater determinants. Essentially

what we’re doing here is representing the exact wave function as a linear combination

of N -electron trial functions and then using the variational method to minimize the

energy. If a complete basis were used, we would obtain the exact energies to the ground

state and all excited states of the system. In principle, this method provides an exact

solution to the many-electron problem; however, in practice, only a finite set of N -

electron trial functions are manageable so the CI wave function expansion is typically

truncated at specific excited configurations. As a result of the size restrictions on

practical CI calculations, CI always provides only upper bounds to the exact energies.

The CI wave function is constructed as a linear combination of known Slater

determinants Φi with unknown expansion coefficients

|Ψ〉 =
∑
i

ci|Φi〉. (2.99)

Typically, the Slater determinants are constructed from excitations of the Hartree-

Fock “reference” determinant |Φ0〉. The CI wave function can be expanded as

|Ψ〉 = c0|Φ0〉+
∑
r,a

cra|Φr
a〉+

∑
r<s,a<b

crsab|Φrs
ab〉+

∑
r<s<t,a<b<c

crstabc|Φrst
abc〉+ . . . , (2.100)
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where |Φr
a〉 represents the singly excited Slater determinants formed by replacing spin-

orbital φa with φr, |Φrs
ab〉 represents the doubly excited Slater determinants formed by

replacing spin-orbital φa with φr and replacing spin-orbital φb with φs, and so on for

higher excited states. In general, all N -electron Slater determinants can be formed by

a set of N spin-orbitals {φi}Ni=1.

We can rewrite Eq. 2.100 in a more general form |Ψ〉 =
∑
i=0

ci|Φi〉, where i = 0

refers to the reference Hartree-Fock wave function, i = 1 refers to our singly excited

state wave function, and so on. We now optimize our total CI wave function via the

Ritz variational method by varying the coefficients of the wave functions

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (2.101)

If we expand the CI wave function in a linear combination of Slater determinants,

we obtain

E =

∑
i

∑
j c
∗
i cj〈Φi|H|Φj〉∑

i

∑
j c
∗
i cj〈Φi|Φj〉

. (2.102)

The variational procedure corresponds to setting all the derivatives of our energy with

respect to the expansion coefficients ci equal to zero, i.e. ∂E/∂ci = 0.

Rearranging, we get

E
∑
i

∑
j

c∗i cj〈Φi|Φj〉 =
∑
i

∑
j

c∗i cj〈Φi|H|Φj〉

∂E

∂ci

∑
ij

c∗i cj〈Φi|Φj〉+ 2E
∑
i

ci〈Φi|Φj〉 = 2
∑
i

ci〈Φi|H|Φj〉+
∑
ij

c∗i cj
∂

∂ci
(〈Φi|H|Φj〉) .

The first term vanishes from the minimization of the energy, and the last term van-

ishes since the matrix elements 〈Φi|H|Φj〉 do not depend on the expansion coefficients.

Assuming that the basis functions are orthonormal, we obtain

E
∑
i

ciδij =
∑
i

ci〈Φi|H|Φj〉

∑
i

Hijci −
∑
i

Eδijci = 0,
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where Hij = 〈Φi|H|Φj〉. Since there is one equation for each j, we can transform this

equation into a matrix equation

(H− EI)c = 0, (2.103)

Hc = Ec. (2.104)



H00 − E H01 . . . H0j . . .

H10 H11 − E . . . H1j . . .
...

...
. . .

... . . .

Hj0
... . . . Hjj − E . . .

...
... . . .

...
. . .





c0

c1

...

cj
...


=



0

0
...

0
...


(2.105)

Solving these secular equations is equivalent to diagonalizing the CI matrix. We

use the Davidson method of diagonalization, which is described in Section 2.1.9. The

CI Hamiltonian energy eigenvalues are then obtained as the lowest eigenvalues of the

CI Hamiltonian matrix. The corresponding eigenvectors contain the set of expansion

coefficients {ci}Ni=0 in front of the determinants in Eq. 2.100. In this case, the lowest

eigenvalue corresponds to the ground state energy, the second lowest eigenvalue corre-

sponds to the energy of the first excited state, the third lowest eigenvalue corresponds

to the energy of the second excited state, and so on.

We have mentioned that the CI expansion is typically truncated at specific

excited configurations. From the Slater-Condon rules, only singly and doubly excited

states can interact directly with the reference state. Therefore, matrix elements with

more than two differing spin-orbitals in the determinants vanish. Due to Brillouin’s

theorem [47], the matrix elements 〈S|H|Φ0〉 are zero, where |S〉 refers to singly-excited
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Slater determinants. The structure of the CI Hamiltonian matrix, under the basis set

of HF Slater determinants and their excited states is then given as

H =



〈Φ0|H|Φ0〉 0 〈Φ0|H|D〉 0 0 . . .

0 〈S|H|S〉 〈S|H|D〉 〈S|H|T〉 0 . . .

〈D|H|Φ0〉 〈D|H|S〉 〈D|H|D〉 〈D|H|T〉 〈D|H|Q〉 . . .

0 〈T|H|S〉 〈T|H|D〉 〈T|H|T〉 〈T|H|Q〉 . . .

0 0 〈Q|H|D〉 〈Q|H|T〉 〈Q|H|Q〉 . . .
...

...
...

...
...

...


, (2.106)

where |Φ0〉 is the Hartree-Fock reference state, |S〉 is the singly excited state, |D〉 is

the doubly excited state, and so on. The blocks 〈X|H|Y 〉 which are not necessarily

zero may still be sparse, meaning that most of its elements are zero. Let’s look at the

matrix element belonging to the block 〈D|H|Q〉. The matrix elements 〈Φrs
ab|H|Φtuvw

cdef 〉

will be non-zero only if φa and φb are contained in the set {φc, φd, φe, φf}, and if φr

and φs are contained in the set {φt, φu, φv, φw}.

The task at hand is then to calculate each matrix element and to diagonalize

the CI matrix. As we include more and more excitations in the CI expansion, we

capture more and more electron correlation. We can increase the size of the CI matrix

by adding more excited configurations, or by increasing the basis set size. However,

there’s a problem with adding more and more excitations or basis sets - namely, it is

very expensive to do so. If the number of spin-orbitals produced by HF is 2M, then the

number of determinants constructed is then
(

2M
N

)
, where N is the number of electrons.

Taking into account all possible excitations in the expansion is known as Full CI (FCI),

and this method goes with a complexity of O(N !).

Due to the complexity of Full CI, what is usually done is to truncate the CI

matrix, i.e. CI Doubles (CID) only takes into consideration CI with double excitations.

Since the single excitations themselves do not correlate with the ground state directly,

the most significant term for the correlation energy must come from the double exci-

tations, since they are the first excitations coupled with the HF Slater determinant.

This gives a reduced matrix which is much more feasible for practical computation;
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however, the truncated CI will introduce errors in the wave function, which will in turn

cause errors in the energy and all other properties. A particular result of truncating

the N -electron basis is that the CI energies obtained are no longer size extensive [47].

It is clear that the fraction of the correlation energy recovered by a truncated CI

will diminish as the size of the system increases, making it a progressively less accurate

method. However, if we were to truncate CI, we should consider, for example, not

exciting the inner shell orbitals since the computational complexity for those excitations

can become huge for small effects on the correlation energy. We can neglect these

orbitals by “freezing” the core orbitals and implementing CI in higher orbitals. This

is also known as the frozen-core approximation. For some applications, such as the

Ir17+ highly charged ion, we find that it is essential to open more orbitals for a more

accurate treatment of the ion.

The Multi-Configurational Self-Consistent Field (MCSCF) method is another

approach to the CI method, in which one decides on a set of determinants that can

sufficiently describe the system of interest. Each of the determinants are constructed

from spin-orbitals that are not fixed, but optimized as to lower the total energy as much

as possible. The main idea here is to use the variational principle to not only optimize

the coefficients in front of the determinants, but also to optimize the spin-orbitals used

to construct the determinants. In a sense, the MCSCF method is a combination of

the CI and HF methods (if the number of determinants chosen was just those of the

reference HF Slater determinants, the method reduces back to the HF method).

The classical MCSCF approach follows very closely to the Ritz variational

method described before. We start with the MCSCF wave function, which has the

form of a finite linear combination of Slater determinants ΦI

ΨMCSCF =
∑
I

cIΦI , (2.107)

where cI are the variational coefficients. First, we calculate the coefficients for the

determinants using the variational method, without varying the spin-orbitals, then

we vary the coefficients of the determinants in the fixed CI space to obtain the best
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determinants. And finally, we repeat by going back and expanding the MCSCF wave

function in terms of the newly optimized determinants. In this way, the MCSCF

method generates a qualitatively correct wave function, i.e., recovers the “static” part

of the configurational space, where most of the dominant configurations reside. For

many systems, this method can produce accurate results [8, 9, 10, 11]. The goal is

usually not to recover a large fraction of the total correlation energy, but to recover all

the changes that occur in the correlation energy for a given process. A major problem

that this procedure faces is figuring out which configurations are necessary in include

for the property of interest.

The Complete Active Space Self-Consistent Field (CASSCF) method is a spe-

cial case of the MCSCF method. From the orbitals computed from HF, we partition

the space of these orbitals into an active and inactive space. The inactive space of

orbitals are chosen from the low energy orbitals, i.e. the doubly occupied orbitals in

all determinants (inner shells). The remaining orbitals belong to the active space.

Within the active space, we consider all possible occupancies and excitations of the

active spin-orbitals to obtain the set of determinants in the expansion of the MCSCF

wave function (hence, “complete”). For any full CI expansion, CASSCF becomes too

large to be useful, even with small active spaces. To overcome this problem, a variation

called the Restricted Active Space Self-Consistent Field (RASSCF) method is used.

In the RASSCF method, the active orbitals are divided into 3 subsections,

RAS1, RAS2, and RAS3. Each of these subsystems have restrictions on the excita-

tions allowed. A typical example is one where RAS1 includes occupied orbitals that

are excited in the HF reference determinant, RAS2 includes orbitals limited to SD

excitations, and RAS3 includes virtual orbitals that are empty in the HF determinant.

The full CI expansion within the active space severely restricts the number of orbitals

and electrons that can be treated by CASSCF methods. Any additional configurations

to those from RAS2 space can be generated by allowing excitations from one space

to another. For example, allowing 2 electrons to be excited from RAS1 to RAS3. In
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essence, a typical example of the RASSCF method generates configurations by a com-

bination of a full CI in a small number of orbitals in RAS2 and a CISD in a somewhat

large orbital space in RAS1 or RAS3.

Excitation energies of truncated CI methods such as the ones described above

are generally too high, since the excited states are not that well correlated as the

ground state is. For equally correlated ground and excited states, one can use a method

called Multi-Reference Configuration Interaction (MRCI), which uses more than one

reference determinant from known singly, doubly, or higher excited states (this set of

known determinants is called the model space). MRCI gives a better correlation of the

ground state, which is important if the system under consideration has more than one

dominant determinant since some higher excited determinants are also taken into the

CI space. The CI expansion is then obtained by replacing the orbitals in the model

space by other virtual orbitals.

2.1.7 Basis sets and basis set convergence

The standard wave functions used in solving Schrödinger’s equations for atoms

and molecules are constructed from antisymmetric products of spin-orbitals. In most

methods, these spin-orbitals are generated by expanding them into a finite set of simple

basis functions. The choice of basis functions for an atomic calculation if therefore

always important. There are hundreds of basis sets that can be used, each optimized

for a specific system. The basis sets used for the calculations done in this work are

constructed on a case-by-case basis. DHF orbitals are typically always used for core or

low-lying orbitals. In the case of the CI+all-order method, DHF orbitals are merged

with B-splines for the rest of the orbitals (e.g. virtual orbitals). These basis sets created

from B-splines will be discussed later in this section.

What we will need for carrying out accurate correlated calculations are not only

a set of spin-orbitals that resemble as closely as possible the occupied orbitals of the

atomic systems, but also a set of virtual correlating orbitals into which the correlated

electrons can be excited. An obvious candidate here are the canonical orbitals from the
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HF calculations; however, since the lowest virtual HF orbitals are very diffuse, they will

not be well suited for correlating the ground-state electrons, except when the full set of

orbitals is used. Another strategy is to try and generate correlating atomic orbitals for

atomic calculations by relying on the energy criterion alone, i.e. adjust the exponents

of the correlating orbitals as to maximize their contribution to the correlation energy.

By doing this, we should be able to generate sets of correlating orbitals that are more

compact, i.e. contains fewer primitive basis functions. This method will generate

correlation-consistent basis sets, meaning that each basis set contains all correlating

orbitals that lower the energy by comparable amounts, as well as all orbitals that lower

the energy by larger amounts.

In these correlation consistent basis sets, each correlating orbital is chosen as

to maximize its contribution to the correlation energy. All correlating orbitals that

make similar contributions to the correlation energy are added simultaneously. The

goal for these basis sets is to contain all correlating orbitals that lower the energy by

comparable or larger amounts. The main advantage of this method is that it allows us

to retrieve a larger number of correlations with a smaller basis set.

As the number of basis functions increase, the wave functions become better

represented and the energy decreases to approach the complete basis set (CBS) limit.

An infinite number of basis functions is impossible to employ practically, but we can try

to estimate the energy at the CBS limit. By using hierarchical basis sets, i.e. correlating

consistent sets with adjacent angular momenta, we can calculate the energy for a couple

of points, then hope to extrapolate higher basis function energies or higher correlation

energies.

2.1.8 B-spline basis sets

In the calculations done in this work, B-splines were utilized to construct the

basis sets for the radial Dirac equation [44, 57]. Here we follow the Ref. [44] in

describing these B-spline basis sets. Since correlation corrections in atoms have finite

range, we restrict ourselves to a finite, but large cavity of radius R. To study the ground
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state or low-lying excited states, we typically choose boundary conditions Pnl(0) =

Pnl(R) = 0. The spectrum in this cavity is discrete, but infinite. The plan is then to

expand solutions to the radial Schrödinger equation in a finite basis set of n B-splines

of order k, following the work of deBoor [59].

We begin by dividing the interval [0, R] into segments, where the endpoints of

the segments are given by the knot sequence {ti}, where i = 1, 2, . . . , n+ k. The knots

defining the grid have k-fold multiplicity at the endpoints, i.e. t1 = t2 = · · · = tk = 0

and tn+1 = tn+2 = · · · = tn+k = R. The knots tk+1, tk+2, . . . , tn are distributed on an

exponential scale between 0 and R. B-splines of order k, Bi,k(r), on this knot sequence

are defined recursively by

Bi,1(r) =

 1, ti ≤ r < ti+1,

0, otherwise,
(2.108)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r
ti+k − ti+1

Bi+1,k−1(r), (2.109)

where Bi,k(r) is a piece-wise polynomial of degree k−1 inside the interval ti ≤ r < ti+k,

and vanishes outside this interval. The set of B-splines of order k on {ti} forms a

complete basis for piece-wise polynomials of degree k − 1 on the interval spanned by

{ti}n+k
i=1 .

We represent solutions to the radial Schrödinger equation as a linear combina-

tion of these B-splines and work with the B-spline representation of wave functions

rather than the wave functions themselves. The radial wave function Pl(r) satisfies the

variational equation δS = 0, where the action S is given by

S =

∫ R

0

[
1

2

(
dPl(r)

dr

)2

+

(
V (r) +

l(l + 1)

2r2

)
Pl(r)

2

]
− ε
∫ R

0

Pl(r)
2dr. (2.110)

Here we insure the normalization of the radial wave functions using the parameter ε.

The variational principle leads to the radial Schrödinger equation for the radial wave

function Pl(r), which are expanded in terms of B-splines of order k as

Pl(r) =
n∑
i=1

piBi(r), (2.111)
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where pi is the expansion coefficient and we utilize a short-hand notation Bi(r) =

Bi,k(r). With this expansion, the variational principle leads to a system of linear

equations for the expansion coefficients pi. The system of linear equations can be

written in the form of an n× n symmetric generalized eigenvalue equation

Av = εBv, (2.112)

where v = (p1, p2, . . . , pn) is the vector of expansion coefficients. The matrix elements

of A and B are given by

Aij =

∫ R

0

[
dBi(r)

dr

dBj(r)

dr
+ 2Bi(r)

(
V (r) +

l(l + 1)

2r2

)
Bj(r)

]
dr, (2.113)

Bij =

∫ R

0

Bi(r)Bj(r)dr. (2.114)

One obtains n real eigenvalues and eigenvectors, which satisfy orthogonality re-

lations in the corresponding wave functions. The first few eigenvalues and eigenvectors

in the cavity agree well with the first few bound-state eigenvalues and eigenvectors

obtained by numerical integration, but the spectrum is expected to depart from the

real spectrum as the principle quantum number increases.

To expand the usage of B-splines to the HF method, we must have the HF

equations for the occupied orbitals of a closed-shell system solved, and have those

resulting orbitals used to construct the HF potential. Once the HF potential has been

determined, a complete set of one-electron orbitals can be constructed using B-splines.

If we let VHF be the HF potential, then its contribution to the action integral S for an

orbital a will be∫ R

0

Pa(r)VHFPa(r)dr =
∑
b

2(2lb + 1)

(
R0(abab)−

∑
k

ΛlaklbRk(abba)

)
, (2.115)

where the sum over index b is over all occupied shells. This contribution to the action

integral leads to the following modification of the potential contribution in the matrix
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element Aij∫ R

0

Bi(r)VHFBj(r)dr =

∫ R

0

drBi(r)

×
∑
b

2(2lb + 1)

[
v0(b, r)Bj(r)−

∑
k

Λlaklbvk(b, Bj, r)Pb(r)

]
.

(2.116)

To solve the generalized eigenvalue problem, the occupied orbitals Pb(r) are obtained

first through numerical integration, then used to construct the matrix A. The eigen-

value problem can then be iteratively solved to give the complete spectrum of HF states

to desired precision.

The relativistic case follows very closely with the non-relativistic method de-

scribed above, with two major modifications. First, both the large component radial

functions P (r) and the small component radial functions Q(r) are expanded in terms

of B-splines

P (r) =
n∑
i=1

piBi(r) Q(r) =
n∑
i=1

qiBi(r), (2.117)

leading to a 2n×2n generalized eigenvalue problem for the expansion coefficient vector

v = (p1, p2, . . . , pn, q1, q2, . . . , qn). The Dirac spectrum obtained include n electron

bound and continuum states, and n positron states, which are omitted in sums over

virtual states in expressions for the correlation energy. Second, the boundary condition

P (R) = 0 is replaced with the MIT bag-model boundary condition P (R) = Q(R) [60],

in order to avoid problems associated with the Klein paradox that arise when one

attempts to confine a particle to a cavity using an infinite potential barrier [58].

2.1.9 The Davidson method

In order to find the low-lying eigenvectors and eigenvalues of the CI Hamilto-

nian matrix, we use an iterative method suggested by Davidson [1]. Large scale CI

calculations require construction of a few eigenvalues and eigenvectors of large, sparse,

real-symmetric matrices. Davidson’s method offers several advantages over widely
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used eigenvalue solving procedures, such as the Lanczos algorithm [1, 61]. These in-

clude requiring only the matrix operation Ab and not sequential calculations of (Ab)i,

requiring only storage of two vectors at once regardless of the number of roots found,

the ability to find higher eigenvalues without accurate values of lower eigenvalues, no

difficulties of convergence for nearly degenerate eigenvectors, and a better chance for

rapid convergence compared to methods such as the Lanczos algorithm [1]. The com-

plexity of the Davidson algorithm comes mainly from the formation of matrix-vector

products. For small matrices, these products are very cheap to compute, and it suffices

to use direct diagonalization. For large matrices, the formation of the matrix-vector

products are expensive, so it is more cost effective to utilize the Davidson algorithm.

Following Davidson’s original paper in describing his iterative method [1, 61], we

begin by constructing an initial approximation for the matrix of interest, and construct-

ing trial eigenvectors from this initial approximation. An eigenpair is then constructed

using the Rayleigh-Ritz (RR) procedure, and a residual vector is computed to measure

convergence (convergence is typically met when the norm of the residual is reduced

to 10−6). Here, the bulk of the computation time is taken up by computing matrix-

vector products. New trial eigenvectors are constructed, the associated trial space is

diagonalized, and new eigenpairs are constructed again from the RR procedure. This

procedure is repeated iteratively until convergence is met.

From the discussions in Section 2.1.6, we found that the variational method

leads us to the CI Hamiltonian matrix equation (Eq. 2.104)

Hc = Ec, (2.118)

where H is the CI Hamiltonian matrix, and c is the wave function expressed as an

array of expansion coefficients. The components of the wave function can be expressed

as

c(k) =
k∑
i=0

α
(k)
i bi, (2.119)

where

b0 = c(0), (2.120)

42



bi =
di
‖di‖

, (2.121)

di =

[
i−1∏
j=0

(1− bjb
T
j )

]
ξi, (2.122)

‖di‖ =
√
〈di|di〉. (2.123)

Here, the components of the vector ξ can be be found by

ξJ,i+1 =
(
E(c(i))− AJJ

)−1
qJ,i, (2.124)

where

qi =
(
H− E(c(i))1

)
. (2.125)

This method generates k approximate eigenvalues at each iterative step. The

computational details of the original Davidson procedure are as follows (Note: This pro-

cedure is modified for usage in the CI/CI+MBPT/CI+all-order code package. These

modifications along with our realization of the Davidson method is described below

and in Section 3.1.5) [1]:

1. Select a zeroth-order orthonormal subspace b1,b2, . . . ,bl, where l ≥ k spans the
dominant components of the wave functions of the first k desired eigenvalues.

2. Form and save matrix-vector products Hb1,Hb2, . . . ,Hbl, and H̃ij = 〈bi|Hbj〉,
where 1 ≤ i ≤ j ≤ l.

3. Diagonalize H̃ using a standard method for small matrices, then select the kth
eigenvalue λ

(l)
k and the corresponding eigenvectors α

(l)
k .

4. Form the residual vector qM =
M∑
i=1

α
(M)
i,k (Hbi) −

M∑
i=1

α
(M)
i,k λ

(M)
k bi, where M is the

dimension of H̃ used to find α and λ.

5. Compute the norm of the residual vector ‖qM‖ and check convergence.

6. Form ξI,(M+1) = (λ
(M)
k −HII)

−1qI,M , where I = 1, . . . , N .

7. Form d(M+1) =

[
M∏
i=1

(1− bib
T
i )

]
ξ(M+1).
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8. Form b(M+1) = d(M+1)/‖d(M+1)‖.

9. Form Hb(M+1) .

10. Form h̃i,M+1 = 〈bi|Hb(M+1)〉, where i = 1, . . . ,M + 1.

11. Diagonalize H̃ and return to step 4 with α
(M+1)
k and λ

(M+1)
k .

When looking for several eigenvalues, the first l of the
M∑
i=1

αijbi at the end of

finding one root often provides for a good starting set for the next root. The slowest

step in the Davidson procedure is the formation of the matrix-vector products Hb. If

M becomes inconveniently large, the current set of
M∑
i=1

αijbi, where j = 1, . . . , l, can be

taken as a new initial set and the calculation can be restarted from step 1.

With Davidson’s method outlined above, we now discuss the realization of the

method in our work. We define H as the CI Hamiltonian matrix, and let D = diag(H).

H is an N × N matrix, and D is an N -dimensional vector. We choose an initial

approximation Hamiltonian Z of size N0 ×N0, and diagonalize it using Householder’s

method (Appendix C). Next, the initial eigenvectors B = (B
(1)
0 ,B

(2)
0 , . . . ,B

(k)
0 ), each

of dimension N , are chosen from the eigenvectors of Z of dimension N0, with all other

elements {B(k)
0,i }Ni=N0+1 = 0. Here, the (k) superscript represents the number k of desired

eigenvalue and eigenvector.

After the initial approximation has been constructed, the iterative procedure

begins with j = 0, incrementing by 1 until convergence is reached. First, the eigen-

vectors Bj are orthonormalized, and the products Qj = HBj are evaluated. Next, we

form the matrix P = BT
j Qj. Due to technical complications, the construction of the

matrix P and its associated eigenvectors were done in two parts: First, the top left

block of the matrix P is formed, then the three other blocks are formed. Next, the

residual vector C is formed and the norm of the residual ‖C‖ is calculated and used

to check for convergence. If not converged, a new set of eigenvectors Bj+1 is formed

corresponding to the residual vectors. These eigenvectors are then orthonormalized,

and the matrix P is diagonalized using Householder’s method for subsequent iterations.

The products are then computed, and the process repeats until the convergence criteria
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(10−6) is reached. The technical details of the computational process is described in

Section 3.1.5.

2.1.10 CI+MBPT

In this section, we describe a method combining configuration interaction with

many-body perturbation theory developed in [62]. We can acquire benefits from both

approaches to attain better accuracy for calculations for atoms with more than one

valence electron. We follow closely from the original paper [62] to derive the CI+MBPT

equation used in the code package.

We begin by dividing the many-electron Hilbert space into two subspaces: a

model subspace P corresponding to the frozen-core electron states and a complemen-

tary subspace Q that includes all other states. The model subspace P is dealt with

using the CI method, while the complementary subspace Q is dealt with using MBPT

since projections of the wave functions of the lowest energy levels of the atom onto Q

are assumed to be small. For the convergence of MBPT, it is important to separate

the core and valence electrons so that their energies are well separated. We use Slater

determinants |I〉 of the one-particle wave functions for the core electrons φi as a basis

set in the many-electron space. We can define projection operators

P =
∑
I∈P

|I〉〈I| and Q =
∑
I∈Q

|I〉〈I| (2.126)

to the subspaces P and Q, respectively, satisfying the completeness relation

P +Q = 1. (2.127)

Using the CI method, we can introduce a CI model subspace PCI ⊂ P by

defining a subset of configurations I associated with the lowest-lying states of the

infinite-dimensional model subspace P . The wave function can then be represented as

a linear combination of Slater determinants from PCI,

ψ =
∑
I∈PCI

CI |I〉. (2.128)
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Varying the coefficients CI leads to the matrix eigenvalue problem as before∑
J∈PCI

HIJCJ = ECI . (2.129)

The CI Hamiltonian matrix can be obtained as a projection of the exact Hamiltonian

H onto the model subspace PCI:

HCI = PCIHPCI. (2.130)

For the sake of simplicity, we assume that it is possible to choose the con-

figurations in PCI such that we can obtain our desired accuracy for the solution of

Schrödinger’s equation in the P subspace. For this reason, we will not distinguish

between PCI and P . Since we chose P such that the core electrons are frozen, we can

exclude them by averaging the Hamiltonian over the single-determinant wave function

of the core electrons, giving

PHP = Ecore +
∑

i>Ncore

hCI
i +

∑
j>i>Ncore

1

rij
, (2.131)

where Ecore refers to the total core energy, defined as the matrix element of the exact

Hamiltonian H with the core wave function:

Ecore = 〈Ψcore|H|Ψcore〉, (2.132)

|Ψcore〉 = a†1a
†
2 · · · a

†
Ncore
|0〉. (2.133)

Ecore includes the kinetic energy of the core electrons, as well as the core-core and

core-nucleus Coulomb interactions. The one-electron operator hCI acts on the valence

electrons and includes the kinetic term, as well as the core-valence and valence-nucleus

Coulomb interactions. The last term accounts for the valence-valence Coulomb inter-

action.

Decomposing the Hamiltonian and the wave function into the P and Q sub-

spaces,

H = PHP + PHQ+QHP +QHQ (2.134)
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Ψ = PΨ +QΨ ≡ Φ + χ, (2.135)

the Schrödinger equation

HΨ = EΨ (2.136)

can be written in terms of Φ and χ:

(PHP) Φ + (PHQ)χ = EΦ (2.137)

(QHQ)χ+ (QHP) Φ = Eχ. (2.138)

Next we introduce the resolvent operator in the subspace Q:

RQ(E) = (E −QHQ)−1, (2.139)

which will allow us to rewrite Eq. 2.138 as

χ = RQ(E)(QHP)Φ. (2.140)

We can substitute this expression for χ into Eq. 2.137 to obtain an equation in the

subspace P , with an energy-dependent effective Hamiltonian

(PHP + Σ(E)) Φ = EΦ, (2.141)

where

Σ(E) = (PHQ)RQ(E)(QHP). (2.142)

The orthonormality condition for the wave function then follows from

〈Φi|1 + (PHQ)RQ(Ei)RQ(Ek)(QHP)|Φk〉 = δik. (2.143)

Since the operators Σ and RQ depend on energy, the Schrödinger equation must

be solved iteratively. If we only want the lowest-lying energy levels, then we can

neglect the energy dependence and evaluate the operators for some average energy
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Eavg u Ei u Ek. In this case, we can express the orthonormality condition in terms of

the derivative of Σ(E):

〈Ψi|1−
∂Σ(E)

∂E
|Φk〉E=Eavg = δik. (2.144)

With a properly chosen model space P , the energy derivative can become negli-

gible, in which case the standard CI method can be used to solve Eq. 2.141, provided

that the operator Σ(Eavg) is calculated beforehand with MBPT, and then added to

the Hamiltonian. We use Brillouin-Wigner (BW) perturbation theory, resulting in

an energy-dependent correction, as opposed to the typical Rayleigh-Schrödinger (RS)

approach where the correction is independent of the energy. This is due to some

disadvantages of using the RSPT approach, such as a non-symmetric matrix of the

CI+MBPT eigenvalue problem due to differences in energy denominators and small

denominators for highly excited configurations.

The operator Σ(E) described by Eq .2.142 connects the model subspace P of

core electrons to the complementary subspace Q of core-excited states, so it accounts

for core-valence correlations. The form of the operator Σ(E) depends on the choice of

the starting approximation h0, which in our case will be the one-electron DF operator

given by Eq. 2.59 with central potential U(r) = V NDF , where NDF corresponds to the

number of electrons included in the HF self-consistent procedure. Here NDF is chosen

such that Ncore ≤ NDF ≤ N , with N being the total number of electrons in the atom

or ion.

The DF operator in the many-electron space is given by

HDF = Ecore −
Ncore∑
m=1

εmb
†
mbm +

∑
i>Ncore

εia
†
iai ≡ Ecore + H̃DF, (2.145)

where b†m = am and bm = a†m are the creation and annihilation operators of holes in

the core, and a†m and am are creation and annihilation operators, respectively [62].

It follows from Eq. 2.145 that

PHDFQ = QHDFP = 0, (2.146)
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allowing us to write Eq. 2.142 as

Σ(E) = (P(H−HDF)Q)RQ(E)(Q(H−HDF)P)

= (P(V − VNDF)Q)RQ(E)(Q(V − VNDF)P),
(2.147)

where V−VNDF is the residual two-electron Coulomb interaction. Since this expression

has the usual MBPT form, we can treat (V −VNDF) as a perturbation and expand the

resolvent operator:

RQ(E) ≡ Q(E −H)−1Q

= Q(E −HDF)−1Q+Q(E −HDF)−1Q(V − VNDF)Q(E −HDF)−1Q+ · · · .

(2.148)

This allows us to rewrite Σ(E) in matrix form as

ΣIJ =
∑
M∈Q

UIMUMJ

E − EM
+
∑

M,L∈Q

UIMUMLULJ
(E − EM)(E − EL)

+ · · ·

≡ Σ(2) + Σ(3) + · · · .
(2.149)

The code package take into account only second-order MBPT corrections. If we substi-

tute Σ(2) into Eq. 2.141, we obtain the equation of the combined CI+MBPT method:

∑
J∈PCI

(
HIJ +

∑
M∈Q

UIMUMJ

E − EM

)
CJ = ECI . (2.150)

It is important to note that only core excitations are treated by means of MBPT, and

all valence excitations are accounted for directly from the matrix diagonalization. A

complete evaluation of the MBPT term in Eq. 2.150 can be found in Ref. [62].

Following Refs. [63, 64], we can divide the core-valence correlations obtained

from Σ(E) into a one-electron part Σ1 and a two-electron part Σ2. The CI+MBPT

equation is written in the form of the standard CI method (Heff − E)Ψ = 0, where

Heff = H1 + Σ1 +H2 + Σ2. Here, H1 represents the one-body part of the Hamiltonian

and H2 represents the two-body Coulomb or Coulomb + Breit part of the Hamiltonian.
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The second-order matrix elements of the one-electron correlation potential (Σ
(2)
1 )yx are

given by [64]

(Σ
(2)
1 )yx =

∑
mab

gmyabg̃mxab
εab − εxm + ε̃y − εy

+
∑
mna

gmnxag̃mnya
ε̃y + εa − εmn

, (2.151)

and the second-order matrix elements of the two-electron correlation potential (Σ
(2)
2 )mnvw

are given by [64]

(Σ
(2)
2 )mnvw =

∑
cd

gvwcdgmncd
εcd − εmn + ε̃v − εv + ε̃w − εw

+

∑
rc

g̃wrncg̃mrvc
ε̃v + εc − εmr + ε̃w − εw

+

 m ⇐⇒ n

v ⇐⇒ w

 , (2.152)

where indices from the beginning of the alphabet a and b range over all occupied core

states and indices from the middle of the alphabet m and n range over all possible

virtual states, εij = εi + εj, the notation g̃ijkl = gijkl − gijlk is used to designate anti-

symmetrized two-particle matrix elements, and the energies ε̃i are chosen to be the DF

energy of the lowest orbital for the particular partial wave or approximated in other

ways described in Ref [64].

In order to include the Breit interaction in the CI+MBPT method, it is neces-

sary to include Breit corrections to the core potential, and to construct core orbitals

from the DHF Hamiltonian with the Coulomb and Breit interactions included. Techni-

cally, the Breit interaction is included via one-electron and two-electron radial integrals,

where the one-electron integrals describe the interaction of the valence electrons with

the core, and the two-electron integrals describe interactions between valence electrons.

All integrals depend not only on the potential, but also on the orbitals. It is important

to account for the change of the orbitals caused by the inclusion of the Breit interaction.

The one-electron integrals must explicitly include Breit, but the two-electron integrals

can be calculated with Coulomb potential without Breit. Not including Breit in the

two-electron integrals results in a difference on the order of ∼ 10−4, which introduces

errors, which may be negligible in some cases [54]. If the MBPT in residual Coulomb

interaction is used to account for the core-valence and core-core correlations, direct
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and indirect Breit corrections have to be included in corresponding diagrams. Direct

corrections refer to the substitution of the residual Coulomb interaction with the Breit

interaction in the MBPT expressions, and the indirect corrections refer to using the

DF+Coulomb+Breit equations as a zero-order approximation. Direct correlations are

suppressed, and generally neglected altogether, due to huge energy denominators in the

largest Breit radial integrals corresponding to virtual excitations from the innermost

core shells [54]. The indirect corrections are accounted for simply by including the

Breit interaction in the construction of the basis set.

2.1.11 CI+all-order

In this section, we follow Refs. [64, 65] in describing the relativistic all-order

method and a method combining configuration interaction with the all-order method

(CI+all-order). The relativistic all-order method is a linearized version of the coupled-

cluster (CC) method, where all non-linear terms in the expansion of the exponential are

omitted. This method was initially designed to treat monovalent systems by including

all single and double excitations of the DHF wave functions to all orders of perturbation

theory (also known as LCCSD). Extensions that include non-linear terms and valence

triple excitations (also known as LCCSDvT) were developed in Refs. [66, 67], but

significant cancellations of triples and non-linear terms make the SD version accurate

and very efficient to use for most applications. For more complicated systems, a method

combining configuration interaction and many-body perturbation theory was developed

and described in the previous section. In the CI + all-order approach, corrections to

the effective Hamiltonian described in Section 2.1.10 are calculated using the all-order

method, in which the effective Hamiltonian contains dominant core-core and core-

valence correlation corrections to all orders. The core-core and core-valence corrections

are treated in the all-order method with the same accuracy as in the all-order approach

for monovalent systems. The CI method is then used to evaluate valence-valence

correlations.
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We begin our description of the all-order method from the relativistic no-pair

DHF Hamiltonian given by Eq. 2.97

H0 =
∑
i

εi{a†iai}, (2.153)

V =
1

2

∑
ijkl

gijkl{a†ia
†
jalak}+

∑
ij

(VHF − U)ij{a†iaj}. (2.154)

In the coupled-cluster method, the exact many-body wave function is repre-

sented in the form

|Ψ〉 = eS|Ψ(0)〉, (2.155)

where |Ψ(0)〉 is the reference atomic state vector, and S represents an operator for

an N -electron atomic state consisting of the contribution from all excitations from

the lowest-order state vector |Ψ(0)〉. Here, S = S1 + S2 + · · · + SN represents one-

electron, two-electron, ..., N -electron excitation operators. Note that if all excitations

are considered, the full CC expansion would be identical to the full CI expansion. The

general cluster operator can be expanded as

eS = 1+S1 +

(
S2 +

1

2
S2

1

)
+

(
S3 + S2S1 +

1

3!
S3

1

)
+(

S4 + S3S1 +
1

2
S2

2 +
1

2
S2S

2
1 +

1

4!
S4

1

)
+ · · · ,

(2.156)

where the general n-electron excitation operator is defined as

Sn =
1

(n!)2

∑
m1,m2,...,mn

∑
a1,a2,...,an

ρm1,m2,...,mn,a1,a2,...,an

{
a†m1

a†m2
· · · a†mn

a†ana
†
an−1
· · · a†a1

}
.

(2.157)

Here the indices ai with i = 1, 2, . . . , n range over core states, and the indices mi with

i = 1, 2, . . . , n range over all possible virtual states. Compared to the full CI expansion,

the CC contributions from single excitations come from the term S1, double excitations

come from the terms in the first parenthesis (S2+ 1
2
S2

1), triple excitations from the terms

in the second parenthesis (S3 + S2S1 + 1
3!
S3

1), and so on.
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In the all-order method, we omit all non-linear terms in the expansion of the

exponential, such that the all-order wave function takes the form

|Ψ〉 = {1 + S1 + S2 + S3 + · · ·+ SN}|Ψ(0)〉. (2.158)

Restricting the sum in Eq. 2.158 to single, double, and valence triple excitations

yields the following expansion for the state vector of a monovalent atom in state v:

|Ψv〉 =

[
1 +

∑
ma

ρmaa
†
maa +

1

2

∑
mnab

ρmnaba
†
ma
†
nabaa +

∑
m 6=v

ρmva
†
mav

+
∑
mna

ρmnvaa
†
ma
†
naaav +

1

6

∑
mnrab

ρmnrvaba
†
ma
†
na
†
rabaaav

]
|Ψ(0)

v 〉,

(2.159)

where the indices m, n, and r range over all possible virtual states, while indices a and

b range over all occupied core states. The lowest-order wave function is given by

|Ψ(0)
v 〉 = a†v|ΨC〉, (2.160)

where |ΨC〉 is the zeroth-order frozen-core wave function. The quantities ρma and ρmv

are single-excitation coefficients for core and valence electrons, respectively; ρmnab and

ρmnva are core and valence double-excitation coefficients, respectively; and ρmnrvab are

the valence triple excitation coefficients. In the single-double (LCCSD) implementation

of the all-order method, only single and double excitations are included. In the single,

double, and partial triple (LCCSDpT/LCCSDvT) variant of the all-order method,

valence triple excitations are included perturbatively, as described in [65].

To derive the equations for the excitation coefficients of the LCCSD equations for

a monovalent system, we substitute the state vector |Ψv〉 given by Eq. 2.159, omitting

the last term, into the many-body Schrödinger equation H|Ψv〉 = E|Ψv〉. We then

project the Schrödinger equation onto the zeroth-order wave function |ΨC〉 and onto

the functions obtained by operating the cluster operators on the zeroth-order frozen-

core wave function. Terms on the left and right sides of the equation are then matched
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based on the number and type of operators they contain, as done in perturbation

theory. The resulting SD all-order equations for valence coefficients are

(εv − εm + δEv) ρmv =
∑
bn

g̃mbvnρnb +
∑
bnr

gmbnrρ̃nrvb −
∑
bcn

gbcvnρ̃mnbc, (2.161)

(εvn − εmn + δEv) ρmnvb = gmnvb +
∑
cd

gcdvbρmncd +
∑
rs

gmnrsρrsvb

=

[∑
r

gmnrbρrv −
∑
c

gcnvbρmc +
∑
rc

g̃cnrbρ̃mrvc

]
+

 v ↔ b

m↔ n

 ,
(2.162)

where δEv = Ev − εv is the valence correlation energy, εij = εi + εj, the notation

g̃ijkl = gijkl − gijlk is used to designate anti-symmetrized two-particle matrix elements,

and ρ̃mnvb = ρmnvb − ρnmvb. The correlation correction to the energy of the state v is

given in terms of the excitation coefficients by

δEv =
∑
ma

g̃vavmρma +
∑
mab

gabvmρ̃mvab +
∑
mna

gvbmnρ̃mnvb. (2.163)

Equations for the core excitation coefficients ρma and ρmnab are obtained from the

above equations by replacing the valence index v by a core index a and removing δEv

from the left-hand side of the equations. Equations for the correlation energy and all

excitation coefficients are solved iteratively, where each iteration picks up correlation

terms corresponding to the next higher order term in perturbation theory until the

correlation energy converges to a sufficient numerical accuracy. Therefore, the all-order

approach includes dominant MBPT terms to all orders.

Matrix elements for the one-body operator Z =
∑

ij zija
†
iaj are obtained in the

framework of the all-order method as

Zwv =
〈Ψw|Z|Ψv〉√
〈Ψv|Ψv〉〈Ψw|Ψw〉

, (2.164)

where |Ψv〉 and |Ψw〉 are given by the expansion in Eq. 2.159. In the SD approximation,

the resulting expression for the one-body matrix element consists of the sum of the DF
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matrix element zwv and 20 other terms that are linear or quadratic functions of the

excitation coefficients. The advantage of this approach is that this expression does not

depend on the nature of the operator Z, only on its rank and parity.

The complexity of the all-order method for matrix elements increases drastically

with the number of valence electrons. For divalent systems, the expression contains

several hundred terms, instead of the 20 terms in the corresponding monovalent expres-

sion. Therefore, it is difficult to extend the all-order method to the case of complicated

systems with more than 5-6 valence electrons.

To combine the all-order method with CI for calculating properties of atoms

with a few valence electrons, we begin by expressing the all-order equations (Eqs.

2.161 – 2.163) in terms of matrix elements of Σ1 and Σ2, and explicitly including energy

dependence. We also need to add an all-order equation for the excitation coefficients

ρmnvw to obtain Σ2.

Σ1 and Σ2 are essentially the all-order excitation coefficients ρmv and ρmnvw

multiplied by the appropriate energy differences,

Σma = ρma (εa − εm) ,

Σmnab = ρmnab (εab − εmn) ,

Σmnva = ρmnva (ε̃v + εa − εmn) ,

Σmv ≡ (Σ1)mv = ρmv (ε̃v − εm) ,

Σmnvw ≡ (Σ2)mnvw = ρmnvw (ε̃a + ε̃w − εmn) .

The quantities Σma, Σmnab, and Σmnva are used in the all-order iterative proce-

dure but do not explicitly appear in the effective Hamiltonian. The excitation coef-

ficients ρma and ρmnab are multiplied by the appropriate energy differences to obtain

the terms Σma and Σmnab, and other all-order equations are re-written in terms of Σ,

while terms that will otherwise be double counted by the CI part of the calculations are
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removed. We obtain the following set of equations by writing the LCCSD equations

given by Eq. 2.161 in terms of Σ:

Σmv ≡ (Σ1)mv =
∑
nb

g̃mbvnΣnb

εbn + ε̃v − εv
−
∑
bcn

g̃bcvnΣmnbc

εbc − εmn + ε̃v − εv
+
∑
bnr

g̃mbnrΣnrvb

ε̃v + εb − εnr
, (2.165)

Σmnvb = gmnvb +
∑
cd

gcdvbΣmncd

εcd − εmn + ε̃v − εv
+
∑
rs

gmnrsΣrsvb

ε̃v + εb − εrs

−
∑
c

gcnvbΣmc

εc − εm + ε̃v − εv
+
∑
r

gmnvrΣrb

εb − εr + ε̃v − εv
−
∑
c

gmcvbΣnc

εc − εn + ε̃v − εv

+
∑
cr

g̃cnrbΣmrvc

ε̃v + εc − εmr
−
∑
cr

gcnrbΣrmvc

ε̃v + εc − εmr
−
∑
cr

gmcrbΣrnvc

ε̃v + εc − εnr

+
∑
cr

ε̃mcvrΣrncb

εcb − εnr + ε̃v − εv
−
∑
cr

gmcvrΣnrcb

εcb − εnr + ε̃v − εv
−
∑
cr

gcnvrΣmrcb

εcb − εmr + ε̃v − εv
,

(2.166)

Σmnvw ≡ (Σ2)mnvw =
∑
cd

gcdvwΣmncd

εcd − εmn + ε̃v − εv + ε̃w − εw
−
∑
c

gcnvwΣmc

εc − εm + ε̃v − εv + ε̃w − εw

−
∑
c

gmcvwΣnc

εc − εn + ε̃v − εv + ε̃w − εw
+
∑
cr

g̃cnrwΣmrvc

ε̃v + εc − εmr + ε̃w − εw

−
∑
cr

gcnrwΣrmvc

ε̃v + εc − εmr + ε̃w − εw
−
∑
cr

gmcrwΣrnvc

ε̃v + εc − εnr + ε̃w − εw

+
∑
cr

g̃mcvrΣrncw

εc + ε̃w − εnr + ε̃v − εv
−
∑
cr

gmcvrΣrnwc

εc + ε̃w − εnr + ε̃v − εv

−
∑
cr

gcnvrΣrmwc

εc + ε̃w − εmr + ε̃v − εv

(2.167)

The energy denominators are explicitly written out and the energy dependence

is introduced in the formalism of the CI+MBPT approach. Next, we outline the

CI+all-order method as used in this work [65]

1. A finite basis set is generated in a spherical cavity of radius R with which all
calculations will be carried out. The terms (Σ1)vw and (Σ2)mnvw, where m, n, v,
w are any basis set functions, are then generated under second-order MBPT.

56



2. The all-order core ρma and ρmnab excitation coefficients are obtained by the iter-
ative solution of the corresponding equations in the appropriate potential. The
core correlation energy is used as a convergence parameter and is generally re-
quired to converge to 10−5 − 10−6 relative accuracy. The core excitation coef-
ficients are multiplied by the appropriate denominators as described earlier to
obtain Σma and Σmnab after the iterations are complete.

3. The core quantities Σma and Σmnab are used to obtain Σmv and Σmnva by an
iterative procedure for a large number of excited m, n, and v orbitals. The
valence correlation energy for the state v is used as a convergence parameter
here. The iterations of excitation coefficients result in the summation of the
relevant classes of MBPT terms to all orders.

4. The all-order expression for (Σ2)mnvw corrections to the effective Hamiltonian
is calculated with previously stored fully converged values of Σma, Σmnab, and
Σmnvb.

5. CI calculations are carried out to generate accurate wave functions with the
effective Hamiltonian constructed using Σ1 and Σ2 obtained in the previous steps
in the same manner as in CI+MBPT described in Section 2.1.10.

6. The resulting wave functions are used to obtain various matrix elements and
derived quantities.

2.1.12 Valence perturbation theory

Valence perturbation theory is discussed in great detail in [68] and will be briefly

introduced here. It is a method for approximating and optimizing the CI space using

weights of configurations. As usual, the goal is to find solutions of the many-body

Schrödinger equation

HΨn = EnΨn, (2.168)

where En is the energy of the n-th level and Ψn is the corresponding wave function,

which is described as a linear combination of Slater determinants

|Ψn〉 =
N∑
i=1

c
(n)
i |Φi〉, (2.169)

where N corresponds to the dimensionality of the valence configuration space and Φi

are Slater determinants constructed from basis orbitals. The basis orbitals are found by
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solving HFD equations for the core and valence orbitals and then constructing virtual

orbitals using B-splines.

Substituting Eq. 2.169 into Eq. 2.168 and varying over the coefficients c
(n)
i , we

obtain the CI eigenvalue equation∑
k

HikC
(n)
k = EnC

(n)
i , (2.170)

or in the matrix form

HΦn = EnΦn, (2.171)

where H is the energy matrix and Φn = (c
(n)
1 , c

(n)
2 , . . . , c

(n)
N ) is the desired wave function

described in the basis of Slater determinants.

In valence perturbation theory, the valence space is divided into two subspaces:

N = N0 + N1, where a smaller subspace of dimensionality N0 × N0 is accounted for

using CI and the complementary subspace of dimensionality N1 ×N1 is accounted for

using PT. The Hamiltonian is rewritten in the form

H = H0 +H1, (2.172)

whereH0 andH1 correspond to the subspaces defined above for CI and PT, respectively.

Here, H0 is represented as

H0 = H ′0 +D (2.173)

where H ′0 is the upper left block of dimensionality N0 × N0, and D is the diagonal of

the block of dimensionality N1 × N1 with elements (HN0+1N0+1, . . . , HNN). First, we

solve the CI matrix equation

H0Φ0
n = E0

nΦ0
n, (2.174)

where Φ0
n = ((c

(n)
1 , c

(n)
2 , . . . , c

(n)
N0

), 0, . . . , 0) for n ≤ N0 and Φ0
n = (0, . . . , 0, 1, 0, . . . , 0)

for n > N0, where the unit occupies the n-th position. Solving Eq. 2.174, we find the

energies and wave functions to initial approximation.

The weight of configurations is determined by the expression

Wk =

Nk∑
i=1

∣∣∣c(k)
i

∣∣∣2 , (2.175)
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where Nk is the number of determinants in the kth configuration and c
(k)
i are the

corresponding coefficients. Only weights above a certain threshold (typically above

10−5 − 10−6) are kept in the H ′0 subspace. All configurations with weights below the

threshold are taken into account using PT in the next step.

After the CI matrix equation has been solved in the H0 subspace, the corrections

from the H1 complementary subspace are added using PT. The first-order correction

to the unperturbed energy E0 is given by

E
(1)
i = 〈Φ0

i |H1|Φ0
i 〉 = 0, (2.176)

and the second-order correction to the unperturbed energy E0 is given by

E
(2)
i =

N∑
k=N0+1

〈Φ0
i |H1|Φ0

k〉〈Φ0
k|H1|Φ0

i 〉
E0
i − E0

k

, (2.177)

where E0
k is the k-th element of the diagonal D. The first-order correction to the wave

function is given by

Φ
(1)
i =

N∑
k=N0+1

〈Φ0
k|H1|Φ0

i 〉
E0
i − E0

k

|Φ0
k〉. (2.178)

All second-order corrections are taken into account and added to the energy calculated

from CI to obtain the total energy, E = E0 + E1. The first-order corrections to the

wave functions are stored for use in subsequent CI calculations.

2.2 Radiative transitions

In order to determine transition rates, lifetimes, and branching ratios of certain

transitions, we need to study radiative transitions. Lifetimes are obtained by summing

over all possible radiative transition rates:

τ =
1∑

i

Ai
. (2.179)

The value of the branching ratios for a particular transition is determined as a ratio

of the respective transition rate value and the sum of all possible radiative transition

rates that are used to determine the lifetimes. The density matrix formalism is useful

here as it greatly simplifies the treatment of transitions involving multiple states.
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2.2.1 The density matrix formalism

We have thus far described the quantum state of a particle by a wave function

Ψ(x) in coordinate and spin space. Here, we will consider an alternative representation

of the quantum state, called the density matrix. The density, or transition matrix was

originally introduced in quantum statistical mechanics to describe a system for which

the state was incompletely specified. Although describing a quantum system with the

density matrix is equivalent to using the wave function, it has been shown that density

matrices are more practical for certain time-dependent problems [69]. The formalism

of the density, or transition matrix allows us to express the matrix elements between

many-electron states using one-electron matrix elements. Here we follow Ref. [70] in

introducing the density matrix formalism.

The general N -order density matrix is formally defined as

γN (x′1x
′
2 . . .x

′
N ,x1x2 . . .xN) ≡ Ψ∗N (x′1,x

′
2, . . . ,x

′
N) ΨN (x1,x2, . . . ,xN) , (2.180)

where xi = {ri, σi} denote spatial and spin variables. Note that the density matrix

contains two sets of independent quantities, {x′i} and {xi}, that gives γN a numerical

value. Equivalently, the generalN -order density matrix can be viewed as the coordinate

representation of the density operator,

γ̂N = |ΨN〉〈ΨN | (2.181)

since

〈x′1x′2 . . .x′N |γ̂N |x1x2 . . .xN〉 = 〈x′1x′2 . . .x′N |ΨN〉〈ΨN |x1x2 . . .xN〉

= Ψ∗N (x′1,x
′
2, . . . ,x

′
N) ΨN (x1,x2, . . . ,xN)

= γN (x′1x
′
2 . . .x

′
N ,x1x2 . . .xN) .

(2.182)

Note that γ̂N can also be thought of as the projection operator onto the state

ΨN . We then have for normalized ΨN ,

Tr γ̂N =

∫
Ψ∗N(xN)ΨN(xN)dxN = 1,
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where xN stands for the set {xi}Ni=1. The trace of an operator Â is defined as the sum of

the diagonal elements of the matrix representing Â, or the integral if the representation

is continuous as above. It can also be verified that

〈Â〉 = Tr (γ̂N Â) = Tr (Âγ̂N).

From this, the density operator γ̂N can be seen to carry the same information as the

N -electron wave function ΨN . Note that while ΨN is defined only up to an arbitrary

phase factor, γ̂N for the state ΨN is unique, positive semi-definite and Hermitian. The

state of the system is said to be pure if it can be described by a wave function, and

mixed if it cannot. A system in a mixed state can be characterized by a probability

distribution over all accessible pure states. If we set x′i = xi for all i, we get the

diagonal elements of the density matrix,

γN (x1x2 . . .xN) ≡ Ψ∗N (x1,x2, . . . ,xN) ΨN (x1,x2, . . . ,xN) = |ΨN (x1,x2, . . . ,xN) |2,

which is the N -order density matrix for a pure state. Note that this is also the prob-

ability distribution associated with a solution of the Schrödinger equation. We can

express the Schrödinger equation in the density-matrix formalism by taking the time

derivative of the density operator, and using Hermiticity and commutation relations

to obtain

∂

∂t
γ̂N =

(
∂

∂t
|ΨN〉

)
〈ΨN |+ |ΨN〉

(
∂

∂t
〈ΨN |

)
=

(
Ĥ

i~
|ΨN〉

)
〈ΨN | − |ΨN〉

(
Ĥ

i~
〈ΨN |

) (2.183)

i~
∂

∂t
γ̂N =

[
Ĥ, γ̂N

]
(2.184)

This equation is called the von Neumann equation and describes how the density

operator evolves in time. We can generalize the density operator γ̂N to the ensemble

density operator

Γ̂ =
∑
i

pi|Ψi〉〈Ψi|, (2.185)
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where pi is the probability of the system being found in the state Ψi, and the sum is

over the complete set of all accessible pure states. The coefficients pi have the following

properties since they are probabilities:

pi ≥ 0,
∑
i

pi = 1.

We can then rewrite Eq. 2.184 in terms of the ensemble density matrix to obtain

i~
∂

∂t
Γ̂ =

[
Ĥ, Γ̂

]
, (2.186)

which is true if Γ̂ only involves states with the same number of particles, as is true in

the canonical ensemble. This equation is also known as the von Neumann equation,

the quantum mechanical analog of the Liouville equation. For stationary states, Γ̂ is

independent of time, which means that[
Ĥ, Γ̂

]
= 0,

implying that Ĥ and Γ̂ share the same eigenvectors.

The Hamiltonian operator, Eq. 2.2, is a sum of two symmetric one-electron

operators and a symmetric two-electron operator, independent on spin. Along with

the fact that the wave functions {Ψi}Ni=0 are antisymmetric, the expectation values of

the density operator can be systematically simplified by integrating the probability

densities over N − 2 of its variables, giving rise to concepts of reduced density matrix

and spinless density matrices.

The reduced density matrix of order k is defined as

γk(x
′
1x
′
2 . . .x

′
k,x1x2 . . .xk) =(

N

p

)∫
· · ·
∫
γ(x′1x

′
2 . . .x

′
kxk+1 . . .xN ,x1x2 . . .xk . . .xN)dxk+1 . . . dxN , (2.187)

where
(
N
k

)
is a binomial coefficient, and γN is defined by Eq. 2.180. This is also known

as taking the partial trace of the density matrix. For example, the first-order density

matrix γ1 is defined as

γ1(x′1,x1) = N

∫
· · ·
∫

Ψ∗(x′1x2 . . .xN)Ψ(x1x2 . . .xN)dx2 . . .xN (2.188)
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and normalizes to

Tr γ1(x′1,x1) =

∫
γ1(x1,x1)dx1 = N.

Similarly, the second-order density matrix γ2 is defined as

γ2(x′1x
′
2,x1x2) =

N(N − 1)

2

∫
· · ·
∫

Ψ∗(x′1x
′
2x3 . . .xN)Ψ(x1x2x3 . . .xN)dx3 . . . dxN

(2.189)

and normalizes to the number of electron pairs

Tr γ2(x′1x
′
2,x1x2) =

∫∫
γ2(x1x2,x1x2)dx1dx2 =

N(N − 1)

2
.

The reduced density matrices γ1 and γ2 just defined are coordinate-space represen-

tations of operators γ̂1 and γ̂2, acting on the one- and two-particle Hilbert spaces,

respectively. We can express the one-particle operator in terms of its eigenvalues and

eigenvectors

γ̂1 =
∑
i

ni|ψi〉〈ψi|,

where the eigenvalues ni are the occupation numbers and the eigenvectors ψi are one-

electron orbitals. Similarly, the two-particle operator can be expressed as

γ̂2 =
∑
i

gi|θi〉〈θi|,

where the eigenvalues gi are the occupation numbers and the eigenvectors θi are two-

electron functions called geminals. It also follows from ni ≥ 0 and gi ≥ 0, that ni

is proportional to the probability of the one-electron state ψi being occupied and gi

is proportional to the probability of the two-electron state θi being occupied, after

comparing these two operators with Eq. 2.185.

Now let us consider the expectation values of one- and two-electron operators

with an antisymmetric N -body wave function Ψ. For a one-electron operator

Ô1 =
N∑
i=1

O1(xi, x
′
i),

we have

〈Ô1〉 = Tr (Ô1γN) =

∫
O1(x1x

′
1)γ1(x′1,x1)dx1dx

′
1. (2.190)
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If the one-electron operator is local, i.e. O1(r′, r) = O1(r)δ(r′ − r), we can conven-

tionally write down only the diagonal part:

〈Ô1〉 = Tr (Ô1γN) =

∫
[O1(x1)γ1(x′1,x1)]x′1=x1

dx1.

Similarly, if the two-electron operator is local, we have

Ô2 =
N∑
i<j

O2(xi, xj)

and the corresponding expectation value

〈Ô2〉 = Tr (Ô2γN) =

∫ ∫
[O2(x1,x2)γ2(x′1,x

′
2,x1,x2)]x′1=x1,x′2=x2

dx1dx2.

We thus obtain for the expectation value of the Hamiltonian, Eq. 2.2, in terms of

density matrices

E = Tr (Ĥγ̂N) = E[γ1, γ2]

=

∫ [(
−1

2
∇2

1 + v(r1)

)
γ1(x′1,x1)

]
x′1=x1

dx1 +

∫∫
1

|r1 − r2|
γ2(x1x2,x1x2)dx1dx2.

(2.191)

We can further simplify this result by integrating over the spin variables.

The first-order and second-order spinless density matrices are defined by

ρ1(r′1, r1) =
∑
σ1σ′1

γ1(r′1σ
′
1, r1σ1)

= N
∑
σ1σ′1

∫
· · ·
∫

Ψ∗(r′1σ
′
1,x2, . . . ,xN)Ψ(r1σ1,x2, . . . ,xN)dx2 . . . dxN

(2.192)

and

ρ2(r′1r
′
2, r1r2) =

∑
σ1σ′1,σ2σ

′
2

γ2(r′1σ
′
1r
′
2σ
′
2, r1σ1r2σ2)

=
N(N − 1)

2

∑
σ1σ′1,σ2σ

′
2

∫
· · ·
∫

Ψ∗(r′1σ
′
1, r
′
2σ
′
2,x3, . . . ,xN)Ψ(r1σ1, r2σ2,x3, . . . ,xN)dx3 . . . dxN .

(2.193)
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We can introduce a shorthand notation for the diagonal elements of ρ1,

ρ1(r1) = ρ1(r1, r1) = N
∑
σ1

∫
· · ·
∫
|Ψ(r, σ)|2dx2 . . .xN

and similarly for ρ2,

ρ2(r1, r2) = ρ2(r1r2, r1r2) =
N(N − 1)

2

∑
σ1σ2

∫
· · ·
∫
|Ψ(r, σ)|2dx3 . . . dxN .

Note that from the above definitions, we can express the first-order density matrix in

terms of the second-order density matrix

ρ(r′1, r1) =
2

N − 1

∫
ρ2(r′1r2, r1r2)dr2,

ρ(r1) =
2

N − 1

∫
ρ2(r1, r2)dr2.

The expectation value of the Hamiltonian, Eq. 2.191, in terms of density matrices now

becomes

E = E[ρ1(r′1, r1), ρ2(r1, r2)]

=

∫ [
−1

2
∇2ρ1(r′, r)

]
r′=r

dr +

∫
v(r)ρ(r) +

∫∫
1

|r1 − r2|
ρ2(r1, r2)dr1dr2,

(2.194)

where the three terms represent the electronic kinetic energy, the electron-nucleus

potential energy, and the electron-electron potential energy, respectively. Note that

since we can express the first-order density matrix in terms of the second-order, only

the second-order density matrix is needed for the expectation value of the Hamiltonian.

When calculating the matrix elements of one-electron operators between many-

electron states, the formalism of the density, or transition density matrix allows us

to express the matrix elements between many-electron states in terms of one-electron

matrix elements. Let us consider the matrix element 〈J ′M ′|TLq |JM〉, where |JM〉

and |J ′M ′〉 are the many-electron states with total angular momenta J and J ′, with

projections M and M ′, respectively. TLq is the spherical component of the tensor
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operator T of rank L. In terms of one-electron states |nljm〉 and |n′l′j′m′〉, the density

matrix operator can be defined

ρ̂ = ρnljm,n′l′j′m′ |nljm〉〈n′l′j′m′|, (2.195)

where

ρnljm,n′l′j′m′ = 〈J ′M ′|a†n′l′j′m′anljm|JM〉. (2.196)

The many-electron matrix element can then be written

〈J ′M ′|TLq |JM〉 = Tr ρnljm,n′l′j′m′〈n′l′j′m′|TLq |nljm〉, (2.197)

where the trace sums over all quantum numbers (nljm) and (n′l′j′m′). Using the

Wigner-Eckart theorem, we can reduce the many-electron matrix element to

〈J ′‖TL‖J〉 = Tr ρLnlj,n′l′j′〈n′l′j′‖TL‖nlj〉, (2.198)

where

ρLnlj,n′l′j′ = (−1)J
′−M ′

 J ′ L J

−M ′ q M

−1∑
mm′

(−1)j
′−m′

 j′ L j

−m′ q m

 ρLnljm,n′l′j′m′ .

(2.199)

2.2.2 Multipole transition probabilities

In this section, we will derive expressions for multipole transition probabilities

as used in the dtm program, following Ref. [44]. The transition amplitude for a one-

electron atom is

Tba =

∫
d3ψ†bα ·A(r, ω)ψa, (2.200)

where A(r, ω) is the transverse-gauge vector potential

A(r, ω) = eik·r ε̂. (2.201)

Here, the vector k = kk̂ is the propagation vector and the unit vector ε̂ is the polar-

ization vector. In the following derivation, it is useful to introduce vector spherical
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harmonics YJLM(θ, φ), which is a combination of spherical harmonics and spherical

basis vectors [44]:

YJLM(θ, φ) =
∑
σ

C(L, 1, J ;M − σ, σ,M)YLM−σ(θ, φ)ξσ, (2.202)

where the Clebsch-Gordon coefficients C(l, 1, j;m −ms,ms,m) for J = L + S, with

s = 1, are given in Table 2.1, Ylm are the usual spherical harmonics, and ξσ, with

σ = −1, 0, 1, are spherical basis vectors defined by

ξ1 = − 1√
2


1

i

0

 , ξ0 =


0

0

1

 , ξ−1 = − 1√
2


1

−i

0

 . (2.203)

Table 2.1: Clebsch-Gordan coefficients for J = L+ S, with s = 1 [44].

ms = 1 ms = 0 ms = −1

j = l + 1
√

(l+m)(l+m+1)
(2l+1)(2l+2)

√
(l−m+1)(l+m+1)

(2l+1)(l+1)

√
(l−m)(l−m+1)
(2l+1)(2l+2)

j = l −
√

(l+m)(l−m+1)
2l(l+1)

m√
l(l+1)

√
(l−m)(l+m+1)

2l(l+1)

j = l − 1
√

(l−m)(l−m+1)
2l(2l+1)

−
√

(l−m)(l+m)
l(2l+1)

√
(l+m+1)(l+m)

2l(2l+1)

One can expand the vector potential in a series of vector spherical harmonics

A(r, ω) =
∑
JLM

AJLM(r)YJLM(r̂), (2.204)

where the expansion coefficients are given by

AJLM(r) =

∫
dΩ(YJLM(r̂) · ε̂)eik·r. (2.205)

Expanding the plane waves in terms of spherical Bessel functions jl(kr) via

eik·r = 4π
∑
lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂), (2.206)

one can carry out the angular integration and rewrite the expansion of the vector

potential as

A(r, ω) = 4π
∑
JLM

iL(YJLM(k̂) · ε̂)aJLM(r), (2.207)
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where

aJLM(r) = jL(kr)YJLM(r̂). (2.208)

One can express this expansion in terms of the vector spherical harmonics Y
(λ)
JM (r̂)

instead of YJLM(r̂) using the relations

YJJ−1M(r̂) =

√
J

2J + 1
Y

(−1)
JM (r̂) +

√
J + 1

2J + 1
Y

(1)
JM(r̂), (2.209)

YJJM(r̂) = Y
(0)
JM(r̂), (2.210)

YJJ+1M = −
√

J + 1

2J + 1
Y

(−1)
JM (r̂) +

√
J

2J + 1
Y

(1)
JM(r̂), (2.211)

leading to the multipole expansion of the vector potential

A(r, ω) = 4π
∑
JMλ

iJ−λ(Y
(λ)
JM (k̂) · ε̂)a(λ)

JM(r), (2.212)

where the vector functions a
(λ)
JM(r) are referred to as multipole potentials, given by

a
(0)
JM(r) = aJJM(r), (2.213)

a
(1)
JM(r) =

√
J + 1

2J + 1
aJJ−1M(r)−

√
J

2J + 1
aJJ+1M(r). (2.214)

Only terms with λ = 0, 1 contribute to the multipole expansion since Y
(−1)
JM (k̂) =

YJM(k̂)k̂ is orthogonal to ε̂. The potentials with λ = 0 are the magnetic multipole

potentials and those with λ = 1 are the electric multipole potentials. One can express

the multipole potentials a
(λ)
JM(r) in terms of spherical Bessel functions as

a
(0)
JM(r) = jJ(kr)Y

(0)
JM(r̂), (2.215)

a
(1)
JM(r) =

[
j′J(kr) +

jJ(kr)

kr

]
Y

(1)
JM(r̂) +

√
J(J + 1)

jJ(kr)

kr
Y

(−1)
JM (r̂). (2.216)
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The multipole expansion of the vector potential (2.212) leads to a corresponding

multipole expansion of the transition operator

Tba =

∫
d3rψ†bα ·A(r, ω)ψa

=

∫
d3rψ†bα ·

[
4π
∑
JMλ

iJ−λ(Y
(λ)
JM (k̂) · ε̂)a(λ)

JM(r̂)

]
ψa

= 4π
∑
JMλ

iJ−λ[Y
(λ)
JM (k̂) · ε̂]

∫
d3rψ†bα · a

(λ)
JM(r̂)ψa

= 4π
∑
JMλ

iJ−λ[Y
(λ)
JM (k̂) · ε̂][T (λ)

JM ]ba,

(2.217)

Upon squaring the amplitude, summing over polarization states, and integrating over

photon directions, one obtains the transition probability rate (Einstein A coefficient)

Aba =
α

2π
ω
∑
ν

∫
dΩk |Tba|2

=
α

2π
ω

∫
dΩk 16π2

∑
JMλ

∑
J ′M ′λ′

∑
ν

[
Y

(λ)
JM (k̂) · ε̂ν

] [
ε̂ν · Y (λ′)

J ′M ′(k̂)
]

[T
(λ)
JM ]ab[T

(λ′)
J ′M ′ ]ba

= 8απω
∑
JMλ

∑
J ′M ′λ′

∫
dΩk

[
Y

(λ)
JM (k̂) · Y (λ′)

J ′M ′(k̂)
]

[T
(λ)
JM ]ab[T

(λ′)
J ′M ′ ]ba

= 8απω
∑
JMλ

∑
J ′M ′λ′

δJJ ′δMM ′δλλ′ [T
(λ)
JM ]ab[T

(λ′)
J ′M ′ ]ba

= 8απω
∑
JMλ

∣∣∣[T (λ)
JM ]ba

∣∣∣2 ,
(2.218)

where angular momentum selection rules limit the type and number of multipoles that

contribute to the sum. Next, one can apply a gauge transformation to the multipole

potentials

a
(λ)
JM(r)→ a

(λ)
JM(r) + ∇χJM(r),

φJM(r)→ iωχJM(r),

choosing the gauge function

χJM(r) = −1

k

√
J + 1

J
jJ(kr)YJM(r̂).
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The resulting gauge transformation has no effect on the magnetic multipole transi-

tions, but the electric multipole potentials are transformed and reduced to the so-called

length-form multipole potentials in the non-relativistic limit

a
(1)
JM(r) = −jJ+1(kr)

[
Y

(1)
JM(r̂)−

√
J + 1

J
Y

(−1)
JM (r̂)

]

φ
(1)
JM(kr) = −ic

√
J + 1

J
jJ(kr)YJM(r̂).

(2.219)

In the non-relativistic limit, the length-gauge electric multipole transition oper-

ator takes the form

T
(1)
JM = α · a(1)

JM(r)− 1

c
φJM(r). (2.220)

Since the vector potential contributes less than the scalar potential by terms of order

kr, the interaction can be approximated for small values of kr by taking the limit

T
(1)
JM = lim

k→0

[
α · a(1)

JM(r)− 1

c
φJM(r)

]
. (2.221)

Using the asymptotic form of the spherical Bessel function

lim
x→0

jl(x) =
xl

(2l + 1)!!
, (2.222)

one obtains for the limit of the first term

lim
k→0

[
α(r) · a(1)

JM

]
= 0, (2.223)

since

lim
k→0

jJ+1(kr) = lim
k→0

[
J

kr
jJ(kr)− j′J(kr)

]
=

J

kr

(kr)J

(2J + 1)!!
− J

(2J + 1)!!
(kr)J−1

=
J

kr

(kr)J

(2J + 1)!!
− J

(2J + 1)!!

(kr)J

kr

= 0,

and for the second term

lim
k→0

[
−1

c
φJM

]
= lim

k→0

[
−ic
√
J + 1

J
jJ(kr)YJM(r̂)

]

= −ic
√
J + 1

J

(kr)J

(2J + 1)!!
YJM(r̂).

(2.224)
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Thus one obtains for the electric multipole transition operator

T
(1)
JM = α · a(1)

JM(r)− 1

c
φJM(r)

= −1

c

[
−ic
√
J + 1

J

(kr)J

(2J + 1)!!
YJM(r̂)

]

= i

√
(2J + 1)(J + 1)

4πJ

(kr)J

(2J + 1)!!
CJM(r̂)

= i

√
(2J + 1)(J + 1)

4πJ

kJ

(2J + 1)!!
QJM(r),

(2.225)

where the definition of a tensor operator in terms of spherical harmonics is used to get

the third line, and in the last line,

QJM(r) = rJCJM(r̂) (2.226)

is defined as the electric J-pole moment operator in a spherical basis.

In general, one can write the multipole interaction in terms of a dimensionless

multipole-transition operator t
(λ)
JM(r) as

T
(λ)
JM = α · a(λ)

JM(r)− 1

c
φJM(r)

= i

√
(2J + 1)(J + 1)

4πJ
t
(λ)
JM(r),

(2.227)

where the multipole-transition operators t
(λ)
JM(r) are related to the frequency-dependent

multipole-moment operators q
(λ)
JM(r, ω) by

q
(λ)
JM(r, ω) =

(2J + 1)!!

kJ
t
(λ)
JM(r). (2.228)

The multipole transition rates, or Einstein A-coefficients, giving the probability

per unit time for emission of a photon with multipolarity Jλ, from a state I with

angular momentum JI to a state F with angular momentum JF , is obtained from

A
(λ)
JM = 8παω

∑
JMλ

|[T (λ)
JM ]|2

= 2αω
(2J + 1)(J + 1)

J
|〈F |T (λ)

JM |I〉|
2.

(2.229)
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Using the Wigner-Eckart theorem, one can express the transition rates in terms of

reduced matrix elements

A
(λ)
J = 2αω

(2J + 1)(J + 1)

J

|〈F‖T (λ)
J ‖I〉|2

2JI + 1

=
2(2J + 1)(J + 1)(αω)2J+1

J [(2J + 1)!!]2
|〈F‖Q(λ)

J ‖I〉|2

2JI + 1
,

(2.230)

Next, we introduce a new notation Tk to encapsulate the electric and magnetic

mutipole operators, Ek and Mk, expressed in a.u.. The following replacements were

made from the previous notation: multipolarity J → k, λ→ T , initial angular momen-

tum JI → J and final angular momentum JF → J ′. In the new notation, the general

expression for a multipole transition probability rate of order k is given by

WTk(J → J ′) =
2(2k + 1)(k + 1)

k[(2k + 1)!!]2
(αω)2k+1

2J + 1
STk(J → J ′), (2.231)

where α ≈ 1/137.036, ω is the J → J ′ transition frequency expressed in a.u., and

STk(J → J ′) is the line strength obtained as the square of the corresponding multipole

matrix element

STk(J → J ′) = |〈J ′||Tk||J〉|2. (2.232)

Using Eq. 2.231, we find

WT1(J → J ′) =
4

3(2J + 1)
(αω)3ST1(J → J ′), (2.233)

WT2(J → J ′) =
1

15(2J + 1)
(αω)5ST2(J → J ′), (2.234)

WT3(J → J ′) =
8

4725(2J + 1)
(αω)7ST3(J → J ′). (2.235)

Typically, probabilities are expressed in sec−1, where the conversion between a.u. and

sec−1 is given by

1 a.u. ≈ 6.57968× 1015 Hz ≈ 2π · 6.57968× 1015 sec−1.
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Additionally, it is convenient to use the energy difference ω expressed in cm−1. Doing

so, we transform the transition probabilities into a form convenient with our codes.

The electric multipole transitions expressed in sec−1 are given by:

WE1(J → J ′) = 2.02613× 10−6 ω3

(2J + 1)
|〈J ′||E1||J〉|2, (2.236)

WE2(J → J ′) = 1.11995× 10−22 ω5

(2J + 1)
|〈J ′||E2||J〉|2, (2.237)

WE3(J → J ′) = 3.14441× 10−39 ω7

(2J + 1)
|〈J ′||E3||J〉|2, (2.238)

where E1 ≡ d, E2 ≡ Q, E3 ≡ O, ω is given in cm−1, and 〈J ′||Ek||J〉, k = 1, 2, 3 is

given in a.u..

For magnetic multipole transitions SMk(J → J ′) = |〈J ′||Mk||J〉|2, the matrix

elements of the magnetic multipole operators are proportional to the Bohr magneton

µ0. Taking into account that the Bohr radius is given by a0 = ~/mcα in SI units, we

have

µ0 =
|e|~
2mc

=
α

2
|e|a0, (2.239)

and correspondingly,

〈J ′||Mk||J〉 ∼ µ0a
k−1
0 =

α

2
|e|ak0 (SI units) =

α

2
(a.u.) (2.240)

Factoring out α/2, we can write SMk in a.u. as

SMk(J → J ′) =
α2

4
|〈J ′||Mk||J〉|2. (2.241)

The magnetic multipole transitions expressed in sec−1 are given by:

WM1(J → J ′) = 2.69735× 10−11 ω3

(2J + 1)
|〈J ′||M1||J〉|2, (2.242)

WM2(J → J ′) = 1.49097× 10−27 ω5

(2J + 1)
|〈J ′||M2||J〉|2, (2.243)
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WM3(J → J ′) = 4.18610× 10−44 ω7

(2J + 1)
|〈J ′||M3||J〉|2, (2.244)

where ω is given in cm−1, and 〈J ′||Mk||J〉, k = 1, 2, 3 is given in a.u..

After the transition probabilities of all allowed lower states are evaluated for a

state a, the lifetime of the atomic state a can be determined as

τa =
1∑

b

Aab
. (2.245)

The branching ratio of a particular transition from state a to state b′ is defined as

pa =
Aab′∑
b

Aab
= Aab′τa. (2.246)
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Chapter 3

CI/CI+MBPT/CI+ALL-ORDER CODE PACKAGE

The complete CI/CI+MBPT/CI+all-order code package allows one to carry

out relativistic calculations for many-electron atoms and ions [2]. This suite of codes is

based on a method combining the configuration interaction method with many-body

perturbation theory and/or all-order coupled-cluster method, which were discussed in

Chapter 2.

3.1 Base computer package

A version of the CI+MBPT code package was modified for public use and pub-

lished in Computer Physics Communications in 2015 by M. Kozlov et al [2]. Although

not published, the inclusion of the all-order part provides for accurate solutions for a

large number of properties of atoms and ions with up to 4 – 5 valence electrons. The

complete code package scheme is illustrated in Figure 3.1.

For the CI code, the computational time can span from an hour when studying

very small systems of 1 – 2 valence electrons to up to weeks for more complex systems

with 3 – 4 valence electrons. Some problems involving systems with more than 4 valence

electrons were simply intractable with the previous code. One of the main objectives

of this work was to parallelize the programs to reduce the computational time required

for calculations of properties of atomic systems with more than 4 valence electrons.

The results of this work will allow for future fast large-scale data production for an

online portal project for systems with 2 – 4 valence electrons. Results of this effort is

described in Section 3.4. Here we will give a summary of the CI/CI+MBPT/CI+all-

order codebase. The following, as well as more detailed documentation about each

code, as well as auxiliary codes, can be found in [2].
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hfd Calculates Dirac-Fock orbitals (initial approximation)

bass Constructs basis set needed by all codes

allcore-ci
valsd-ci

sdvw-ci

All-order block 

Second-order second-ci

Calculates correction to the Hamiltonian that conf uses.

Entire all-order + second-order or just the all-order block
can be bypassed. 

CI-MBPT code package skips the all-order block. 
CI+all-order code package includes all codes.
CI code package skips both parts. 

basc conf

add
Calculates 
radial
integrals

Generates set of configurations for conf (input)

Configuration interaction code (calculates the wave functions)

dtm Calculates matrix elementsrpa
rpa-dtm

Calculates
RPA
correction

to matrix elements pol-ci Calculates polarizabilities

Figure 3.1: The scheme of the CI+MBPT/CI+all-order code package.

3.1.1 hdf

The hdf program solves restricted Hartree-Fock-Dirac (HFD) equations self-

consistently under the central field approximation to find four-component Dirac-Fock

(DF) orbitals and eigenvalues of the HDF Hamiltonian. These orbitals depend only

on the principal, orbital, and total angular momentum quantum numbers n, l, and j.

This program provides the initial approximation, storing both basis radial orbitals

φnlj ≡ r

 fnlj

−gnlj

 , (3.1)

as well as the radial derivatives of the orbitals ∂rφnlj, to the file HDF.DAT. The run time

of this program is only a few seconds, so parallelization of this code is not needed.
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3.1.2 bass

The bass program is used for construction of the basis set, which is formed using

DF orbitals for the core and valence shells, then adding virtual orbitals to account for

correlations. A reasonable basis set should consist of orbitals mainly localized at the

same distances from the origin as the valence orbitals [2]. This program reads in and

updates the file HDF.DAT. This program typically takes under a minute to run, so

parallelization of this code is not needed.

3.1.3 add

The add program constructs a list of configurations to define the CI space by

exciting electrons from a set of reference configurations to a set number of active non-

relativistic shells. It takes in the input file ADD.INP, which specifies the reference

configurations, active non-relativistic shells, and minimum and maximum occupation

numbers of each shell, and outputs the input file CONF.INP, which is subsequently used

by the programs basc, conf, and dtm. This program takes only a few seconds to

minutes to run, so parallelization of this code is not necessary.

3.1.4 basc

The basc program calculates one-electron and two-electron radial integrals,

which are used by the conf program to form the Hamiltonian in the CI space. The

one-electron radial integrals correspond to the HF potential of the core, and the two-

electron radial integrals account for the Coulomb and Breit interactions between the

valence electrons. The matrix element of the Coulomb interaction for the multipolarity

k can be written as [2]:

〈c, d|V k
q |a, b〉 ≡ Gk

q(ca)Gk
q(bd)Rk

abcd, (3.2)
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where the angular factors Gk
q(fi) (known as relativistic Gaunt coefficients) are given

by

Gk
q(fi) = (−1)mf+1/2δp

√
(2ji + 1)(2jf + 1)

 jf ji k

−mf mi q

 jf ji k

1/2 −1/2 0

 ,

(3.3)

and Rk
abcd are the relativistic Coulomb radial integrals, and δp accounts for the parity

selection rule:

δp = ξ(li + lf + k), ξ(n) =

{
1 if n is even,

0 if n is odd.
(3.4)

The Breit interaction has the same form as Eq. 3.2, but without the parity selection

rule (Eq. 3.4).

The basc program reads the file CONF.INP to determine which radial integrals

are needed, then calculates these integrals and writes them to the file CONF.INT. The

angular factors (Eq. 3.3) are stored in the file CONF.GNT. The file CONF.DAT is also

formed, storing the basis radial orbitals φnlj, as well as functions χnlj = hrDFφnlj, where

hrDF is the radial part of the Dirac-Fock operator.

The runtime of this code is only up to a few minutes for very small basis sets

(e.g. 7spdfg for Ir17+), but can take over an hour for large basis sets needed for CI+all-

order calculations (e.g. 22spdf18g for Bi−). This code produces output files measuring

up to a few GB. Parallelization of this code is not urgent, and may be done using

OpenMP in a future project.

3.1.5 conf

The conf program is based on the code described by Kotochigova and Tupitsyn

in 1987 [71], and modified by Mikhail Kozlov, Sergey Porsev, Ilya Tupitsyn, and An-

drey Bondarev. This program has been completely re-developed in this work. A major

effort was made to port the original serial program into a parallel program capable of

efficiently calculating atomic properties of much larger sizes. The parallel code now

allows for computations of atomic systems of sizes larger by a factor of 100. From the
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scaling tests done, we expect that much larger runs are also now possible on compu-

tational facilities outside the University of Delaware. We found great success in this

effort, enabling precision modeling of complex atoms not currently possible with any

other existing codes. The developments made in this program include modernization

and implementation of MPI parallelization, which is discussed in the later sections of

this chapter. One of the most significant problems to overcome was intrinsic to the

CI method: uneven workload, in which a single configuration may result in one deter-

minant or over 100 000 determinants, so a straightforward parallelization scheme has

very poor scaling performance. Moreover, the number of non-zero Hamiltonian matrix

elements vary drastically from case to case, and can not be adequately predicted. This

is exacerbated by the procedure used to create a list of configurations, which tends to

put simpler cases first.

The following are input and output files associated with conf:

Input Files:

� CONF.INP - List of relativistic configurations

� CONF.GNT - Relativistic Gaunt coefficients produced by basc

� CONF.INT - Relativistic Coulomb radial integrals produced by basc

� CONF.DAT - Basis radial orbitals φnlj and functions χnlj = hrHFφnlj, where hrHF is
the radial part of the Dirac-Fock operator

� SGC.CON - One-electron effective radial integrals of the MBPT/all-order correc-
tions

� SCRC.CON - Two-electron effective radial integrals of the MBPT/all-order correc-
tions

Output Files:

� CONF.DET - Basis set of determinants

� CONF.HIJ - Indices and values of the Hamiltonian matrix elements

� CONF.JJJ - Indices and values of the matrix elements of the operator J2

� CONF.XIJ - Quantum numbers, eigenvalues and eigenvectors of the Hamiltonian
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� CONF.RES - Final table of energy eigenvalues and the weights of all configurations
contributing to each term

The conf program solves the CI matrix eigenvalue problem,∑
J∈PCI

HIJCJ = ECI , (3.5)

for the atomic system of interest. The computational details of the conf program can

be summarized by the following:

1. Input - Read list of configurations, as well as other relevant parameters of atomic
system of interest, from CONF.INP and CONF.GNT. These parameters, as well as
keys for the run, are described in Ref. [2].

2. Init - Read basis set information from CONF.DAT.

3. Rint - Read radial integrals from CONF.INT.

4. RintS (optional) - Read in one-electron and two-electron effective radial integrals
of the MBPT/all-order corrections from SGC.CON and SCRC.CON.

5. Dinit - Form list of determinants.

6. Jterm - Print table with number of levels with given J .

7. Wdet - Write determinants to file CONF.DET for subsequent density/transition
matrix calculations.

8. FormH - Form CI Hamiltonian matrix (details below) and write it to CONF.HIJ.

9. FormJ - Form matrix of operator J2 and write it to CONF.JJJ.

10. Diag4 - Calculate low-lying energy eigenvalues and eigenvectors using Davidson’s
method of diagonalization (details below). Energy eigenvectors are written to
CONF.XIJ for subsequent density/transition matrix calculations.

11. Print - Print out table of energy levels and weights of configurations.

After the initialization of relevant atomic properties and parameters, the CI

Hamiltonian matrix H is formed in the FormH subroutine. We define several variables:

Nd is the total number of determinants, and Nc is the total number of configurations;

and array Iarr(1:Ne,i) is the basis set of determinants associated with the i-th

configuration.
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The computational details of the formation of the CI Hamiltonian matrix are

summarized as follows:

Loop index n over total number of determinants Nd.

Loop index ic over total number of configurations Nc.

1. Gdet - Generate n-th and k-th determinant and store them in arrays idet1
and idet2, respectively.

2. CompC - Compare the determinants idet1 and idet2 and determine the
difference between corresponding configurations icomp.

3. From the Slater-Condon rules described in Appendix A, if the number of
differences icomp exceed 2, then the matrix element will be 0. If icomp<=2,
continue to the next step. Otherwise, move on to the next determinant k+1.

4. Rspq - Compare the determinants idet1 and idet2, and determine the
number of differences between determinants nf, and the differing indices of
the determinants, i1, i2, j1, and j2.

5. Hmltn - Calculate the value of the matrix element, following Slater-Condon
rules described in Appendix A. If nf=2, the determinants differ by two func-
tions, and therefore there is only a single two-electron integral that needs to
be calculated. If nf=1, the determinants differ by one function, and therefore
there are Ne number of two-electron integrals, as well as a single one-electron
integral to calculate. If nf=0, the determinants are equal, and therefore
there are Ne*Ne number of two-electron integrals, as well as Ne number of
one-electron integrals to calculate. The one-electron integrals are calculated
by the subroutine Hint, with one-electron effective radial integrals of the
MBPT/all-order corrections calculated and added by the subroutine HintS.
The two-electron integrals are calculated by the subroutine Gint, with two-
electron effective radial integrals of the MBPT/all-order corrections added
in by the subroutine GintS. The values of CI Hamiltonian matrix elements
are computed, and the indices n, k, and value t of the matrix element are
stored to arrays H n, H k, and H t, respectively.

The FormH is the most expensive subroutine of the conf program. The challenge

here is the exponential growth of the number of possible configurations with increasing

number of valence electrons Nv, which exponentially increases the size of the CI Hamil-

tonian matrix, as well as the number of comparisons between determinants that has

to be done during the FormH subroutine. Depending on the atomic system of interest,

the user has to determine the size of the basis set, and the number of open shells used
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in the calculations, which is inevitably limited by the computational complexity of the

CI program. For complex systems, such as those with open d- or f -shells, the serial

program would not suffice to accurately describe the system of interest. Therefore, the

idea was to develop a parallel version of the CI code, as well as develop methods to

accurately determine the most important configurations for a system of interest. With

the parallel code, described later in Section 3.4, the size of the possible CI space has

been increased by a factor of 100 over previous possible systems. In the present time

(January 2021), the largest parallel CI runs executed have included about 150 million

determinants. Accurate determination of the most important configurations for differ-

ent systems remains an unsolved problem. Using CI+PT and the conf pt code, known

important configurations can be used to generate larger configuration sets, removing

configurations that do not contribute much to the final results. The largest CI+PT run

have included about 400 million determinants. This procedure can be automated for

systems with a few valence electrons, but creating an efficient and reliable algorithm

to do so for much larger systems requires a creative solution.

After the CI Hamiltonian matrix has been formed in the FormH subroutine, the

Diag4 subroutine iteratively computes the low-lying energy eigenvalues and eigenvec-

tors using Davidson’s method [1], as described in Section 2.1.9. We define several

variables: Nd0 is the number of determinants in the initial approximation, and Nc4 is

an input parameter that specifies the number of configurations in the initial approx-

imation. The parameter Nc4 can be increased to get a better initial approximation,

leading to faster convergence, but the time for diagonalization will also grow very fast.

It is typically better to put leading configurations at the beginning of the configura-

tion list, rather than increasing Nc4 too large. We diagonalize a block of a reasonable

dimension (Nd0, Nd0) and use respective eigenvectors as a starting approximation for

the Davidson iterative procedure.
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The computational details of the Davidson procedure are as follows:
Initialization:

1. Init4 - Construct the initial approximation by selecting the configurations spec-
ified by the Nc4 parameter. Nc4 also defines the number of determinants in
the initial approximation. The initial approximation Hamiltonian is stored in
the matrix Z1 and is constructed by selecting the top-left block of the full CI
Hamiltonian matrix H. The diagonal elements of H are stored in a separate array
Diag.

2. Hould - Diagonalize the matrix Z1 using Householder’s method [72].

3. FormB0 - Construct initial approximation eigenvectors stored in B1. The elements
of B1 in the initial approximation are chosen such that the first Nd0 elements are
eigenvectors of the matrix Z1, and all other elements are set to 0. The eigenvectors
are stored in an array ArrB of dimension (Nd, 3*Nlv), where Nlv is the number
of energy levels to be calculated. The array is broken into 3 partitions, each
with dimension (Nd, Nlv): the first partition ArrB(1) stores the eigenvectors
B1, the second partition ArrB(2) stores matrix-vector products H*B1, and the
third partition ArrB(3) stores the residual vectors.

Davidson iterative procedure:

1. Check for convergence

2. Ortn - Orthonormalize the eigenvectors B1 and store them in ArrB(1).

3. Mxmpy(1) - Evaluate matrix-vector products H*B1 for Nlv eigenvalues and store
them in ArrB(2).

4. FormP(1) - Form upper-left block of matrix P of dimension (Nlv,Nlv).

5. Average the diagonal Diag over configurations for first iteration.

6. Dvdsn - Form residual vector C and construct associated eigenvectors B1, storing
them in ArrB(2).

7. Ortn - Orthonormalize new B1 vector in ArrB(2).

8. Mxmpy(2) - Evaluate matrix-vector products H*B1 for new eigenvectors in ArrB(2)and
store them in ArrB(3).

9. FormP(2) - Form the other 3 blocks of matrix P of dimension (2Nlv,2Nlv).

10. Hould - Diagonalize the matrix P using Householder’s method.

11. FormB - Construct eigenvectors B2 for next Davidson iteration and store them in
ArrB(1).

12. Repeat from Step 1 until convergence criteria is met.
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3.1.6 dtm

The dtm program calculates matrix elements of one-electron operators between

many-electron states, under the density (or transition) matrix formalism. This for-

malism allows us to express the matrix elements between many-electron states via

one-electron matrix elements. The dtm program forms these reduced density (or tran-

sition) matrices and calculates the reduced matrix elements. The following quantities

can be calculated from this program:

� electronic g-factors

� magnetic dipole and electric quadrupole hyperfine structure constants A and B

� electric (Ek) and magnetic (Mk) multipole transition amplitudes, where k =
1, 2, 3 correspond to the dipole, quadrupole, and octupole transitions

� nuclear spin independent parity nonconserving (PNC) amplitude

� amplitude of the electron interaction with the P-odd nuclear anapole moment
(AM)

� P, T-odd interaction of the electron electric dipole moment

� nucleus magnetic quadrupole moment

The program begins by reading the file CONF.INP for system parameters and the list

of configurations. Next, basis radial orbitals are read from the file CONF.DAT, and

radial integrals for all operators are calculated and written to the file DTM.INT. If this

file already exists, dtm uses it and does not recalculate the radial integrals. For the

diagonal matrix elements, the list of determinants and the eigenvectors corresponding

to the state of interest are read from the files CONF.DET and CONF.XIJ, respectively.

For the non-diagonal matrix elements, the initial state is read from the files CONF.DET

and CONF.XIJ, and the final state is read from the files CONF1.DET and CONF1.XIJ.

The results of the diagonal and non-diagonal matrix elements are written to the files

DM.RES and TM.RES, respectively.

The runtime of dtm varies from a minute to hours or days, depending on the size

of the system. Significant work has been done on this code, including modernization

and parallelization. This process will be described in Section 3.4.3.
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3.1.7 All-order part of the package

The all-order portion of the code package consists of three programs, allcore-ci,

valsd-ci and sdvw-ci. These programs calculate corrections to the bare Hamiltonian

for the conf program due to core shells using a variant of the LCCSD method, described

in Section 2.1.11. A large number of terms in order-by-order MBPT are included by it-

eratively solving the all-order equations until sufficient numerical converge is achieved.

The allcore-ci program calculates core excitations, the valsd-ci program calculates

core-valence excitations, and the sdvw-ci program calculates valence-valence excita-

tions. In the future, these three programs would be restructured into a single program,

modernized and parallelized using MPI. An OpenMP version is currently under devel-

opment in our group, and an MPI version will be developed later in 2021.

3.1.8 MBPT part of the package

The MBPT portion of the code package consists of three programs, sgc, scrc,

and second-cis. These programs calculate second-order MBPT corrections due to

the core shells to the Hamiltonian. These programs calculate corrections to the bare

Hamiltonian for the conf program due to core shells using second-order MBPT, but

for a much larger part of the Hamiltonian than the all-order code. If the all-order

calculation was carried out, it will overwrite the second-order results where applicable,

drastically improving the efficiency of the method. The sgc program calculates one-

electron effective radial integrals for the operator Σ (Eq. 2.142), and writes them to

the file SGC.CON. The scrc program calculates two-electron matrix elements of the

operator Σ, and writes them to the file SCRC.CON. The total number of two-electron

diagrams may be very large, making the calculations much more time-consuming than

for the one-electron diagrams. A fast variant of the sgc/scrc programs was also

developed (second-cis), but it has more limited choice of the initial DHF potential.

The CI+all-order package uses this second-cis program.

The rpa program solves RPA equations [2], calculates radial integrals of the

effective operators and writes them to the files RPA n.INT, where n=1-13 numerates

85



one-electron operators, for use in the dtm program. The one-electron operators include:

1. A hf - magnetic dipole hyperfine constant

2. B hf - electric quadrupole hyperfine constant

3. E1 L - electric dipole transition amplitude in the length gauge

4. EDM - Parity (P)-odd, Time (T)-odd interaction of the electric dipole moment of
the electron

5. PNC - P-odd nuclear spin-independent parity-nonconserving interaction

6. E1 V - electron dipole transition amplitude in the velocity gauge

7. AM - P-odd nuclear spin-dependent parity-nonconserving interaction, or the in-
teraction with the P-odd nuclear anapole moment

8. MQM - P, T-odd interaction with the magnetic quadrupole moment of the nucleus

9. M1 - magnetic dipole transition amplitude

10. E2 - electric quadrupole transition amplitude

11. E3 - electric octupole transition amplitude

12. M2 - magnetic quadrupole transition amplitude

13. M3 - magnetic octupole transition amplitude

3.1.9 conf pt

The conf pt program is an optional extension program that was not published

with the standard CI+MBPT package. This code is used primarily in more complicated

cases, such as atoms with more than 6 valence electrons or systems with holes in

filled shells. It uses perturbation theory to quickly treat a much larger number of

configurations than conf can, then analyzes the weights of each configuration and

selects the most important configurations for a full conf run, with configurations of low

weights removed from the configuration list. For these complex systems, conf/conf pt

is used to treat outer-core electrons, by allowing single and/or double excitations from

as many core shells as needed to achieve convergence. One caveat to using this program

is that the basis set should be diagonalized for efficient usage.
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In the CI+MBPT method, the valence electrons are treated with CI, and the

core-valence and core-core correlations are treated with MBPT. This method is very

effective for atomic systems with a low number of valence electrons (1-3), where the

valence CI space is not very large and can be easily saturated. However, for an increas-

ing number of valence electrons, the size of the valence CI space grows exponentially

and becomes impossible to solve the full CI problem. In this case, we can split the

valence space into a smaller subspace for CI, and account for the corrections from the

complementary valence space using second order Møller-Plesset (MP2) perturbation

theory, as discussed in Section 2.1.12.

There are two main benefits acquired from using valence PT. First, we can use

MP2 corrections to form an optimal CI subspace within the full valence space. This

is done by first starting with a small CI space and calculating MP2 corrections for

the rest of the valence space. The configurations that take part of this calculation

are then weighted in the first order correction to the wave functions and re-ordered

such that the CI subspace is filled with configurations with higher weights. Finally,

we can repeat the CI procedure with this optimized CI space and then recalculate

MP2 corrections for the rest of the valence space to improve our approximation. This

procedure can be repeated until MP2 corrections decrease and results are obtained

with good convergence.

The program begins the same way conf begins, reading in several input pa-

rameters and the list of configurations stored in the file CONF.INP, the basis set from

CONF.DAT, and radial integrals from CONF.INT. The basis set of determinants is formed

as it was done in conf. Next, the CI eigenvectors are read from CONF.XIJ, and weights

of non-relativistic configurations are calculated for the CI eigenvectors. PT eigenvec-

tors are then read from CONF.XIJ, and the Hamiltonian in PT space is constructed in

two parts: the diagonal part and the non-diagonal part. Weights of the non-relativistic

configurations are then calculated for the PT corrections, and configurations below a

specified weight are removed. The remaining configurations with significant weights

are sorted and written out to a new input file CONF new.INP, which has the same form
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as CONF.INP. This new CONF new.INP file can be renamed CONF.INP, then subsequently

used for a better approximation for the energy levels. conf pt and conf can be ran

repeatedly until the energy levels converge.

The runtime of conf pt is similar to the runtime of conf, from a few minutes

to several days depending on the number of valence electrons and the size of the basis

set. Parallelization of this code was completed and is described in section 3.4.2.

3.2 Modernization of codes

The initial version of the CI/CI+MBPT/CI+all-order codes was developed with

Fortran 77. For the first time, we try to take advantage of modern technologies and

methodologies, such as applying parallelism with high performance computing (HPC).

Common pre-F77 and F77 code hurt readability due to their COMMON blocks, implicit

variables, arithmetic IF statements, and GOTO statements in place of DO loops.

The codes conf, conf pt, and dtm were modernized in this work. We converted

old Fortran 77 (F77) codes to Fortran 90 (F90), using modern design practices with the

intent of optimizing and refactoring our code. Some of the major changes of the code

include the removal of COMMON blocks, the removal of implicit variables, replacing old

logical operators with modern notation, addition of modules to encapsulate logically

related code, and refactoring from old fixed-style to modern free-form format.

The strategy is as follows. First, we add implicit none to each subroutine and

fix every compile error. This removes all implicit variables from our code, which will

be necessary for removing COMMON blocks. This process is very time consuming, but

necessary. Next, we move all variables and arrays from COMMON blocks to modules.

We do this to prevent having identical data in areas where they do not belong, and

make sure no two variables are named the same thing. We use modules to package all

physical constants and parameters together in a single file called variables.f90. We

do the same with the ”main” subroutines, packaging them in another module ending

with aux.f90. The goal is to have many, small, self-contained files.
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Manually refactoring the code itself will also be a time-consuming process. To

refactor the code itself, we would have to go through every subroutine and convert

arithmetic IF statements to standard IF... ELSEIF... ELSE blocks, convert all

GOTO’s to select case blocks or DO loops, convert all DO loops to modern syntax, and

convert equivalenced common block members to allocatable memory, allocated in a

module. Refactoring and modernization is done in conjunction with running the old

F77 code to ensure there are no differences in the final result between each version.

Most of the debugging is done due to overlooking miscasted variables, e.g. setting a

double precision variable to be real.

Dynamic allocation was done to remove the requirement of user input in defining

array parameters and optimizing memory requirements, greatly improving the user

experience. In the old F77 version of the code, users of the program would have to define

the array parameters then recompile the program before each calculation. This also

created issues of incompatibilities of old data files. After extended calculations, users

would have files that could not be used since they do not know what parameters they

were compiled with. There were several disadvantages with the way array parameters

were dealt with. In the F77 version, several parameters (IP4, IPs, etc.) were defined to

determine the size of several arrays in COMMON blocks. If a parameter for an array was

set too low, then a segmentation fault would occur during code execution, requiring the

user to re-define the array dimension parameters, re-compile the program, then re-run

the calculation. If a parameter for an array was set too high, then there is a possibility

that the required memory for the run would be too high, causing the program to stop

before it finished. In this case, one would have to re-submit the job with more memory,

or lower the array size. In order to avoid these issues, we attempt to remove all large

array dimensions from the program, and have the code calculate exactly how much

memory each array should have during code execution. With the modern F90 version

of the code, the program calculates the exact required array sizes and allocates exactly

enough memory for most arrays.
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3.3 Memory requirements

The limit to the size of systems that can be ran with conf will depend on the

memory requirements of the program. For this reason, it was be essential to study

the data structures again and try to minimize memory allocations. The serial version

of the code utilized pre-allocated arrays with sizes set by specific parameters. In the

Modern Fortran standard, it is best practice to implement dynamic allocations for all

arrays.

The total memory requirements for the any program can be calculated by adding

the sizes of all arrays. In the case of conf, this can be estimated roughly by the 3 largest

arrays, Iarr, ArrB, H me, and J me, where me refer to the indices and value of the matrix

elements. Iarr is an array storing the basis set of determinants, ArrB is an array storing

eigenvectors, matrix-vector products, and residual vectors in the Davidson procedure,

and H me and J me stores the matrix elements of the Hamiltonian and the operator

J2, respectively, in each core. Iarr stores int*4 elements in a Nd×2Ne dimensional

array, where Nd is the total number of determinants and Ne is the total number of

valence electrons. ArrB stores double precision in a Nd×Ne dimensional array. H me

and J me stores int*4 indices n and k for each determinant pair resulting in non-zero

matrix elements, and the double precision value for the non-zero matrix element.

int*4 is stored with 4 bytes, and int*8 and double precision are both stored with

8 bytes.

The total memory required by Iarr is then calculated to be 8×Nd×Ne. The

total memory required by ArrB is also 8×Nd×Ne. The total memory required for H me

and J me is calculated to be 16×num me, where num me is the total number of non-zero

matrix elements. Therefore, the conf program requires about 16×Nd×Ne+16×num me

bytes of memory, where num me include matrix elements for both H and J2. Note that

Iarr, ArrB, and J me are arrays that must be available on all cores, while the H me

array can be split among cores. For this reason, each core requires memory from Iarr,

ArrB, and their chunk of H me.

By studying the conf program more carefully, we realized that Iarr is only used
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for the first half of the program setting up the formation of the Hamiltonian matrix,

and ArrB is only used for the second half of the program in the Davidson procedure.

For this reason, using dynamic allocation will reduce the amount of memory required

for the conf program by 8×Nd×Ne. Effectively, all cores will require just the amount

of memory for Iarr/ArrB and their chunk of H me.

The largest parallel run done for this work involved a total number of determi-

nants Nd=66M, a total number of valence electrons Ne=60, a total number of Hamiltonian

non-zero matrix elements H num me=100B and a total number of J2 non-zero matrix

elements J num me=987M. Here, M refers to a million, and B refers to a billion. From

this run, we can calculate the total per-core memory requirement using 310 cores to be

about 40 GB. This is nearly the largest computation that we can currently run in our

group with UD Caviness cluster resources of 12.7 TB of memory. Larger problems will

need to be run on other large-scale computational facilities. Note that the total number

of matrix elements is computed within the formation of the Hamiltonian matrix and

the formation of the operator J2 and is not known before the program is initialized.

Further optimizations to memory can be made and will be looked into more deeply in

the future.

3.4 Parallelization of codes

So far, we’ve discussed modernization of some programs in the code package.

Next, we implemented MPI parallelization for three of the CI+MBPT code package’s

major programs: conf, conf pt and dtm. The parallelization schemes utilized depends

on the structure of the problematic or time-consuming loops in the code. They will be

discussed for each code in the next few sections. For each code, there are typically 3-4

blocks of these code that have to be parallelized. MPI calls have to be made to ensure

that each core has the required global variables and arrays for subsequent calculations

done by the parallelized blocks of code. To validate the final results, we simply compare

our results from the parallel version to the results of the serial version. Speedup tests

are also done using the timing data extracted from final testing runs. Specific details
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regarding the MPI library and subroutines used in this work can be found in several

textbooks and references [73][74]. We have outlined several essential MPI subroutines

in Appendix D.

3.4.1 conf - the CI code

The parallelization of conf can be broken into 5 major problems:

� Modernization

� Formation of CI Hamiltonian matrix

� Formation of J2 matrix

� Davidson procedure

� I/O of matrix elements

� Inclusion of MBPT/all-order

We start this process with the bare serial conf program, without any subroutines

that involve the all-order or MBPT parts. The MBPT/all-order sections of the code

are added in after the main portions of the code is parallelized.

3.4.1.1 Formation of CI Hamiltonian matrix

The formation of the CI Hamiltonian matrix is the most computationally expen-

sive algorithm in the conf program. The computational complexity of the calculation

of CI Hamiltonian matrix elements stems from the differing number of comparisons

done in the algorithm. The initial brute force algorithm is as follows: since the Hamil-

tonian is symmetric, we only need to calculate half of the entire matrix. Allowing

index n to run through rows and index k to run through columns, we only need part

of the Hamiltonian where 1 ≤ n ≤ Nd and 1 ≤ k ≤ n. In this case, the total number

of matrix elements is Nd2/2, where Nd is the total number of determinants. However,

many matrix elements will be reduced to zero when determinants differ by more than

two electrons. This is due to the Slater-Condon rules, which are described in Appendix

A. The Rspq subroutine compares determinants and returns the number of differences

and the indices of differing orbitals. We split up the inner loop over determinants
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into two (over Nc, the number of configurations and kx, the number of determinants

associated with a configuration). If it finds more than two differences, then nothing

has to be done and it continues to the next pair of determinants. If the determinants

belong to the configurations, which differ by more than two electrons, then it skips

the whole configuration in the inner loop and jumps to the next one. The non-zero

matrix elements are saved to memory and optionally to disc. In the F77 version of the

code, we save an integer*8 counter, the pair of integer*4 indices, and the double

precision value of the matrix element. In total, this requires 24 bytes of memory per

non-zero matrix element. In the modern version, we do not save integer*8 counter,

reducing the memory required per core to 16 bytes per number of non-zero zero matrix

elements, saving 33% of the memory requirements of the matrix elements.

In an initial brute force attempt of parallelizing the matrix element calculations,

the outermost loop over Nd was distributed evenly across many cores (dividing Nd by

npes, the total number of cores). While this did give a significant speedup with the

amount of cores, it was severely limited due to an uneven workload distribution of

matrix elements to each core. Cores assigned to the first blocks of the determinants

had very few non-zero matrix elements and would finish very quickly while cores as-

signed the last blocks of determinants had many non-zero matrix elements and would

take much longer. This uneven workload distribution eventually leaks through to the

Davidson procedure. Since matrix elements have to be read for multiplication later

in the program, each core would have big differences in the number of matrix ele-

ments they had to multiply. One way of combating this problem is by separating the

Hamiltonian problem into two stages: a comparison stage to evenly distribute the total

number of non-zero matrix elements, and a calculation stage to calculate the values of

the non-zero matrix elements.

In the second implementation of MPI, the computational workload is first com-

puted at the comparison stage. Here, we loop through all pairs of determinants for

the total number of non-zero matrix elements. Once the total number of non-zero

matrix elements is obtained, we divide the total workload by the number of cores, then
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assign each core a starting index and an ending index for the outer loop determinant.

This resulted in a more even workload distribution, which also accelerated the David-

son procedure utilized towards the end of the program. Each core allocates enough

memory to hold their total workload, then the calculation stage begins. In the calcu-

lation stage, each core calculates an approximately equal number of non-zero matrix

elements. However, we found that due to the nature of the problem, the calculation of

each matrix element takes a different amount of time since each calculation depends

on different numbers of comparisons. Because of this, it was not possible to perfectly

distribute the workload evenly across all cores in matrix elements and time. With this

implementation, an average speedup of about 50% was attained.

In another attempt to parallelize the Hamiltonian calculation, we introduce an

nk array that stores the n, k pairs of indices with non-zero matrix elements in memory

during the comparison stage. The nk matrix is populated during the comparison stage

where non-zero matrix elements are found and require very minimal computation time.

It is then duplicated to all cores, since it is not known which core will be assigned

which determinants yet. Once each core has a copy of the nk matrix, each core will

loop through their assigned range of n indices and calculate matrix elements where

the n, k pair is non-zero. This is then used to drastically accelerate the calculation

stage, reaching an average speedup of about 80%. However, the required memory

of this method was beyond the scope of the group’s currently accessible clusters and

supercomputers so the idea was scrapped. The total memory required for the nk matrix

is about 4×Nd×Nc, where Nd is the total number of determinants and Nc is the total

number of configurations. The test case of a small CI space had Nc=481 and Nd=15510,

resulting in a required memory of about 30 MB. The largest system tested with the nk

array was with Nc=24895 and Nd=17431323, which resulted in a required memory of

about 1.74 TB. This is not feasible for a final implementation since our group wants

to be able to achieve much larger system sizes in the future.

One major issue we ran into when developing the parallel version of FormH

was the size limitations of MPI restricting runs for large CI spaces. The limit during
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this development phase was 2 billion non-zero matrix elements. This was due to the

limitation of MPI message passing, where only a message of size 2 GB could be sent at

once. In order to work around this, we had to find the right MPI subroutines to work

with. The main problem was the use of the MPI Gatherv subroutine, which required

displacements, which go beyond the size int*4. One possible workaround is to replace

these statements with MPI AllReduce statements, sending required arrays to each core.

The problem here is that this requires twice as much memory as before.

In the latest implementation, instead of dividing the outer loop of determinants

into blocks like the previous methods, we split the total number of determinants based

on their respective core ID mype. Each core is assigned determinants mype+1, 2*mype+1,

. . . , until Nd is reached. For example, with 4 cores and 13 determinants, core 0 would

be assigned determinants n=1,5,9,13, core 1 with n=2,6,10, core 2 with n=3,7,11,

and core 3 with n=4,8,12. Besides the new determinant assignment scheme, we also

introduce so-called ”chunks” to store non-zero matrix elements in dynamically allo-

cated arrays. Each core has an array that accumulates each index and value of the

matrix element in chunks, defined by the vaGrowBy parameter. This has a couple of

advantages over the previous methods. First, the determinant assignment gives a very

even workload distribution among the cores in terms of the number of saved non-zero

matrix elements. The problem of uneven distribution due to blocks of determinants

having varying numbers of non-zero matrix elements is resolved since each core takes a

part of each block of determinant, however the problem of uneven distribution in time

still persists, although it is reduced here. By dynamically allocating the arrays storing

the indices and values of the non-zero matrix elements, each core will have exactly

the amount of memory required. The main disadvantage of this method is that each

core does not hold successive matrix elements, and therefore, the Davidson procedure

becomes slower since arrays are not read successively during multiplication. Note that

generally, the Davidson procedure takes much less time than the construction of the

Hamiltonian matrix, so this was an acceptable trade off.
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3.4.1.2 Formation of J2 matrix

The formation of the J2 matrix is done in a similar way to the formation of

the Hamiltonian matrix. The subroutine FormJ follows a 3-loop structure. The outer

loop ranges over the number of configurations, and the middle loop and inner loop

range over the number of determinants associated with each configuration. The 3-loop

structure is written in a way to skip configurations that will not contribute a non-zero

matrix element, in a similar way to how it is done in the FormH subroutine. Since the

outer loop ranges over the configurations and not the determinants, it will be necessary

to make sure each core begin their work with the correct determinant indices. Thus,

a preliminary count of the number of determinants per configuration is done for each

core for their individual workload.

The current method of dividing the workload is by distributing the workload

in equal areas. As with the Hamiltonian matrix, the J2 matrix is also symmetric.

Therefore, we consider a triangle with equal sides Nc. The total workload is the area

of this triangle Nc*Nc/2, and the workload per core is Nc*Nc/(2*num cores). How-

ever, note that each matrix element here requires a vastly different amount of work to

compute due to different numbers of comparisons leading to non-zero matrix elements.

This results in a heavily uneven workload distribution. There are plans to optimize

this subroutine, but since it is much smaller compared to the FormH subroutine, it is

not as important. Since the master core requires all matrix elements for use in the

Davidson procedure, a reduction is done to the master core, and the master core writes

out CONF.JJJ serially.

3.4.1.3 Davidson procedure

The most expensive subroutine in the Davidson procedure is Mxmpy, so this was

the only subroutine that was parallelized. In the Mxmpy subroutine, there is a single

loop through each core’s non-zero matrix elements for multiplication. In the Fortran

77 variant, this loop iteratively reads in the matrix elements from the CONF.HIJ file.

In the modernization and parallelization processes, we remove the I/O since non-zero
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matrix elements are stored in memory, and parallelize the loop by allowing each core

to loop over the matrix elements they have stored from the FormH subroutine.

In the latest version of the parallel FormH subroutine described in the previous

section, the total number of non-zero matrix elements is evenly distributed between

all cores, but the successive indices have gaps determined by the number of cores.

The number identifier, pair of indices, and the value of the non-zero matrix element

is stored in arrays for each core in memory. Since the information for the CI matrix

is already stored in memory and is readily available, Mxmpy no longer requires reading

CONF.HIJ files, so it has been discarded. Each core reads matrix elements from memory

for multiplication. The multiplications are done and stored in a new array called

ArrB, which is then reduced using MPI Reduce for the master core to do subsequent

calculations.

The parallelization procedure for this is very simple since the workload was

already distributed in the previous FormH subroutine. The matrix elements calculated

by each core are saved in memory for each core to be re-used in the Mxmpy loop. In

this way, matrix-vector multiplications are done in parallel by each core. This is done

very efficiently since workload has been evenly distributed among cores.

3.4.1.4 I/O

The new parallel version of conf does not rely on file input and output (I/O)

for any of the calculations. Subroutines such as Init4 and Mxmpy, which involve the

calculated matrix elements previously stored in CONF.HIJ files, now utilize the matrix

elements stored in memory. This is faster since there is no time wasted in I/O. However,

this does require higher memory consumption due to storage of matrix elements. The

required memory to store the CI Hamiltonian matrix and the J2 matrix is given by

MemH,J = (4n + 4k + 8t)× num me, (3.6)

where 4 and 8 represent the amount of memory required in bytes, n and k are the indices

for the non-zero matrix element, t is the value of the matrix element represented in
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double precision, and num me is the total number of matrix elements.

With the removal of all CONF.HIJ reading dependence from the conf code, a new

key Kw has been added. Kw can take either one of two values: 0 or 1. If Kw=0, CONF.HIJ

will not written, and if Kw=1, CONF.HIJ will be written. The main advantages of this

key are the following:

� If CONF.HIJ file does not need to be written for any reason, I/O can be completely
eliminated from the execution by setting Kw=0, allowing for significant speedup
of the code by removing potential writing of 1 GB – several TB files.

� If CONF.HIJ file is required for any reason, it can easily be obtained by setting
Kw=1. This will require several minutes depending on the size of the CI matrix.
Writing CONF.HIJ was a major computational bottleneck as previous version
wrote CONF.HIJ serially. The latest version of the code utilizes MPI I/O to write
a single CONF.HIJ file in parallel. Depending on the size of the constructed CI
Hamiltonian matrix, the CONF.HIJ file is typically written to a HPC system’s
large-scale parallel distributed file system, such as Lustre [75].

A key kXIJ has been added to define the intervals in which the wave functions

are written to the file CONF.XIJ. If kXIJ=1, the CONF.XIJ file will be written every

Davidson iteration, and if kXIJ=10, it will be written every 10 iterations. This is to

reduce the total amount of serial writing of the file to a minimum to save computation

time. From the parallelization of conf, some subroutines in the Davidson procedure

were rewritten to utilize data stored in memory instead of in disc, including data

stored in CONF.XIJ. This removed all serial reads from the program, and with the

limited amount of serial writes, this resulted in a noticeable speedup for large runs.

3.4.1.5 Inclusion of MBPT/all-order corrections

Re-implementing the MBPT/all-order portion of the conf program simply re-

quired adding in two subroutines RintS and FormD, which were left out during the

initial modernization and parallelization procedures. Most of the time spent on adding

MBPT/all-order capabilities were on modernizing and fixing data structure compati-

bility when removing the COMMON blocks.
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In addition to making MBPT/all-order compatible, memory requirements were

increased due to the large number of additional integrals from new input files SRC.CON

and SCRC.CON. The arrays storing these integrals have been designed with dynamic

allocation, so when MBPT/all-order is not required, the program does not allocate any

memory for them. Results for MBPT/all-order calculations were compared between

serial and parallel versions of the code and were found to be identical.

3.4.1.6 Achieved performance of parallelization

The performance of the parallel conf program was tested with calculations for

the Ir17+ ion. Our speedup tests are done for a small system with only the 4f shell

open with small [7spdfg] basis set. These calculations include Nv=14, Nc=2351, and

Nd=636892. In Table 3.1, we compare runtimes of the FormH and Diag4 subroutines

for varying number of computing cores. For the FormH subroutine, we found that while

there is an 80% speedup found going to 50 computing cores from the serial code, the

parallel code scales perfectly linearly with increasing number of cores. One of the main

bottlenecks of parallel code is the communication overhead, where data will need to be

shared between processors for coordination. This communication between processors

adds additional runtime, and may be the main reason for the imperfect scaling from

1 to 50 cores. The parallel code has been tested up to 550 cores, resulting in nearly

perfect linear scalability for small systems. For the Diag4 subroutine, which realizes

the Davidson algorithm, we do not find great scalability since only the matrix-vector

product subroutine Mxmpy was parallelized, and a large majority of the procedure is

left serial. Since the Davidson procedure typically does not run as long as the FormH

subroutine, the performance of the Diag4 subroutine was deemed sufficient for our

problems, leaving better optimization as a future project.

In Table 3.2, we compare runtimes of the FormH and Diag4 subroutines for

a much larger system. Here, the test system is Ir17+ with 4f , 4d, and 4p shells

open with larger [8spdfg] basis set. These calculations include Nv=30, Nc=24895, and

Nd=17431323. Comparing large runs to the base N=50 case, we see that there is still
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Table 3.1: The runtime of subroutines FormH and Diag4 of the parallel conf program
for increasing number of compute cores and the speedups of the parallel
code are presented in seconds (s) for increasing number of cores N, relative
to the serial code (N=1), as well as N=50. These small test runs were done
with Ir17+ with 2351 relativistic configurations and 6.3×105 determinants.
Note that the total times include all serial subroutines outside of FormH

and Diag.

runtime (s) speedup (from N=1) speedup (from N=50)
N FormH Diag4 total FormH Diag4 total FormH Diag4 total
1 7097 288 7407 1 1 1 - - -
50 179 38 229 40 8 32 1 1 1
100 91 23 126 78 13 59 2 1.7 1.8
150 61 17 90 116 17 82 3 2.2 2.5
200 47 14 73 151 21 101 4 2.7 3.1
250 38 13 63 187 22 118 5 2.9 3.6
300 32 12 55 222 24 135 6 3.2 4.2
350 27 9 49 263 32 151 7 4.2 4.7
400 23 10 47 309 29 158 8 3.8 4.9
450 22 10 45 323 29 165 8 3.8 5.1
500 20 9 43 355 32 172 9 4.2 5.3
550 17 9 39 417 32 190 11 4.2 5.9

near perfect linear scalability up to 500 cores for the FormH subroutine, but see very

small increased performance for Diag with 200 to 500 cores. Again as with the small

system, the Davidson procedure takes much less time compared to the formation of

the CI Hamiltonian, so the total computation time is not completely hindered by the

performance of Diag, and we still see a modest total performance gain.

3.4.2 conf pt - the valence PT code

Of the many subroutines in the conf pt code, two subroutines: DiagH, which

calculates the diagonal, and PTE, which calculates off-diagonal matrix elements, dom-

inate in term of computational time and resource consumption, taking about 90% of

the whole run time. These two subroutines are the main subjects of the MPI par-

allelization procedure. In order to parallelize both subroutines, we must first divide

the total workload between the number of cores available. The entirety of the code is
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Table 3.2: The runtime of subroutines FormH and Diag4 of the parallel conf program
for increasing number of compute cores and the speedups of the parallel
code are presented in seconds (s) for increasing number of cores N, relative
to the code ran with 50 cores (N=50). These large test runs were done with
Ir17+ with 24895 relativistic configurations and 17.4 × 106 determinants.
Note that the total times include all serial subroutines outside of FormH

and Diag.

runtime (s) speedup (from N=50)
N FormH Diag4 total FormH Diag4 total
50 22571 1343 24218 1 1 1
100 12843 1514 14593 1.8 0.9 1.7
200 5800 957 6927 3.9 1.4 3.5
300 3810 678 4610 5.9 2.0 5.3
400 2913 596 3646 7.8 2.3 6.6
500 2292 535 2958 9.9 2.5 8.2

ran by a master code and then forks for the duration of the diagonal and off-diagonal

calculations; i.e. the code forks when it reaches the subroutine that calculates diago-

nal matrix elements then joins back when the calculation is complete, and the same

is done for the calculation of the off-diagonal matrix elements. A fork refers to the

master core splitting its workload to a number of cores, each working on a piece of the

program simultaneously, and a join refers to when the individual cores are done work-

ing and the results are passed back to the master core. This is done differently for each

subroutine, where the diagonal part is more straightforward due to comparing same

determinants of the Hamiltonian matrix and the off-diagonal part is more complex due

to it comparing different determinants.

3.4.2.1 Diagonal part of the Hamiltonian

The DiagH subroutine is responsible for computing the diagonal elements of the

Hamiltonian matrix and storing the results in an array. This is parallelized by splitting

a single sum over relevant determinants into many different parts; i.e. we are splitting

a single loop into multiple loops depending on the number of cores available. To do

this, we give each core a starting and ending value of the loop and let them do their
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respective workload simultaneously until they are all done. When they are all done,

each core must report its results to the master core using the MPI functions, specifically

MPI Gatherv, which takes in the individual sections of resultant array, computed by

each individual core, and sends them to the master core.

3.4.2.2 Off-diagonal part of the Hamiltonian

The PTE subroutine computes all of the off-diagonal elements that are necessary

to calculate MP2 corrections by looping through each configuration and the possible

determinants, instead of traversing through the off-diagonal matrix elements by row

and column. The main difference between the computational part of this code with

the diagonal is that this subroutine has two main loops: an outer loop that traverses

through the list of non-relativistic configurations, and an inner loop that traverses the

number of determinants within each non-relativistic configuration. Several schemes

were attempted to parallelize these loops and will now be discussed.

The first parallelization scheme attempted to split the outer loop into equal

portions for each core to work on. This worked well for very small numbers of cores of

about 1 to 8, but we quickly found that the speedup was not scalable to higher core

counts. This was due to the varying number of determinants in each configuration, i.e.

each configuration holds a different number of determinants so some cores had very

little work to do while others had a lot more work to do. To take into account this we

tried another scheme, where we evenly distribute the number of determinants between

the cores.

The second scheme starts by first counting the total number of determinants

in each individual configuration. Once this has been counted, the outer loop is split

unevenly among the cores, but in such a way that the total number of determinants

stayed relatively the same for each individual core. This worked very well for a modest

number of cores of about 1 to 16. However, we quickly found that this also had a

scalability issue when we tried to go up to 40+ cores. The main problem here was

that we were trying to distribute the outer loop into equal workloads, but there are

102



some configurations that have such a big number of determinants that it would take

more time to finish than cores that were required to take a sum of determinants that

was less than the configuration with a high number of determinants. For example, if

the total number of determinants is Nd=135M, and we want to split this into 100 cores,

then we would need each core to work with, say 1.35 million determinants. However,

since we parallelize the outer loop, there will eventually be cores that are working with

a single configuration with maybe about 3 million determinants. The other cores with

1.35 million determinants will finish and they would have to wait for the last core with

3 million determinants. The other issue with this is that the number of iterations for

the outer loop is a lot less than the number of iterations in the inner loop, i.e. we will

not be able to scale this problem to much higher core counts of say 1000. If the total

number of configurations in the PT space is less than the total number of cores, then

there will be cores that will sit idle. This was the major bottleneck of this version

of parallelization. In order to develop an algorithm to efficiently parallelize the total

workload of both loops, we had to develop a method of parallelizing a 2-dimensional

array with varying sizes as the second index. We then tried another parallelization

scheme, which parallelizes the inner loop instead of the outer loop; i.e. splitting the

workload for each individual configuration.

The current parallelization scheme also involves first counting the total number

of determinants in each individual configuration. However, this time we work serially

with the outer loop and parallelize only the inner loop. During the outer loop iterations,

which is running in serial, we distribute the inner loop to multiple cores evenly and

allow the cores to calculate the contributions of the single non-relativistic configuration

and the first order eigenvectors. This method is similar to running the diagonal portion

of the code inside another loop. After each core has completed their workload, we sum

over all contributions to the energy correction from each core and gather all first order

eigenvectors. By parallelizing the off-diagonal code this way, we avoid situations where

some cores would have too much work to do, while others would sit idle. Instead, all

cores are now able to work equally through the entire two-loop process. This scheme
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Table 3.3: Left: Diagonal and off-diagonal run times in seconds (s) correspond to
the time it takes to calculate all diagonal and non-diagonal elements of
the Hamiltonian in the PT space, respectively. This also includes message
passing times in the MPI procedures. The total run time is the total
time it takes to complete both diagonal and off-diagonal run times. The
total runtime of the conf pt code adds a couple of minutes to the total
time. Right: The speedups of the parallel code relative to the serial code
(N=1). Speedups are presented for different number of cores N=1, 20, 40,
100, 200. This run is done with Ir16+ with 14318 relativistic configurations
and 83× 106 determinants.

Ir16+ runtime (s) speedup

N diag off-diag total diag off-diag total
1 539.7 2161.98 2878.24 1 1 1
20 36.64 111.31 147.95 19.55 19.42 19.45
40 19.32 55.73 75.05 37.07 38.79 38.35
100 8.18 23.21 31.39 87.56 93.15 91.69
200 4.59 12.85 17.44 156.05 168.25 165.04

has given us by far the best speedup, with speedups close to the number of cores for

low numbers of cores and rounding off at higher core counts.

The main complication of these parallelization schemes was how to pass the

results from each individual core to the master core. Passing the results from each

individual core to the master core is done via the use of the MPI Gatherv subroutine.

This had to be done to send the individually calculated first order eigenvectors to the

master core. MPI Gatherv takes in an array of some size and data structure from

each core and sends them individually to some node. The complication is with its

requirement of two extra arrays, an array of the sizes of each array sent and an array

of the displacements from the receiving buffer at the master code.

3.4.2.3 Achieved performance of parallelization

The MPI parallelization of conf pt has been tested up to 15-valence electron sys-

tems. The number of electrons in the system significantly increases total computation

time and required resources. The main tests were done with Ir16+, a highly-charged ion
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Table 3.4: Left: Diagonal and off-diagonal run times in seconds (s) correspond to
the time it takes to calculate all diagonal and non-diagonal elements of
the Hamiltonian in the PT space, respectively. This also includes message
passing times in the MPI procedures. The total run time is the total
time it takes to complete both diagonal and off-diagonal run times. The
total runtime of the conf pt code adds a couple of minutes to the total
time. Right: The speedups of the parallel code relative to the serial code
(N=1). Speedups are presented for different number of cores N=1, 20, 40,
100, 200. This run is done with Ir16+ with 25588 relativistic configurations
and 135× 106 determinants.

Ir16+ runtime (s) speedup

N diag off-diag total diag off-diag total
1 922.68 5243.18 6165.86 1 1 1
20 57.10 331.50 388.60 16.16 15.82 15.87
40 31.20 166.51 197.71 29.57 31.49 31.19
100 12.54 68.52 81.06 73.58 76.52 76.06
200 6.71 36.62 43.33 137.51 143.18 142.30

with one hole in the 4f shell. Among the highest number of relativistic configurations

and determinants tested so far, however, Ir17+ with 75446 configurations and 391×106

determinants took about 14 hours to run with 80 cores. In Table 3.3, computational

run times of conf pt are shown with different amounts of resources. Ir16+ was tested

here with 14318 relativistic configurations and 83× 106 Slater determinants. N repre-

sents the number of cores utilized in the computation, and if available, greatly speeds

up the run time. Table 3.4 presents the computational run times testing Ir16+ with

25588 relativistic configurations and 135 × 106 Slater determinants. From the results

of both tests, we see that increasing the size of the valence space (number of configu-

rations and determinants) also decreases the amount of speedup. This is mainly due

to the amount of message passing that is done within the code.

3.4.3 dtm - the density (transition) matrix code

As with the conf and conf pt programs, the first objective before parallelization

was to create a working modern F90 version and to validate the final results with those
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of the old F77 version. Dynamic allocation has also been implemented for the main

arrays in the program, to optimize memory requirements. With the dtm program,

there are two major functionalities that need to be parallelized: the formation of the

density matrix and evaluation of the expectation values, and the formation of the

transition matrix and evaluation of the amplitudes. The DM part of the code and TM

part of the code each require all cores to store all wave functions and determinants.

The DM part requires same parity determinants and wave functions stored in the

files CONF.DET and CONF.XIJ, respectively, whereas the TM part requires opposite

parity determinants and wave functions stored in the files CONF.DET and CONF.XIJ,

and CONF1.DET and CONF1.XIJ, respectively. The parallelization of these parts differ

since the loop structure is different between the two subroutines, FormDM and FormTM.

3.4.3.1 DM - density matrix

The FormDM subroutine calculates the density matrix elements and expectation

values. Wave functions and determinants from same parity states are first read from

CONF.XIJ and CONF.DET. The loop structure of FormDM involves a 4-loop structure, but

it can be thought of as two optimized loops: an outer loop that goes over configura-

tions associated with the final state, and an inner loop that goes over configurations

associated with the initial state. We split the total workload by splitting the outer loop

into intervals of size Nc/num cores, where Nc is the total number of configurations as-

sociated with the determinants, and num cores is the total number of cores used in

the calculation.

3.4.3.2 TM - transition matrix

The FormTM subroutine calculates the transition matrix elements and amplitudes

of matrix elements. Wave functions and determinants from opposite parity states are

first read in from CONF.XIJ, CONF1.XIJ, CONF.DET, and CONF1.DET. The loop structure

of FormTM is similar to that of the FormH subroutine in the conf program: there is an

outer loop goes over the determinants of the final state, and the inner loop is divided
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over the configurations of the initial state. The parallelization scheme follows one of

the older implementations of the FormH parallelization schemes, splitting up the outer

loop into even chunks for distribution. We split the total workload into intervals of

size Nd2/num cores, where Nd2 is the total number of determinants associated with

the final state, and num cores is the total number of cores used in the calculation.

3.4.3.3 Achieved performance of parallelization

Due to the already optimized algorithms used to compare configurations in the

FormDM and FormTM subroutines, the scalability and performance of the parallelization

was a great success. The average speedup achieved for the dtm program, for both

density matrix and transition matrix calculations, was about 85% with the number

of cores. Due to the already high speedup achieved, more optimized implementations

have not been looked into and will be subject to a future project.
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Chapter 4

DEVELOPMENT OF ATOMIC CLOCKS AND THE SEARCH FOR
VARIATIONS OF FUNDAMENTAL CONSTANTS

The development of the CI/CI+MBPT/CI+all-order methods and codes are

motivated by the development of atomic clocks, which is essential for the search for

variation of fundamental constants. One of the main remaining stumbling blocks to-

wards development of many HCI clock proposals is the large uncertainties in the the-

oretical predictions of the clock transitions, in particularly in cases with holes in the

4f shell (for example Ir16+ and Ir17+) or mid-filled 4f shell (Ho14+). While there are

high-precision methods that allow for reliable prediction of HCI transitions in ions with

1-4 valence electrons to a few percent or better [24], the approaches for the 4f -hole

systems are still in the development stage and theory accuracy has not been estab-

lished. Lack of accurate theory predictions leads to years of delays in experimental

efforts. Rapid development of current clock was in part possible due to the ability to

accurately predict properties of monovalent and divalent systems, used in the present

most precise clocks.

We note that this work serves as a basis for efficient treatment of systems with

many valence electrons that can be used for a large variety of applications beyond HCI

calculations. Numerous problems in astrophysics and plasma physics require accurate

treatment of systems with many valence electrons, such as Fe. The lack of accurate

theory predictions creates problems in applications involving almost all lanthanides

and actinides as well as many other open-shell atoms and ions of the periodic table.

There are many other problems, besides HCI where our results are useful, for example

development of the neutral atom lattice clocks based on 4f 146s6p 3P o
0 −4f 136s25d (J =

2) transition in Yb [76, 77]. None of the currently existing ab initio methods are
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capable to reliably predict the atomic properties of this J = 2 state. In this chapter,

we describe the calculations of atomic properties of Ir17+, Cf15+ and Cf17+.

4.1 Optical clocks based on Ir17+

The work described in this chapter is published in Ref. [4]. The highly charged

ion Ir17+ is of particular interest for the development of novel atomic clocks due to

its very high sensitivity to the variation of the fine structure constant α and related

dark matter searches. While the M1 transitions in Ir17+ between same parity states

have been measured to good precision [3], the clock transitions, or in fact any E1

transitions between opposite parity states have not yet been identified despite over 6

years of experimental effort. While these E1 transitions are weak as they are only

allowed due to the configuration mixing, i.e. no “one-electron” E1 transitions are

allowed between these configurations (for example, 4f 125s2 − 4f 135s), strong allowed

E1 transitions (between 4f 125s2−4f 125s5p and 4f 135s−4f 135p configurations) lie much

higher on the spectrum, in the EUV and VUV rather than the optical range. These

transitions were expected to be observed in recent experiments since their predicted

transitions rates [33] were well within the experimental capabilities; especially since

the M1 transitions with much smaller transition rates have been observed. The lack

of observations for the E1 transitions brought serious concerns about the accuracy of

theoretical predictions, even to the point of doubt of approximate spectral range, with

over 10 000 cm−1 differences. In this work, we resolved this problem and for the first

time, definitively demonstrated the ability to converge the configuration interaction

(CI) in systems with a few holes in the 4f shell and place uncertainty bounds on the

results. Our results explain the lack of observations of the E1 transitions and provide

a pathway towards detection of clock transitions.

Ir17+ ion has [1s2. . . 4d10] closed shells and complicated energy level structure

with 4f 125s2, 4f 135s and 4f 14 low-lying levels shown in Fig. 4.1. Prior calculations

include the CI [32], CI Dirac-Fock-Sturm (CIDFS) [3], Fock space coupled cluster

(FSCC) [3], and the COWAN code [78] calculations. There is a reasonable agreement,
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from a few 100 cm−1 to 1500 cm−1, for the energy levels of the lowest 4f 135s states as all

energies are counted from the ground state which has the same electronic configuration.

However, there are very large, 5000 cm−1 to 13000 cm−1 differences for all other levels.

For convenience, we have shown in Fig. 4.1 the positions of the 4f 125s2 levels predicted

using CIDFS [3] and FSCC [3] calculations which are the most elaborate from all prior

approaches. The CI results of Ref. [32] place these levels much higher, by 5000 –

7000 cm−1.

Berengut et al. [79] proposed to use the 4f 125s2 3H6 − 4f 135s 3F o
4 transition

(K = −22) as a clock transition. It is a E3/M2 transition and can be enhanced

via the hyperfine-mixing with the 3H5 state. They also note a possibility of using

the 4f 14 1S0 − 4f 135s 3F o
2 transition which is a M2 transition and may be induced

by the hyperfine mixing with the 4f 125s2 3P1 level. The particular attraction of this

possibility is very high (predicted to be K = 143) sensitivity to the variation of α. For

comparison, all presently operating clocks have K < 1 with the exception of the Yb+

octupole clocks with K ∼ −6. A factor of 100 increase means that the sensitivity to

the variation of α is 100 times higher than with K = 1, so the clocks with the same

accuracy will set 100 times better limit. Fig. 4.1 illustrates the difficulty in predicting

either one of these transition frequencies.

Nine of the M1 transitions in Ir17+ have been experimentally identified and

measured at a ppm level [3]. The main puzzle is the lack of observation of two weak

E1 transitions [33] between the even and odd levels, i.e. 4f 125s2 3F4 − 4f 135s 3F o
3,4

transitions. Theoretical determination of the odd level splittings is much more reliable

in comparison with the odd-even energy difference and the observation of the E1 tran-

sitions would have allowed for the determination of the wavelength of the proposed

4f 125s2 3H6 − 4f 135s 3F o
4 clock transition with good precision.

4.1.1 Method of calculation

We start from the solutions of the Dirac-Hartree-Fock (DHF) equations in the

central field approximation to construct the one-particle orbitals. We find that the
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2

Transition Rate (s-1)

4f12 5s2 3F4 – 4f13 5s 3F4
o 71

4f12 5s2 3F4 – 4f13 5s 3F3
o 48

4f12 5s2 3F2 – 4f13 5s 1F3
o 163

Clock transitions???

E1 transitions???

Previous predictions (FAC):

Hendrik Bekker, FAC calculations, 

private communication

Figure 4.1: Low-lying energy levels of Ir17+ based on past CI Dirac-Fock-Sturm
(CIDFS) and Fock space coupled cluster (FSCC) calculations [3]. Wave-
lengths of 3 M1 transitions shown by vertical dashed lines have been
measured in [3]. The scheme is not to scale. From Ref. [4].

best initial approximation is achieved by solving the restricted DHF equations with

the partially filled shells, namely [1s2...4d10]4f 135s. Here, the hybrid approach that

incorporates core excitations into the CI by constructing an effective Hamiltonian with

the coupled-cluster method [64] cannot be used with such initial approximation. There-

fore, the inner shells have to be treated using the CI method, as described in Section

2.1.6, leading to exponential increase in a number of required configurations. While

the weights of most configurations are small, we find that the number of important

configurations is still very large.

The increased size of the valence space imposes much higher computational

demands. To resolve this problem, we developed a code utilizing MPI, as described in

Section 3.1.9, that pre-estimates the weights of a very large number of configurations
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using the perturbation theory (CI+PT approach [80] described in Section 2.1.12). We

also developed codes to analyze the results and identify and sort the most important

configurations. Finally, we developed a fast MPI version of the CI code, described in

Section 3.4.1, as the resulting set of important configurations was still extremely large.

Our new codes allowed us to increase the valence space from 14 electrons to all 60, and

to include 250,000 configurations, resulting in 133 million Slater determinants, a factor

of 20 increase to what was previously feasible.

In order to definitively ensure the reliability of the theoretical calculations, we

considered all possible contributions that may affect the accuracy of the computations

and ensure the convergence in all numerical parameters, including the number and type

of configurations included in the CI, the size of the orbital basis set used to construct

CI configurations, inclusion of the quantum electrodynamics (QED) corrections, and

inclusion of the Breit corrections beyond the Gaunt term. We find that by far the

largest effect comes from the inclusion of the inner electron shells into the CI and we

studied this effect in detail.

2

1s2...4d10

Double

excitation

Basic configuration: 
4f135s

Singly excited conf.
4f125s5p

4f125s6f …

Doubly excited conf.
4f115s25d

4f115s26g …

Configuration Interaction

1358

conf-s

0.36 M

determinants

Figure 4.2: Single and double excitations from the 4f 135s configuration. From Ref.
[4].

We start with the most straightforward CI computation that includes single and

double excitations from the 4f and 5s valence shells, similar to [32]. This is illustrated
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in Fig. 4.2, which shows a few of the first configurations produced by exciting one and

two electrons starting from the main 4f 135s odd configuration. The excitations are

allowed to each of the basis set orbitals. We begin with the basis set that includes all

orbitals up to 7spdfg and discuss larger basis calculations below.

Next, we “open” a 4d shell as is illustrated in Fig. 4.3, i.e., allow all 4d elec-

trons into the valence space and allow excitations of any of the 24 electrons from the

4d104f 135s shells to the same basis set orbitals up to 7spdfg. We find drastic changes

in the frequencies of all of the (odd-even) E1 transitions and the position of the 1S0

level. This effect accounts for the difference between previous CI calculations [32] which

prohibited excitations from the 4d electrons, and CIDFS calculations [3] which allowed

it. Due to such large contributions, we continued to include more and more electrons

of the inner shells into the CI valence space, until all 60 electrons have been included.

Both single and double excitations are allowed from the 4f, 4d, 4p, 4s and 3d shells,

and only single excitations are included for all other shells. We tested that the double

excitation contribution is small for these inner shells and can be omitted at the present

level of accuracy. The results, obtained with different number of shells included into

the CI valence space are given in Table 4.1. We note very large contributions of the

excitations from the 4s shell, which is the main source of the difference between our

results and the CIDFS calculations [3]. All calculations in Table 4.1 are carried out

with the same 7spdfg basis set.

Three different basis sets of increasing sizes, including all orbitals up to 7spdfg,

8spdfg, and 10spdfg were used to test basis set convergence. The resulting energy

differences between these different basis sets are shown in Table 4.2. The differences

between results obtained with 7spdfg and 8spdfg basis sets do not exceed 262 cm−1

for any level. The difference between results obtained with 8spdfg and 10spdfg basis

sets do not exceed 115 cm−1 for any level. Due to the decreasing difference with basis

sets of higher principal quantum number, we concluded that the basis set has been

reasonably converged at the present level of accuracy, and there was no need to include

orbitals of higher principal quantum number at the time.
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1

Method of calculation

Program: CI+MBPT computer package

with CI+PT extension

M. Kozlov et al.

Comput. Phys. Commun. 195 (2015)

Stages of calculation:

1. open 4f shell   14 valence e-

2. open 4d shell  24 valence e-

3. open 4p shell  30 valence e-

Ir17+ Z=77
Ground state:

[1s2 ... 4s24p64d10] 4f135s 3F4

Basis set:

[7spdfg] and [8spdfg]

1s2...4d10 1s2...4p6

opening 

4d shell
core

core

valencevalence

Figure 4.3: “Opening” the 4d10 shell - including it into the valence space. From Ref.
[4].
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Table 4.2: Energy differences of Ir17+ (in cm−1) obtained using CI with different sized
basis sets. The differences shown are between the 8spdfg and 7spdfg basis sets,
and the 10spdfg and 8spdfg basis sets. Due to the decreasing difference with
larger basis sets of higher principal quantum number, we concluded that the
basis set has been reasonably converged at the present level of accuracy.

8spdfg − 7spdfg 10spdfg − 8spdfg
Configuration 4f 4d 4p 4f 4d 4p

4f 135s 3F o
4 0 0 0 0 0 0

3F o
3 -3 -6 2 -7 -4 -1

3F o
2 -8 -20 -28 -3 -7 -12

1F o
3 -11 -24 -28 -3 -7 -12

4f 14 1S0 -86 -21 -169 28 90 115

4f 125s2 3H6 176 109 262 9 -50 96
3F4 142 93 242 -13 -70 76
3H5 171 97 239 8 -56 87
3F2 148 60 213 -6 -93 -34
1G4 105 83 228 -32 -69 72
3F3 137 79 222 -9 -71 72
3H4 144 71 204 -11 -79 60
1D2 82 37 184 -40 -104 -67
1J6 118 34 180 -31 -101 40

In Table 4.3, we consider the contribution of the triple excitations from the 5s4f

shells and found it to be small at the present level of accuracy: −600 cm−1 for the 1S0

level and not exceeding −351 cm−1 for all other levels. In Table 4.4, contributions from

full Breit are computed: 420 cm−1 for the 1S0 level and not exceeding −459 cm−1 for all

other levels. In Table 4.5, the contributions of QED are computed: −298 cm−1 for the

1S0 level and not exceeding 299 cm−1 for all other levels. The sum of the corrections for

a large 10spdfg basis, triple excitations, Breit correction beyond the Gaunt term, and

QED corrections [81, 82] is given in the column labeled “Other” in Table 4.1. We note

that these unrelated corrections substantially cancel each other. Based on the size of

the inner shell contributions and all other corrections, we estimate uncertainties of the

final values for the even states to be on the order of 1000 cm−1, similar for all states.
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Table 4.3: Contribution of triple excitations (T) into energy levels of Ir17+ calculated
with single and double excitations (SD). Energy levels are calculated with
[7spdfg] basis set. Numbers under labels indicate the number of determi-
nants used in the calculation in even parity runs. All values are given in
cm−1.

Energy (SD) Energy (SDT)
Conf. Level 0.86× 106 49× 106 ∆T

4f 135s 3F4 0 0 0
3F3 4714 4715 2
3F2 25170 25167 -3
1F3 30137 30138 1

4f 14 1S0 9093 8493 -600

4f 125s2 3H6 36361 36118 -243
3F4 46300 46050 -250
3H5 59883 59624 -259
3F2 68787 68521 -266
1G4 69098 68801 -297
3F3 71962 71677 -286
3H4 91039 90765 -274
1D2 97472 97121 -351
1J6 109332 108991 -341

4.1.2 M1 and E1 transition rates and energies

The M1 transition energies are compared with the experiment [3] in Table 4.6,

and excellent agreement is observed with the exception of the 1D2 − 3F3 transition.

It is unclear if there might be an issue with the experimental identification, or if the

difference is due to the residual electronic correlations. The contribution of the inner

shells (1s to 3p) is particularly large here, a factor of 4 larger than for any other M1

transition listed in Table 4.6, by about 200 cm−1.

The E1 transition rates of Ir17+ (in s−1) obtained using CI with different number

of electronic excitations are given in Table 4.7. While opening of the 4d shell drasti-

cally changed the energy levels, we found only small effects on the matrix elements;

the differences in transition rates were caused by differences in energies. When the
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Table 4.4: Contribution of full Breit interaction (∆Br) into energy levels of Ir17+

calculated with Gaunt term. Energy levels are calculated with [7spdfg]
basis set. All values are given in cm−1.

Conf. Level Gaunt Full Breit ∆Br

4f 135s 3F4 0 0 0
3F3 4714 4714 1
3F2 25170 25159 -12
1F3 30137 30131 -6

4f 14 1S0 9073 9493 420

4f 125s2 3H6 36361 35910 -450
3F4 46300 45853 -447
3H5 59883 59426 -457
3F2 68787 68332 -455
1G4 69098 68650 -448
3F3 71962 71509 -453
3H4 91039 90579 -459
1D2 97472 97023 -449
1J6 109332 108875 -457
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Table 4.5: Contribution of QED corrections (∆Br) into energy levels of Ir17+. Energy
levels are calculated with [7spdfg] diagonalized basis set. All values are
given in cm−1.

Conf. Level Gaunt Gaunt+QED ∆QED

4f 135s 3F4 0 0 0
3F3 4730 4726 -5
3F2 25407 25416 9
1F3 30376 30385 9

4f 14 1S0 2327 2029 -298

4f 125s2 3H6 42124 42401 277
3F4 52252 52530 278
3H5 65859 66149 291
3F2 74896 75188 292
1G4 75296 75580 285
3F3 78151 78444 293
3H4 97338 97640 302
1D2 103937 104232 294
1J6 115342 115641 299

excitations from the 4p shells were included, we found only modest changes in the

energies (see Table 4.1), but drastic reduction of the values of the E1 matrix elements

for a number of transitions. The multi-electron E1 transition rates are obtained from

the one-body matrix elements, with the appropriate weights based on the mixing of

the configurations. Allowing excitations from the 4p electrons accounted for previously

omitted 4p− 5s one-electron matrix elements, whose role is particular important when

the contributions from the one-electron 5s− 5p and 4d− 4f matrix elements are close

in size, but have the opposite sign and, respectively, essentially cancel each other. The

final numbers include correlation of all 60 electrons, but the effect of all other shells

for stronger transitions was relatively small.

Previous calculations of transition rates in Ir17+ were only done with the FAC

code [33] and did not include correlations besides the 4f5s electrons, leading to incor-

rect predictions. In particular, the 3F4− 3F o
4 and 3F4− 3F o

3 transition rates which should
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Table 4.6: Comparison of Ir17+ M1 transition energies (in cm−1) with experimental
results [3]. Difference (in %) of the other theory (FSCC and CIDFS) values
from experiment [3] are given in the last two columns. From Ref. [4].

Transition Expt. Present Diff. % FSCC CIDFS

4f 135s 3F o
2 − 3F o

3 20711 20409 1.5% 1.0% 2.6%
1F o

3 − 3F o
4 30359 30395 -0.1% 0.5% -0.6%

4f 125s2 3H5 − 3H6 23640 23515 0.5% 0.8% 1.4%
3H4 − 1G4 22430 22263 0.7% 0.5% 1.9%
1G4 − 3F4 22949 22697 1.1% 1.2% 1.3%
1D2 − 3F3 23163 24093 -4.0% -2.0% -5.4%
3F3 − 3F4 25515 25616 -0.4% 1.0% -0.1%
1D2 − 3F2 27387 27844 -1.7% -0.1% -2.0%
3H4 − 3H5 30798 30726 0.2% -0.2% 1.7%

have been observable with previous predictions became extremely small, well outside

of the detection range. We identified a number of other transitions for the future E1

transition search where the transition rates are above 100 s−1. We have calculated all of

the E1 transitions between the states listed in Table 4.1, also including 3P2 states but

only list the strongest transitions and a few representative examples where transition

rate changes drastically with the opening of the 4p shell (these small values should be

considered order-of-magnitude estimates due to large cancellations).

4.1.3 Selection of important configurations

It is necessary to be able to select the most important configurations for the

valence CI space when the dimensionality of the CI problem is huge. We started with

the computation of Ir16+, then switched to the more complicated Ir17+. In the case of

Ir16+, which has 15 valence electrons, and Ir17+, which has 14 valence electrons, the

complete basis set is limited to only a few principal quantum numbers n above closed

core shells, e.g. [8spdfg]; this designation includes the orbitals 1-8s, 2-8p, 3-8d, 4-8f

and 5-8g, where the numbers indicate principal quantum numbers and the letters spdfg

indicate orbital angular momentum quantum numbers. Even with such a short basis

120



Table 4.7: E1 4f125s2 − 4f135s radiative transition rates Aab of Ir17+ (in s−1) obtained
using CI with different number of electronic excitations: including excitations
from the 4f5s electrons, then adding excitations from 4d and 4p shells. The final
numbers include correlation of all 60 electrons. Final values of the transition
wavelengths λ (in nm) and reduced E1 matrix elements D (in a.u.) are also
listed. From Ref. [4].

Transition λ D Transition rate Aab
a− b 5s4f +4d +4p Final

3P2 − 3F o
3 91 4.1E-04 106 111 152 90

3P2 − 3F o
2 112 9.6E-04 727 458 276 269

3P2 − 1F o
3 118 1.2E-03 1432 1101 254 333

3H4 − 3F o
4 118 1.6E-03 798 479 366 358

1D2 − 3F o
3 118 5.2E-04 9 4 91 65

3H4 − 3F o
3 125 1.8E-03 1325 891 347 369

3F3 − 3F o
4 153 1.3E-03 379 201 140 137

1D2 − 3F o
2 155 9.9E-04 515 277 103 104

1G4 − 3F o
4 160 1.8E-03 677 362 181 184

3F3 − 3F o
3 165 1.2E-03 579 319 85 90

1D2 − 1F o
3 169 1.2E-03 498 276 105 122

1G4 − 3F o
3 174 1.7E-03 376 209 123 129

3F2 − 3F o
3 176 1.5E-04 101 60 6 1.7

3H4 − 1F o
3 184 7.2E-05 216 0.3 0.2 0.18

3F4 − 3F o
4 252 4.9E-05 57 25 0.2 0.03

3F2 − 3F o
2 274 1.6E-04 60 26 0.3 0.47

3F3 − 1F o
3 287 4.3E-04 48 19 2 2.3

3F4 − 3F o
3 287 4.9E-04 64 30 1.2 2.2

1G4 − 1F o
3 313 1.8E-04 34 15 0.02 0.2
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set, the number of configurations and determinants that take part in the CI calculation

is huge due to CI scaling exponentially with the number of valence electrons.

Initially, a configuration list with no weights is constructed by allowing excita-

tions from select basic configurations. A very small subspace, consisting of about 500

relativistic configurations in our case, is used for a pre-initialization run to generate

initial weights for each configuration. In this pre-initialization run, CI is ran for the

very small subspace and then CI+PT is ran to obtain weights and re-order the initial

configuration list by descending weights. CI is then re-ran using the re-ordered con-

figuration list to obtain the energy levels. Several CI runs are done while increasing

the number of configurations to see how energy levels are converging with increasing

size of the CI space. The number of configurations selected is based on the weight of

the configuration, i.e. all configurations above a weight of 10−3 would be selected for

a small CI run, all configurations with weights above 10−4 would make up a medium

run, and so on. Once the energy differences between subsequent CI calculations are

relatively small, the CI+PT procedure is then used on the largest CI run to calculate

the final energy levels. The final energy levels obtained from CI+PT are then com-

pared with the corresponding CI result to check convergence. If PT corrections are still

large, we can repeat this process from a newly re-ordered configuration list constructed

from the previous largest CI+PT run. By repeating the CI and PT steps, second-order

corrections iteratively decrease until convergence is met (in our case, until energy dif-

ferences obtained from successive runs are below 1500 cm−1), i.e., the CI space has

been saturated as it has taken into account the most important configurations.

Table 4.8 displays the total number of configurations and determinants used

for the largest CI+PT calculations of Ir16+ and Ir17+ energy levels. For both ions,

about 3000-5000 relativistic configurations are taken into account using CI, while the

remaining configurations are taken into account using CI+PT. We find that for our

calculations, this is enough to reach saturation of CI. For the final calculations of Ir16+

energy levels, the total number of non-relativistic configurations for the odd parity

was 2904, but 2030 non-relativistic configurations were used and expanded into 78156
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Table 4.8: Total number of non-relativistic configurations generated (total) compared
with the number of non-relativistic configurations (non-rel) used in the
valence CI space of the final CI and CI+PT runs. Numbers of relativistic
configurations (rel) and determinants (dets) in millions taking part in the
final CI valence space in final results are also shown.

Ion Parity non-rel rel dets (106)
total used used

CI
Ir16+ even 3001 294 5112 11

odd 2904 293 5890 6.6
Ir17+ even 1633 214 3429 4.4

odd 2281 185 3436 6.3

CI+PT
Ir16+ even 3001 1328 44649 365

odd 2904 2030 78156 194
Ir17+ even 1633 1633 38688 118

odd 2281 1850 75446 391

relativistic configurations with 194 × 106 determinants. For the even parity, the total

number of non-relativistic configurations was 3001, but only 1328 of them were included

and expanded into 44649 relativistic configurations and 365 × 106 determinants. For

the final CI+PT calculations of Ir17+ energy levels, 1633 non-relativistic configurations

are expanded into 38688 relativistic configurations with 118 × 106 determinants for

even parity. For the odd parity, a similar number of configurations and determinants

are used if only expanding a single basic configuration 4f 135s, but allowing excitations

from two basic configurations 4f 135s and 4f 125s5p, there was a total of 2281 non-

relativistic configurations, but only 1850 non-relativistic configurations were accounted

for and expanded into 75446 relativistic configurations with 391 × 106 determinants.

The selection procedure for the final configurations is explained below. The most

computationally expensive run completed using this method was for the odd parity of

Ir17+, which included 391×106 determinants. This run required 2 days of computation

time to complete, while utilizing MPI with 40 cores.
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To analyze the importance of configurations, we start from the configuration

list generated by exciting electrons from a set of reference configurations to a number

of non-relativistic shells. The initial list includes all possible relativistic configurations

that can be obtained from the number of excitations, whether it is allowing singles

(S), doubles (D), triples (T), or any combination of these excitations. The number of

excitations and the number of non-relativistic shells determines the total number of

configurations that will make up the list, and subsequently, the total number of deter-

minants that will be used in the CI calculation. We take several steps in determining

the importance of each configurations. First, the weight of each configuration is calcu-

lated. This is done in the CI and CI+PT routines described above. We can then count

the number of times an orbital appears in non-relativistic configurations above some

weight threshold and compare this data to the weighted configuration list constructed

during the CI+PT routine.

Table 4.9 displays the number of times an orbital appears in the list of non-

relativistic configurations for the even parity of Ir17+ with weights larger than threshold

values of 1 × 10−3, 1 × 10−4, 1 × 10−5 and 1 × 10−6. This data shows how important

each orbital will be for the final CI+PT calculation. For Ir17+, we can see that for

configurations above the 1×10−6 threshold value, besides the orbitals that show in the

reference configurations 4f and 5s, all 5pdfg will be important, but up to 8g, all f and

g subshells will also play an important role.

Table 4.10 shows the top 10 weighted configurations that take part of the cal-

culations for the low-lying energy levels of Ir17+. For the 4f 13 5s configuration, we

see that the most important configurations are those with double excitations to 4f 11,

and those with 5s, 5f , 6f , 6g, and 7g included. The 4f 14 configuration have double

excitations to 4f 12, and those with 5f , 6f , 7f , 6g, and 7g as important configurations.

The important configurations for the 4f 12 5s2 configuration include double excitations

to 4f 10, 5p, 5f , 6f , 6g and 7g. Configurations from triple excitations had weights

less than 10−6 and were therefore not very important for the calculations. Due to the

lower importance of triple excitations, we increase the basis set and allow just S and
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D excitations in a calculation to be discussed later. We also see that in both Tables

4.9 and 4.10, the top configurations agree with the top appearances of orbitals in the

configuration list.

Table 4.11 compares the top 5 weighted configurations for the Ir17+ calculations

between a short basis set [8spdfg] and a longer basis set [10spdf ]. It is clear that for

the larger basis set calculation, the weights of the basic configurations decreased by a

few thousandths and the top configurations remain mostly the same.

Table 4.12 shows the top 10 weighted configurations that take part of the cal-

culations for the low-lying energy levels of Ir16+. For the 4f 13 5s configuration, we see

that the most important configurations are those with double excitations to 4f 11, and

those with 5s, 5p, 5f , 6f , 7f , 6g, and 7g included. The 4f 14 configuration have double

excitations to 4f 12, and those with 5f , 6f , 7f , 6g, and 7g as important configurations.

The important configurations for the 4f 12 5s2 configuration include double excitations

to 4f 10, 5p, 5f , 6f , 6g and 7g. From this data, we can predict which shells must be

allowed for an accurate description of the Ir16+ ion.

For the Ir17+ even parity calculations, every configuration was taken into account

for, i.e. no configurations were left out in the final CI+PT calculation. The final energy

levels converged after 2 runs of the CI+PT procedure for both even and odd parity runs

after the pre-initialization run, i.e. CI saturated within 2 iterations of PT. However, for

the Ir16+ and the odd parity of Ir17+, it was impractical to include every configuration as

the inclusion of another valence electron grew the valence CI space to an unmanageable

size. In this case, orbital importance must be taken into account by parts, by allowing

excitations to specific shells one at a time and adding the weights to the configuration

list by parts.

In summary, we have developed new MPI CI codes that for the first time allowed

us to correlate all 60 electrons of Ir17+ in the framework of the CI approach. Our

calculations explained the failed search for the E1 transitions: the transition rates

of the two transitions that were subject to search are well below detection threshold.

We made reliable prediction of the E1 and clock transition wavelengths, with the
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evaluation of their uncertainties and provided predictions of the sufficiently strong E1

transitions for the experimental detection. As illustrated by Table 4.1, the energies

of the E1 and clock 3H6 − 3F o
4 transitions are strongly correlated and as soon as any

of the E1 transition wavelength is measured, we will be able to establish the clock

transition energy with much higher precision. We developed a method of selecting the

most important configurations of an atomic system using weights calculated during the

CI and CI+PT procedures, and found them for the cases of Ir16+ and Ir17+. The final

large-scale Ir17+ calculations were done solely with the CI method.

The methods discussed here are very broadly applicable to many elements in the

periodic table. Numerous problems in atomic physics, astrophysics, and plasma physics

require accurate treatment of the open-shell systems similar to the one considered here.

An exceptional speed up of the CI computations demonstrated in this work will allow

one to perform computations for other systems where reliable predictions do not yet

exist. Present computations were only limited by the computer memory resources

presently available to us at the time this work was completed, about a year ago. At

that time, the largest run took less than 3 days on 80 CPUs. This largest run was

redone recently with 550 CPUs, lasting only about 13 hours, approximately 5 times

faster with almost 7 times the number of CPUs. The work presented here, coupled with

the development of new methods of efficiently selecting dominant configurations, and

larger computational resources, will eventually lead to accurate theoretical predictions

for most elements of the periodic table.
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Table 4.9: Number of times an orbital appears in non-relativistic configurations with
weights larger than the given threshold values. The system considered here
is Ir17+ with even parity. S, D and T excitations are allowed from basic
configurations, 4f 14 and 4f 125s2. Other than 4f and 5s, all orbitals have
minimum and maximum occupation numbers of 0 and 2, respectively, with
5f being an exception, having 0 and 3, respectively.

Orbital 1×10−3 1×10−4 1×10−5 1×10−6

4f 971 1963 3591 6459
5s 100 175 301 443
5p 20 38 86 134
5d 12 28 67 130
5f 15 33 69 126
5g 10 25 34 92
6s 3 9 32 64
6p 5 20 23 48
6d 6 19 36 80
6f 14 31 64 111
6g 13 27 50 109
7s 3 5 29 57
7p 6 20 24 42
7d 8 19 36 85
7f 14 27 55 105
7g 14 20 54 109
8s 4 5 27 53
8p 0 0 7 20
8d 0 0 3 16
8f 1 8 17 38
8g 13 22 39 76
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Table 4.10: List of the 10 most important configurations for calculation of Ir17+

energy levels. Weights for 4f 13 5s were calculated for the 3F4 level,
but 3F3, 3F2 and 1F3 levels also have the approximately the same top
configurations. Weights for 4f 12 5s2 were calculated for the 3H6 level,
but 3F4, 3H5 and 3F2 levels also have approximately the same top 10
configurations.

Conf. Weight Conf. Weight
4f 13 5s J = 4, 3, 2 4f 14 J = 0
4f 13 5s 0.9866 4f 14 0.9765

4f 11 5s 7g2 0.0015 4f 12 5s2 0.0075
4f 11 5s 5f 6f 0.0012 4f 13 5f 0.0038
4f 11 5s 6g 7g 0.0012 4f 12 7g2 0.0017
4f 11 5s 5f 2 0.0009 4f 13 6f 0.0016

4f 11 5s 6f 7f 0.0009 4f 12 6g 7g 0.0015
4f 11 5s 7f 2 0.0008 4f 12 5f 6f 0.0015
4f 12 5p 6g 0.0008 4f 12 5f 2 0.0011

4f 11 5s 5f 7f 0.0008 4f 12 7f 2 0.0009
4f 11 5s 7g 8g 0.0006 4f 12 6f 7f 0.0009

4f 12 5s2 J = 6, 4, 5, 2
4f 12 5s2 0.9778
4f 12 5p2 0.0053

4f 11 5s2 5f 0.0022
4f 10 5s2 7g2 0.0013
4f 11 5s 5p 6g 0.0012
4f 11 5s2 6f 0.0011

4f 11 5s 5p 7g 0.0009
4f 10 5s2 6g 7g 0.0009

4f 12 7f 2 0.0009
4f 10 5s2 5f 6f 0.0008
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Table 4.11: Comparison of top 5 most important configurations for Ir17+ between
short basis set [8spdfg] and long basis set [10spdf ].

Conf. Weight Conf. Weight
8spdfg 10spdf

4f 13 5s J = 4, 3, 2
4f 13 5s 0.9866 4f 13 5s 0.9848

4f 11 5s 7g2 0.0015 4f 11 5s 5f 2 0.0039
4f 11 5s 5f 6f 0.0012 4f 11 5s 5g2 0.0013
4f 11 5s 6g 7g 0.0012 4f 11 5s 5p 5f 0.00005
4f 11 5s 5f 2 0.0009 4f 12 5s 5p 0.00003

4f 14 J = 0
4f 14 0.9765 4f 14 0.9750

4f 12 5s2 0.0075 4f 12 5s2 0.0055
4f 13 5f 0.0038 4f 13 5f 0.0050
4f 12 7g2 0.0017 4f 12 5f 2 0.0045
4f 13 6f 0.0016 4f 12 5g2 0.0017
4f 12 5s2 J = 6, 4, 5, 2
4f 12 5s2 0.9778 4f 12 5s2 0.9758
4f 12 5p2 0.0053 4f 11 5s2 5f 0.0037

4f 11 5s2 5f 0.0022 4f 12 5p2 0.0029
4f 10 5s2 7g2 0.0013 4f 10 5s2 5f 2 0.0020
4f 11 5s 5p 6g 0.0012 4f 11 5s 5p 5g 0.0001
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Table 4.12: List of the 10 most important configurations for calculation of Ir16+

energy levels E (cm−1) and their weights W .

Configuration J E W Important Configurations

4f 13 5s2 7/2 0 0.9775 4f 13 5s2

0.0057 4f 13 5p2

0.0016 4f 12 5s 5p 6g
0.0015 4f 11 5s2 7g2

0.0013 4f 11 5s2 5f 6f
0.0012 4f 11 5s2 6g 7g
0.0010 4f 11 5s2 5f 2

0.0010 4f 12 5s 5p 7g
0.0008 4f 11 5s2 7f 2

0.0008 4f 11 5s2 5f 7f

4f 13 5s2 5/2 24770 0.9776 4f 13 5s2

0.0056 4f 13 5p2

0.0016 4f 12 5s 5p 6g
0.0015 4f 11 5s2 7g2

0.0013 4f 11 5s2 5f 6f
0.0012 4f 11 5s2 6g 7g
0.0010 4f 11 5s2 5f 2

0.0010 4f 12 5s 5p 7g
0.0010 4f 12 5s 5p 5g
0.0008 4f 11 5s2 7f 2

4f 14 5s 1/2 37861 0.9778 4f 14 5s
0.0039 4f 13 5s 5f
0.0017 4f 12 5s 7g2

0.0016 4f 13 5s 6f
0.0015 4f 12 5s 5f 6f
0.0014 4f 12 5s 6g 7g
0.0012 4f 12 5s 5f 2

0.0010 4f 13 5p 6g
0.0009 4f 12 5s 5f 7f
0.0009 4f 12 5s 6f 7f
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4.2 Optical clocks based on the Cf15+ and Cf17+ ions

The work described in this section is published in Ref. [34]. Here, we explore

the possibility of developing optical clocks using the transitions between the ground

and a low-lying excited state of the highly-charged Cf15+ and Cf17+ ions. Three out of

eight main Cf isotopes have a long half-life: A = 249, I = 9/2 (351 y), A = 250, I = 0

(13.1 y), and A = 251, I = 1/2 (898 y), where A is the number of nucleons and I

is the nuclear spin. Using the CI+all-order approach, we predicted the energies of

clock transitions. Calculations of wavelengths of clock transitions and other relevant

atomic properties, as well as an analysis of a number of systematic effects that affect the

accuracy and stability of the optical clocks, including electric quadrupole, micromotion,

and quadratic Zeeman shifts of the clock transitions, can be found in Ref. [34].

Both Cf15+ and Cf17+ ions have the [1s2, ..., 5d10, 6s2] core. The former, Cf15+,

is a Bi-like ion with three valence electrons above the core, while Cf17+ has one va-

lence electron above the core, allowing to consider it as a univalent element. But as a

detailed analysis shows, more correct and accurate results are obtained if we consider

Cf17+ as a trivalent ion including both 6s electrons into the valence field. This is partic-

ularly important for correct determination of the lowest-lying even-parity energy levels

whose main configuration, according to our calculation, is (6s 5f 2), which contains an

unpaired 6s electron.

Both the Cf15+ and Cf17+ ions were studied previously in Refs. [83, 84] and found

to be particularly good candidates for testing variation of the fine-structure constant.

The calculation carried out in Ref. [84] identified the ground state (5f6p2 2F o
5/2) and

the first excited state (5f 26p 4Io9/2) of Cf15+ as the states with high sensitivity to α

variation and convenient clock wavelength. The dimensionless sensitivity factor |∆K|

to a variation of α for the Cf17+ and Cf15+ clock pair was predicted to be 107 [28], while

the largest |∆K| factor for any of the currently operating clock pair is 7 (for E3/E2

transitions in Yb+), with most others below 1.

We consider Cf15+ and Cf17+ as ions with three valence electrons above closed

cores [1s2, ..., 5d106s2] and [1s2, ..., 5d10], respectively. We start from the solution of the
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Dirac-Hartree-Fock (DHF) equations in the V N−3 approximation for both ions, where

N is the total number of valence electrons. The initial self-consistency procedure was

carried out for the core electrons and then the 5f, 6p, 6d, 7s, and 7p orbitals (and also

6s in the case of Cf17+) were constructed in the frozen-core potential. The remaining

virtual orbitals were formed using a recurrent procedure described in [2, 85] The newly

constructed functions were then orthonormalized with respect to the functions of the

same symmetry.

For both ions, the basis sets included in total 7 partial waves (lmax = 6) and

orbitals with principal quantum number n up to 25. We included the Breit interaction

on the same footing as the Coulomb interaction at the stage of constructing the basis

set. QED corrections were also included following Ref. [5, 86].

We use the CI (as described in Section 2.1.6) and CI+MBPT (as described in

Section 2.1.10) methods to see how large core correlations and higher-order effects were,

and use the CI+all-order (as described in Section 2.1.11) method for final calculations.

In general, we can express the effective Hamiltonian as

Heff(E) = HFC + Σ(E), (4.1)

where HFC is the Hamiltonian in the frozen-core approximation, and the energy-

dependent operator Σ(E) accounts for virtual excitations of the core electrons. We

constructed this operator in three ways: using (i) second-order many-body perturba-

tion theory (MBPT) over residual Coulomb interaction [87], (ii) the linearized coupled

cluster single-double (LCCSD) method [64, 88], and (iii) the coupled cluster single

double (valence) triple (CCSDT) method. In the last case, using the expressions for

cluster amplitudes derived in Ref. [89], we included the non-linear (NL) terms and

valence triple excitations into the formalism of the CI+all-order method developed in

Ref. [64]. We note that the equations for the valence triples are solved iteratively.

In the following we refer to these approaches, as the CI+MBPT, CI+LCCSD, and

CI+CCSDT methods, respectively.
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The sets of Cf15+ configurations for the odd- and even-parity states were con-

structed by allowing single and double excitations from the 5f6p2 and 5f 26p configu-

rations and from the 6p26d, 5f6p6d and 5f 26d configurations, respectively, to 7− 20s,

7− 20p, 7− 20d, 6− 19f , and 5− 13g shells (we designate it as [20spd19f13g]). The

sets of Cf17+ configurations for the odd- and even-parity states were formed allowing

single and double excitations from the 6s25f and 6s26p and from the 6s5f 2 and 6s5f6p

configurations, respectively, to [20spd19f13g]. We checked for both ions that if we al-

lowed the single and double excitations to higher lying f and g shells and also triple

excitations from the main configurations, the energies (counted from the ground state)

changed only by few tens cm−1.

The level schemes for low-lying levels of Cf17+ and Cf15+ are given in Fig. 4.4

and Fig. 4.5, respectively. The energies of the lowest-lying states of Cf15+ and Cf17+

obtained in different approximations are listed in Table 4.13. The energies of the

excited states (in cm−1) are counted from the ground state. The assignments of the

Cf15+ odd levels are from Ref. [84]. For designation of all other terms we use the main

configuration and the total angular momentum J of the state as a subscript.

133



Cf17+

5f7/2

6p1/2

E2 clock

λ~485 nm

5f5/2

6p3/2

20895 cm-1

20611 cm-1

243081 cm-1

τ =6 s

τ = 0.0095 s

Figure 4.4: The level scheme for low-lying odd-parity levels of Cf17+. From Ref. [34].
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Cf15+

5f6p2

E2 clock

λ~ 618 nm

22610 cm-1

40450 cm-1

τ =0.009 s

5f26p

M1 

λ~ 442 nm

16172 cm-1

τ =1322 s

30984 cm-1

32400 cm-1

32353 cm-1

41457 cm-14

9/2

o
H

4

11/2

o
I

2

3/2

o
D

2

5/2

o
F

4

9/2

o
I

2

5/2

o
F

2

7/2

o
F

2

7/2

o
G

Figure 4.5: The level scheme for low-lying odd-parity levels of Cf15+. From Ref. [34].
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In the third and fourth columns, we present the pure CI and CI+MBPT values.

Contributions from higher-order (HO) correlations (difference of the CI+LCCSD and

CI+MBPT calculations) and from the NL terms and triple excitations (difference of

the CI+CCSDT and CI+LCCSD calculations) are given separately in columns labeled

“HO” and “NLTr”. Following an empiric rule obtained for Ag-like ions in Ref. [90]

and applied for Cd-like and Sn-like ions in Ref. [91], we estimate the contribution of

the higher (l > 6) partial waves as the contribution of the l = 6 partial wave obtained

as the difference of two calculations where all intermediate sums in the all-order and

MBPT terms are restricted to lmax = 6 and lmax = 5. This contribution is listed in

Table 4.13 in the column labeled “Extrap”. The final theoretical results, listed in the

Final column, are obtained as the sum of the CI+MBPT values and HO, NLTr, and

Extrap corrections.

We find that the clock transition energies between the ground and first excited

state are very sensitive to different corrections for both ions. The CI+MBPT value

differs from the CI value by more than a factor of 2 for both ions, i.e., the contribution of

the core-valence correlation corrections is as large as the CI result. An inclusion of the

HO corrections, the NL terms and valence triples in the framework of the CI+LCCSD

and CI+CCSDT methods further changed the energies by several thousands of cm−1.

The Cf15+ clock transition energy found at the CI+LCCSD stage is in a reason-

able agreement with the results of Refs. [5, 84]. The quadratic NL terms and valence

triples, contributing 3675 cm−1 to the transition energy, were not taken into account

in Refs. [5, 84], which explains the difference between the present result and the clock

transition energy predicted in those works. Taking into account the importance of the

NL terms and valence triple excitations, and also noting that the present calculation

still omits the core triples and higher-order NL terms, we estimate the uncertainty

of the clock transition energies as half of the difference between the CI+CCSDT and

CI+LCCSD values.

This conservative estimate is based on a conclusion drawn from calculations for

Na [92] and Cs [93], that the contribution from the valence triples and NL terms is
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(much) larger than the contribution from core triples. Thus, the uncertainty of the

clock transition energy is ∼ 1800 cm−1 for Cf15+, and ∼ 600 cm−1 for Cf17+. Taking

these uncertainties into account, we neglect corrections to the transition energies due to

effective three-particle interactions between valence electrons. These corrections were

found to be at the level of 100 cm−1 or less for the low-lying states of Cf15+ [5].

Beyond the calculations of the energy levels, other properties of the low-lying

states, such as wavelengths between the ground and excited states, and the lifetimes of

the excited states for Cf15+ and Cf17+, were obtained in the CI+CCSDT approximation

and compared with other calculations where available [34]. A number of systematic

effects that affect the accuracy and stability of the optical clocks were also analyzed

in detail, including the electric quadrupole, micromotion, and quadratic Zeeman shifts

of the clock transitions. The hfs magnetic dipole constants of the clock states and the

BBR shifts of the clock transitions were also calculated. The calculations done here in

Ref. [34] act as a guide for future experimental work, providing a detailed assessment

of both ions for clock development.
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Chapter 5

THE 3C/3D LINE INTENSITY RATIO IN FE XVII

The work described in this chapter is published in Ref. [43]. Space X-ray obser-

vatories, such as Chandra and XMM-Newton, resolve L-shell transitions of iron domi-

nating the spectra of many hot astrophysical objects. Some of the brightest lines arise

from Fe XVII (Ne-like iron) around 15 Å: the resonance line 3C ([(2p5)1/23d3/2]J=1 →

[2p6]J=0) and the intercombination line 3D ([(2p5)3/23d5/2]J=1 → [2p6]J=0). They are

crucial for diagnostics of electron temperatures, elemental abundances, ionization con-

ditions, velocity turbulences, and opacities. However, for the past four decades, their

observed intensity ratios persistently disagreed with advanced plasma models, dimin-

ishing the utility of high-resolution X-ray observations. L-shell soft X-ray fluorescence

of Fe XVII ions was just measured in an electron beam ion trap following resonant

photo-excitation using synchrotron radiation provided by the P04 beamline at PE-

TRA III [43]. The experiment measured the most accurate 3C/3D oscillator strength

ratio to date, in an attempt to explain the discrepancy between theory and experi-

ment. We carried out a precision calculation correlating all 10 electrons, including full

Breit and QED [5] corrections, to predict the transition rates with 1-2% accuracy. Our

calculations ruled out incomplete inclusion of the electronic correlations in theoretical

calculations as the potential explanation of the puzzle.

In this work [43], we start from the solution of the DHF equations in the central

field approximation to construct the one-particle orbitals. The calculations are carried

out using the CI method, as described in Section 2.1.6, correlating all 10 electrons. Breit

interaction is included in all calculations, and the QED effects are included following

Ref. [48]. The basis sets of increasing sizes are used to check for convergence of the

values. The basis set is designated by the highest principal quantum number for each
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partial wave included. For example, [5spdf6g] means that all orbitals up to n = 5 are

included for the spdf partial waves and n = 5, 6 orbitals are included for the g partial

waves. We find that inclusion of the 6, 7h orbitals does not modify the results of the

calculations and omit higher partial waves.

We start with all possible single and double excitations to any orbital up to

5spdf6g from the 2s22p6, 2s22p53p even and 2s22p53s, 2s22p53d, 2s2p63p, 2s22p54d,

2s22p55d odd configurations, correlating 8 electrons. We verified that inclusion of the

2s2p63s, 2s22p54f , 2s22p55f even and 2s2p64p, 2s22p54s, and 2s22p55s odd configura-

tions as basic configurations have negligible effect on either energies of relevant matrix

elements.

The only unusually significant change in the ratio, by 0.07, is due to the inclusion

of the 2s22p33d3 and 2p53d3 configurations. These are obtained as double excitations

from the 2s22p53d odd configuration, prompting the inclusion of the 2s22p54d, 2s22p55d

to the list of the basic configurations.

Contributions to the energies of Fe16+ calculated with different size basis sets

and number of configurations are listed in Table 5.1. The results are compared with

experimental data from the NIST database [94] and from a revised analysis of the

experimental data [95]. We use LS coupling and NIST data term designations for

comparison purposes, but note that jj coupling would be more appropriate for this

ion. Contributions to the E1 reduced matrix elements D(3D) = D(2p6 1S0−2p53d 3D1)

and D(3C) = D(2p6 1S0−2p53d 1P1) and the ratio of the respective oscillator strengths

R =

(
D(3C)

D(3D)

)2

× ∆E(3C)

∆E(3D)

are listed in Table 5.2. The energy ratio is 1.01655.
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We include a very wide range of configurations obtained by triple excitations

from the basic configurations as well as excitations from the 1s2 shell and find negligible

corrections to both energies and matrix elements as illustrated by Tables 5.1 and 5.2.

These contributions are listed as “Triples” and “1s2” in both tables. Significant increase

of the basis set from [5spdf6g] to [12spdfg] improves the agreement of energies with

experiment but gives a very small, -0.009, contribution to the ratio. We find that the

weights of the configurations containing 12fg orbitals are several times higher than

those containing 12spd orbitals, so we expand the basis to include more dfg orbitals.

We also include 2s22p3nd3 and 2p5nd3 configurations up to n = 14. The contributions

to the energies of the orbitals with n = 13− 17 are 3− 5 times smaller than those with

n = 6−12, clearly showing the convergence of the values withe increase of the basis set.

The effect on the ratio is negligible. The uncertainty of the NIST database energies,

3000 cm−1 is larger than our differences with the experiment. The energies from the

revised analysis of Fe16+ spectra [95] are estimated to be accurate to about 90 cm−1

and the scatter of the differences of different levels with experiment is reduced. The last

line of Table 5.1 shows the difference of the 3C and 3D energies in eV, with the final

value 13.44(5)eV. We explored several different ways to construct the basis set orbitals.

While the final results with infinitely large basis set and complete configurations set

should be identical, the convergence properties of the different basis sets vary, giving

about 0.04 difference in the ratio and 0.04 eV in the 3C − 3D energy difference at the

12spdfg level. Therefore, we set an uncertainty of the final value of the ratio to be

0.05. As an independent test of the quality and completeness of the current basis set,

we compare the results for D(3C) and D(3D) obtained in length and velocity gauges

for the [12spdfg] basis, see rows L and V in Table 5.2. The difference of the results is

only 0.001.
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Table 5.2: Contributions to the E1 reduced matrix elements D(3D) = D(2p6 1S0 −
2p53d 3D1) and D(3C) = D(2p6 1S0 − 2p53d 1P1) (in a.u.) and the ratio
of the respective oscillator strengths R. See caption of Table 5.1 for desig-
nations. L and V rows compared results obtained in length and velocity
gauges for the [12spdfg] basis. All other results are calculated using the
length gauge. Transition rates are listed in the last row in s−1. From Ref.
[43].

D(3C) D(3D) Ratio
[5spdf6g] 0.33492 0.17842 3.582
[5spdf6g] +Triples 0.33493 0.17841 3.583

Triples 0.00001 -0.00001
[5spdf6g] +1s2 0.33480 0.17849 3.577

1s2 -0.00012 0.00007
[12spdfg] L 0.33527 0.17884 3.573

V 0.33551 0.17894 3.574
+[12spdfg] 0.00036 0.00042
+[17dfg] -0.00001 0.00001
QED -0.00017 0.00030
Final 0.33498 0.17921 3.552
Recomm. 3.55(5)
Transition rate 2.238×1013 6.098×1012
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Chapter 6

THE LOWEST-LYING ODD-PARITY ATOMIC LEVELS IN Ac

The work described in this chapter is published in Ref. [96]. Actinium (Z = 89)

lends its name to the actinide series, of which it is the first member. The longest-lived

isotope of actinium 227Ac (τ1/2 ≈ 22 y) is found in trace amounts as a member in the

decay chain of natural 235U. Actinium isotopes can be produced in nuclear reactors en-

abling their use in various applications based on their specific radioactivity. The isotope

225Ac, an α-emitter with a half-life of 10 days, is used in cancer radiotherapy [97, 98, 99],

while 227Ac is considered for use as the active element of radioisotope thermoelectric

generators. In combination with beryllium, 227Ac is an effective neutron source [100],

applied in neutron radiography, tomography and other radiochemical investigations.

Moreover, 227Ac is used as a tracer for deep seawater circulation and mixing [101]. On

the fundamental-physics side, actinium can be considered as a possible system to study

parity-nonconservation and time-reversal-invariance violation effects [102, 103]. Rare

isotopes of actinium are produced and were studied at different on-line facilities world-

wide. These research activities started at TRIUMF, Canada [104] and, together with

contributions from the LISOL facility in Belgium [105], are still ongoing. At ISOLDE

CERN, production of the isotope 229Ac was investigated, acting as mother for the 229Th

isomer proposed as a nuclear clock [106]. Further rare isotopes will become available

with high yield at the Facility for Rare Isotope Beams (FRIB) [107]. Studies of rare

actinium isotopes contribute to deriving nuclear physics properties and trends in this

region of the nuclear chart and help to decode astrophysical processes, to understand

fundamental interactions, and to develop practical applications, for example, in nuclear

medicine and material sciences.
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Table 6.1: The determined excitation energies and lifetimes, and comparison with
theory and literature. From Ref. [96].

State Energy (cm−1) τ (ns)

Exp. Calc. Lit. Exp. Calc. I Calc. II Lit. [116, 117]

7s27p 2P o
1/2 7477.36(4) 7701(250) 7565 [116] 668(11) 647 707(53) 733(70)

7s27p 2P o
3/2 12 276.59(2) 12 475(250) 12 345 [116] 255(7) 209 219(16) 238(20)

7s7p6d 4F o
3/2 13 712.74(3) 13 994(370) 13 712.90 [118] 352(11) 327 351(29) 317(30)

The atomic structure of actinium was elucidated by Judd who calculated the

ordering and properties of low-lying levels of actinide atoms [108]. This work was

extended by calculations of energy differences between the lowest states [109] and a

prediction of the parameters of electric-dipole (E1) transitions in actinium [110] using

the Hartree-Fock method, as well as other theoretical studies [111, 112, 113, 114, 115].

Recently, Dzuba, Flambaum, and Roberts calculated atomic parameters of 86

low-lying states of neutral actinium with energies below 36 218 cm−1 [116]. Of these,

only 28 levels had been confirmed experimentally prior to the present work. In par-

ticular, puzzling was the absence of the lowest-lying odd-parity levels 7s27p 2P o
1/2 and

7s27p 2P o
3/2, which should be directly accessible by E1 transitions from the 7s26d 2D3/2

even-parity ground state. Since these predicted strong transitions are of primary im-

portance for spectroscopic applications (e.g., fluorescence and photoionization spec-

troscopy, optical pumping, cooling and trapping, etc.), experimental confirmation and

determination of these states’ parameters (e.g., accurate energies, lifetimes, hyper-

fine structure, etc.) are urgently needed. In this work, a new theoretical calculation

of actinium levels is presented which allows the determination of several atomic level

properties. Therefore, the present work also sets a benchmark of theoretical accuracy in

Ac, tests methods to estimate theoretical uncertainties, and identifies future directions

of theory development. Precise atomic calculations of Ac hyperfine constants and iso-

tope shifts will be used for accurate extraction of nuclear properties from forthcoming

laser-spectroscopy experiments.

A comparison of the calculated and experimentally determined energies and
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lifetimes is shown in Table 6.1. While we list results for the three states of experimen-

tal interest, we calculated energies of 18 states using the CI+all-order approach, as

described in Section 2.1.11, including 114 840 configurations, and demonstrated con-

vergence of the results with increasing number of configurations. QED and full Breit

corrections are included as described in Refs. [119, 34]. Our results for even and odd

levels agree with previous experiments [118] to 40 – 120 cm−1 and 200 – 350 cm−1,

respectively, with theory values being larger than the experimental ones in all cases.

Such regular differences with experiment let us predict that we overestimate the en-

ergies of the 2PJ levels by about 200 cm−1, with about 50 cm−1 uncertainties which

is in excellent agreement with measured values. We list the lifetimes obtained using

theoretical values of energies and electric-dipole (E1) matrix elements in the column

labeled “Calc. I”. We use experimental energies and theoretical values of E1 matrix

elements to calculate the final theoretical lifetimes listed in column labeled “Calc. II”.

The uncertainties in the lifetimes are estimated from the size of the higher-order correc-

tions to E1 matrix elements determined from the difference of the CI+LCCSD values

and another calculation that combines CI with many-body perturbation theory [62].

Note that the lifetime values listed in [116] were recently corrected [117]; the

corrected values are given in Table 6.1. Within the respective uncertainties, there is

agreement between the two independent calculations and the experiment.
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Chapter 7

PREDICTING ATOMIC PROPERTIES OF NEGATIVE IONS

Negative ions are important for both fundamental and practical reasons, such as

medical applications [120, 121]. They are key constituents of terrestrial and space-based

plasmas [122], and they play crucial roles in many chemical reactions, as highlighted,

for example, in the very recent study of the astatine negative ion [121]. Beams of

short-lived radioactive nuclei are needed for frontier experimental research in nuclear

structure, reactions, and astrophysics, and negatively charged radioactive ion beams

have unique advantages and can provide the highest beam quality with continuously

variable energies [123]. Laser cooling of negative ions may allow for sympathetic cool-

ing of antiprotons for the production of cold antihydrogen for tests of fundamental

symmetries [124, 125]. From a fundamental standpoint, since the extra electron in a

negative ion is not bound by a net Coulomb force, their properties critically depend

on electron-electron correlation and polarization, giving valuable opportunities to gain

insight into these important multibody interactions [126, 127, 128]. Therefore, negative

ions serve as key test systems for state-of-the art atomic structure calculations.

Excited states of negative ions, both bound and quasibound states known as res-

onances, pose even more challenges and opportunities for both theory and experiment

[120, 126, 129]. They are important in low energy electron scattering from atoms and

molecules [130, 131, 132], electron attachment [131, 133], chemical reactions [134, 135],

and photoabsorption [120, 126, 127, 136, 137]. Recent studies of negative ion excited

states have focused on a diverse range of aspects, including the possibility of laser

cooling negative ions [124, 125, 138, 139, 140, 141, 142], negative ion resonance spec-

troscopy using ultralong-range Rydberg molecules [143], and resonances in inner-shell

photodetachment from small carbon molecular negative ions [144]. Clearly, progress
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in theoretical calculations of negative ion excited states would be very valuable for a

wide variety of both practical applications and fundamental insights.

We demonstrate for the first time that a high-precision relativistic hybrid ap-

proach that combines the configuration interaction and the coupled-cluster methods

(CI+all-order) [64, 125] can be used to accurately predict the energies of quasibound

states of negative ions. This method was designed for low-lying bound states and gen-

erally bound state approaches cannot be used to compute properties associated with

levels beyond the ionization (or in this case photodetachment) threshold for reasons

described below, but we have developed successful ways to extend this technique to

quasibound states of complex negative ions.

7.1 Identification of quasibound spectrum of La−

The work described in this section is submitted for publication [145]. Here, we

demonstrated the accurate prediction of a quasibound spectrum of a negative ion using

a novel high-precision theoretical approach. We used La− as a test case due to a recent

experiment done by collaborators from the Denison University that measured energies

of 11 resonances in its photodetachment spectrum attributed to transitions to quasi-

bound states [6]. We identified all of the observed resonances, and predicted one more

peak just outside the range of the prior experiment. Following the theoretical predic-

tion, the peak was observed at the predicted wavelength, validating the identification.

The same approach is applicable to a wide range of negative ions. Moreover, theory

advances reported in this work can be used for massive generation of atomic transi-

tion properties for neutrals and positive ions needed for a variety of applications. The

work done in this section was done in collaboration with experimental group from the

Denison University [6]. Our experimentalist collaborators performed the measurements

done in this section, and we did the theoretical work to validate identifications.

The negative ion of lanthanum, La−, is one of the most intriguing of all atomic

negative ions. Whereas most negative ions only have a single bound state config-

uration because of the shallow, short-range nature of their binding potentials [126],
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La− possesses multiple bound states of opposite parity [138, 139]. Indeed, La− has

the richest spectrum of bound-bound electric-dipole transitions yet observed for any

atomic negative ion [139], and it has emerged as one of the most promising negative

ions for laser-cooling applications [125, 138, 139, 140, 146]. Beyond the complex bound

structure of La−, very recent measurements of its photodetachment spectrum done by

our collaborators from the Denison University have revealed a remarkably rich near-

threshold spectrum including at least 11 prominent resonances due to excitation of

quasibound negative ion states in the continuum [6]. This recent observation of its

photodetachment spectrum allowed for an immediate test of our theoretical predic-

tions of the quasibound state structure of La−. We were able to identify all of the

11 observed resonances (peaks), and predicted several peaks that were too weak to be

observed in Ref. [6]. Our theoretical resonance energies agree with their experiment

to 0.03 – 0.3% for “narrow” peaks and to 2.3 – 3% for “wide” peaks associated with

higher energy levels. We also predicted that there should be a resonance peak just

outside the photon energy range of the original experiment. Following our prediction,

the peak was observed at exactly the predicted position, validating the identification;

this new measurement done by our collaborators is reported here. We start with a

description of the theoretical computations and specific solutions that allowed us to

extract the quasibound states and identify the measured resonances.

While we used La− as an example, the same approach is applicable to a wide

range of negative ions. Moreover, we developed a way to reliably extract hundreds of

states in the framework of the CI+all-order method, as described in Section 2.1.11,

instead of just a few bound states. This advance will allow to significantly extend the

applicability of the CI+all-order method for neutrals and positive ions, allowing for

massive data generation (energies, transition rates, lifetimes, branching ratios, etc.) of

a large part of the periodic table for a variety of applications.

In 2018, the CI+all-order approach was used to accurately predict energies of

then unmeasured bound states of La− as well as transition rates and branching ratios

relevant to the laser cooling of La− [125]. La− is considered as a system with four
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Table 7.1: Quasibound levels of La− energy levels in meV. All energies are counted
from the 3F2 even ground state. Levels labeled A, B, C, and D in exper-
imental work [6] are assigned terms. Calculated g-factors are compared
with the non-relativistic values (NR) in the last two columns. From Ref.
[145].

Level Term Theory Expt. Diff.(%) g-factor
NR CI+all

6s25d6p 3P1 567.0
6s25d6p 3P2 643.2

6s5d2(4F )6p 5G2 725.0 723.34(4) -0.2% 0.333 0.347
6s5d2(4F )6p 5G3 763.0 761.26(7) -0.2% 0.917 0.924
6s5d2(4F )6p 5G4 814.1 811.27(4) -0.3% 1.150 1.150
6s5d2(4F )6p 5G5 877.7 1.267 1.266
6s5d2(4F )6p 5G6 955.7 1.333 1.333

6s5d2(4F )6p 5F1 900.4 0.000 0.083
6s5d2(4F )6p 5F2 920.1 1.000 1.001
6s5d2(4F )6p 5F3 953.3 979.3(11) 2.7% 1.250 1.231
6s5d2(4F )6p 5F4 1005.9 1.350 1.312
6s5d2(4F )6p 5F5 1068.0 1.400 1.386

valence electrons and Xe-like 54-electron core. The CI+all-order method, as described

in Section 2.1.11, uses Dirac-Hartree-Fock one-electron wave functions for the low-

lying valence electrons, 6s, 5d, 4f , 6p, 7s, and 7p in the present work. We use a finite

basis method to construct all other orbitals (up to 35spdfghi) in a spherical cavity

using B-splines. Such an approach discretizes the continuum spectrum: a sum over

the finite basis is equivalent (to a numerical precision) to a sum over all bound states

and integration over the continuum. The obvious downside of this approach is the

limitation of its applicability to relatively low-lying bound states. For example, even

for the largest practical size of the cavity (a few hundreds atomic units) the method

is limited to the orbitals with the principal quantum number less than 20, so higher

Rydberg, or other delocalized states cannot be treated accurately. The situation for

negative ions is more favorable, where there are (if any) only a few bound states, no

usual Rydberg series, and quasibound states (if any) are still highly localized.
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There are two major problems in using the CI+all-order method to find quasi-

bound states of negative ions. The first problem is the separation of true quasibound

states from spurious “continuum-like” states that are artifacts of the finite basis (i.e.

states containing orbitals with n > 9 that do not fit inside the cavity and represent

near-continuum states). We solved this issue by running two set of calculations that

were identical with the exception of the size of the cavity. We have theorized that the

cavity size will affect the number and energies of the spurious states. The bound and

quasibound states will not be affected as the smaller cavity size is chosen to fit them

inside the cavity (we expect quasibound states to be well localized). We find that our

supposition is correct and the energies of the quasibound states are indeed stable with

the change in the cavity size from 60 a.u. to 85 a.u. The difficulty of this approach

comes from the second problem: a large number of spurious states drastically affect

convergence of the iterative procedure used by the CI, which is already very poor for

negative ions making the computations prohibitively long. Furthermore, the conver-

gence procedure was known to break down when some states reached convergence while

other closely-lying states were still strongly varying. We separated the computation

into seven different ones, each for a single value of the total angular momentum from

J = 0 to J = 6 to improve convergence as well as resolved the issue of disparate

convergence levels.

Building upon the MPI version of the CI code developed here, we improved both

efficiency and memory use, allowing to run such a large number of already complicated

computations in a short time. Each of the computations contained 110 000 – 186 000

configurations, corresponding to 4 – 6.6 million Slater determinants and requiring at

least 100 iterations (where usual is under 20). We computed a total of 74 odd states

with J = 0 − 6 and identified eight of these states as known bound states and twelve

more states as quasibound states. We verified that the bound states agree with exper-

iment to 0.1 – 2%. We find that dominant configurations for “spurious” states contain

a large fraction of the np electrons with n > 8, unlike the quasibound states where

configurations with 6p and 7p dominate.
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The energies of quasibound states are listed in Table 7.1 relative to the 3F2

even ground state (detachment threshold is 557.546(20) meV [147, 148]). Two of the

quasibound states complete the 3PJ triplet, with the 3P0 state being the last bound

state. We classify the remaining 10 states as 2 quintets, 6s5d26p 5G and 5F . Both

quintets can be formed by attachment of a 6p electron to the 6s5d2(4F ) excited states of

La. To verify our term assignments, we compute the g-factors for all states and compare

them to the g-factors obtained from the non-relativistic Landè formula. We find a near

perfect agreement of the calculated g-factors with the non-relativistic values (see the

last two columns of Table 7.1), unambiguously confirming our term identification.

The dipole selection rules allow for eight transitions from the three lowest-lying

6s25d2 3F2,3,4 even states to the 5G odd levels and nine transitions to the 5F odd

levels. There are no allowed transitions involving the 5G6 level. The transition energies

for these 17 transitions are listed in Table 7.2, along with the identification of peaks

observed by our collaborators in Ref. [6] and their measured energies. All “narrow”

(<1 meV width) peaks 13-19 observed in Ref. [6] involve the 5G levels. Due to excellent

agreement of the theoretical predictions with the measured energies, all of these peaks

were straightforward to identify. All of the transition energies agree to 0.03 – 0.3%.

The only allowed transition that was not observed by our collaborators in Ref. [6] is

3F4 → 5G3, which is expected to be weaker than the observed 3F2,3 → 5G3 transitions.

All observed transitions are illustrated in Fig. 7.1 a) which shows a partial energy level

diagram of relevant states of La− and La showing quasibound excited states in the 5G

manifold. The numbered arrows indicate resonance transitions that have been assigned

in this study.

The remaining “wide” (>1 meV width) peaks 20-23 in the spectrum are asso-

ciated with transitions to the 5F multiplet. Peaks 20 and 23 have to involve the same

5FJ level, as they are separated by 89 meV, which matches the energy difference of

the 3F3 and 3F4 even states [139, 147, 148]. However, complete identification of the

peaks 20-23 is more complicated as there are multiple ways to match these observed

transitions to theory predictions. We expect theory to be less accurate for these higher
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Table 7.2: Identification of peaks observed in [6]. Transition energies are given in
meV. The recommended values given in “recomm.” column are shifted
by 22 meV from the ab initio values. Last column gives the difference
between the experimental and theoretical values in meV. From Ref. [145].

Transition Theory Expt. Peak Diff.
ab initio recomm.

3F2 → 5G2 725.0 723.34(6) 17 1.7
3F3 → 5G2 640.5 639.41(5) 14 1.1
3F2 → 5G3 763.0 761.24(9) 19 1.8
3F3 → 5G3 678.5 677.36(5) 15 1.1
3F4 → 5G3 587.5 not observed
3F3 → 5G4 729.6 727.32(3) 18 2.3
3F4 → 5G4 638.6 638.41(3) 13 0.2
3F4 → 5G5 702.2 701.01(4) 16 1.2

3F2 → 5F1 900.4 876.4 not observed
3F2 → 5F2 920.1 898.1 blended with 23
3F3 → 5F2 835.6 813.6 not observed
3F2 → 5F3 953.3 931.3 predicted

observed 930.5(9)*
3F3 → 5F3 868.8 846.8 847.8(9) 21 21.0
3F4 → 5F3 777.8 755.8 not observed
3F3 → 5F4 921.4 899.4 895.6(19) 23 25.8
3F4 → 5F4 830.4 808.4 806.3(13) 20 24.1
3F4 → 5F5 892.5 870.5 872.1(12) 22 20.4

*Present work

states due to stronger configuration mixing. The study of the fine-structure splittings

within the 5F quintet shows these to be regular, i.e. matching non-relativistic values

to within a few meV. Therefore, we expect similar differences between theory and ex-

periment for all 4 measured transitions, with the deviation not exceeding a few (∼5)

meV. This requirement leaves only one possible identification of peaks 20-24 given in

Table 4.6 in which all 4 measured energies differ from the theory by 20-25 meV. We

predict that 3 transitions where total angular momentum J is lower for the quasibound

state than for the even state were too weak to be observed. Two of the transitions,

3F3 → 5F4 and 3F2 → 5F2, have nearly the same energy, resulting in blending of two
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Figure 7.1: Partial energy level diagram of relevant bound states of La− (black),
neutral La (blue), and quasibound excited states of La− (red) in the a)
5G and b) 5F manifolds. Numbered arrows indicate resonance transitions
observed previously by the Denison University group [6] (Peaks 13-23)
and in the present study (Peak 24) that have been identified in the present
study. From Ref. [145].

transitions in Peak 23; note that the expected separation of these two transitions of

only 1.3 meV is substantially less than Peak 23’s width of 8.8(18) meV [6]. To improve

theory prediction for other peaks, we shift the calculated energies by 22 meV and list

these recommended values in the “recomm.” column, with expected uncertainties of

less than 5 meV.

Importantly, from our identification of the quasibound state structure, we expect

a new resonance photodetachment peak associated with the 3F2 → 5F3 transition at

slightly higher energy than the previously measured spectrum of Walter et al. [6]. Its

predicted resonance energy can be calculated based on the energy of Peak 21, which

is due to transition to the same 5F 3 upper state but from a different lower state, 3F 3.

Thus, the predicted energy of new Peak 24 is the energy of Peak 21 (847.8(9) meV)

plus the La− (3F 2 – 3F 3) fine structure splitting (83.941(20) meV [139, 147, 148]),

yielding a predicted energy for Peak 24 of 931.7(9) meV. Peak 20-23 identification and

new Peak 24 are illustrated in Fig. 7.1 b), which shows transitions to the 5F manifold.

154



600 700 800 900
0

50

100

150

200

18
2322

2120
19

17

16
15

14

13  

 

N
eu

tra
l S

ig
na

l (
ar

b.
 u

ni
ts

)

Photon Energy (meV)

 
24

Figure 7.2: Measured La− photodetachment spectrum above the ground state thresh-
old energy of 557.546 meV. Data below 920 meV are from previous work
[6, 139]; data above 920 meV are from the present study. The numbered
peaks are due to resonant detachment via excitation of quasibound neg-
ative ion states; the newly observed Peak 24, which was predicted and
verified in the present study, is indicated in red. From Ref. [145].

To test the theoretical interpretation of the La− resonance spectrum, previous

measurements [6] were extended to slightly higher photon energies to search for the

predicted resonance due to the La− 3F 2 → 5F 3 transition near 931 meV. The relative

photodetachment cross section was measured as a function of photon energy using a

crossed ion-beam-OPO laser-beam system described in detail in Refs. [6, 149, 150]. In

the present study, the tuning range of the OPO was extended beyond its nominal short

wavelength limit of 1350 nm by manually controlling its crystal in order to measure

photodetachment from 920 - 948 meV (1350 - 1310 nm).

Figure 7.2 shows the La− photodetachment spectrum from Walter et al. [6],

together with the present measurements above 920 meV. The continuum photodetach-

ment cross section rapidly rises above 920 meV in a nearly linear fashion due to the

opening of photodetachment channels from bound states of La− to the La 4F manifold.

Most importantly, the new measurements reveal an additional resonance peak, Peak

24, which appears as a weak hump in the cross section at an energy near 931 meV. The
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Figure 7.3: Measured photodetachment spectrum in the vicinity of the newly ob-
served Peak 24, which is due to the La− 3F 2 → 5F 3 transition. The
solid line is a fit to the data of a Fano profile with a linear background.
The inset shows the remaining peak after the linear background has been
subtracted from the measured neutral signal. From Ref. [145].

measured photodetachment spectrum in the vicinity of the newly observed Peak 24 is

shown in Fig. 7.3, together with a fit of the Fano resonance formula [151] with a linear

background continuum cross section. The Fano profile provides an excellent fit to the

data, yielding a resonance energy of 930.5(9) meV and peak width of 5.8(10) meV.

The measured energy of Peak 24 of 930.5(9) meV agrees with the predicted

value of 931.7(9) meV based on its theoretical identification as the 3F 2 → 5F 3 transi-

tion. Furthermore, the measured widths of Peaks 21 and 24 (6.2(10) meV and 5.8(10)

meV, respectively) are the same within uncertainties, as expected since the peak width

depends on the lifetime of the 5F 3 upper state which is the same for both peaks.

The agreement between the predicted and measured energy and width of the newly

observed Peak 24 clearly verifies the present theoretical interpretation of the La− qua-

sibound resonance spectrum and demonstrates the power of the methods used in these

calculations. It is important to note that the theoretical calculations were absolutely

necessary in finding the new peak, since it is very weak (< 8% of the background signal)

and situated on a steep slope due to a rapidly increasing continuum photodetachment
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cross section.

7.2 Observation of an electric quadrupole atomic transition in Bi−

The work described in this section is submitted for publication [7]. Electric

quadrupole atomic transitions are of great interest due to applications such as tests of

fundamental physics [23, 84, 152], optical clocks [153], and quantum information [154],

and they provide important benchmarks for detailed state-of-the-art theoretical calcu-

lations [155]. The properties of negative ions crucially depend on electron correlation

effects [120, 126, 128, 156, 157], and E2 transitions in negative ions provide uniquely

valuable opportunities to gain insights into these subtle but important interactions.

Accurate theoretical computations are very difficult for negative ions with complex

electronic structure due to large configuration mixing in comparison with neutral or

positive ions [9, 126].

There is a great urgency for studying forbidden transitions in negative ions with

the advent of new cryogenic storage ring facilities, such as DESIREE [158, 159] and

the CSR [160, 161], that can measure lifetimes of excited states of negative ions over

unprecedentedly long scales of up to hours [159]. While most of the negative ion excited

state lifetime experiments to date have involved M1 transitions, one recent study at

DESIREE measured the E2 decay of an excited state of Pt− [162].

In this work, we investigate an E2 transition in the negative ion of bismuth

with experimentalist collaborators from Denison University. The hyperfine-averaged

binding energy of the Bi− (6p4 3P2) ground state relative to the Bi (6p3 4S3/2) ground

state was previously measured by Bilodeau and Haugen to be 942.369(13) meV [163].

While there have not been any previous measurements of the fine structure of Bi−, Su

et al. very recently reported calculations that indicated an interesting inversion in the

ordering of the excited fine structure levels, with 3P0 being bound and 3P1 unbound

[164]. Although there have been previous observations of transitions in negative ions

that had both M1 and E2 contributions [165, 166], to our knowledge, this is the first

transition observed in a negative ion with E2 as the lowest-order allowed interaction.
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The Bi− fine structure and E2 transition properties were independently calculated

using a high-precision hybrid theoretical approach to account for the strong multi-level

electron interactions and relativistic effects. The experiment and theoretical results

are in excellent agreement, providing valuable new insights into this complex system

and testing the accuracy of the theoretical approach.

We carried out calculations of the Bi− binding energies and the Bi− 6p4 3P0−3P2

transition energy and transition rate using the CI+all-order method, as described in

Section 2.1.11 [64]. Alternatively, we carry out identical computation constructing the

entire effective Hamiltonian using the second-order MBPT [2] to evaluate the impor-

tance of the higher-order corrections; we refer to such results as the CI+MBPT.

We treat Bi as a system with 3 valence electrons and a [Xe]4f 145d106s2 core.

The core is the same as for the Bi− calculation. The difference between the Bi− and

Bi calculation is in the CI part, which contains 4 valence electrons for Bi−. There

is an exponential growth in the number of possible configurations with the addition

of extra valence electrons and care must be taken to ensure a sufficiently large set of

configuration for Bi−. The problem is exacerbated for the weakly-bound negative ion

which exhibits very strong configuration mixing. All calculations incorporate the Breit

interaction as described in Ref. [34].
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The results of the CI+all-order and CI+MBPT calculations and specific contri-

butions to the energies are summarized for neutral Bi, and the electron affinity and the

6p4 3P2 →3P2 transition energy are presented for Bi− in Table 7.3. Binding energies

are shown relative to the Bi 6p3 4S3/2 ground state. Contributions of the higher orders

(HO) are calculated as the differences of the CI+all-order (CI+all) and the CI+MBPT

calculations. To evaluate the accuracy of the calculations, we calculated several smaller

corrections separately. We originally ran CI+all-order and CI+MBPT calculations al-

lowing excitations to all partial waves up to l = 5, with maximum principal quantum

number n = 35 for each (relativistic) partial wave. The contribution of the l = 6 partial

wave is listed in the column “l = 6”. From the extrapolations carried out for simpler

systems, we find that the contribution of all other partial waves is on the same order

as the l = 6 contribution. QED corrections are calculated following Ref. [5]. Both

the contributions of the l = 6 partial wave and the QED corrections are relatively

small. Next, we increase the number of CI configurations allowing excitations up to

23spdf18g and 22spdf18g orbitals for Bi and Bi−, respectively, an increase from the

initial 22spd18f14g set. All single, double and a large subset of triple excitations are

included. These changes increase the number of included configurations for the Bi−

from 73 719 to 126 168, with corresponding increase in the number of Slater determi-

nants from 3 090 923 to 4 952 692. Finally, we carry out a complete CI+all-order run

that incorporates all corrections (QED, l = 6, and larger number of configurations)

simultaneously. These results are listed as “Final” in Table 7.3.

Our final calculated binding energy of the Bi− 3P2 ground state is in excellent

agreement with the measured value of Bilodeau and Haugen [163], differing by only

0.05% (see Table 7.3). We find that the binding energy of the ground state, or the

electron affinity (EA), is strongly affected by the inclusion of more configurations, but

not by the inclusion of the higher orders. This is expected as Bi and Bi− computations

share the same core, and differences in its treatment is expected to cancel to a degree.

A sensitivity to extra configurations is also expected as configuration mixing for Bi−

is much stronger than for Bi. There is also excellent agreement for the binding energy
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Table 7.4: The energy levels of Po counted from the ground state. The experimental
values are from NIST [94]. From Ref. [7].

Level Expt. CI+MBPT CI+All HO Final Diff. Diff.%
6p4 3P2 0 0 0 0 0 0
6p4 3P0 7515 8022 7739 -283 7717 -202 -2.6%
6p4 3P1 16832 16508 16189 -318 16272 560 3.4%
6p4 1D2 21679 21370 21183 -187 21181 499 2.4%

of the fine structure excited state 3P0, with our calculated value of 2992 cm−1 being

within 17 cm−1 or 0.6% of the measured value of 3009 cm−1. However, in contrast

to the ground state, the higher orders contribute significantly (5.7%) to the binding

energy of the 3P0 state and therefore affect the 3P2 →3P0 transition energy. Finally,

our calculations indicate that the Bi− 3P1 state is not bound, which is in agreement

with the calculations of Su et al. [164].

We find it interesting to also explore if Po, which has the same two lowest

electronic states as Bi−, may be used as a homologue system to improve prediction

for a negative ion. We carried out a Po computation with all parameters identical to

Bi−. The results are listed in Table 7.4. We find that the difference with experiment

is actually larger in Po than in Bi−. This is most likely due to uneven cancellation of

some omitted effects, such as core triple excitations and non-linear terms that tend to

strongly cancel. We also find as expected that there is much stronger configuration

mixing in a negative ion, for example, only 11 non-relativistic configurations contribute

a total of 99% for the ground state of Po, but 22 for Bi−. Our results demonstrate

the significant fact that an isoelectronic neutral system cannot always be used as a

homologue for a negative ion.

The present theoretical results for the Bi− 3P2 → 3P0 E2 transition is given in

Table 7.5, together with previous calculations. Our calculated transition energy (4605

cm−1) is in excellent agreement with the experimental value (4591 cm−1), differing by

only 14 cm−1 or 0.3%. In contrast, the calculated transition energy from Su et al. [164]

is 444 cm−1 larger than the recent measurement, while the earlier calculation of Konan

161



Table 7.5: Present results and previous calculations for the Bi− 3P2 → 3P0 E2
transition energy and upper-state lifetime. From Ref. [7].

Study Method 3P2 → 3P0 Energy (cm−1) Lifetime (s)
Present Experiment 4591 -
Present Theory 4605 16.5(7)
Su [164] Theory 5033 15.20
Konan [168] Theory 8872 -

et al. is even farther away. Our computations include higher-order inner-shell electronic

correlations and, therefore, are expected to be more accurate than Multiconfigurational

Dirac-Hartree-Fock calculations [164, 168] for both energies and transition rates.

Turning now to the transition rate, we calculate the electric quadrupole 6p4

3P2 →3P0 reduced matrix element to be 16.30(33)ea2
0 using the CI+all-order method.

There is only a 1% difference between the CI+all-order and the CI+MBPT results,

and there is a 1.7% difference between the results obtained with medium and large sets

of CI configurations. We add these in quadrature to estimate the final uncertainty of

the matrix element to be 2%. Using the experimental value of the transition energy,

we obtain 0.0607(24) s−1 for the transition rate, corresponding to a 3P0 lifetime of

16.5(7) s. At first glance, the previous calculated lifetime by Su et al. of 15.20 s appears

to be fairly close to our value. However, it is important to consider that Su et al.’s

quoted lifetime was obtained using their calculated transition energy for 3P2 →3P0,

which is larger than the precisely measured energy by 10%. Since the E2 lifetime

scales inversely with transition energy to the fifth power, revising their lifetime using

our measured energy would yield an adjusted lifetime of 24.05 s, which is significantly

longer than our value. Finally, note that although our calculated lifetime of the 3P0

upper state of 16.5(7) s indicates that the transition is far too narrow ( 2×10−14 meV)

for a direct measurement of the lifetime from the peak width in the present experiment,

the theoretically predicted lifetime cold be rigorously tested in storage ring experiments

using established techniques [159, 162].

In summary, we have calculated the binding energies of the Bi− bound states
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and transition energy for 6p4 3P2 → 3P0 in cm−1. We have confirmed the fine structure

of Bi− and the E2 character of the transition through detailed theoretical calculations

including the transition rate. The measured and calculated energies are in excellent

agreement, demonstrating the power of the theoretical methods used to account for

the important correlation and relativistic effects in this complex multielectron system.

Similar theoretical methods can be applied to study E2 transitions in other negative

ions that have appropriate excited bound state structures, opening a new avenue for

investigations of forbidden transitions in atomic systems. Such studies can be combined

with the new ability of accurately measuring lifetimes of excited negative ions over long

time scales, recently developed at cryogenic storage ring facilities such as DESIREE

and the CSR, to give further insights into many-body correlation effects and decay

dynamics.
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Chapter 8

CONCLUSION

We have developed a broadly-applicable approach that drastically increases the

ability to accurately predict properties of complex atoms. The computational advances

demonstrated in this work are widely applicable to most elements in the periodic table

and will allow one to solve numerous problems in atomic physics, astrophysics, and

plasma physics.

Our systematic study of the atomic properties of highly charged Ir17+ demon-

strates new capabilities for high precision relativistic atomic calculations required for

modern experiments relevant for the development of novel atomic clocks with high

sensitivity to the variation of the fine-structure constant. Previously predicted E1

transitions have eluded observation despite years of effort raising the possibility that

theory predictions are grossly wrong. We provide accurate predictions of transition

wavelengths and E1 transition rates, explaining the lack of observation and providing

a pathway towards detection of clock transitions.

In the Cf15+ and Cf17+ highly charged ions, we have carried out a systematic

study of properties needed for the development of optical clocks using the hybrid ap-

proach combining the CI and coupled cluster methods. We analyzed a number of

systematic effects, including electric quadrupole- micromotion-, and quadratic Zeeman

shifts, of the clock transitions that affect the accuracy and stability of the optical

clocks. We also calculated the hfs magnetic dipole constants of the clock states and

the BBR shifts of the clock transitions.

In the neutral Ac atom, we collaborated with experimentalists from the Univer-

sity of Mainz to locate the two lowest-lying odd-parity states, and measure the energies
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and lifetimes, as well as hyperfine parameters of the 2P o
3/2 state, finding excellent agree-

ment between theoretical predictions and experimental measurements, implying good

understanding of the atomic structure of the actinium atom. Our theoretical findings

aid in developing techniques for cooling and trapping of actinium, of potential interest

for measuring the nuclear Schiff moment enhanced in Ac, as well as in optimization

of specific resonance-ionization processes. The results will be useful for production of

225Ac for nuclear medicine, and may support the design of fundamental physics ex-

periments such as investigations of fundamental symmetries with this atom. Precise

atomic calculations of Ac hyperfine constants and isotope shifts will be used for accu-

rate extraction of nuclear properties from forthcoming laser-spectroscopy experiments.

In the Fe16+ ion, we carried out a precision calculation all 10 electrons, including

full Breit and QED corrections, to predict the transition rates with 1-2% accuracy. Our

calculations ruled out incomplete inclusion of the electronic correlations in theoretical

calculations as the potential explanation of the puzzle. We saturated the computation

in all possible numerical parameters, including over 230 000 configurations in the largest

basis set 12sp17dfg. We verified that all the energies of all 18 states considered, counted

from the ground state, agree with the NIST database well within the experimental

uncertainty of 0.05%. The theoretical 3C − 3D energy difference of 13.44 eV is in

agreement with the experimental value to 0.3%.

We demonstrated the ability to accurately predict the quasibound spectrum

of negative ions with our calculations of atomic properties of La− and Bi−. The

CI+all-order method was designed for low-lying bound states and generally bound

state approaches cannot be used to compute properties associated with levels beyond

the ionization threshold, but we developed successful ways to extend this technique to

quasibound states of complex negative ions. In La−, we identified all of the observed

resonances, and predicted one more peak just outside the range of the prior experi-

ment. Following the theoretical prediction, the peak was observed at the predicted

wavelength, validating the identification. In Bi−, we calculated the binding energies

of the Bi− bound states and transition energy for 6p4 3P2 →3P0 in cm−1. We have
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confirmed the fine structure of Bi− and the E2 character of the transition through

detailed theoretical calculations including the transition rate. The measured and cal-

culated energies are in excellent agreement, demonstrating the power of the theoretical

methods used to account for the important correlation and relativistic effects in this

complex multielectron system.
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[114] G. Ürer and L. Özdemir, “Productioenergy levels and electric dipole transitions
for neutral actinium (Z = 89),” Arab. J. Sci. Eng., vol. 37, pp. 239–250, Jan.
2011.

[115] E. Eliav and U. Kaldor, Study of Actinides by Relativistic Coupled Cluster Meth-
ods, ch. 2, pp. 23–54. John Wiley & Sons, Ltd, 2015.

[116] V. A. Dzuba, V. V. Flambaum, and B. M. Roberts, “Calculations of the atomic
structure for the low-lying states of actinium,” Phys. Rev. A, vol. 100, p. 022504,
Aug 2019.

[117] V. A. Dzuba, V. V. Flambaum, and B. M. Roberts, “Erratum: Calculations
of the atomic structure for the low-lying states of actinium [Phys. Rev. A 100,
022504 (2019)],” Phys. Rev. A, vol. 101, p. 059901, May 2020.

[118] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.
NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available:
https://physics.nist.gov/asd [2016, January 31]. National Institute of
Standards and Technology, Gaithersburg, MD., 2019.

176



[119] I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba,
“Quantum Electrodynamical Shifts in Multivalent Heavy Ions,” Phys. Rev. Lett.,
vol. 117, p. 253001, Dec. 2016.

[120] D. J. Pegg, “Structure and dynamics of negative ions,” Rep. Prog. Phys., vol. 67,
pp. 857–905, 2004.

[121] D. Leimbach, J. Karls, Y. Guo, R. Ahmed, J. Ballof, L. Bengtsson, F. B. Pamies,
A. Borschevsky, K. Chrysalidis, E. Eliav, D. Fedorov, V. Fedosseev, O. Forstner,
N. Galland, R. F. G. Ruiz, C. Granados, R. Heinke, K. Johnston, A. Koszorus,
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Appendix A

SLATER-CONDON RULES

Let us define one-particle operators as

F̂ =
N∑
i=1

f(ri), (A.1)

and two-particle operators as

Ĝ =
1

2

∑
i 6=j

g(rij). (A.2)

The rules for the operator F̂ are

〈Ψ|F̂Ψ〉 =
N∑
i=1

fii (A.3)

〈Ψ|F̂Ψ′〉 = fik (A.4)

〈Ψ|F̂Ψ′′〉 = 0, (A.5)

where Ψ denotes the determinant built from the set of spin-orbitals {φ1, φ2 . . . , φN},

Φ′ differs from Ψ by replacing the spin-orbital φi by the spin-orbital φk, where k > N ,

and Ψ′′ includes two of such replacements. Here we have also introduced a short-hand

notation,

fik = 〈ψi|fψk〉 =
∑
σ

∫
d3rψ∗i (x)f(x)ψk(x). (A.6)

The rules for the operator Ĝ are

〈Ψ|ĜΨ〉 =
1

2

N∑
i,j

(gijij − gijji) (A.7)
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〈Ψ|ĜΨ′〉 =
N∑
j

(gijkj − gijjk) (A.8)

〈Ψ|ĜΨ′′〉 = gijkl − gijlk (A.9)

〈Ψ|ĜΨ′′′〉 = 0, (A.10)

where Ψ′′′ denotes a triply substituted Slater determinant, and

gijkl = 〈ψiψj|gψkψl〉 =
∑
σ,σ′

∫∫
d3rd3r′ψ∗i (x)ψ∗j (x

′)
1

r12

ψk(x)ψl(x
′) (A.11)
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Appendix B

ANGULAR MOMENTUM DIAGRAMS

In this appendix, we introduce graphical rules for angular momentum diagrams

and reduction, as introduced by Lindgren and Morrison [46, 57]. When carrying out

sums of products of 3-j symbols over magnetic quantum numbers, one can use a set of

graphical rules to replace analytical derivations, easing the required calculations. We

introduce mainly the rules that are used in the derivations in Section 2, leaving unused

rules and diagrams to the source [46, 57]. We will define the basic elements of the

angular momentum diagrams, then introduce the rules of summations and reduction

using this diagrammatic method.

The basic element of these angular-momentum diagrams is a line segment that

joins a pair of angular momentum indices

j1m1 j2m2

= δj1j2 δm1m2 . (B.1)

An arrow attached to a line segment, or a directed line, represents

-
j1m1 j2m2

= �
j2m2 j1m1

= (−1)j2−m2δj1j2 δ−m1m2 . (B.2)

The 3-j symbol is represented as

j1m1

j3m3

j2m2
− =

j3m3

j1m1

j2m2
+ =

 j1 j2 j3

m1 m2 m3

 , (B.3)

where the (−) sign designates that the lines are read in clockwise order, and the (+)

sign designates that the lines are read in counter-clockwise order, from j1m1 to j2m2

to j3m3, to obtain the 3-j coefficient.
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Having defined the basic elements of the angular momentum diagrams (line seg-

ment, directed line and 3-j symbol), we can introduce rules for summing over products

of 3-j symbols over magnetic quantum numbers using these elements.

Summing over the magnetic quantum numbers of two line segments corresponds

to connecting the vertices of the summed quantum number

∑
m3

j1m1 j2m2 j2m2 j3m3

= δj2j3
j1m1 j3m3

. (B.4)

Two arrows pointed in the same direction gives an overall phase

��
j1m1 j2m2

= --
j1m1 j2m2

= (−1)2j2δj1j2δm1m2 . (B.5)

Two arrows pointed in opposite directions cancel

�-
j1m1 j2m2

= -�
j1m1 j2m2

= δj1j2δm1m2 . (B.6)

Switching the direction of an arrow gives a factor of (−1)2j from the j of the

initial direction

�
j1m1 j2m2

= (−1)2j1 -
j1m1 j2m2

. (B.7)

Thickening a segment of the line represents a factor of
√

2j + 1 for that line

jm

=
√

2j + 1
jm

. (B.8)

Changing the sign of a 3-j symbol gives an overall factor of (−1)j1+j2+j3

j1m1

j3m3

j2m2
− = (−1)j1+j2+j3

j1m1

j3m3

j2m2
+ . (B.9)
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Attaching an arrow to a line segment of a 3-j symbol gives an overall factor of

(−1)j1−m1

6

j1m1

j3m3

j2m2
+ = (−1)j1−m1

 j1 j2 j3

−m1 m2 m3

 . (B.10)

Attaching arrows on all 3 lines on a 3-j symbol directing outward from or inward

towards the vertex has no effect on the overall phase of the 3-j symbol

�

?

6

j1m1

j3m3

j2m2
+ = -

6

?

j1m1

j3m3

j2m2
+ =

j1m1

j3m3

j2m2
+ . (B.11)

Having listed the basic elements and diagrammatic rules, we now list formulas

that are used to carry out angular reduction in Section 2. These can be derived from

the rules listed above.

The Clebsch-Gordan coefficient can be written in terms of a diagram as

C(j1, j2, j;m1,m2,m) = 〈j1m1, j2m2|jm〉

=

6

6

j1m1

j2m2

jm
− .

(B.12)

The Wigner-Eckart theorem can be written in terms of a diagram as

〈j1m1|T kq |j2m2〉 = (−1)j1−m1

 j1 k j2

−m1 q m2

 〈j1‖T k‖j2〉

=
6

j1m1

j2m2

kq
− 〈j1‖T k‖j2〉.

(B.13)
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The following are a list of useful identities used in angular reduction

j1m1

j2m2

0 0
6

−
=

1√
2j1 + 1

δj1j2 δm1m2 , (B.14)

&%
'$

j = 2j + 1, (B.15)

j3m3 j3′m3′+ −

j1

j2

&%
'$

=
1

2j3 + 1
δj3j3′ δm3m3′

, (B.16)

j1m1 +
j2&%

'$
? =

√
2j2 + 1 δj10 δm10, (B.17)

j1m1

j1′m1′

+−

6
j3

j2

&%
'$

? =

√
2j3 + 1

2j1 + 1
δj20 δj1j1′δm1m1′

. (B.18)
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Appendix C

HOUSEHOLDER’S METHOD OF DIAGONALIZATION

In this appendix, we introduce Householder’s method of diagonalization, follow-

ing Ref. [72]. Here, we focus on the details of the method, leaving proofs of theorems to

the source. Given a symmetric matrix A, one can use Householder’s method to find a

similar symmetric tridiagonal matrix B. Suppose there is a normalized vector v ∈ Rn,

with vTv = 1. We define an n× n matrix

P = I − 2vvT , (C.1)

called the Householder transformation, which selectively zeroes out blocks of elements

in vectors, or columns in matrices. It can be shown that since this transformation is

symmetric and orthogonal, P−1 = P .

We begin by determining a transformation P (1) such that A(2) = P (1)AP (1) zeros

out the elements of the first column of A beginning with the third row, i.e. a
(2)
j1 = 0,

for j = 3, 4, . . . , n. By symmetry, we also have a
(2)
1j = 0, for j = 3, 4, . . . , n.

Expanding the matrix, we get

A(2) = P (1)AP (1) = (I − 2vvT )A(I − 2vvT ), (C.2)

where a
(2)
11 = a11 and a

(2)
j1 = 0, for j = 3, 4, . . . , n.

Setting v1 = 0 ensures that a
(2)
11 = a11. We want the transformation P (1) =

I − 2vvT to satisfy

P (1)(a11, a21, a31, . . . , an1)T = (a11, α, 0, . . . , 0)T , (C.3)

where the value of α is to be obtained later. To simplify notation, let

v̂ = (v2, v3, . . . , vn)T ∈ Rn−1, (C.4)
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ŷ = (a21, a31, . . . , an1)T ∈ Rn−1, (C.5)

and let P̂ be the (n− 1)× (n− 1) Householder transformation

P̂ = In−1 − 2v̂v̂T . (C.6)

With this notation, Eq. C.3 then becomes

P (1)



a11

a21

...

...

...

an1


=



1 0 · · · · · · · · · 0

0
...
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...

0
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=
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a11
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a11

α
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
, (C.7)

where

P̂ ŷ = (In−1 − 2v̂v̂T )ŷ = ŷ − 2(v̂T ŷ)v̂ = (α, 0, . . . , 0)T . (C.8)

Defining r = v̂T ŷ, this gives

P̂ ŷ = (α, 0, . . . , 0)T = (a21 − 2rv2, a31 − 2rv3, . . . , an1 − 2rvn)T , (C.9)

with which we can determine all components of the vector v̂ by matching components.

Equating the components, we obtain

2rv2 = a21 − α, (C.10)

and

2rvj = aj1, for j = 3, . . . , n. (C.11)

Squaring both sides of the equations and adding, we get

4r2

n∑
j=2

v2
j = (a21 − α)2 +

n∑
j=3

a2
j1. (C.12)

Since the vector v is a normalized vector, and v1 = 0, the first term is simply

n∑
j=2

v2
j = 1. (C.13)

189



Substituting, we obtain

4r2 =
n∑
j=2

a2
j1 − 2αa21 + α2. (C.14)

From the orthogonality of P , we get from Eq. C.8

α2 = (α, 0, . . . , 0)(α, 0, . . . , 0)T

= (P̂ ŷ)T P̂ ŷ = ŷT P̂ T P̂ ŷ = ŷT ŷ

=
n∑
j=2

a2
j1,

(C.15)

which gives

2r2 =
n∑
j=2

a2
j1 − αa21. (C.16)

To ensure that 2r2 = 0 only if a21 = a31 = · · · = an1 = 0, we choose

α = −sgn(a21)

√√√√ n∑
j=2

a2
j1. (C.17)

Substituting α into Eq. C.16, we obtain

2r2 =
n∑
j=2

a2
j1 + |a21|

√√√√ n∑
j=2

a2
j1. (C.18)

With this choice of α and r, we can solve Eqs. C.10 and C.11 to obtain

v2 =
a21 − α

2r
, (C.19)

and

vj =
aj1
2r
, for each j = 3, . . . , n. (C.20)

We then obtain

A(2) = P (1)AP (1) =



a
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11 a

(2)
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22 a
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0 a
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32 a
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(2)
3n

...
...

...
...

0 a
(2)
n2 a

(2)
n3 · · · a

(2)
nn


. (C.21)
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Having found P (1) and computed A(2), this process is repeated for k = 2, 3, . . . , n − 2

with

α = − sgn(a21)

√√√√ n∑
j=2

a2
j1,

r =

√
1

2
(α2 − a21α),

v
(k)
1 = v

(k)
2 = · · · = v

(k)
k = 0,

v
(k)
k+1 =

a
(k)
k+1,k − α

2r
,

v
(k)
j =

a
(k)
jk

2r
, for j = k + 2, k + 3, . . . , n,

P (k) = I − 2v(k)(v(k))T ,

(C.22)

and

A(k+1) = P (k)A(k)P (k)

=



a
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11 a
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. . . a
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k+1,k a

(k+1)
k+1,k+1 a

(k+1)
k+1,k+2 · · · a

(k+1)
k+1,n

... 0
...

. . .
...

...
...
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. . .

...

0 · · · 0 a
(k+1)
n,k+1 · · · · · · a

(k+1)
nn



(C.23)

Repeating this process n − 2 times, we obtain a tridiagonal and symmetric matrix

A(n−1), where

A(n−1) = P (n−2)P (n−3) · · ·P (1)AP (1) · · ·P (n−3)P (n−2). (C.24)
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Appendix D

HIGH PERFORMANCE COMPUTING

Computational problems that are too large or would take too long on standard

desktop computers can be done on modern HPC architectures, such as supercomput-

ers or clusters. Whereas a standard desktop computer would typically have a single

processor, a HPC system would contain a network of nodes, each containing one or

more processors. Applications that were traditionally written for serial computation

have to be re-written for parallel computing. Application developers who port their

codes to HPC systems must re-design their applications to run in parallel on multi-

ple processors in order to take advantage of the available computational resources. In

general, the computations would have to be broken down into parts that can be solved

concurrently, and instructions from each part would be executed simultaneously on

different processors.

There are three major models of parallel computing: the shared memory model,

the distributed memory model, and the hybrid shared/distributed model. In the shared

memory model, all parallel processes share a global memory space where data can

be read and written to asynchronously. In the distributed memory model, parallel

processes with their own separate segment of memory send and receive data between

each other via high speed networks. The hybrid model contains properties of both the

shared memory and distributed memory models; several nodes, each consisting of a

set of processors sharing memory, are connected through a high speed network system.

For example, the UD Caviness Community Cluster, where most of this work was done,

consists of 126 compute nodes (4536 cores, 24.6 TB memory), each with 36 cores and

varying amounts of memory during its first generation [169]. As of October 2020, the

Caviness cluster was expanded in the Generation 2.1 initiative, now representing 265
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compute nodes (10124 CPU cores, 77 TB memory) [169]. The work done in this thesis,

including development and testing of parallel codes, as well as calculations done on all

ions, were done primarily on the UD Caviness cluster.

Parallel codes are typically written in either C++ or Fortran, with OpenMP

and MPI. OpenMP was designed for the shared memory model, whereas MPI was

designed for the distributed memory model. The programs developed in this work

require large amounts of processors, so MPI was the obvious choice for parallelization.

After a fully optimized MPI program has been developed, OpenMP could be used to

further optimize the scalability of the codes. Hybrid MPI+OpenMP parallelization is

beyond the scope of this work, but is planned as a future project.

OpenMP is an API for creating code that can run on a system of threads,

making it possible to write parallel code without the use of external libraries. OpenMP

is typically considered more user friendly due to its use of directives, which appear as

comments in the source code, to direct parallelism. However, OpenMP is limited due

to the number of threads that are available on a node. On the UD Caviness Cluster,

this means no more than 40 processors can be utilized with OpenMP depending on the

node. OpenMP was not applied to any of the codes developed in this thesis, so more

information about OpenMP will be left to the many textbooks and online resources

[170].

MPI is a message passing library standard used for handling parallel processing

using objects called communicators that define a group of processes that have the

ability to communicate with one another. Unlike OpenMP, MPI is compatible with

multi-node structures, allowing for very large, multi-node applications that are limited

by the total number of processors that are available to the system. However, MPI is

often less accessible and more difficult to implement due to the requirement of code

restructuring. More information about MPI can be found in many textbooks and

online resources [73, 74, 171]. MPI is an ongoing project, with new subroutines and

functionalities being developed [171]. Here, we introduce the main concepts along with

the subroutines used throughout the parallel codes.
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One main concept of message-passing is the concept of a communicator. A

communicator is an object that describes a group of processes that can pass messages

to each other. The default communicator MPI COMM WORLD describes the group that all

processes in the program starts with. In most cases, this is all that is necessary, but

in some applications that utilize dynamic workload distributions and MPI windows, it

is necessary to split the global communicator into sub-communicators.

The basic structure of an MPI parallel program includes initiating communi-

cators, passing messages to communicate data between processors, and exiting from

the message-passing interface. The MPI Init subroutine initializes the MPI environ-

ment, then the number of processors and the id’s for each processor is defined by the

subroutines MPI Comm Size and MPI Comm Rank, respectively. Communications can be

done using point-to-point or collective communications, or a mixture of both types.

Point-to-point communication uses subroutines such as MPI Send and MPI Recv to

send and receive data, respectively. Collective communication uses subroutines such as

MPI Bcast to send data from one process to all other processes in that group of com-

municators. The types of communicators used in the parallelization of the codes done

in this thesis are mainly collective. Finally, we exit and close the MPI environment

using the MPI Finalize subroutine.

Next, we list a number of essential collective MPI subroutines that were used

throughout the parallel codes:

� MPI Barrier - This subroutine forms a barrier where no processes in the com-
municator can pass until all processes in the communicator reach that point of
the program. This is used in all parallel programs to synchronize data before
a data-dependent calculation begins, insuring all processes do in fact have the
required data stored in memory.

� MPI Bcast - This subroutine allows one process to send a specified data to all
processes in a communicator. One of the main uses of this subroutine is to send
out inputs and parameters to all processes. This is used in all parallel programs
to share input data that is read from the core process to all other processes. For
example, the number of configurations, array sizes and other parameters are read
into the program by the master core, then it is broadcasted to all other cores
with this subroutine.
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� MPI Scatter - This subroutine allows one process sends chunks of an array to
different processes in a communicator.

� MPI Gather - This subroutine is the inverse of MPI Scatter. Instead of spread-
ing elements from one process to all processes in a communicator, this subroutine
takes elements from all processors in a communicator and gathers them to a single
process. This is used in the conf program to gather the number of determinants
each process has to run through for comparisons in order to calculate displace-
ments used for subsequent collective communication subroutines.

� MPI Allgather - This subroutine is essentially an MPI Gather followed by an
MPI Bcast. Given a set of elements distributed across all processes in a commu-
nicator, this subroutine gathers all elements and gathers them to all processes. In
the conf program, this is used to gather the number of non-zero matrix elements
each process has calculated in order to calculate displacements used for writing
the matrix elements out to disc.

� MPI Reduce - This subroutine takes an array of elements from each process in
the communicator, applies an operator to the array of elements, then returns a
resultant array of elements to a single process. The reduction operators include,
but are not limited to the following:

– MPI Max - returns the maximum element

– MPI Min - returns the minimum element

– MPI Sum - returns the sum of the array of elements

– MPI Prod - returns the product of all the elements

For example, in the conf program, this subroutine is used in the Davidson proce-
dure after matrix multiplications. Each core has their own array of Hamiltonian
matrix elements, and does multiplications with these matrix elements with eigen-
vectors. After multiplications, a reduction is done so the core process has the
complete result for subsequent orthonormalization procedures.

� MPI AllReduce - This subroutine is essentially an MPI Reduce followed by an
MPI Bcast. An array of elements from each process in the communicator are
applied with an MPI reduction operator, then the result is broadcasted to all
processes in the communicator. For example, in the conf program, this subrou-
tine is used to calculate the total number of non-zero matrix elements computed
during the formation of the CI Hamiltonian. Each process keeps a count of the
total number of matrix elements, and after each core is done their calculations,
a reduction is done to sum over all counts to obtain the total number of matrix
elements. It is also used to find the minimum energy of all matrix elements and
then broadcast that energy to all processes.
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� MPI Win allocate shared - This subroutine creates a window with shared mem-
ory in a communicator. Introduced in MPI-3, this is MPI’s solution to shared
memory in a distributed parallel system. A window is created with shared mem-
ory, allowing all processes in a communicator to remotely read data from the
memory allocated in the window. However, window creation is limited to each
node, i.e. the windows created only exist for the communicators in the individual
nodes. Due to this, each node is associated with a sub-communicator, and each
sub-communicator take part in their own window. This is useful for storing a
large constant array that would otherwise have to be broadcasted to every core.
For example, in the conf program, the basis set of determinants (of dimension
(Nd,Nv), where Nd is the total number of determinants, and Nv is the total num-
ber of valence electrons) is stored in a window, and each core remotely reads
the determinants during the formation of the CI Hamiltonian matrix and the
J2 matrix. The core process in the master communicator broadcasts the whole
2-dimensional array of to the core processes of each sub-communicator, instead
of every single process. The core processes of each sub-communicator then cre-
ates a window for the basis set of determinants for remote access by all other
processes in the sub-communicator. The processes that are not labeled core pro-
cesses in the sub-communicator are can then remotely read the basis set during
calculations of matrix elements.
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