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ABSTRACT

One of the central objectives of atomic, molecular and optical physics is de-
scribing complex correlations in atomic structure. There has been an increasing need
for high quality high-precision atomic data and software in several scientific commu-
nities, including atomic, plasma and astrophysics. Having an accurate atomic theory
is indispensable for experiments involving studies of fundamental interactions, astro-
physics, atomic clocks, plasma science, quantum degenerate gases, quantum informa-
tion, precision measurements, and others. The need for high-precision calculations of
atomic properties of systems in the middle columns of the periodic table has become
increasingly urgent due to its relevance in new experiments probing physics beyond the
Standard Model.

The ultimate goal of the work described in this thesis is to develop methods
and codes to enable accurate computation of atomic properties of atoms and ions
with complex electronic structure. We apply our newly developed code package for
reliable calculations of atomic properties of systems that were not possible before.
This includes calculations correlating all 60 electrons in the highly charged Ir'™ ion,
calculations predicting clock transitions and analyzing systemic effects that could affect
the accuracy and stability of Cf'°* and Cf'"* ions, calculations predicting the 3C'3D
line intensity ratio in Fe'¢*, calculations detecting the lowest lying odd parity atomic
levels in neutral Ac, and calculating properties of negative ions La~ and Bi~. The
new code package will also be used to produce large volumes of atomic data for a new

online portal being developed at the University of Delaware.

Xiv



Chapter 1

INTRODUCTION

In this work, a new relativistic atomic code capable of very-large scale, high-
precision calculations of atomic properties is developed and used for calculations of
several complex ions that were not possible with previous codes. This atomic code uti-
lizes the configuration interaction (CI) method, and allows to combine configuration
interaction with either many-body perturbation theory (CI+MBPT) or the all-order
method (Cl+all-order), to analyze atoms and ions of interest. The main motivation for
this work is the recent rapid development in experiments involving studies of funda-
mental interactions, astrophysics, atomic clocks, plasma science, quantum degenerate
gases, quantum information, precision measurements, and others.

In the first part of this thesis, the theoretical frameworks that lay the foundation
for the code package are discussed in enough detail to understand the functionalities
of the code. The basics of atomic structure theory is briefly summarized, starting
from the non-relativistic many-electron Hamiltonian and an N-electron antisymmetric
wave function, we solve Schrodinger’s equation to obtain the energy of the system of
interest. This is extended to include relativistic effects by introducing the relativistic
Hamiltonian. The Hartree-Fock method is introduced in the non-relativistic regime,
and then extended to the Dirac-Hartree-Fock method when relativistic effects are taken
into account. Then the CI method and the Davidson method [1] are introduced. Next,
the hybrid approaches CI+MBPT and CI+all-order are introduced, treating core-core
and core-valence correlations with MBPT /all-order and treating valence-valence corre-
lations with CI. Valence perturbation theory (CI+PT) is introduced as an extension to
the CI method, which is primarily used to treat very complicated open-shell systems

where the usual CI+MBPT and Cl+all-order methods would not work. The CI+PT



method allows for perturbative treatment of the valence correlations on top of the
CI calculations. Finally, radiative transitions between states of an atomic system are
discussed; the density matrix formalism is introduced, and then the expressions for
multipole transition probability rates are derived.

In the second part of the thesis, the complete CI/CI4+MBPT /CI+all-order code
package is described. Here, the components of the complete set of codes are introduced,
including codes that were not released in the initial CI+MBPT public distribution to
Computer Physics Communications in 2015 [2]. These include 3 codes that realizes
the Cl+all-order method, as well as a new code that realizes the CI+PT method for
extreme-scale CI calculations. Next, we describe the code developments done in this
work. This includes the modernization and parallelization of the main codes in the
package, namely the CI code conf, the CI4+PT code conf _pt, and the matrix element
code dtm, which are the most computationally expensive portions of the entire code
package. Memory usage, optimization, and parallelization schemes are discussed for
these codes.

In the final part of the thesis, we showcase the recent calculations done with our
newly developed parallel CI/CI+MBPT/Cl+all-order code package. It is important
to note that most of the calculations done here were not possible with the attained
accuracy with previously existing codes. Highly charged ions (HCI) such as Ir'™*, Cfl5*
and Cf'™* are attractive candidates for the development of novel atomic clocks with very
high sensitivity to the variation of the fine structure constant o. In our most demanding

17+ M1 transition energies between

calculations, we correlate all 60 electrons in Ir
same parity states have been measured to good agreement with previous calculations
[3], and F'1 transition rates between opposite parity states were found to be drastically
lower than previously predicted [4]. Our calculations explain the lack of observed E'1
transitions in the last 5 years, and provide a path towards detecting the corresponding
clock transitions [4]. We also predicted properties of the Cf!5* and Cf'™ ions, including

the wavelengths of clock transitions, and analyzed a number of systematic effects that

affect the accuracy and stability of these optical clocks, including electric quadrupole,



micromotion, and quadratic Zeeman shifts of the clock transitions. Our calculation
correlating all 10 electrons in Fe!®" including full Breit and QED [5] corrections,
predicted the transition rates of the resonance line 3D [2p°3d *D; — 2p°® 1.Sy] and the
intercombination line 3C' [2p°3d * P, — 2p°® 1Sy] with 1-2% accuracy, ruling out basis set
convergence in theoretical calculations as a potential explanation for the discrepancy of
the observed intensity ratios with advanced plasma models. For the neutral Ac atom,
we calculated the energy levels and lifetimes of the two lowest odd-parity states 7s27p
2P1"/2 and 7s%7p 2P§/2 with good agreement with experimental measurements, resolving
discrepancy of other theory values with experiments. For La~, we identified all of
the 11 observed resonances in its photodetachment spectrum attributed to transitions
to quasibound states [6], as well as predicted one more peak just outside the range
of the prior experiment, which was validated after it was observed at the predicted
wavelength. This is the first time our approach has been used to predict properties of
quasibound states in any system. For Bi~, our calculations found excellent agreement
with recent experiments for the binding energies and 6p* 3P, —3P, transition energies
and rates [7].

The main motivation of the work done in this thesis is to develop a new mod-
ern atomic code package free of the limitations of existing available codes. This code
package is capable of precise prediction of properties of even complicated systems and
suitable to run on modern computational facilities. We plan to release the new code
package to the user community. Here, we briefly summarize the atomic structure codes
that have been available for public use in the last few decades. The NIST Multicon-
figuration Hartree-Fock and Multiconfiguration Dirac-Hartree-Fock (MCHF/MCDHF)
database contains collections of transition data from different relativistic theories by
different computational methods, as well as the atomic structure codes used for the cal-
culations of the data [§8]. The MCHF/MCDHF database includes access to ATSP2K,
a large scale, non-relativistic MCHF + Breit Pauli atomic structure package [9], and
the GRASP2K package, which implements the fully relativistic MCDHF method for

large-scale calculations [10, 11]. Some other generally applicable, documented atomic



structure codes include CIV3, which calculates configuration interaction (CI) wave
functions and electric-dipole oscillator strengths [12]; SUPERSTRUCTURE, which
calculates bound state energies in LS coupling and intermediate coupling as well as
associated radiative data [13]; the COWAN code, which calculates atomic structures
and spectra via the superposition-of-configuration method [14, 15]; HULLAC, which
calculates atomic structure and cross sections for collisional and radiative atomic pro-
cesses using methods such as CI and the parametric potential method [16]; the ATOM
programs, which compute atomic processes, including photoionization, Auger and ra-
diative decay, elastic scattering and ionization, using HF and its generalization to the
random phase approximation (RPA) with exchange [17]; and the Flexible Atomic Code
(FAC), which computes various atomic properties such as energy levels, radiative tran-
sitions, collisional excitations, ionization by electron impact, and photoionization [18].
All of these codes have been developed decades ago, with some more recent updates
to some codes, including MPI parallelization. Modern applications require much more
accurate treatment of the electronic correlations, and larger ranges of atomic properties
that can be calculated with these codes. An initiative has been taken to develop much
more modern codes with the release of the CI-MBPT code package in 2015 [2], and the
AMBIT CI+MBPT code package in 2018 [19]. The AMBIT code package features hy-
brid MPI+OpenMP parallelization to take full advantage of modern high-performance
computing (HPC) architectures, allowing for calculations of much more complicated
systems than before.

The work done in this thesis resumes the development of the CI/CI+MBPT/CI+
all-order code package, porting the previous serial code package to latest HPC architec-
tures via modern computational methodologies, enabling the codes to run on large-scale
computational facilities in order to treat complex systems, such as atomic systems with
open d- and f -shells, beyond the original code’s capabilities. Furthermore, the modern
code package will be a part of a larger project: the development of an online portal
that will provide the scientific community with access to a database of high-precision

atomic properties and a package of application codes that can be used to compute



these properties.

A major motivation for this work is the development of atomic clocks, which
is essential for the search for variation of fundamental constants. Modern theories
aimed at unifying gravity with the other three fundamental interactions suggest that
the fundamental constants could vary in an expanding universe [20]. Development of
ultra-precise atomic clocks with fractional sensitivity da/a ~ 10718 yr=! have already
allowed for laboratory tests of the temporal variation of the fine structure constant
a = €2 /he, and novel clock schemes based on the ?*Th nuclear transition [21, 22] and
optical transitions in highly-charged ions [23, 24, 25, 26, 27, 28] that may achieve the
accuracy at the next decimal point, 1071, are being considered. Optical atomic clock

transition energies AFE depend on the fine-structure constant a as

(%)2 - 1] , (1.1)

where « is the current value of « [29], AE) is the transition energy corresponding to

AFE(a) = AEy+ Agq

ap, and the differential sensitivity parameter Ag [30, 31] can be precisely calculated.
The atomic clock maps out small fractional a deviations of any cause or type (tempo-
ral, spatial, slow drift, oscillatory, gravity-potential dependent, transient or other) to

fractional frequency deviations

AFE — AE, o — ag
=K 1.2

where K = 2Aq/AF is the dimensionless enhancement factor. Experimentally, one
can detect the variation of a by monitoring the ratio of two clock frequencies with
different values of K. One would look for clocks with the best stability, total systematic
uncertainty, and highest values of AK = K; — K for clocks 1 and 2. Highly charged
ions (HCI) such as Ir'™*, Cf'5* and Cf'7* are attractive candidates for the development
of novel atomic clocks with very high sensitivity to the variation of the fine structure
constant «v [23, 28, 32]. Therefore, extensive theoretical and experimental studies must
be done on highly charged ions (HCI) in order for these novel clocks to become a reality.

For example, while the M1 transitions in Ir!"* between same parity states have been



measured to good precision [3], the clock transitions, or in fact any E1 transitions
between opposite parity states have not yet been identified. These E'1 transitions were
expected to be observed in recent experiments since their predicted transitions rates
[33] were well within the experimental capabilities. The lack of observations for the
FE1 transitions brought serious concerns about the accuracy of theoretical predictions.
We have completed extensive work on several HCI, such as Ir'™* [4], Cf'** [34], and
Cf'7* [34] in this work. HCI have numerous long-lived optical transitions suitable
for clock development with very low uncertainties, estimated to reach the 107! level
[25, 35, 36]. Recent developments in quantum logic techniques for HCT spectroscopy in
which a cooling ion provides sympathetic cooling, as well as control and readout of the
internal state of the HCI ion, made rapid progress in the development of HCI clocks
possible [37, 38].

Another motivation of this work is in astrophysics. Properties of Fe and Fe
ions are essential for astrophysical studies [39, 40, 41, 42]. The code developed in
this work will calculate energies and various multipole transition properties making
it of use for plasma physics and astrophysics. The work done in this thesis enabled
massive computations of a very large number of states (over 100) and their respective
transitions. This scale of calculations were not previously possible, making the code
usable for large-scale data production needed for astrophysics and plasma science.
For example, for the last four decades, there has been a disagreement between the
observed intensity ratios and advanced plasma models of the resonance line 2p°3d
3Dy — 2p% 1S, and the intercombination line 3C 2p°3d ' P, — 2p% 1Sy of Fe XVII ions
[43]. These lines are crucial for plasma diagnostics of electron temperatures, elemental
abundances, ionization conditions, velocity turbulences, and opacities. L-shell soft

X-ray fluorescence of Fel+

ions was recently measured in an electron beam ion trap
following resonant photo-excitation using synchrotron radiation provided by the P04
beamline at PETRA III [43]. The experiment measured the 3C'/3D oscillator strength
in an attempt to explain this puzzle. We carried out a precision calculation using our

newly developed parallel CI code to predict these transition rates with 1-2% accuracy.



We verified that the energies of all 18 states considered agree with the NIST database
within the estimated experimental uncertainty of 0.05%, and the theoretical 3C' — 3D
energy difference of 13.44 eV is in agreement with the experiment to 0.3% [43].

The organization of the thesis is as follows: a summary of atomic structure
theory and methods used in this work is given in Chapter 2; a description of the
programs in the new parallel CI+MBPT /CI+-all-order code package is given in Chapter
3; calculations done for the development of optical atomic clocks using highly charged
ions Ir'™ Cf%* and Cf'™ are discussed in Chapter 4; calculations for the 3C/3D line
intensity ratio in Fe'S" is discussed in Chapter 5; calculations for neutral Ac are done
in Chapter 6; calculations done to predict quasibound states of negative ion La™ and
bound states of Bi~™ are done in Chapter 7; and a conclusion of the thesis is given in

Chapter 8.



Chapter 2

THEORY

The study of atomic structure continues to be an exciting field, with increasingly
precise measurements and improved computational methods allowing more and more
detailed comparisons between experiment and theory. Accurate theory predictions are
needed to propose, guide, and analyze experiments. The aim of this chapter is to give
a brief overview of concepts that will be necessary for a better understanding of the
contents of this work. The main focus will be computational methods for high-precision
relativistic calculations for many-electron atomic systems. We will begin by describing
a general many-electron system with a non-relativistic Hamiltonian. We’ll find that
for increasingly large systems, it will be impossible to write an analytical solution,
making it necessary to introduce approximation methods, such as the configuration
interaction method, many-body perturbation theory, and the coupled-cluster method.
In this chapter, we will introduce major concepts and theory utilized in this work,
leaving detailed discussion and derivations to the original sources. A detailed discussion
on these topics can be found in references [44, 45, 46, 47]. Atomic units are used
throughout the thesis, unless otherwise stated.

This chapter begins with a description of the methods used for atomic structure
calculations, and ends with a description of radiative transitions relevant for determin-
ing transition rates, lifetimes, and branching ratios. In Sections 2.1.1 and 2.1.2, we
introduce the non-relativistic theory of atomic structure; in Sections 2.1.3 and 2.1.4,
we expand our understanding of atomic structure to include relativistic corrections; in
Section 2.1.5, we introduce second quantization to describe many-electron systems in
terms of creation and annihilation operators; in Section 2.1.6, we introduce the configu-

ration interaction (CI) method, expanding the many-electron wave function as a linear



combination of Slater determinants constructed from a predetermined basis set; in Sec-
tion 2.1.7, we describe basis sets and basis set convergence, particularly the B-spline
basis set used in our calculations; in Section 2.1.9, we describe the Davidson method,
which is an iterative diagonalization procedure used to find the low-lying energy eigen-
values and eigenvectors of the CI Hamiltonian matrix; in Sections 2.1.10 and 2.1.11,
we describe methods combining CI with many-body perturbation theory (CI+MBPT)
and the all-order method (CI+all-order), respectively, to treat core and valence interac-
tions in different regimes (MBPT or all-order); in Section 2.1.12, a method combining
CI with valence perturbation theory (CI4-PT) is described to treat cases where the CI
space is too large to run a full CI calculation, so second-order perturbation theory is
used to calculate weights of configurations used to determine the most important con-
figurations; in Section 2.2.1, we describe the density matrix formalism, used to express
matrix elements between many-electron states using one-electron matrix elements; and

in Section 2.2.2, we derive the expressions for the multipole transition rates.

2.1 Atomic structure

In quantum physics, the state of an N-electron atom or ion is described by a
wave function ¥(xy,...,Xy), where x; = (r;, 0;) represents the space and spin coordi-
nates, respectively, of the i-th electron. This wave function is continuous in the range
(—o0, 00) for the space coordinates, and takes only values +1/2 (41/2 for “spin up”
and —1/2 for “spin down”) for the spin coordinate. The wave function is a solution to

the Schrodinger equation
HY(x1,...,xy) = EV(x1,...,XN), (2.1)

where the Hamiltonian operator H is an operator that includes all the interactions
relevant for the atomic system. Bound state solutions of this equation only exist if
the wave function is square integrable, and only for discrete values of the total energy
of the system E. The form of the Hamiltonian operator H depends on the quantum
mechanical model used for the atomic system, and will be discussed in the upcoming

sections.



2.1.1 The non-relativistic Hamiltonian
The starting point for non-relativistic calculations is often the time-independent

Schrodinger’s equation using an electronic Hamiltonian for an atom of the form

H= Zh(i) +Z% (2.2)

i<j

where
N

hii) =Y (—%vf — Tg) : (2.3)

i
Here, H describes the i*! electron moving in the presence of the Coulomb field generated
by the nucleus of charge Z, r;; = |r; — r;| is the distance between the i*" and j*™
electrons, and r; is the distance between the i*" electron and the nucleus. The one-
electron terms describe the kinetic and potential energies of the electrons with respect
to the nucleus, and the two-electron terms describe the Coulomb potential energy of
the electrons.

This Hamiltonian assumes a couple of approximations described in Ref. [47].
First, the adiabatic approximation is assumed, such that the nuclear and electronic mo-
tion are separated due to the time-scale separation between the nucleus and electrons.
This is a good approximation since the nucleus is at least about 2000 times heavier
than an electron, and therefore moves about v/2000 times slower. As the slow nucleus
moves, the fast electrons follow it and their distribution around the nucleus is not
much different than in the case of a stationary nucleus. Next, the Born-Oppenheimer
approximation is assumed, such that the electrons move in a field generated by a point
charge nucleus of infinite mass, with its location fixed at the origin of the coordinate
system.

We seek solutions to the N-electron Schrédinger equation (Eq. 2.1) correspond-
ing to electrons that are completely antisymmetric with respect to the interchange of

any two coordinates

U(ry,...,r ..., ...rn) = —=U(r,...,75,....7,...TN). (2.4)

10



It is also important to note that there is no exact analytical solution to Eq. 2.1
for atoms and ions more complex than hydrogen. If we consider the rubidium atom,
with Z = 37, the wave function would depend on 3 x 37 = 111 variables. Using a basis
set of only 10 functions for each variable, it would require 10''! functions to define
the wave function of rubidium. Thus, it is more practical to look for approximations
of the exact solutions and methods for systematically improving the accuracy of these
approximations. These approximation methods build the framework for this work and
are described in detail in Sections 2.1.2 — 2.1.12.

One straightforward approach to solving the many-electron Schrodinger equa-
tion is to assume the independent-particle approximation, where all interactions be-
tween electrons in the Hamiltonian are neglected, and each electron in the atom is
assumed to move independently in the nuclear Coulomb field and in the average field
of the remaining electrons. With this central field approximation, the N-body problem
is separated into N one-body problems, separating the N-electron wave function into a
product of N one-electron functions. We approximate the electron-electron interaction
by a central potential U(r), and construct an N-electron wave function as an anti-
symmetric product of one-electron orbitals, with the constraint that the wave function
remains normalized.

A completely asymmetric product wave function can be written in the form of

a Slater determinant

U (X1) Y (x2) oo Y (XN)

\D(Xl, Xs, . .. ,XN) _ L ¢k2 (Xl) wl@ (XQ) te ka (XN) ‘ (25)

Uy (X1) Yy (X2) -0 Py (Xn)

From the properties of determinants, all spin-orbitals 1;(x) have to be different, since
the determinant vanishes if two columns are identical. It follows that the quantum
numbers of the orbitals must be distinct (this is also known as the Pauli exclusion

principle).

11



From here on, we follow closely Ref. [44] in describing the non-relativistic Hamil-
tonian and solving for its eigenvalues. In the independent-particle approximation, we
write the Hamiltonian as H = Hy + V, with

N N

Ho(ry,ma,...rn) = Y _h(r) = (—%vf — TZ + U(ri)) , (2.6)

i=1 =1

w1 &
V(T’l,'f'g,...’r]\]) = 5 —_— = U(Ti), (27)

— Tij —

1#] 1=1
where U(r) is a mean field approximation to the electron interaction potential. In
order to evaluate the matrix elements of many-particle operators between Slater deter-
minants, the Slater-Condon (SC) rules (Appendix A) are utilized. With these rules,

one can work out the expectation values of H for the closed-shell case, using Slater

determinant wave functions:

Eo =Y (ho)aa+ Y Usa, (2.8)

V= %Z(gabab - gabba> - Z Uaa; (29)

ab a

E = Z(ho)aa + % Z(gabab - gabba)> (210)

ab

where we introduce the short-hand notation
by = (i) = 3 [ o om0, (2.11)
and

Gigw = (itbs|glbethn) =) // P51 AP0} (1)U (%2) g (r12) Uk (1)t (x2).  (2.12)

o102
Here, gapep is known as the direct matrix element and guu, is known as the exchange
matrix element of the Coulomb interaction g(ris) = 1/ri9, respectively. In Egs. 2.8

— 2.10, the sums over indices a and b extend over all one-electron spin-orbitals in the

12



set {tq, Vp, -+ , ¥, }. The sum over index a represents the sum over the entire set of
quantum numbers {ng, l,, my, 0, } for all electrons, where n, is the principle quantum
number, [, is the angular momentum quantum number, m, is the magnetic quantum
number, and o, is the spin quantum number, for the spin-orbital ¢,(x). The goal is
then to determine the energy of the system via Eq. 2.10.

The one-electron spin-orbitals 1 (x) = ¥ (r, 8, ¢, ) are decomposed into radial,

angular, and spin components

wnlmo<x) = wnlmo(ru 67 P, O-) - %Pnl(T)YZm<97 @)Xéﬁ (213>

where P,;(r) is the radial function, Y}, (0, ¢) is a spherical harmonic, and x, is a spinor.

The spinors y, satisfy the orthonormality relations

XLX[S = 0ap- (2.14)
The one-electron matrix elements in Eq. 2.10 can be evaluated as

o 1d*P, lo(lg+1 A
(ho)aa = / d’]"Pnala (—— ala + ( + )P’I’Lala - 7Pnala) . (215)
0

2 dr? 212

This integral is often denoted by I(n.l,), which after integrating by parts, can be

expressed as
* N1 (PP Lt l) 2,

To obtain expressions for the two-electron Coulomb matrix elements in Eq. 2.10,

(2.16)

let us first derive the general expression for two-electron matrix elements

Gutod = / / d3r1d3r2w;<r1>wz<r2>Tiuwcm)wd(rz). (2.17)

We can expand 1/r15 in partial waves

Pkt
7’12 rs

o Lk
Z < (cosw), (2.18)
k

13



where r. is the lesser of, and r- is the greater of, the two radial distances r; and ry

separated by an angle w. Next we can use the addition theorem for spherical harmonics

Py(cosw) =

gk 1 Z Yieg (01, 01)Yieg (62, 02), (2.19)

to write 1/r15 in terms of products of spherlcal harmonics

= 2k—|— 1y k+1 Z Vg (01, 61)Yiq(02, 92), (2.20)
k

1o
12 a—k

or in terms of products of C-tensors

00 ’T‘k k
- _Z k; 1)1CK(#,)C* (7s), (2.21)
12 & _—k
q

where a C-tensor is defined as

A7

G0 =\ g

—Y,,(6, ). (2.22)

Expanding the many-electron wave functions into their individual components, we can
then express the two-electron matrix element as

k

0 [e's) 00 r
Gabed = Z drl dTZ Pnala (Tl)Pnblb (TQ)ﬁPnclc (rl)Pndld (712)
k=00 0 st

x Z /le Yima (01, 61)Cy (61, 1) Yim, (61, 61) (2.23)

q=—k

X /d(b Yigmy (01, 61)C* (02, $2)Yiym, (02, 62).

Here we can define a Slater integral Ri(abed) to be the double integral on the first line

00 o0 T’k
Rk(abcd) = / d?"l / d?“gpnala(Tl)Pnblb(Tz)rk—ilpnclc(rl)Pndld(Tg). (224)
0 0 >

These Slater integrals can be written in terms of multipole potentials vi(a, b, r), defined
by
00 7,]2
vg(a, b, 1) =/ dry Py (r2) Py(r2) (m) : (2.25)
0 >

14



This allows us to write the Slater integrals as

Ri(a,b,c,d) = /00 dr P, (r)P.(r)vg (b, d, 1)
0 (2.26)

:/ dr Py(r) Py(r)vg(a, c,r).
0
Note that the functions vg(a, a,r) can be written in a simpler notation as v;(a,r), and
that the function vg(a,r) is the potential at r due to a spherically symmetric charge
distribution with radial density P,(r)?.

We can express the integrals on the second and third lines of Eq. 2.23 as matrix

elements of C-tensors

<lama’C§‘lcmc> = /d*Ql Yiama (617 ¢1)C§(917 (bl)Yzcmc (917 ¢1>7 (227)
<lbmb|CEq|ldmd> - / d‘QQ }/lbmb (917 gbl)cﬁq(QQ) ¢2)Y2dmd (027 ¢2) (228)
We can then express the general two-electron matrix element, Eq. 2.23, as
00 k
Gabed = D, Ri(abed) > (=1)(lama| CFllcme) (lymy | CF [ 1gma). (2.29)
k=0 q=—k

Next, we can use the Wigner-Eckart theorem to express the two matrix elements as

reduced matrix elements of the C-tensors:

lama lbmb
0o k A A
gaa =y Rulabed) 7 (=17~ 0 == (L[| CM L) | CHla)
k=0 q=—k
leme lgmg
. ‘lama 1 lymy
= 37 Rulabed) 30 (-1~ - @ICH I BICHI) 50
k=0 g=— .
leme lgmyg
lamag lymy,
=D (D" -+ Rulabed) (1] CHIL) BIICF L),
k=0
lcmc ldmd

15



where

Lok
(LlICH 1) = (=1)"" /(20 + 1)(2l5 + 1) :
0 0 0 (2.31)

(LICH L) = (=)0l C*1E2).

Here, diagrammatic techniques (Appendix B) were used to sum over magnetic quantum
numbers ¢, going from line 2 to line 3.

With the general form of g.,.q, we can evaluate the direct matrix element term
> gavap and the exchange matrix element term » gume of the total energy, Eq. 2.10.
ab ab

The direct matrix element gqp., can be expressed as

lamg \ \ lymy,
Gabar = Y _(—1)F - 1+ Ri(abab)(la]| C*||la) 1] C*]|1b). (2.32)
k=0
lamg lymy,

Next, we sum over magnetic quantum numbers m,; and spin quantum numbers oy

lama‘ ) lymy,
S usar = 3 D1~ e+ Rilabab) (L[ CH L) IICH )
myoyp mpop k=0
lama lbmb
) lamg
e 2.33
=2) (-1 Ry (abab)(la||C*[la) (1| C*[|1s) (233)
k=0
lama

= 2(2l, + 1)Ro(abab)

1
211)“‘1 /drl/dTQ Nalg 7"1 nblb(r2)7’ Pnala(rl)Pnblb(r2)‘

Here, the sum over the spin quantum number o}, gives an overall factor of 2. The sum
over the magnetic quantum number m,; converges the right line of the diagram on line

1 into the loop on line 2.

16



Similarly, we can sum over the quantum numbers my; and o, for gupe

lamg lama
S gu = 30 S (DR e R abba)lICH ) (lIC L)
myop myoyp k=0
lymy, lymy,
k
=3 Gy (1) Fbme gy (abba) M2 Y
k=0
Iy
= (IL||C*|| 1)

— 2l +1

We can then express the total energy, Eq. 2.10, as

E = Z(ho)““ + % Z(gabab — Gabba)

ab

— Z Z (hO)aa —+ % Z Z Z Z (gabab - gabba) (235)

Nala Ma0Ca Ngla MaTa Nply Mpoy
=§:§:{ D+ (2 +1) <Roww }:mmgﬁm%@>},
Nalag Ma0q nply k=0

where we define

l||C¥|14)? L[l k1
Aoy, = —ell€)” 1 " (2.36)
22, +D2h+1) 2\ o o o

Since the term in the braces in the final line of Eq. 2.35 is independent of the quantum
numbers m, and o,, we can sum over these indices by multiplying by 2(2[, + 1),

resulting in

E = Z 2(2la+1) { + Z 2lb + 1 (RO abab iAlaklek(abba)> } . (237)

Nala nply k=0
Expressing the Slater integrals in terms of multipole potentials (Eq. 2.25), we

obtain

memzéwwmmﬂlimgmﬁ%zlmﬁ(m@m (2.38)
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Tk

Ry.(abba) = /000 driP,(r1)Py(r1) /000 drng(rg)Pa(rg)rk—il = /000 P.(r)Py(r)v(b, a,r),
- (2.39)
where vg(a, a,r) = vi(a,r).

With these new designations, we can express the total energy as

E = ZQ(Zla + 1)/ dr {2 <d};£ )) + la(lgr—; 1)Pa(r)2 — gl[’a('r’)2

+ Z (20, + 1) ( 7)o (b, ) ZAl ki, P, y (1) vk (D, a,r)) }

(2.40)

2.1.2 The Hartree-Fock method

In this section, we will describe the Hartree-Fock method, restricting the deriva-
tion to atoms. To determine the best possible orbitals in the independent-particle
model, we invoke the variational principle to look for Slater determinants W that min-
imizes the expectation value of the Hamiltonian with respect to the orbitals, with the

constraint that the wave function remains normalized:

EMF = min (WIH|T) > [, (2.41)
v (U]

The Ritz variational principle guarantees that EHY is always greater than or equal to

the exact ground-state energy Fj of the system of interest. We assume that the orbitals

are orthonormal, so ¥ is normalized and
EMF = min(¥|H|¥). (2.42)

Using the Slater-Condon rules, we can write the expectation value of the Hamiltonian

as

\I/|H|\I[ Z haa + 3 Z gabab gabba (243)
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We add to the expectation value the orthonormalization condition using Lagrange’s
undetermined multipliers and minimize the energy functional £ with respect to the
radial functions P, (r) corresponding to a fixed value of [, i.e. [, =1,

\II|H|\II E : )\nalaynbla Nala,Npla

NaNpla

(2.44)
=F— Z Anula,nblaNnala,nblaa
NaNpla
where the normalization constant is expressed as
(o]
Nnala»nbla = / drpnala( )Pnbla (T) = 5na7nb‘ (245>
0

The variational principle can then be expressed as:

(S,C - 6 (E - Z )\nala,nblaNnala,nbla> = O (246)

nanbla
We require that energy functional £ be stationary with respect to variations 0 P,,;, , and
that the variations 6 F,,;, vanish at the origin and at infinity. With these constraints,

we solve and obtain

1&2P,,  la(la+1) Z
a — Pn - _Pn
2 dT’2 + 2r2 ala (r) r H.la (T)
+> (4l +2) (w)(b, ") Poa(r) = > Au,vi(b, a,7) Py, (7«))
nblb !
- €nala‘P'nfala(T)—i_ Z Enalaynblapnbla(r)7
np#£na
(2.47)
where
)\n la,nal )\n la,npl
Mala =~ d ale iyl = —tbe 2.48
€ ala 4la +2 an € lllCh bla 4la _'_2 ( )

It can be shown that the orbitals associated with different principal quantum
number n and the same angular quantum number [ are orthogonal, no matter what
value is chosen for the off-diagonal Lagrange multiplier A, ;, n,.. [44]. One can take

advantage of this fact and choose €,,;, n,i, = 0 for all values of n,, n; and .
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Here we can define the Hartree-Fock potential Vg by specifying its action on a
radial orbital P,(r).
VHFPa<7n) == ‘/dirPa(T) + ‘/excPaOn)a (249)

where

Vaie (r) Pa(r) =Y (4l + 2)vo(b, 1) Pu(r) (2.50)
b

Ve (M) Pa(r) = =Y (41, +2) Y Ay, vn(b, a,7) Py(r). (2.51)

b

Here the direct potential Vg;, is a multiplicative operator describing the potential due
to the spherically averaged charge distribution of all electrons. The exchange potential
Vexe 18 an integral operator since it integrates over the function it acts upon. Using

these operators and the choice of €,,;, n,i, = 0, one can rewrite the HF equations as

1d2P, ( Z 1o, + 1)
+ - @z

N A )&MZQ&M- (2.52)

This set of radial equations, describing electrons moving in a central potential
V(r)=—Z/r+U(r), is known as the Hartree-Fock equations. Here, the optimal aver-
age central potential is the HF potential Viyr. To solve the HF equations, one typically
expands the orbitals in terms of some known basis function, then solve the equations
iteratively. One must solve the HF equations for some initial orbitals, solve the re-
sulting eigenvalue problem, compute new operators using the resultant orbitals, then
repeat the process. Once the HF equations are solved, the energy can be determined
from Eq. 2.10, which can be written as

E = ;(ho)aa + % Z(gabab - gabba)

ab

= Z €a — Z(VHF)MZ + %Z(gabab - gabba) (253)
a a ab

= Z €q — % Z(gabab - gabba)7
a ab
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where we have used the fact that (Vigp)aa = Y (GJabab — Jabba)- We can express the energy
b

in terms of Slater integrals as

E=> (4,+2)

€q — Z(2lb + 1) (Ro(abab) - Z Ala”le(abba))] . (254)
l

b

2.1.3 The relativistic Hamiltonian

Relativistic calculations follow closely with the non-relativistic methods de-
scribed in the previous sections, with several modifications and caveats. First, the
2-component non-relativistic orbitals ., (7), which are products of radial func-
tions P,;(r), spherical harmonics Y}, (6, ¢), and 2-component spinors Y., are replaced
with 4-component relativistic orbitals ¢, (), which are products of radial functions
(P (r), Qui(r)) and spherical spinors (2,,(0, ¢), where k = jl specifies the angular
momentum quantum numbers n and j by £ = F(j + 1/2) for j =1 £ 1/2. The advan-
tages of having a relativistic theory include automatically accounting for the energy
separation of nl leading into fine structure nlj with j = [ + 1/2. This separation is
typically not important in light atoms, but at the level of precision we need, relativistic
methods are needed even in light atoms, just as they are important in heavy atoms or
HCI where this separation is large [44]. Second, the Breit interaction is included along
with the Coulomb interaction in the electron-electron contribution of the Hamiltonian.
The Breit interaction results from transverse photon exchange between electrons, and
is relatively smaller than the Coulomb interaction on the order of a?Z% One major
caveat is that the contributions from negative-energy states, which are associated with
positron states, in the spectrum of the Dirac equation are omitted from the Hamilto-
nian and the MBPT sums entirely. In the expression for the relativistic Hamiltonian,
the operators are restricted to be for positive-energy solutions associated with electron
states for the Dirac equation (this Hamiltonian is also known as the no-pair Hamilto-
nian). Since positron states are not present, effects of virtual electron-positron pairs

are omitted and must be found from a separate QED calculation [48].
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In order to include relativistic effects, we typically start with the many-body

non-relativistic Hamiltonian

N

1 1
H(ry,ra,-,7N) :ZhO(ri)+§ZF’ (2.55)
i=1 ity Y

and choosing the one-electron Hamiltonian hg to be the Dirac Hamiltonian hp
s Z
ho(r) = hp(r) = cae - p + B — o (2.56)
Here, a« and (3 are the usual Dirac matrices:

0 o I 0
o 0 0 —I

R
I
=
I

(2.57)

where o = (0,,0,,0) is a vector with components of 2 x 2 Pauli spin matrices and [

is the 2 x 2 identity matrix given by

Everything else follows as in the non-relativistic case. An average central field
potential U(r) is introduced, and we write our corresponding one-electron Hamiltonian
as

h(r) = co-p + B — % + U(r). (2.59)

The resulting Dirac-Coulomb Hamiltonian and its expectation energy can then be
written as in Eqs. 2.6 — 2.10. Although the expressions are the same as from the
non-relativistic case, here we must use Dirac orbitals rather than the non-relativistic
orbitals. The four-component one-electron Dirac orbital ¢, () can be written in terms

of radial functions and spherical spinors as

1 P() (6. 0)

(2.60)
r Qa(r)gfnama (67 ¢)

Pa(T) =
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where a = nkm, and a short-hand notation (2, = 2, is utilized with x = F(j+1/2)

for j =1 £ 1/2. The spherical spinors are given by

£\ B, e(0,9)
Dm0 0) = | V= : (2.61)
Wﬁ,mﬂ/z(& Qb)

where Y,,(0, ¢) are spherical harmonics.
Analogously with the non-relativistic case, the goal is then to calculate the total

energy

E = Z(ho)aa + % Z(gabab - gabba)> (262)

ab

now using Dirac orbitals ¢(7), given by Eq. 2.60, and using for the one-electron part
of the Hamiltonian the Dirac Hamiltonian, given by Eq. 2.56.

The one-electron matrix element can be expressed by the radial integral
o Z d kK
I aa:haa: h = d Pl —5 ? P, Po|——~— a
(natia) = (h)aa = (alhola) /0 r{ ( R+c) e <dr T)Q

_CQa (i'f'f) Pa+Qa (_Z_CQ) Qa}a
dr r r

(2.63)
and the general two-electron matrix element can be expressed as
Gabea = Y _ (= 1) (kama| Ceme) (kyms| C* | ama) Ry, (abed), (2.64)
kq
where we define a relativistic Slater integral as
Rk(ab6d> :/ d7’1 [Pa(rl)Pc<T1) + Qa<T1>Qc(T1>] X
ok (2.65)
r<
/ dTQm [Py(r2) Pa(ra) + Qu(r2)Qa(r2)] .
0 >
The angular matrix elements in the two-electron matrix elements are given by
(Kama|C¥lrymy) = / A 0f . CH#) Dy,
e (2.66)
L .
= - = (KallC* || ),
Jemip
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where we utilized the Wigner-Eckart theorem to reduce the angular matrix elements.

These reduced matrix elements are given by

1 , . Ja J
(ko |C¥ s = (=13 /@ + D2 1 1) O ),
-3 3 0
where
1, if [ is even
() =
0, if [ is odd
The general two-electron matrix element can then be written
JaMa Jemp
Gabea = )_(~1)* =+ (KallC¥{|re) (3| C* | ea) R (abed)
k
JeMe Jamad
JaMa Jpmup
= Z Tt X (abed),
k
Where Jeme Jamad

Xi(abed) = (=1 (ko ||C¥|| k) (k|| CF|| 5a) Ri(abed).

Summing over my, for the direct Coulomb matrix element gup.p, We obtain

Zgabab = (2]b + 1)R0(abab)

my

Summing over m,, for the exchange Coulomb matrix element gup,, Wwe obtain

S Gava = 250 + 1)) Ayson, Ric(abba),
mp k
where )
{KallC*[p)* Ja Jv kK
Kakkp — . - = 11 la +k+1).
(2, + 1)(25, + 1) 11 ( b)

We can then express the total energy as

FE = ;(hO)aa + % Z(gabab - gabba)

ab

NakKa nykp
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(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

= (2ja+1) {I(naﬁa) + % > @ +1) (Ro(abab) - Zk: AﬁakﬁbRk(abba)> } .

(2.74)



To find the optimal wave functions, we require that the total energy be station-
ary with respect to the radial functions, which are orthogonal for different principal
quantum numbers n and same angular quantum number &, just as in the non-relativistic

case. We require that the radial functions follow the normalization condition

Nna“aynbﬂa = / dr [Pna"‘fa (T)Pnb"‘fa (T) + Qnaﬂa (T)anﬁa (r)] = 6nanb7 (275>
0

and invoke the variational principle,
5(E - Z 6nanb)‘nana,nbnaNnana,nwb) =0, (2~76>
ab

with respect to variations in the radial functions 6 P,(r) and 6Q,(r). Again we require
that these variations vanish at the origin and at infinity. The variational condition
leads to the “Dirac-Hartree-Fock” (DF) equations

Z d kK
(VHF — ? + 02) Pa +c (% - _) Qa - EaPa + Z Enaﬁa,nbmapnbﬁaa (277)

r
npF#na

d & Z
—C <E + F) Pa + (VHF - ? —C ) Qa = 6acza + ; Enafm,nbnaanNaa (278)
npF£na

where

A A
= NaKa,Naka and e = [ Naka,oRa 2.79
= Tt 1 raremse = gt 1 (27

Here the DF potential Vi is defined by its action of a radial function R,(r), which can

either be the large component radial function P,(r) or the small component function

Qa(r), by
VarRa(r) = Z(Zjb +1) <Uo(b, r)R.(r) — ZAﬁak,{bvk(b, a, T)Rb(T)> ) (2.80)
k

b

As in the non-relativistic case, the first term is the direct potential V., which is a
multiplicative operator that describes the potential due to the spherically averaged
charge distribution of all electrons, and the second term is the exchange potential V.,
which is an integral operator since it integrates over the radial function. Here, the

relativistic screening potential is defined by
k

ve(a, b,r) = /0 S = [P B) + Qu(r)Qu(r)]. (2.81)

>
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As with the non-relativistic case, we choose €, n,x, = 0 since the radial func-
tions belonging to different principle quantum numbers n and the same angular quan-
tum numbers x are orthogonal for arbitrary values of the Lagrange multiplier €, ., n,x, -
Thus the HFD equations become a set of coupled, non-linear eigenvalue equations,
which can be solved self-consistently to obtain the optimal orbitals and associated en-
ergy eigenvalues. Once the DHF equations are solved via Eq. 2.74, the total energy

can be calculated in terms of DF eigenvalues as

E=> (2jat+1)ea— % > (2 +1)(24+1) (Ro(abab) > A,{ak,{bRk(abba)> . (2.82)

ab

2.1.4 The Breit interaction

The Breit interaction results from transverse photon exchange between electrons
and is included along with the Coulomb interaction in the electron-electron contribution
of the Hamiltonian. The electron-electron Coulomb interaction is replaced by the sum

of the Coulomb and Breit interaction,
— = — + 612, (283)

where the “frequency-dependent” Breit operator associated with the exchange of a

transverse photon between two electrons in states a and b is given by [49]

a; -

bia(ko) = — (2.84)

k -1
2 cos(koriz) + a1 - Viay - Vo [M} |

2
12 k’07’12

where ky = |e, — €|/c. The static form (kg = 0) of the direct matrix element of the

frequency-dependent Breit interaction is given by

041'042+041'Oé2—(041'7212)(042'7;12)

, (2.85)

big = —
T'12 2112

where the first term is referred to as the magnetic, or Gaunt, term [50], and the second
term is referred to as the retardation term [51, 52, 53]. The magnetic term of the Breit
operator is known to dominate in atomic calculations [54, 55] and is much simpler than

the whole Breit operator. For this reason, the retardation term was neglected in the
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original CI/CI+MBPT/Cl+all-order code package. However, the full Breit operator
has since been implemented in the latest version of our codes.

The lowest—energy shift associated with the Breit interaction is given by

kik;
B(l — d3 /d /dgk ik-(r1—r2) 51
271‘2 T T2 Z (& j |k:|

x [%qs:;(m)am(m)qsz<r2>aj¢b<rz> Oy (r) 6 ()6 ()
0
(2.86)

The integral over d®k can be carried out and the energy shift can be written in the
form B = bupay — bappa, Where bupap is the two-particle direct matrix element, and
bapba 18 the two-particle exchange matrix element. The direct matrix elements bgpqp
and exchange matrix elements by, are evaluated using the static limit kg — 0. The
differences between the frequency-dependent Breit interaction and its static form are
of relative order a?Z? and therefore important for highly charged ions. Note that in
our implementation of the full Breit operator in the CI/CI+MBPT /Cl+all-order code
package, we only use the static limit ky — 0.

The two-particle matrix elements b;;x; can be separated into the Gaunt interac-
tion part m;;, and the retardation interaction part 7;;;. This separation is convenient
when considering angular reduction of the Breit interaction matrix elements.

The Gaunt interaction is given by

Mkl = // d3r1d3r2 r1)adr(r1) - 95 (r2)di(ry), (2.87)

|7“1—7“|

and the retardation interaction is given by

3 3
’/’z’jkl // d Tld "2 ’I"1)Oé 7’12<z§k('r1) Qﬁ;(’r@)Oz . 7:12@51(7'2). (288)

r1 — ”‘2|
The matrix elements m;;; and r;;,; are expanded in vector spherical harmonics,
and then orthonormality properties are used to carry out angular integration. These
matrix elements are complicated in form and are given in Refs. [44, 56].
It is found that for precision calculations of heavy atoms, it is sufficient to
include only the exchange part of the Breit potential of the core and neglect valence-

valence Breit interaction [54]. Interactions between electrons are typically reduced to
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the valence-valence interaction, and the interaction of the valence electrons with the
atomic core. The core-valence interaction is typically described by the HF potential,
which includes direct and exchange Breit terms. The Breit correction to the interaction
between valence electrons is on the order of o, where « is the fine structure constant.
For heavy atoms, this correction is usually below the accuracy of modern calculations.
The Breit correction to the direct term of the HF potential turns to zero if the core
includes only closed shells, since it is averaged to zero when summation over the closed
shell is done. However, the Breit correction to the exchange interaction of the valence
electrons with the core does not turn to zero, and is on the order of R?, where R is
the overlap integral between the upper component of a valence orbital and the lower
component of a core orbital. The largest integrals R correspond to the innermost core
orbitals, where small components are on the order of aZ. Therefore, the dominant
Breit correction is the one to the exchange core potential. The exchange interaction
between valence electrons and the innermost core electrons is significantly screened if
the core relaxation is allowed. Therefore, it is very important that the Breit correction
to the core potential is calculated self-consistently. In some cases, the core relaxation
can reduce the final Breit correction to the valence energies by an order of magnitude.

When solving the DHF equations with the Coulomb-Breit interactions, one
has to keep in mind that the Breit approximation is not completely relativistic, so
some caution may be necessary [54]. One can use projectors to the positive energy
states, which can be done with the help of the kinetic balance condition for the small
components of the Dirac orbitals. The resulting corrections in the DHF equations are
not linear in the Breit interaction, but higher order terms can be eliminated using a
scaling parameter A. However, in practice, the higher order terms are usually small

enough to be neglected.

2.1.5 The Second Quantization formalism
So far we have described the many-particle theory using the formulation of the

Schrodinger equation, which is referred to as first quantization. It is often convenient
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to replace this description of states using Slater determinants by the equivalent second
quantization formalism, with which we express states and operators in terms of opera-
tors that create or annihilate particles. The rules of second quantization are similar to
those of the harmonic oscillator studied in quantum mechanics [46, 57, 58]. Following
closely to Ref. [44], the one-electron state |i), described by its wave function ;(r) in
first quantization, is now represented in second quantization by an operator aj acting
on the vacuum state |0)

i) = al|0). (2.89)

The vacuum state |0) is the state in which there are no electrons, and is assumed to

be normalized (0|0) = 0. The adjoint of the state |i) is given by
(i] = (0]a;. (2.90)

The operators a;-r and a; are called creation and annihilation operators, respec-

tively, and are assumed to satisfy the following anticommutation relations

{af,al} =0 {a;,a;} =0 {a;,al} = dy;. (2.91)

i g

A general N-particle state described by a Slater determinant wave function
formed from an antisymmetric product of orbitals ¥, - - - 4, is represented in second

quantization as

lab---n) = alal ---al|0). (2.92)

A general one-particle operator is represented in second quantization as
N
F=> " f(r)—=> (ilflj)ala;. (2.93)
i=1 ij
This operator acting on a state |ab---n) gives

Flab---n) :Z<z’|f]j)|ab---j—>z’---n>, (2.94)

T

where the state [ab---j — i---n) refers to the state |ab---n) with the operator a;

replaced with the operator a}. The state j is one currently occupied in |ab---n) and
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the state i can be one that is either identical to j or one not occupied in |ab---n).
The matrix element of F', between states |a’d’---n') and |ab---n), vanishes if the
states in the sets {ab---n} and {a'b'---n'} differ in more than one place, due to the
Slater-Condon rules described in Appendix A.
A general two-particle operator is represented in second quantization as
1 1
G = 3 Zg(rij) -5 Zgijklaga;alak, (2.95)
i#j ijkl

where

Gijk = (Vitjlglnibn) = // d37"1d37‘2¢j(""1)@(7“2)9(7’12)%(7’1)1?1(7“2)- (2.96)

As with the matrix elements of the one-particle operators, the matrix elements of the
two-particle operators follow the Slater-Condon rules described in Section A.

We can also define the normal product of a set of operators to be the product
rearranged such that core creation (excited state annihilation) operators are always on
the right of core annihilation (excited state creation) operators. When rearranging,
the product gains a phase (—1)%, where N is the number of operator transpositions
done. Normal products are designed by enclosing the operators between either a pair
of colons : ala, :, a pair of brackets {ala;}, or a pair of brackets n[aa;].

Under the formalism of second-quantization, we can write the Dirac-Hartree-

Fock Hamiltonian described in Sections 2.1.3 — 2.1.4, in second quantization as

H=Hy+V,
Hy = i T (S8
o =2 ai{ela} (2.97)
1
V=3 > g {aldlaart +> " (Vor — U)y; {ala;}.
ijkl ij
where ¢; is the eigenvalue of the Dirac equation hp(r)¢;(r) = €;¢;(r) with
A
ho(r) = ca-p+ Bc® — =+ U(r), (2.98)
r

Gijki 1 a two-electron matrix element of the Coulomb + Breit potential g(ri3) = 1/r12+

biz, (Vor)ij = > (Giaja — Giaaj) is the one-electron matrix element of the Dirac-Fock
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potential Vg, and U;; is the one-electron matrix element of the central potential U(r).
Here, the summation index a ranges over only core states, and the summation indices
i,7,k,l range over all one-electron states. The {---} designates normal products with
respect to the closed core. The operators in the Hamiltonian are restricted to ones
for positive-energy solutions to the Dirac equation, which are associated with electron
states, and positron states are omitted from the Hamiltonian, resulting in the no-pair
Hamiltonian. To account for the small effects of virtual electron-positron pairs, which
are omitted in the atomic structure calculation, one must carry out a separate QED

calculation [48].

2.1.6 The Configuration Interaction method

The basic idea of configuration interaction (CI) is to diagonalize the N-electron
Hamiltonian in a basis of N-electron functions, or Slater determinants. Essentially
what we're doing here is representing the exact wave function as a linear combination
of N-electron trial functions and then using the variational method to minimize the
energy. If a complete basis were used, we would obtain the exact energies to the ground
state and all excited states of the system. In principle, this method provides an exact
solution to the many-electron problem; however, in practice, only a finite set of N-
electron trial functions are manageable so the CI wave function expansion is typically
truncated at specific excited configurations. As a result of the size restrictions on
practical CI calculations, CI always provides only upper bounds to the exact energies.

The CI wave function is constructed as a linear combination of known Slater
determinants ®; with unknown expansion coefficients

W) = Zcz’@ﬂ (2.99)

(2
Typically, the Slater determinants are constructed from excitations of the Hartree-

Fock “reference” determinant |®g). The CI wave function can be expanded as

[U) = col®o) + Y @)+ > @)+ > aatenh + ..., (2.100)

r<s,a<b r<s<t,a<b<c
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where |®") represents the singly excited Slater determinants formed by replacing spin-
orbital ¢, with ¢,, |®I7) represents the doubly excited Slater determinants formed by
replacing spin-orbital ¢, with ¢, and replacing spin-orbital ¢, with ¢,, and so on for
higher excited states. In general, all N-electron Slater determinants can be formed by
a set of N spin-orbitals {¢;} ;.

We can rewrite Eq. 2.100 in a more general form |¥) = > ¢;|®;), where i = 0

=0

refers to the reference Hartree-Fock wave function, ¢ = 1 refers to our singly excited
state wave function, and so on. We now optimize our total CI wave function via the

Ritz variational method by varying the coefficients of the wave functions

E= % (2.101)

If we expand the CI wave function in a linear combination of Slater determinants,

we obtain
o S5 el (@ H|)
> 2o e @i ®;)

The variational procedure corresponds to setting all the derivatives of our energy with

(2.102)

respect to the expansion coefficients ¢; equal to zero, i.e. OE/0¢; = 0.

Rearranging, we get
EY Y i@ @) = > Y e (@ H|D;)
i i

oE . Z Z . 0
v i i ij v

The first term vanishes from the minimization of the energy, and the last term van-
ishes since the matrix elements (®;|H|®;) do not depend on the expansion coefficients.

Assuming that the basis functions are orthonormal, we obtain

32



where H;; = (®;|H|®;). Since there is one equation for each j, we can transform this

equation into a matrix equation

(H— ET)c = 0, (2.103)

Hc = Ec. (2.104)
H()O—E H01 HOj Co 0
HlO Hll_E Hlj C1 0

: : : = | : (2.105)
ng Hjj—E Cj 0

Solving these secular equations is equivalent to diagonalizing the CI matrix. We
use the Davidson method of diagonalization, which is described in Section 2.1.9. The
CI Hamiltonian energy eigenvalues are then obtained as the lowest eigenvalues of the
CI Hamiltonian matrix. The corresponding eigenvectors contain the set of expansion
coefficients {c;}Y, in front of the determinants in Eq. 2.100. In this case, the lowest
eigenvalue corresponds to the ground state energy, the second lowest eigenvalue corre-
sponds to the energy of the first excited state, the third lowest eigenvalue corresponds
to the energy of the second excited state, and so on.

We have mentioned that the CI expansion is typically truncated at specific
excited configurations. From the Slater-Condon rules, only singly and doubly excited
states can interact directly with the reference state. Therefore, matrix elements with
more than two differing spin-orbitals in the determinants vanish. Due to Brillouin’s

theorem [47], the matrix elements (S|H|®y) are zero, where |S) refers to singly-excited
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Slater determinants. The structure of the CI Hamiltonian matrix, under the basis set

of HF Slater determinants and their excited states is then given as

®lH[®) 0 (@HD) 00
0 (SIHSS) SIHD) (SHT) 0

g | (DI (OIS (DIHD) I OIHQ) |
0 (THIS) (T|HD) (TIH|T) (T|H|Q)
0 0 (QHED) (QET) (@H|Q)

where |®g) is the Hartree-Fock reference state, |S) is the singly excited state, |D) is
the doubly excited state, and so on. The blocks (X |H|Y) which are not necessarily
zero may still be sparse, meaning that most of its elements are zero. Let’s look at the
matrix element belonging to the block (D|H|Q). The matrix elements (7| H|®LiY)
will be non-zero only if ¢, and ¢, are contained in the set {¢., ¢4, ¢c, ¢}, and if ¢,
and ¢, are contained in the set {¢;, &y, Pu, Gu }-

The task at hand is then to calculate each matrix element and to diagonalize
the CI matrix. As we include more and more excitations in the CI expansion, we
capture more and more electron correlation. We can increase the size of the CI matrix
by adding more excited configurations, or by increasing the basis set size. However,
there’s a problem with adding more and more excitations or basis sets - namely, it is

very expensive to do so. If the number of spin-orbitals produced by HF is 2M, then the

2M

N ), where N is the number of electrons.

number of determinants constructed is then (
Taking into account all possible excitations in the expansion is known as Full CI (FCI),
and this method goes with a complexity of O(NV).

Due to the complexity of Full CI, what is usually done is to truncate the CI
matrix, i.e. CI Doubles (CID) only takes into consideration CI with double excitations.
Since the single excitations themselves do not correlate with the ground state directly,
the most significant term for the correlation energy must come from the double exci-

tations, since they are the first excitations coupled with the HF Slater determinant.

This gives a reduced matrix which is much more feasible for practical computation;
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however, the truncated CI will introduce errors in the wave function, which will in turn
cause errors in the energy and all other properties. A particular result of truncating
the N-electron basis is that the CI energies obtained are no longer size extensive [47].

It is clear that the fraction of the correlation energy recovered by a truncated CI
will diminish as the size of the system increases, making it a progressively less accurate
method. However, if we were to truncate CI, we should consider, for example, not
exciting the inner shell orbitals since the computational complexity for those excitations
can become huge for small effects on the correlation energy. We can neglect these
orbitals by “freezing” the core orbitals and implementing CI in higher orbitals. This
is also known as the frozen-core approximation. For some applications, such as the
Ir'™ highly charged ion, we find that it is essential to open more orbitals for a more
accurate treatment of the ion.

The Multi-Configurational Self-Consistent Field (MCSCF) method is another
approach to the CI method, in which one decides on a set of determinants that can
sufficiently describe the system of interest. Each of the determinants are constructed
from spin-orbitals that are not fixed, but optimized as to lower the total energy as much
as possible. The main idea here is to use the variational principle to not only optimize
the coefficients in front of the determinants, but also to optimize the spin-orbitals used
to construct the determinants. In a sense, the MCSCF method is a combination of
the CI and HF methods (if the number of determinants chosen was just those of the
reference HF Slater determinants, the method reduces back to the HF method).

The classical MCSCF' approach follows very closely to the Ritz variational
method described before. We start with the MCSCF wave function, which has the

form of a finite linear combination of Slater determinants ®;
MO =N "0, (2.107)
I

where c¢; are the variational coefficients. First, we calculate the coefficients for the
determinants using the variational method, without varying the spin-orbitals, then

we vary the coefficients of the determinants in the fixed CI space to obtain the best
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determinants. And finally, we repeat by going back and expanding the MCSCF wave
function in terms of the newly optimized determinants. In this way, the MCSCF
method generates a qualitatively correct wave function, i.e., recovers the “static” part
of the configurational space, where most of the dominant configurations reside. For
many systems, this method can produce accurate results [8, 9, 10, 11]. The goal is
usually not to recover a large fraction of the total correlation energy, but to recover all
the changes that occur in the correlation energy for a given process. A major problem
that this procedure faces is figuring out which configurations are necessary in include
for the property of interest.

The Complete Active Space Self-Consistent Field (CASSCF) method is a spe-
cial case of the MCSCF method. From the orbitals computed from HF, we partition
the space of these orbitals into an active and inactive space. The inactive space of
orbitals are chosen from the low energy orbitals, i.e. the doubly occupied orbitals in
all determinants (inner shells). The remaining orbitals belong to the active space.
Within the active space, we consider all possible occupancies and excitations of the
active spin-orbitals to obtain the set of determinants in the expansion of the MCSCF
wave function (hence, “complete”). For any full CI expansion, CASSCF becomes too
large to be useful, even with small active spaces. To overcome this problem, a variation
called the Restricted Active Space Self-Consistent Field (RASSCF) method is used.

In the RASSCF method, the active orbitals are divided into 3 subsections,
RAS1, RAS2, and RAS3. Each of these subsystems have restrictions on the excita-
tions allowed. A typical example is one where RAS1 includes occupied orbitals that
are excited in the HF reference determinant, RAS2 includes orbitals limited to SD
excitations, and RAS3 includes virtual orbitals that are empty in the HF determinant.
The full CI expansion within the active space severely restricts the number of orbitals
and electrons that can be treated by CASSCF methods. Any additional configurations
to those from RAS2 space can be generated by allowing excitations from one space

to another. For example, allowing 2 electrons to be excited from RAS1 to RAS3. In
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essence, a typical example of the RASSCF method generates configurations by a com-
bination of a full CI in a small number of orbitals in RAS2 and a CISD in a somewhat
large orbital space in RAS1 or RAS3.

Excitation energies of truncated CI methods such as the ones described above
are generally too high, since the excited states are not that well correlated as the
ground state is. For equally correlated ground and excited states, one can use a method
called Multi-Reference Configuration Interaction (MRCI), which uses more than one
reference determinant from known singly, doubly, or higher excited states (this set of
known determinants is called the model space). MRCI gives a better correlation of the
ground state, which is important if the system under consideration has more than one
dominant determinant since some higher excited determinants are also taken into the
CI space. The CI expansion is then obtained by replacing the orbitals in the model

space by other virtual orbitals.

2.1.7 Basis sets and basis set convergence

The standard wave functions used in solving Schrodinger’s equations for atoms
and molecules are constructed from antisymmetric products of spin-orbitals. In most
methods, these spin-orbitals are generated by expanding them into a finite set of simple
basis functions. The choice of basis functions for an atomic calculation if therefore
always important. There are hundreds of basis sets that can be used, each optimized
for a specific system. The basis sets used for the calculations done in this work are
constructed on a case-by-case basis. DHF orbitals are typically always used for core or
low-lying orbitals. In the case of the Cl+all-order method, DHF orbitals are merged
with B-splines for the rest of the orbitals (e.g. virtual orbitals). These basis sets created
from B-splines will be discussed later in this section.

What we will need for carrying out accurate correlated calculations are not only
a set of spin-orbitals that resemble as closely as possible the occupied orbitals of the
atomic systems, but also a set of virtual correlating orbitals into which the correlated

electrons can be excited. An obvious candidate here are the canonical orbitals from the
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HF calculations; however, since the lowest virtual HF orbitals are very diffuse, they will
not be well suited for correlating the ground-state electrons, except when the full set of
orbitals is used. Another strategy is to try and generate correlating atomic orbitals for
atomic calculations by relying on the energy criterion alone, i.e. adjust the exponents
of the correlating orbitals as to maximize their contribution to the correlation energy.
By doing this, we should be able to generate sets of correlating orbitals that are more
compact, i.e. contains fewer primitive basis functions. This method will generate
correlation-consistent basis sets, meaning that each basis set contains all correlating
orbitals that lower the energy by comparable amounts, as well as all orbitals that lower
the energy by larger amounts.

In these correlation consistent basis sets, each correlating orbital is chosen as
to maximize its contribution to the correlation energy. All correlating orbitals that
make similar contributions to the correlation energy are added simultaneously. The
goal for these basis sets is to contain all correlating orbitals that lower the energy by
comparable or larger amounts. The main advantage of this method is that it allows us
to retrieve a larger number of correlations with a smaller basis set.

As the number of basis functions increase, the wave functions become better
represented and the energy decreases to approach the complete basis set (CBS) limit.
An infinite number of basis functions is impossible to employ practically, but we can try
to estimate the energy at the CBS limit. By using hierarchical basis sets, i.e. correlating
consistent sets with adjacent angular momenta, we can calculate the energy for a couple
of points, then hope to extrapolate higher basis function energies or higher correlation

energies.

2.1.8 B-spline basis sets

In the calculations done in this work, B-splines were utilized to construct the
basis sets for the radial Dirac equation [44, 57]. Here we follow the Ref. [44] in
describing these B-spline basis sets. Since correlation corrections in atoms have finite

range, we restrict ourselves to a finite, but large cavity of radius R. To study the ground
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state or low-lying excited states, we typically choose boundary conditions P,;(0) =
P, (R) = 0. The spectrum in this cavity is discrete, but infinite. The plan is then to
expand solutions to the radial Schrodinger equation in a finite basis set of n B-splines
of order k, following the work of deBoor [59].

We begin by dividing the interval [0, R] into segments, where the endpoints of
the segments are given by the knot sequence {¢;}, where i = 1,2,...,n+ k. The knots
defining the grid have k-fold multiplicity at the endpoints, i.e. t; =ty =--- =1, =0
and t,11 = tpio = -+ = tpox = R. The knots tx11,tk10,. .., 1, are distributed on an
exponential scale between 0 and R. B-splines of order k, B; ;(r), on this knot sequence

are defined recursively by

17 tz <r< tiJrla

Bia(r) = (2.108)
0, otherwise,
and
r—= tz tz — T
Big(r) = ————Bip1(r) + ——— Biy (1), (2.109)
livk—1 — t; Livk — lita

where B; x(r) is a piece-wise polynomial of degree k£ —1 inside the interval t; < r < t;44,
and vanishes outside this interval. The set of B-splines of order k on {¢;} forms a
complete basis for piece-wise polynomials of degree k — 1 on the interval spanned by
{ti3r

We represent solutions to the radial Schrodinger equation as a linear combina-
tion of these B-splines and work with the B-spline representation of wave functions
rather than the wave functions themselves. The radial wave function P,(r) satisfies the

variational equation 0.5 = 0, where the action S is given by

o ) 0 52

Here we insure the normalization of the radial wave functions using the parameter e.

—e/RPl(r)er. (2.110)

The variational principle leads to the radial Schrodinger equation for the radial wave

function P(r), which are expanded in terms of B-splines of order k as

= > nB). (2.111)
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where p; is the expansion coefficient and we utilize a short-hand notation B;(r) =
B, ;(r). With this expansion, the variational principle leads to a system of linear
equations for the expansion coefficients p;. The system of linear equations can be

written in the form of an n x n symmetric generalized eigenvalue equation
Av = eBuw, (2.112)

where v = (p1,p2, ..., pn) is the vector of expansion coefficients. The matrix elements
of A and B are given by

Ay = /OR [dB"(r) 4Bi(r) | 5p,(r) <V(r)—i— l(Hl)) Bj(r)} dr, (2.113)

dr dr 272

B;; = /ORBi(r)Bj(r)dr. (2.114)

One obtains n real eigenvalues and eigenvectors, which satisfy orthogonality re-
lations in the corresponding wave functions. The first few eigenvalues and eigenvectors
in the cavity agree well with the first few bound-state eigenvalues and eigenvectors
obtained by numerical integration, but the spectrum is expected to depart from the
real spectrum as the principle quantum number increases.

To expand the usage of B-splines to the HF method, we must have the HF
equations for the occupied orbitals of a closed-shell system solved, and have those
resulting orbitals used to construct the HF potential. Once the HF potential has been
determined, a complete set of one-electron orbitals can be constructed using B-splines.
If we let Vgr be the HF potential, then its contribution to the action integral S for an

orbital a will be

/ " P, (r)Vap Py (r)dr = Z 2(2l, + 1) <R0(abab) — Z Alaklek(abba)> . (2.115)

where the sum over index b is over all occupied shells. This contribution to the action

integral leads to the following modification of the potential contribution in the matrix

40



element A;;
R R
/ BZ(T)VHFB](T')dT = / dTBZ(T)
0 0

x> 22+ 1)

b

vo(b, ) ZAzaklbvk (b, Bj, ) Py(r)

(2.116)

To solve the generalized eigenvalue problem, the occupied orbitals P,(r) are obtained
first through numerical integration, then used to construct the matrix A. The eigen-
value problem can then be iteratively solved to give the complete spectrum of HF states
to desired precision.

The relativistic case follows very closely with the non-relativistic method de-
scribed above, with two major modifications. First, both the large component radial
functions P(r) and the small component radial functions Q(r) are expanded in terms

of B-splines
=D piBi(r) Q(r)=>_aBi(r), (2.117)
=1 i=1

leading to a 2n x 2n generalized eigenvalue problem for the expansion coefficient vector
v = (p1,P2,-,Pns@1,q2s - - -, qn)- The Dirac spectrum obtained include n electron
bound and continuum states, and n positron states, which are omitted in sums over
virtual states in expressions for the correlation energy. Second, the boundary condition
P(R) = 0 is replaced with the MIT bag-model boundary condition P(R) = Q(R) [60],
in order to avoid problems associated with the Klein paradox that arise when one

attempts to confine a particle to a cavity using an infinite potential barrier [58].

2.1.9 The Davidson method

In order to find the low-lying eigenvectors and eigenvalues of the CI Hamilto-
nian matrix, we use an iterative method suggested by Davidson [1]. Large scale CI
calculations require construction of a few eigenvalues and eigenvectors of large, sparse,

real-symmetric matrices. Davidson’s method offers several advantages over widely
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used eigenvalue solving procedures, such as the Lanczos algorithm [1, 61]. These in-
clude requiring only the matrix operation Ab and not sequential calculations of (Ab);,
requiring only storage of two vectors at once regardless of the number of roots found,
the ability to find higher eigenvalues without accurate values of lower eigenvalues, no
difficulties of convergence for nearly degenerate eigenvectors, and a better chance for
rapid convergence compared to methods such as the Lanczos algorithm [1]. The com-
plexity of the Davidson algorithm comes mainly from the formation of matrix-vector
products. For small matrices, these products are very cheap to compute, and it suffices
to use direct diagonalization. For large matrices, the formation of the matrix-vector
products are expensive, so it is more cost effective to utilize the Davidson algorithm.

Following Davidson’s original paper in describing his iterative method [1, 61], we
begin by constructing an initial approximation for the matrix of interest, and construct-
ing trial eigenvectors from this initial approximation. An eigenpair is then constructed
using the Rayleigh-Ritz (RR) procedure, and a residual vector is computed to measure
convergence (convergence is typically met when the norm of the residual is reduced
to 107%). Here, the bulk of the computation time is taken up by computing matrix-
vector products. New trial eigenvectors are constructed, the associated trial space is
diagonalized, and new eigenpairs are constructed again from the RR procedure. This
procedure is repeated iteratively until convergence is met.

From the discussions in Section 2.1.6, we found that the variational method

leads us to the CI Hamiltonian matrix equation (Eq. 2.104)
Hc = Ec, (2.118)

where H is the CI Hamiltonian matrix, and c is the wave function expressed as an

array of expansion coefficients. The components of the wave function can be expressed

as L
cw =Y alb;, (2.119)
=0
where
bo = (), (2.120)
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d;

bi - )
1]

(2.121)

d; = [ﬁa - bjbf)] &, (2.122)

Jj=0

Ids]| = +/(di|dy). (2.123)

Here, the components of the vector £ can be be found by

i = (Elcw) — AJJ)_1 45 (2.124)

where

qi = (H— E(c(;)1) . (2.125)

This method generates k approximate eigenvalues at each iterative step. The
computational details of the original Davidson procedure are as follows (Note: This pro-
cedure is modified for usage in the CI/CI+MBPT /CI+-all-order code package. These
modifications along with our realization of the Davidson method is described below

and in Section 3.1.5) [1]:

1. Select a zeroth-order orthonormal subspace by, bs, ..., b;, where [ > k spans the
dominant components of the wave functions of the first k desired eigenvalues.

2. Form and save matrix-vector products Hb;, Hbs, ..., Hb;, and Flz-j = (b;|Hb;),
where 1 <i < j <.

3. Diagonalize H using a standard method for small matrices, then select the kth
eigenvalue >\](€l) and the corresponding eigenvectors a,(f).

M M

4. Form the residual vector qy = ) ag’]\,:[)(Hbi) -y agf\,:[))\;M)bi, where M is the

i=1 i=1
dimension of H used to find a and .

5. Compute the norm of the residual vector ||qas|| and check convergence.

6. Form &7 (p41) = ()\,EM) - HH)_1QI,M, where I =1,...,N.

M
7. Form d(M+1) = |:H(]_ - bleT):| €(M+1)-
i=1
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8. Form b(M+1) = d(M—i—l)/”d(M—i—l)H
9. Form Hb/41)

10. Form h; pr41 = (bi|Hb(asi1)), where i = 1,..., M + 1.

11. Diagonalize H and return to step 4 with a,(CMH) and )\éMH).

When looking for several eigenvalues, the first [ of the Z a;;b; at the end of
finding one root often provides for a good starting set for the next root. The slowest
step in the Davidson procedure is the formation of the matrix-vector products Hb. If
M becomes inconveniently large, the current set of % a;;b;, where j = 1,...,[, can be
taken as a new initial set and the calculation can bze: 1res‘carted from step 1.

With Davidson’s method outlined above, we now discuss the realization of the
method in our work. We define H as the CI Hamiltonian matrix, and let D = diag(H).
H is an N x N matrix, and D is an N-dimensional vector. We choose an initial
approximation Hamiltonian Z of size Ny X Ny, and diagonalize it using Householder’s
method (Appendix C). Next, the initial eigenvectors B = (B(()l), B(()Z), e B(()k))7 each
of dimension N, are chosen from the eigenvectors of Z of dimension Ny, with all other
elements {B(()’?}Z]\L N1 = 0. Here, the (k) superscript represents the number % of desired
eigenvalue and eigenvector.

After the initial approximation has been constructed, the iterative procedure
begins with 7 = 0, incrementing by 1 until convergence is reached. First, the eigen-
vectors B, are orthonormalized, and the products Q; = HB; are evaluated. Next, we
form the matrix P = B;‘.FQ]-. Due to technical complications, the construction of the
matrix P and its associated eigenvectors were done in two parts: First, the top left
block of the matrix P is formed, then the three other blocks are formed. Next, the
residual vector C' is formed and the norm of the residual ||C|| is calculated and used
to check for convergence. If not converged, a new set of eigenvectors B, is formed
corresponding to the residual vectors. These eigenvectors are then orthonormalized,

and the matrix P is diagonalized using Householder’s method for subsequent iterations.

The products are then computed, and the process repeats until the convergence criteria
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(1079) is reached. The technical details of the computational process is described in

Section 3.1.5.

2.1.10 CI+MBPT

In this section, we describe a method combining configuration interaction with
many-body perturbation theory developed in [62]. We can acquire benefits from both
approaches to attain better accuracy for calculations for atoms with more than one
valence electron. We follow closely from the original paper [62] to derive the CI+MBPT
equation used in the code package.

We begin by dividing the many-electron Hilbert space into two subspaces: a
model subspace P corresponding to the frozen-core electron states and a complemen-
tary subspace () that includes all other states. The model subspace P is dealt with
using the CI method, while the complementary subspace @ is dealt with using MBPT
since projections of the wave functions of the lowest energy levels of the atom onto )
are assumed to be small. For the convergence of MBPT, it is important to separate
the core and valence electrons so that their energies are well separated. We use Slater
determinants |I) of the one-particle wave functions for the core electrons ¢; as a basis

set in the many-electron space. We can define projection operators

P=> | and Q=) |I){I (2.126)

IepP 1€

to the subspaces P and @), respectively, satisfying the completeness relation

P+0O=1 (2.127)

Using the CI method, we can introduce a CI model subspace P°' C P by
defining a subset of configurations I associated with the lowest-lying states of the
infinite-dimensional model subspace P. The wave function can then be represented as
a linear combination of Slater determinants from P,

b= CiI). (2.128)

IepCl
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Varying the coefficients C; leads to the matrix eigenvalue problem as before
> H;,C;=EC. (2.129)
JepCl

The CI Hamiltonian matrix can be obtained as a projection of the exact Hamiltonian

H onto the model subspace P
HO = PIHPO (2.130)

For the sake of simplicity, we assume that it is possible to choose the con-
figurations in P°' such that we can obtain our desired accuracy for the solution of
Schrodinger’s equation in the P subspace. For this reason, we will not distinguish
between P! and P. Since we chose P such that the core electrons are frozen, we can
exclude them by averaging the Hamiltonian over the single-determinant wave function
of the core electrons, giving

cr 1
PHP E+>; h +j>i>ZNm - (2.131)
where F ... refers to the total core energy, defined as the matrix element of the exact

Hamiltonian H with the core wave function:

Ecore = <\chore‘H’\chore>7 (2132)

0). (2.133)

[Weore) = a{a; T ajvcore

FE.ore includes the kinetic energy of the core electrons, as well as the core-core and
core-nucleus Coulomb interactions. The one-electron operator h°! acts on the valence
electrons and includes the kinetic term, as well as the core-valence and valence-nucleus
Coulomb interactions. The last term accounts for the valence-valence Coulomb inter-
action.

Decomposing the Hamiltonian and the wave function into the P and ) sub-
spaces,

H = PHP +PHQ + QHP + QHQO (2.134)
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U =PU+ QU =0+, (2.135)

the Schrodinger equation

HY = EV (2.136)

can be written in terms of ® and y:
(PHP) P + (PHQ) x = ED (2.137)
(QHQ) x + (QHP) P = EX. (2.138)

Next we introduce the resolvent operator in the subspace Q:
Ro(E) = (E - QHQ) ™, (2.139)
which will allow us to rewrite Eq. 2.138 as
X =Ro(E)(QHP)®. (2.140)

We can substitute this expression for y into Eq. 2.137 to obtain an equation in the

subspace P, with an energy-dependent effective Hamiltonian
(PHP + X(FE))® = E?, (2.141)

where

Y(E)=(PHQ)Ro(E)(QHP). (2.142)
The orthonormality condition for the wave function then follows from

(@]l + (PHQ)Ro(EI)Ro(Ek)(QHP)|Pr) = dit- (2.143)

Since the operators > and Rg depend on energy, the Schrodinger equation must
be solved iteratively. If we only want the lowest-lying energy levels, then we can

neglect the energy dependence and evaluate the operators for some average energy
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Fae = E; = Ej. In this case, we can express the orthonormality condition in terms of

the derivative of X(FE):

I%(E)
OF

(Wil — |Ps) B= By = Oi- (2.144)

With a properly chosen model space P, the energy derivative can become negli-
gible, in which case the standard CI method can be used to solve Eq. 2.141, provided
that the operator ¥(FE,y) is calculated beforehand with MBPT, and then added to
the Hamiltonian. We use Brillouin-Wigner (BW) perturbation theory, resulting in
an energy-dependent correction, as opposed to the typical Rayleigh-Schrodinger (RS)
approach where the correction is independent of the energy. This is due to some
disadvantages of using the RSPT approach, such as a non-symmetric matrix of the
CI+MBPT eigenvalue problem due to differences in energy denominators and small
denominators for highly excited configurations.

The operator X(F) described by Eq .2.142 connects the model subspace P of
core electrons to the complementary subspace @) of core-excited states, so it accounts
for core-valence correlations. The form of the operator ¥(FE) depends on the choice of
the starting approximation hg, which in our case will be the one-electron DF operator
given by Eq. 2.59 with central potential U(r) = VP where Npp corresponds to the
number of electrons included in the HF self-consistent procedure. Here Npr is chosen
such that Nege < Nprp < N, with N being the total number of electrons in the atom
or ion.

The DF operator in the many-electron space is given by

Ncore
HDF - Ecore - Z Embjnbm + Z €ial‘Lai = Ecore + -E[DFa (2145)
m=1 > Ncore

where bl = a,, and b,, = al  are the creation and annihilation operators of holes in
the core, and af and a,, are creation and annihilation operators, respectively [62].

It follows from Eq. 2.145 that

PHprQ = QHprP =0, (2.146)
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allowing us to write Eq. 2.142 as

Y(E) = (P(H — Hpr)Q)Ro(E)(Q(H — Hpr)P)
= (P(V = V") Q)Ro(E)(Q(VY — V™) P),

(2.147)

where V — VVor ig the residual two-electron Coulomb interaction. Since this expression
has the usual MBPT form, we can treat () — V"PF) as a perturbation and expand the

resolvent operator:

Ro(E)=Q(E~H)™'Q
= Q(E — Hpr) 'Q+ Q(E — Hpr) QY — V¥F)Q(E — Hpp) 'Q + -+ .

(2.148)
This allows us to rewrite X(FE) in matrix form as
U[MUMJ UIMUMLULJ
TS LT
MeQ E—Eu M,LEQ (B = En)(E = Ei) (2.149)
=@ 126 ...

The code package take into account only second-order MBPT corrections. If we substi-

tute ©? into Eq. 2.141, we obtain the equation of the combined CI+MBPT method:

> (HU + > %) Cy; = ECy. (2.150)

Jepcl MeQ

It is important to note that only core excitations are treated by means of MBPT, and
all valence excitations are accounted for directly from the matrix diagonalization. A
complete evaluation of the MBPT term in Eq. 2.150 can be found in Ref. [62].
Following Refs. [63, 64], we can divide the core-valence correlations obtained
from ¥ (F) into a one-electron part ¥; and a two-electron part ;. The CI+MBPT
equation is written in the form of the standard CI method (Hf — E)¥ = 0, where
H" = H, + 3, + Hy + 5. Here, H, represents the one-body part of the Hamiltonian

and Hj represents the two-body Coulomb or Coulomb + Breit part of the Hamiltonian.

49



The second-order matrix elements of the one-electron correlation potential (Zf))yx are

given by [64]

2 9m abgmxab gmnmagmn a
(S =Y L 4y Hmneadmnya (2.151)

€ab — €xm T €y — € — ey —+ €4 — €Emn

mab

and the second-order matrix elements of the two-electron correlation potential (252)),%%

are given by [64]

2 Gvwed9mned
(Eg ))mnvw = = =
od €cd — €mn T € — €+ €y — €y
o (2.152)
Z Guwrne9mrve + m < n
C€v+€c_€mr+gw_€w v “— w ’

where indices from the beginning of the alphabet a and b range over all occupied core
states and indices from the middle of the alphabet m and n range over all possible
virtual states, €;; = €; + ¢;, the notation g;ju = gijr — gijie is used to designate anti-
symmetrized two-particle matrix elements, and the energies ¢; are chosen to be the DF
energy of the lowest orbital for the particular partial wave or approximated in other
ways described in Ref [64].

In order to include the Breit interaction in the CI+MBPT method, it is neces-
sary to include Breit corrections to the core potential, and to construct core orbitals
from the DHF Hamiltonian with the Coulomb and Breit interactions included. Techni-
cally, the Breit interaction is included via one-electron and two-electron radial integrals,
where the one-electron integrals describe the interaction of the valence electrons with
the core, and the two-electron integrals describe interactions between valence electrons.
All integrals depend not only on the potential, but also on the orbitals. It is important
to account for the change of the orbitals caused by the inclusion of the Breit interaction.
The one-electron integrals must explicitly include Breit, but the two-electron integrals
can be calculated with Coulomb potential without Breit. Not including Breit in the
two-electron integrals results in a difference on the order of ~ 10~*, which introduces
errors, which may be negligible in some cases [54]. If the MBPT in residual Coulomb

interaction is used to account for the core-valence and core-core correlations, direct
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and indirect Breit corrections have to be included in corresponding diagrams. Direct
corrections refer to the substitution of the residual Coulomb interaction with the Breit
interaction in the MBPT expressions, and the indirect corrections refer to using the
DF+Coulomb+Breit equations as a zero-order approximation. Direct correlations are
suppressed, and generally neglected altogether, due to huge energy denominators in the
largest Breit radial integrals corresponding to virtual excitations from the innermost
core shells [54]. The indirect corrections are accounted for simply by including the

Breit interaction in the construction of the basis set.

2.1.11 CI+all-order

In this section, we follow Refs. [64, 65] in describing the relativistic all-order
method and a method combining configuration interaction with the all-order method
(Cl+all-order). The relativistic all-order method is a linearized version of the coupled-
cluster (CC) method, where all non-linear terms in the expansion of the exponential are
omitted. This method was initially designed to treat monovalent systems by including
all single and double excitations of the DHF wave functions to all orders of perturbation
theory (also known as LCCSD). Extensions that include non-linear terms and valence
triple excitations (also known as LCCSDvT) were developed in Refs. [66, 67], but
significant cancellations of triples and non-linear terms make the SD version accurate
and very efficient to use for most applications. For more complicated systems, a method
combining configuration interaction and many-body perturbation theory was developed
and described in the previous section. In the CI + all-order approach, corrections to
the effective Hamiltonian described in Section 2.1.10 are calculated using the all-order
method, in which the effective Hamiltonian contains dominant core-core and core-
valence correlation corrections to all orders. The core-core and core-valence corrections
are treated in the all-order method with the same accuracy as in the all-order approach
for monovalent systems. The CI method is then used to evaluate valence-valence

correlations.

o1



We begin our description of the all-order method from the relativistic no-pair

DHF Hamiltonian given by Eq. 2.97

Hy = Zei{alai}, (2.153)

1
V = 5 zk; gijkl{a;‘ra;alak} + ZJ:(VHF — U)ij{a;raj}. (2154)
ij i

In the coupled-cluster method, the exact many-body wave function is repre-

sented in the form

|T) = 5T, (2.155)

where |\IJ(0)> is the reference atomic state vector, and S represents an operator for
an N-electron atomic state consisting of the contribution from all excitations from
the lowest-order state vector |[¥(®). Here, S = S; 4+ Sy + --- + Sy represents one-
electron, two-electron, ..., N-electron excitation operators. Note that if all excitations
are considered, the full CC expansion would be identical to the full CI expansion. The

general cluster operator can be expanded as

1 1
e® = 1+5; + (SZ + 553) + (53 + 9251 + 55?) +
. ! LN (2.156)
<S4 + S35 + 553 + 55255 + ZS{*) 4+

where the general n-electron excitation operator is defined as

1
_ § : E : (P P B B A
Sﬂ - pml7m2,~~~;mn7f117112,~-,11n {aml amg amnaana’an,l aal

(n!)?

M1,M250. My A1,025.-,0m

(2.157)
Here the indices a; with : = 1,2,...,n range over core states, and the indices m; with
1=1,2,...,nrange over all possible virtual states. Compared to the full CI expansion,
the CC contributions from single excitations come from the term S7, double excitations
come from the terms in the first parenthesis (Ss+1.57), triple excitations from the terms

in the second parenthesis (S5 4+ 5251 + 5;.57), and so on.
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In the all-order method, we omit all non-linear terms in the expansion of the

exponential, such that the all-order wave function takes the form
W) = {14 S, + Sy + S5+ -+ Sy HwO). (2.158)

Restricting the sum in Eq. 2.158 to single, double, and valence triple excitations

yields the following expansion for the state vector of a monovalent atom in state v:

= |1+ meaa a + 5 Z Prnab@h,@hab0a + Y Pyl

mnab m#v

(2.159)
+ menvaa al nGaly + Z pmnrvabaindr CLTabaaav ‘\IQ(JO)%

mna mm"ab
where the indices m, n, and r range over all possible virtual states, while indices a and

b range over all occupied core states. The lowest-order wave function is given by
Wy = af |Te), (2.160)

where |U¢) is the zeroth-order frozen-core wave function. The quantities p,,, and pp,,
are single-excitation coefficients for core and valence electrons, respectively; pinep and
Pmnva are core and valence double-excitation coefficients, respectively; and ppnrvap are
the valence triple excitation coefficients. In the single-double (LCCSD) implementation
of the all-order method, only single and double excitations are included. In the single,
double, and partial triple (LCCSDpT/LCCSDvT) variant of the all-order method,
valence triple excitations are included perturbatively, as described in [65].

To derive the equations for the excitation coefficients of the LCCSD equations for
a monovalent system, we substitute the state vector |W,) given by Eq. 2.159, omitting
the last term, into the many-body Schrédinger equation H|¥,) = E|¥,). We then
project the Schrodinger equation onto the zeroth-order wave function |Ws) and onto
the functions obtained by operating the cluster operators on the zeroth-order frozen-

core wave function. Terms on the left and right sides of the equation are then matched
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based on the number and type of operators they contain, as done in perturbation

theory. The resulting SD all-order equations for valence coefficients are

(Ev —€m + 5E va Z GmbunPnb + Z gmbnrpnrvb Z gbcvnpmnbm (2161)

bnr ben

(Gfun — €mn + 5Ev> Pmnvb = Gmnub + Z GedvbPmmned + Z 9mnrsPrsvb

cd rs
b
Z ImnrbPrv — Z GenvbPme + Z gcn?‘bﬁmrvc + UV <>
" ¢ re m<>n
(2.162)

where 0F, = E, — ¢, is the valence correlation energy, €; = € + ¢;, the notation
Gijkl = Gijki — Yijuk is used to designate anti-symmetrized two-particle matrix elements,
and Prnwb = Pmnvd — Prmub- L he correlation correction to the energy of the state v is

given in terms of the excitation coefficients by

5Ev - Z gvavmpma + Z gabvmﬁmvab + Z gvbmnﬁmnvb' (2163)

ma mab mna
Equations for the core excitation coefficients p,,, and p,mep are obtained from the
above equations by replacing the valence index v by a core index a and removing J F,,
from the left-hand side of the equations. Equations for the correlation energy and all
excitation coefficients are solved iteratively, where each iteration picks up correlation
terms corresponding to the next higher order term in perturbation theory until the
correlation energy converges to a sufficient numerical accuracy. Therefore, the all-order
approach includes dominant MBPT terms to all orders.

Matrix elements for the one-body operator Z = Z zwa a; are obtained in the
framework of the all-order method as

(Vy|Z]Wy)

VW) (T )

where |¥,) and |¥,,) are given by the expansion in Eq. 2.159. In the SD approximation,

(2.164)

wy T

the resulting expression for the one-body matrix element consists of the sum of the DF
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matrix element z,, and 20 other terms that are linear or quadratic functions of the
excitation coefficients. The advantage of this approach is that this expression does not
depend on the nature of the operator Z, only on its rank and parity.

The complexity of the all-order method for matrix elements increases drastically
with the number of valence electrons. For divalent systems, the expression contains
several hundred terms, instead of the 20 terms in the corresponding monovalent expres-
sion. Therefore, it is difficult to extend the all-order method to the case of complicated
systems with more than 5-6 valence electrons.

To combine the all-order method with CI for calculating properties of atoms
with a few valence electrons, we begin by expressing the all-order equations (Eqgs.
2.161 — 2.163) in terms of matrix elements of ¥; and ¥, and explicitly including energy
dependence. We also need to add an all-order equation for the excitation coefficients
Pmnvw O Obtain X,.

Y1 and X, are essentially the all-order excitation coefficients p,,, and pnvw

multiplied by the appropriate energy differences,

Sina = Pma (€a = €m)
Yimnab = Prmnab (€ab = €mn) ;
Emnva = Pmnva (€v + €4 — €mn) ,
Zmw = (Z1) py = Pro (€0 — €m)
Emnow = (22),0m00 = Pmnvw (Ea + Ew — €mn) -

The quantities X,,4, Xmnas, and 2,00 are used in the all-order iterative proce-
dure but do not explicitly appear in the effective Hamiltonian. The excitation coef-
ficients p,ue and pnes are multiplied by the appropriate energy differences to obtain
the terms X,,, and X,,,4, and other all-order equations are re-written in terms of X,

while terms that will otherwise be double counted by the CI part of the calculations are
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removed. We obtain the following set of equations by writing the LCCSD equations
given by Eq. 2.161 in terms of 3:

~m vn n CU’I’L mnoc Nm nrznrv
N o= (El)mv _ 9mb _Z 7 b i 9mb b

6bn+ev_€v 6bc_Emn—i_Ev_ev €v+6b_€nr
nb bnr

, (2.165)

Emnvb = Gmnuvd + Z ngvimncd -+ Z M

decd_emn—i_gv_ev gv+€b_€

o Z - gcnvbzinc + Z gmm)r r_ - . Z - gmcvbginc

€b_€r+€v _En+€v_€v

§ : gcm‘bzmrvc 2 : gcnrbzrmvc 2 : gmcrbzrnvc
€y €y

or +€c_€mr 6+EC_€mr +Ec_ nr

+ Z Emcvr rncb N Z gmcvr nrcb . Z gcnv’r mrcb

or ecb_enr+€w_€v 6cb_Gm""i_E'u_E'u or €ch — 6mr+€v_€v

(2.166)

Zmnvw = (22>mnv’w - Z gah’}“wzmnai N Z € gc””wzmc

od 6cd_Emn_'_Ev_‘Ev—i_gw_‘Ew _€m+gv_€v+€w_€w

_z : gmcvwznc _'_j :
Ec_€n+€v_€v+gw_€w or Ev+€c_€mr+gw_€w

z gcnrw rmuvc z ngT‘w rnuvc
€y €v
cr

gcm"w Emrvc

+ec_6mr+€w €w +€c_6nr+€w €w

_"_ E ng’UT‘ rncw § ng’UT‘ rnwc
EC

or €c+€w_€n7‘+€v_€v +€w_€nr+ev_€v

z gC?’L’UT rmwc
€c

or +€w_€mr+€v_€v

(2.167)

The energy denominators are explicitly written out and the energy dependence
is introduced in the formalism of the CI+MBPT approach. Next, we outline the
CI4-all-order method as used in this work [65]

1. A finite basis set is generated in a spherical cavity of radius R with which all

calculations will be carried out. The terms (X1),, and (32)mnew, Wwhere m, n, v
w are any basis set functions, are then generated under second-order MBPT.
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2. The all-order core p,,, and pmna excitation coefficients are obtained by the iter-
ative solution of the corresponding equations in the appropriate potential. The
core correlation energy is used as a convergence parameter and is generally re-
quired to converge to 107® — 1075 relative accuracy. The core excitation coef-
ficients are multiplied by the appropriate denominators as described earlier to
obtain X,,, and X,,,. after the iterations are complete.

3. The core quantities >,,, and X,,,., are used to obtain X,,, and X,,,,. by an
iterative procedure for a large number of excited m, n, and v orbitals. The
valence correlation energy for the state v is used as a convergence parameter
here. The iterations of excitation coefficients result in the summation of the
relevant classes of MBPT terms to all orders.

4. The all-order expression for (X2),mw corrections to the effective Hamiltonian
is calculated with previously stored fully converged values of ¥,,4, >na, and

ZJmnvb-

5. CI calculations are carried out to generate accurate wave functions with the
effective Hamiltonian constructed using ¥; and Y, obtained in the previous steps
in the same manner as in CI+MBPT described in Section 2.1.10.

6. The resulting wave functions are used to obtain various matrix elements and
derived quantities.

2.1.12 Valence perturbation theory

Valence perturbation theory is discussed in great detail in [68] and will be briefly
introduced here. It is a method for approximating and optimizing the CI space using
weights of configurations. As usual, the goal is to find solutions of the many-body

Schrodinger equation

HV, = E,U,, (2.168)

where F, is the energy of the n-th level and W, is the corresponding wave function,

which is described as a linear combination of Slater determinants

N

T,) = c"|@;), (2.169)

i=1
where N corresponds to the dimensionality of the valence configuration space and ®;

are Slater determinants constructed from basis orbitals. The basis orbitals are found by
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solving HFD equations for the core and valence orbitals and then constructing virtual
orbitals using B-splines.
Substituting Eq. 2.169 into Eq. 2.168 and varying over the coefficients cz(n), we

obtain the CI eigenvalue equation

> HyC = B, (2.170)
k
or in the matrix form
H®, = E,,, (2.171)
where H is the energy matrix and @, = (™, {™, ... i) is the desired wave function

described in the basis of Slater determinants.

In valence perturbation theory, the valence space is divided into two subspaces:
N = Ny + Ni, where a smaller subspace of dimensionality Ny x Ny is accounted for
using CI and the complementary subspace of dimensionality N; x V; is accounted for

using PT. The Hamiltonian is rewritten in the form
H = Hy + H, (2.172)

where Hy and H; correspond to the subspaces defined above for CI and PT, respectively.
Here, Hj is represented as

Hy=H,+D (2.173)

where H{ is the upper left block of dimensionality Ny x Ny, and D is the diagonal of
the block of dimensionality Ny x N; with elements (Hyyi1np+1,---, Hyn). First, we

solve the CI matrix equation

Hy®? = B2 (2.174)

where @ = ((cgn),cgn),...,cgf,lo)),(),...,O) for n < Ny and ®° = (0,...,0,1,0,...,0)
for n > Ny, where the unit occupies the n-th position. Solving Eq. 2.174, we find the
energies and wave functions to initial approximation.

The weight of configurations is determined by the expression

N, 9

B (2.175)

1

o8



) are the

where Ny is the number of determinants in the kth configuration and cgk
corresponding coefficients. Only weights above a certain threshold (typically above
107° — 107°%) are kept in the H} subspace. All configurations with weights below the
threshold are taken into account using PT in the next step.

After the CI matrix equation has been solved in the H subspace, the corrections

from the H; complementary subspace are added using PT. The first-order correction

to the unperturbed energy E° is given by
B = ()| H,|2f) =0, (2.176)

and the second-order correction to the unperturbed energy E° is given by

N 0 0 0 0
2 _ <q)i|Hl|q)k><q)k|H1|q)i>
EY = Y B : (2.177)

k=Np+1
where E} is the k-th element of the diagonal D. The first-order correction to the wave

function is given by
N

(PR H1|PP)
o = " ﬁ@g). (2.178)
k=No+1 ¢ k

All second-order corrections are taken into account and added to the energy calculated
from CI to obtain the total energy, £ = Ey + E;. The first-order corrections to the

wave functions are stored for use in subsequent CI calculations.

2.2 Radiative transitions
In order to determine transition rates, lifetimes, and branching ratios of certain
transitions, we need to study radiative transitions. Lifetimes are obtained by summing

over all possible radiative transition rates:

1
sS4

The value of the branching ratios for a particular transition is determined as a ratio

T

(2.179)

of the respective transition rate value and the sum of all possible radiative transition
rates that are used to determine the lifetimes. The density matrix formalism is useful

here as it greatly simplifies the treatment of transitions involving multiple states.



2.2.1 The density matrix formalism

We have thus far described the quantum state of a particle by a wave function
U (x) in coordinate and spin space. Here, we will consider an alternative representation
of the quantum state, called the density matrix. The density, or transition matrix was
originally introduced in quantum statistical mechanics to describe a system for which
the state was incompletely specified. Although describing a quantum system with the
density matrix is equivalent to using the wave function, it has been shown that density
matrices are more practical for certain time-dependent problems [69]. The formalism
of the density, or transition matrix allows us to express the matrix elements between
many-eclectron states using one-electron matrix elements. Here we follow Ref. [70] in
introducing the density matrix formalism.

The general N-order density matrix is formally defined as
v (XX Xy, XXy xXy) = U (X, %5, X)) U (X, X, .., X)), (2.180)

where x; = {r;,0;} denote spatial and spin variables. Note that the density matrix
contains two sets of independent quantities, {x}} and {x;}, that gives vy a numerical
value. Equivalently, the general N-order density matrix can be viewed as the coordinate

representation of the density operator,

AN = [Un)(Pn| (2.181)
since

(x1xh . X An]xixe o xy) = (XX X [N (P xiXs - Xy)

= U (X, %, ., X)) Uy (X1, %, ... xy)  (2182)
=y (X)X .. Xy, X1 Xa ... Xp)

Note that 45 can also be thought of as the projection operator onto the state

W y. We then have for normalized Wy,

Troy = /\If}‘V(XN)\I/N(XN)dXN =1,
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where x" stands for the set {x;}¥,. The trace of an operator A is defined as the sum of
the diagonal elements of the matrix representing A, or the integral if the representation

is continuous as above. It can also be verified that
(A) = Tr (3 A) = Tr (A).

From this, the density operator 4 can be seen to carry the same information as the
N-electron wave function ¥y. Note that while Wy is defined only up to an arbitrary
phase factor, 4 for the state Wy is unique, positive semi-definite and Hermitian. The
state of the system is said to be pure if it can be described by a wave function, and
mized if it cannot. A system in a mixed state can be characterized by a probability
distribution over all accessible pure states. If we set x; = x; for all i, we get the

diagonal elements of the density matrix,
v (X1Xa .. xXn) = Uy (X1, X0, -, Xn) Uy (X1, X, .., Xy) = Uy (X1, X0, .., %) %,

which is the N-order density matrix for a pure state. Note that this is also the prob-
ability distribution associated with a solution of the Schrodinger equation. We can
express the Schrodinger equation in the density-matrix formalism by taking the time
derivative of the density operator, and using Hermiticity and commutation relations

to obtain

%% = (%mm) (Un|+ W) (%(W)
. s (2.183)
= <E|\DN>) (Un|—[Vy) <E<\PN‘>

0 N
ey = [H,A ] 2.184
¢ at%v TN ( )
This equation is called the von Neumann equation and describes how the density

operator evolves in time. We can generalize the density operator 4y to the ensemble

density operator

I = sz‘\pl><qu|7 (2.185)
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where p; is the probability of the system being found in the state ¥;, and the sum is
over the complete set of all accessible pure states. The coefficients p; have the following

properties since they are probabilities:

We can then rewrite Eq. 2.184 in terms of the ensemble density matrix to obtain

0 ~ A A
ih T = [T 2.186
e (2.186)
which is true if I only involves states with the same number of particles, as is true in
the canonical ensemble. This equation is also known as the von Neumann equation,

the quantum mechanical analog of the Liouville equation. For stationary states, [ is

independent of time, which means that
[H, f] — 0,
implying that H and T share the same eigenvectors.

The Hamiltonian operator, Eq. 2.2, is a sum of two symmetric one-electron
operators and a symmetric two-electron operator, independent on spin. Along with
the fact that the wave functions {¥;}¥, are antisymmetric, the expectation values of
the density operator can be systematically simplified by integrating the probability
densities over N — 2 of its variables, giving rise to concepts of reduced density matrix

and spinless density matrices.

The reduced density matrix of order k is defined as

Ve (X)Xy - X, X1 Xg L. Xy) =
( )/ / V(XX o XXyt XN, X1 X e X XN )AX g1 - dXy, (2.187)

where (],:[ ) is a binomial coefficient, and vy is defined by Eq. 2.180. This is also known
as taking the partial trace of the density matrix. For example, the first-order density

matrix 7, is defined as

mn(xl,x1) =N / - / U (x)Xg ... XN) V(XX ... XN )dXs ... Xy (2.188)
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and normalizes to
Try(x],x1) = /'yl(xl,xl)dxl = N.

Similarly, the second-order density matrix v, is defined as

N(N -1
Yo (X X5, X1X5) = % / e / U*(x)x5X3 ... XN)U(X1XoX3 . .. XN )dX3 . .. dXyn
(2.189)

and normalizes to the number of electron pairs

N(N —1)

Tr v (X X5, X1X3) = // Y2(X1X2, X1 X2 )dX 1 dXe = —

The reduced density matrices v; and 7, just defined are coordinate-space represen-
tations of operators 4; and 75, acting on the one- and two-particle Hilbert spaces,
respectively. We can express the one-particle operator in terms of its eigenvalues and

eigenvectors
"= E i) (il
i
where the eigenvalues n; are the occupation numbers and the eigenvectors v; are one-

electron orbitals. Similarly, the two-particle operator can be expressed as
o =Y il0:) (6],

where the eigenvalues g; are the occupation numbers and the eigenvectors 6; are two-
electron functions called geminals. It also follows from n; > 0 and ¢; > 0, that n;
is proportional to the probability of the one-electron state 1; being occupied and g;
is proportional to the probability of the two-electron state #; being occupied, after
comparing these two operators with Eq. 2.185.

Now let us consider the expectation values of one- and two-electron operators

with an antisymmetric N-body wave function ¥. For a one-electron operator

N
01 = Z 01($z‘7 $;),
i=1

we have

<Ol> = Tr(OAwN) = /Ol(xlx'l)%(xll,xl)dxldxll. (2.190)
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If the one-electron operator is local, i.e. Oy(7',r) = Oy(7)d(r' — r), we can conven-

tionally write down only the diagonal part:

<O1> = Tr@ﬂN) = /[Ol(xl)%(xlpX1)}x'1=x1dX1-

Similarly, if the two-electron operator is local, we have

N
02 = Z 02(1'7;, Ij)

1<j

and the corresponding expectation value

(O2) = Tr (Ogyy) = //[02(X1>X2)72(X/17X/2,X1,X2)]x'1xl,xgxgdxldXQ-

We thus obtain for the expectation value of the Hamiltonian, Eq. 2.2, in terms of

density matrices

E= (EWN) = E[n,7]

Tr
1
:/[ §V +U('f’1)) 71(X1,X1)} dX1+// ﬁvg(xlx%xle)XmdXz
X =x1 1= T2
(2.191)

We can further simplify this result by integrating over the spin variables.

The first-order and second-order spinless density matrices are defined by

"’1,’"1 E 2! 7"1‘7177'101)

0101
* /
=N E / /\IJ o], X, ..., XN)V(P107, Xg, ..., XN)dXg . .. dX N
0101

(2.192)

and

!/ A AN A )
p2(TiTy, T1T2) = E V2(T101750%, T1017202)
o10%,020)

— 1
/ ! !
= g U*(riol, 1y0h, X3, ..., XN )W (P10, P20, X3, . . ., XN )dX3 . .

o10%,020)

(2.193)
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We can introduce a shorthand notation for the diagonal elements of py,

pi(r1) = pr(ry,m1) = NZ/---/|\IJ(T,0)|2dx2 XN
o1
and similarly for p,,

N(N -1
,02(7‘1,7'2) = pQ(Tﬂ’Q,TlT‘Q) = % Z / e '/’@(’I",O’)’QdXz), .. .dXN.

0102
Note that from the above definitions, we can express the first-order density matrix in

terms of the second-order density matrix

2

p(ry,m) = m/pz(ﬂrz,mrz)dm,

2

p(’f’l) = m/ﬂQ(’l"l,'f’g)d’l’g.

The expectation value of the Hamiltonian, Eq. 2.191, in terms of density matrices now

becomes

E= E[P1<TI177°1)7P2("°17"°2)]

:/ {—%VZpl(r’,r)l N dr+/v(r)p(r)—|—// ﬁpg(rl,m)dmdrg,
o (2.194)

where the three terms represent the electronic kinetic energy, the electron-nucleus
potential energy, and the electron-electron potential energy, respectively. Note that
since we can express the first-order density matrix in terms of the second-order, only
the second-order density matrix is needed for the expectation value of the Hamiltonian.

When calculating the matrix elements of one-electron operators between many-
electron states, the formalism of the density, or transition density matrix allows us
to express the matrix elements between many-electron states in terms of one-electron
matrix elements. Let us consider the matrix element (J'M'|T}|JM), where |JM)
and |J'M’) are the many-electron states with total angular momenta J and J’, with

projections M and M’, respectively. TqL is the spherical component of the tensor
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operator T of rank L. In terms of one-electron states |nljm) and |n'l’j'm’), the density

matrix operator can be defined
p = Putjmar e | nljm) (0l j'm’Y, (2.195)

where

Prtmatjim = (I M'|al sy s ntjm] JM). (2.196)
The many-electron matrix element can then be written
(J'M'|T]|TM) = T putjmpr e (WU 'm | T [nljm), (2.197)

where the trace sums over all quantum numbers (nljm) and (n'l'j'm’). Using the

Wigner-FEckart theorem, we can reduce the many-electron matrix element to

(TITHT) = Te plygy (07| T ), (2,199
where
—1
oL R B A
pﬁlj,n’l/j’:(_l)J M Z(_l)] prlzlljm,n/l’j’m/'
— M q M mm/ —m/ qa m
(2.199)

2.2.2 Multipole transition probabilities
In this section, we will derive expressions for multipole transition probabilities
as used in the dtm program, following Ref. [44]. The transition amplitude for a one-

electron atom is
Tyy = /d%ga - A(r, W), (2.200)

where A(r,w) is the transverse-gauge vector potential
A(r,w) = e*re (2.201)

Here, the vector k = kk is the propagation vector and the unit vector € is the polar-

ization vector. In the following derivation, it is useful to introduce vector spherical
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harmonics Yjra/(0,¢), which is a combination of spherical harmonics and spherical

basis vectors [44]:
Yirm (0, ZC L1, J;M — 0,0, M)Yrn—o(0, 0)&o, (2.202)

where the Clebsch-Gordon coefficients C(l, 1, j;m — mg, mg, m) for J = L 4+ S, with

s = 1, are given in Table 2.1, Y}, are the usual spherical harmonics, and &,, with

o = —1,0,1, are spherical basis vectors defined by
1 0 1
&= L ' =10 E1= L ' (2.203)
1 \/§ (4 ) 0 ) -1 \/§ —1 . .
0 1 0

Table 2.1: Clebsch-Gordan coefficients for J = L + S, with s = 1 [44].

mg =1 mg =0 ms = —1
=141 (I4+m)(l+m+1) (I—m+1)(I+m~+1) (I—m)(l—m+1)
J= @I1)(2+2) @I+ (+1) @+1)(20+2)

=1 _ J4dm)i—m+1) _m (=m)(i+m+1)
J= 20(1+1) =) 2(1+1)

j=1-1 (I—m)(I—m+1) _[u=m)(+m) \/ (IHm+1) (I+m)
2(20+1) 1(2141) 20(20+1)

One can expand the vector potential in a series of vector spherical harmonics

= > Asn(r) Yoo (#), (2.204)
JLM

where the expansion coefficients are given by
Apuaa() = [ 40¥3000(7) - e, (2.205)

Expanding the plane waves in terms of spherical Bessel functions j;(kr) via
= 47TZZ Gk )Yy (B) Yo (7), (2.206)

one can carry out the angular integration and rewrite the expansion of the vector

potential as

'I‘ w =47 Z YJLM é)aJLM(T>, (2207)
JLM
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where
asrm(r) = jo(kr)Yrom (7). (2.208)

One can express this expansion in terms of the vector spherical harmonics Yj(j\‘} (7)

instead of Y/ (7) using the relations
R [ J (~1) 4 [J+1 _qy,.
Y, =4/ —Y Y 2.209
JJ 1M(r> 2J+1 JM (r>+ 2J+1 JM(T>7 ( )

Yiou(7) = Y (), (2.210)

J+1 1, J .
Y o = —1/ 57 1YJ(M1)<7") + ,/QJ — 1Y}]{}(7~), (2.211)

leading to the multipole expansion of the vector potential

A(r,w) =41 Y TNV (k) - e)aly, (r), (2.212)

JMA

where the vector functions af,kj\)/[(r) are referred to as multipole potentials, given by

afl(r) = asu(r), (2.213)

W ( J 41 — 2.214
a’]M 2]+ 1 ajj— 1M 2J+1 JJ+1M ( )

Only terms with A = 0,1 contribute to the multipole expansion since YJ(A_;)(I%) =

YJM(]%)]% is orthogonal to €. The potentials with A = 0 are the magnetic multipole

potentials and those with A = 1 are the electric multipole potentials. One can express

the multipole potentials a‘(]’\]\Z(r) in terms of spherical Bessel functions as

af(r) = j,(kr)Y 50 (7), (2.215)

jJ(kT)

. Y (7). (2.216)

alfr) = i) + 42 @) + I
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The multipole expansion of the vector potential (2.212) leads to a corresponding

multipole expansion of the transition operator
Tba = /d3,r,,l7b;fa : A(Tyw)@%

:/d%@a-FwZN*waﬁwa4&61¢a

JMA

=47 Z /A Y()‘ ) - €] /d?’mbga . a,((]’\]\)/[(f)@ba

JMX

(2.217)

=4 3" YR - AT o
JMA

Upon squaring the amplitude, summing over polarization states, and integrating over

photon directions, one obtains the transition probability rate (Einstein A coefficient)

Aba = %w;/dﬂk |Tba|2
— o [dgier 3 S0 3 [ &) [o YO EalT

JMNJ M'N v

—sarw Y 3 [ a4 [0 Y00 1T

JMN J'M'N

= 8amw Z Z 5]J’5MM’§)\)\’[Tﬁ?\zj]ab[Tﬁ\;\zp]ba

JMN J'M'N

2
= 8anw Z ‘[T}R}]b

JMA

)

(2.218)

where angular momentum selection rules limit the type and number of multipoles that
contribute to the sum. Next, one can apply a gauge transformation to the multipole

potentials

aly(r) = ay (1) + Vu(r),
dym(r) = twxsm(r),

choosing the gauge function

X () = = s (b)Y 7).
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The resulting gauge transformation has no effect on the magnetic multipole transi-
tions, but the electric multipole potentials are transformed and reduced to the so-called
length-form multipole potentials in the non-relativistic limit

, R J+1_ 1,
al(r) = —jria(kr) [Yfﬁ(r) - TY}M%)]

o JJ+1 .
f,l]\)J(kr) = —ic 7 Jr(kr)Y ar (7).

In the non-relativistic limit, the length-gauge electric multipole transition oper-

(2.219)

ator takes the form
1
Tﬁ& =« - afjl]\)/f(r) — E¢JM(T>. (2.220)
Since the vector potential contributes less than the scalar potential by terms of order

kr, the interaction can be approximated for small values of kr by taking the limit

) 1
Tﬁ& = lim {a : af,l]%/f(r) - —¢JM(7')1 . (2.221)
k—0 C
Using the asymptotic form of the spherical Bessel function
!
. . X
lim j(2) = CESIE (2.222)
one obtains for the limit of the first term
. 1
lim [a(r) : aE,]H —0, (2.223)
since
1. . (k- ) . 1. J . (k; ) _ -/ (k )
fimgdssaCir) = iy ) = 3o
J
— i (kT‘) _ J (kJT)J_l
kr(2J +1D1 (2J + 1!
_J (kr)’ B J (kr)’
Ckr(2J4+ D 2+ D kr
and for the second term
. 1 . JJ+1 .
[ [—wv g Y0
(2.224)

o JJ+1 (k) X
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Thus one obtains for the electric multipole transition operator

1
Ty = a-aly(r) - E¢JM(T)

1 JT4+1 (k) .
e [_ZC\/ T @2+ 1)!!YJM(T)]

B .\/(2J +1)(J+1)  (kr)’
- Ar] (2] + 1)

B .\/(2J+1)(J+1) K’
- inJ T+ 1)

(2.225)

nCJM(f)

QJM("')a

where the definition of a tensor operator in terms of spherical harmonics is used to get

the third line, and in the last line,
Qun(r) = r’Cyar(7) (2.226)

is defined as the electric J-pole moment operator in a spherical basis.
In general, one can write the multipole interaction in terms of a dimensionless

multipole-transition operator tSA]\Z(r) as

1
A A
T = e afy(r) = =6 (r)

_ Z,\/(2J+ D +1) o

A7 J IM

(2.227)

(r),

where the multipole-transition operators tf]/\]\)/[(r) are related to the frequency-dependent

multipole-moment operators q§’>\)4(r, w) by

A 2J + D! o

i) = BLEDR ) (2:229)
The multipole transition rates, or Einstein A-coefficients, giving the probability

per unit time for emission of a photon with multipolarity JA, from a state I with

angular momentum .J; to a state ' with angular momentum Jr, is obtained from

A A
ARy = 8maw Y TP
JMX (2.229)

2J+ D)(J +1
= 2002 DIED oy e
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Using the Wigner-Eckart theorem, one can express the transition rates in terms of

reduced matrix elements

(2J +1)(J + 1) (P72

ASA) = 20w
J 2J; + 1 N (2.230)
_ 2(2J + 1)(J + D(aw)* M [(F|Q7 |11
B J[(2J + 1)]2 2Jr+1

Next, we introduce a new notation Tk to encapsulate the electric and magnetic
mutipole operators, EFk and Mk, expressed in a.u.. The following replacements were
made from the previous notation: multipolarity J — k, A — T, initial angular momen-
tum J; — J and final angular momentum Jr — J'. In the new notation, the general

expression for a multipole transition probability rate of order k is given by

n 202k +1)(k + 1) (aw)?+!
Wri(J — J') = E[(2k+ 112 2J+1

Sen(J — T, (2.231)

where a ~ 1/137.036, w is the J — J’ transition frequency expressed in a.u., and
Str(J — J') is the line strength obtained as the square of the corresponding multipole

matrix element

Sre(J — J') = |(J'||Tk||J)|?. (2.232)
Using Eq. 2.231, we find
AN 3 /
! ]' 5 !
- - 2.234
Wra(J — J') 15(2J+1)(aw) Sro(J — J), (2.234)
Was(J = J') = ——> (0w Sys(] — J). (2.235)

4725(2J + 1)

1

Typically, probabilities are expressed in sec™, where the conversion between a.u. and

sec™! is given by

1 a.u. ~ 6.57968 x 10 Hz ~ 27 - 6.57968 x 10'° sec™*.
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Additionally, it is convenient to use the energy difference w expressed in cm™!. Doing
so, we transform the transition probabilities into a form convenient with our codes.
The electric multipole transitions expressed in sec™! are given by:

3

Wi (J — J') = 2.02613 x 10*6m|<J’HE1|yJ>P, (2.236)
5

Wea(J — J') = 1.11995 x 10—22(2;’—+1)|<J’||E2||J>\2, (2.237)
7

Wes(J — J') = 3.14441 x 1039@;"—+1)\<J'1|E3HJ>\2, (2.238)

where E1 = d, E2 = Q, E3 = O, w is given in em™!, and (J'||Ek||J), k = 1,2,3 is
given in a.u..

For magnetic multipole transitions Sy (J — J') = [(J'||Mk||J)|?, the matrix
elements of the magnetic multipole operators are proportional to the Bohr magneton

o. Taking into account that the Bohr radius is given by ag = i/meca in SI units, we

have
lelh  «
S L 2.2
Ho = 5 = Slelao, (2.239)
and correspondingly,
(J'|MK||J) ~ poak= = %|e|a’g (SI units) = % (a.w) (2.240)

Factoring out «/2, we can write Sy, in a.u. as

2

Sun(J = J') = /(T IME|| ) (2.241)

1

The magnetic multipole transitions expressed in sec™ are given by:

w3

" =2. 10—
Wan (J — J') = 2.69735 x 10 271 D)

(Tl M1]7)?, (2.242)

Waga(J — J') = 1.49097 x 1077 |(J'||M2]|))?, (2.243)

2] + 1)
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27 +1)

where w is given in ecm™, and (J'||ME||J), k = 1,2,3 is given in a.u..

Wars(J — J') = 4.18610 x 10~* [(J'||M3||J)|?, (2.244)

After the transition probabilities of all allowed lower states are evaluated for a

state a, the lifetime of the atomic state a can be determined as

B 1
ZAab‘
b

(2.245)

Ta

The branching ratio of a particular transition from state a to state b’ is defined as

o Aab’
pa Z Aab
b

= Ay Ty (2.246)
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Chapter 3

CI/CI+MBPT/CI4+ALL-ORDER CODE PACKAGE

The complete CI/CI+MBPT/Cl+all-order code package allows one to carry
out relativistic calculations for many-electron atoms and ions [2]. This suite of codes is
based on a method combining the configuration interaction method with many-body

perturbation theory and/or all-order coupled-cluster method, which were discussed in

Chapter 2.

3.1 Base computer package

A version of the CI+MBPT code package was modified for public use and pub-
lished in Computer Physics Communications in 2015 by M. Kozlov et al [2]. Although
not published, the inclusion of the all-order part provides for accurate solutions for a
large number of properties of atoms and ions with up to 4 — 5 valence electrons. The
complete code package scheme is illustrated in Figure 3.1.

For the CI code, the computational time can span from an hour when studying
very small systems of 1 — 2 valence electrons to up to weeks for more complex systems
with 3 — 4 valence electrons. Some problems involving systems with more than 4 valence
electrons were simply intractable with the previous code. One of the main objectives
of this work was to parallelize the programs to reduce the computational time required
for calculations of properties of atomic systems with more than 4 valence electrons.
The results of this work will allow for future fast large-scale data production for an
online portal project for systems with 2 — 4 valence electrons. Results of this effort is
described in Section 3.4. Here we will give a summary of the CI/CI+MBPT /Cl+-all-
order codebase. The following, as well as more detailed documentation about each

code, as well as auxiliary codes, can be found in [2].
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m Calculates Dirac-Fock orbitals (initial approximation)

bass Constructs basis set needed by all codes

¢

- Calculates correction to the Hamiltonian that conf uses.
allcore-ci

valsd-ci All-order block | | Entire all-order + second-order or just the all-order block
can be bypassed.

sdvw-ci
T CI-MBPT code package skips the all-order block.
\L Cl+all-order code package includes all codes.
second-ci Second-order Cl code package skips both parts.
add Generates set of configurations for conf (input)
Calculates v v o\
radial ) . . .
integrals | basc |—>{ conf Configuration interaction code (calculates the wave functions)
Calculates ¥y
RPA rpa dtm Calculates matrix elements
correction |_rpa-dtm v
to matrix elements pol-ci Calculates polarizabilities

Figure 3.1: The scheme of the CI+MBPT /Cl+all-order code package.

3.1.1 hdf

The hdf program solves restricted Hartree-Fock-Dirac (HFD) equations self-
consistently under the central field approximation to find four-component Dirac-Fock
(DF) orbitals and eigenvalues of the HDF Hamiltonian. These orbitals depend only
on the principal, orbital, and total angular momentum quantum numbers n, [, and j.

This program provides the initial approximation, storing both basis radial orbitals

o=r| (3.1)
—Gnlj

as well as the radial derivatives of the orbitals 0, ¢,;;, to the file HDF .DAT. The run time

of this program is only a few seconds, so parallelization of this code is not needed.
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3.1.2 bass

The bass program is used for construction of the basis set, which is formed using
DF orbitals for the core and valence shells, then adding virtual orbitals to account for
correlations. A reasonable basis set should consist of orbitals mainly localized at the
same distances from the origin as the valence orbitals [2]. This program reads in and
updates the file HDF.DAT. This program typically takes under a minute to run, so

parallelization of this code is not needed.

3.1.3 add

The add program constructs a list of configurations to define the CI space by
exciting electrons from a set of reference configurations to a set number of active non-
relativistic shells. It takes in the input file ADD.INP, which specifies the reference
configurations, active non-relativistic shells, and minimum and maximum occupation
numbers of each shell, and outputs the input file CONF. INP, which is subsequently used
by the programs basc, conf, and dtm. This program takes only a few seconds to

minutes to run, so parallelization of this code is not necessary.

3.1.4 basc

The basc program calculates one-electron and two-electron radial integrals,
which are used by the conf program to form the Hamiltonian in the CI space. The
one-electron radial integrals correspond to the HF potential of the core, and the two-
electron radial integrals account for the Coulomb and Breit interactions between the
valence electrons. The matrix element of the Coulomb interaction for the multipolarity

k can be written as [2]:

(c.d[VFa,b) = GE(ca)GE(bd) Ry, (3.2)
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where the angular factors G’;( fi) (known as relativistic Gaunt coefficients) are given

by

Jjr g k Jf Ji k

GE(fi) = (=)™ 26,0/ (25 + 1) (245 +1)
—-my m; q 1/2 —-1/2 0

(3.3)
and RF, , are the relativistic Coulomb radial integrals, and 4, accounts for the parity

selection rule:

op =&l +1p+ k), &(n) = (3.4)

1 if n is even,
{O if n is odd.
The Breit interaction has the same form as Eq. 3.2, but without the parity selection
rule (Eq. 3.4).

The basc program reads the file CONF.INP to determine which radial integrals
are needed, then calculates these integrals and writes them to the file CONF.INT. The
angular factors (Eq. 3.3) are stored in the file CONF.GNT. The file CONF.DAT is also
formed, storing the basis radial orbitals ¢,,;;, as well as functions x,;; = hfyp¢ni;, where
hip is the radial part of the Dirac-Fock operator.

The runtime of this code is only up to a few minutes for very small basis sets
(e.g. Tspdfg for Ir'™), but can take over an hour for large basis sets needed for CI+all-
order calculations (e.g. 22spdf18g for Bi~). This code produces output files measuring

up to a few GB. Parallelization of this code is not urgent, and may be done using

OpenMP in a future project.

3.1.5 conf

The conf program is based on the code described by Kotochigova and Tupitsyn
in 1987 [71], and modified by Mikhail Kozlov, Sergey Porsev, Ilya Tupitsyn, and An-
drey Bondarev. This program has been completely re-developed in this work. A major
effort was made to port the original serial program into a parallel program capable of
efficiently calculating atomic properties of much larger sizes. The parallel code now

allows for computations of atomic systems of sizes larger by a factor of 100. From the
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scaling tests done, we expect that much larger runs are also now possible on compu-
tational facilities outside the University of Delaware. We found great success in this
effort, enabling precision modeling of complex atoms not currently possible with any
other existing codes. The developments made in this program include modernization
and implementation of MPI parallelization, which is discussed in the later sections of
this chapter. One of the most significant problems to overcome was intrinsic to the
CI method: uneven workload, in which a single configuration may result in one deter-
minant or over 100 000 determinants, so a straightforward parallelization scheme has
very poor scaling performance. Moreover, the number of non-zero Hamiltonian matrix
elements vary drastically from case to case, and can not be adequately predicted. This
is exacerbated by the procedure used to create a list of configurations, which tends to
put simpler cases first.

The following are input and output files associated with conf:

Input Files:
e CONF.INP - List of relativistic configurations
e CONF.GNT - Relativistic Gaunt coefficients produced by basc
e CONF.INT - Relativistic Coulomb radial integrals produced by basc

e CONF.DAT - Basis radial orbitals ¢,;; and functions xn;; = hijp®nij, where hfp is
the radial part of the Dirac-Fock operator

e SGC.CON - One-electron effective radial integrals of the MBPT /all-order correc-
tions

e SCRC.CON - Two-electron effective radial integrals of the MBPT /all-order correc-
tions

Output Files:
e CONF.DET - Basis set of determinants
e CONF.HIJ - Indices and values of the Hamiltonian matrix elements
e CONF.JJJ - Indices and values of the matrix elements of the operator J?2

e CONF.XIJ - Quantum numbers, eigenvalues and eigenvectors of the Hamiltonian
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e CONF.RES - Final table of energy eigenvalues and the weights of all configurations

contributing to each term

The conf program solves the CI matrix eigenvalue problem,

> H.,Cy=EC, (3.5)

JepCl!

for the atomic system of interest. The computational details of the conf program can

be summarized by the following:

1.

10.

11.

Input - Read list of configurations, as well as other relevant parameters of atomic
system of interest, from CONF.INP and CONF.GNT. These parameters, as well as
keys for the run, are described in Ref. [2].

Init - Read basis set information from CONF.DAT.

. Rint - Read radial integrals from CONF.INT.

. RintS (optional) - Read in one-electron and two-electron effective radial integrals

of the MBPT /all-order corrections from SGC.CON and SCRC. CON.

. Dinit - Form list of determinants.

Jterm - Print table with number of levels with given J.

. Wdet - Write determinants to file CONF.DET for subsequent density/transition

matrix calculations.

. FormH - Form CI Hamiltonian matrix (details below) and write it to CONF.HIJ.

. FormJ - Form matrix of operator J2 and write it to CONF.JJJ.

Diag4 - Calculate low-lying energy eigenvalues and eigenvectors using Davidson’s
method of diagonalization (details below). Energy eigenvectors are written to
CONF . XIJ for subsequent density/transition matrix calculations.

Print - Print out table of energy levels and weights of configurations.

After the initialization of relevant atomic properties and parameters, the CI

Hamiltonian matrix H is formed in the FormH subroutine. We define several variables:

Nd is the total number of determinants, and Nc is the total number of configurations;

and array Iarr(1:Ne,i) is the basis set of determinants associated with the i-th

configuration.
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The computational details of the formation of the CI Hamiltonian matrix are

summarized as follows:

Loop index n over total number of determinants Nd.
Loop index ic over total number of configurations Nc.

1. Gdet - Generate n-th and k-th determinant and store them in arrays idet1
and idet2, respectively.

2. CompC - Compare the determinants idetl and idet2 and determine the
difference between corresponding configurations icomp.

3. From the Slater-Condon rules described in Appendix A, if the number of
differences icomp exceed 2, then the matrix element will be 0. If icomp<=2,
continue to the next step. Otherwise, move on to the next determinant k+1.

4. Rspq - Compare the determinants idetl and idet2, and determine the
number of differences between determinants nf, and the differing indices of
the determinants, i1, i2, j1, and j2.

5. Hmltn - Calculate the value of the matrix element, following Slater-Condon
rules described in Appendix A. If nf=2, the determinants differ by two func-
tions, and therefore there is only a single two-electron integral that needs to
be calculated. If nf=1, the determinants differ by one function, and therefore
there are Ne number of two-electron integrals, as well as a single one-electron
integral to calculate. If nf=0, the determinants are equal, and therefore
there are NexNe number of two-electron integrals, as well as Ne number of
one-electron integrals to calculate. The one-electron integrals are calculated
by the subroutine Hint, with one-electron effective radial integrals of the
MBPT /all-order corrections calculated and added by the subroutine HintsS.
The two-electron integrals are calculated by the subroutine Gint, with two-
electron effective radial integrals of the MBPT /all-order corrections added
in by the subroutine GintS. The values of CI Hamiltonian matrix elements
are computed, and the indices n, k, and value t of the matrix element are
stored to arrays Hn, H k, and H_t, respectively.

The FormH is the most expensive subroutine of the conf program. The challenge
here is the exponential growth of the number of possible configurations with increasing
number of valence electrons Nv, which exponentially increases the size of the CI Hamil-
tonian matrix, as well as the number of comparisons between determinants that has
to be done during the FormH subroutine. Depending on the atomic system of interest,

the user has to determine the size of the basis set, and the number of open shells used
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in the calculations, which is inevitably limited by the computational complexity of the
CI program. For complex systems, such as those with open d- or f-shells, the serial
program would not suffice to accurately describe the system of interest. Therefore, the
idea was to develop a parallel version of the CI code, as well as develop methods to
accurately determine the most important configurations for a system of interest. With
the parallel code, described later in Section 3.4, the size of the possible CI space has
been increased by a factor of 100 over previous possible systems. In the present time
(January 2021), the largest parallel CI runs executed have included about 150 million
determinants. Accurate determination of the most important configurations for differ-
ent systems remains an unsolved problem. Using CI+PT and the conf_pt code, known
important configurations can be used to generate larger configuration sets, removing
configurations that do not contribute much to the final results. The largest CI+PT run
have included about 400 million determinants. This procedure can be automated for
systems with a few valence electrons, but creating an efficient and reliable algorithm
to do so for much larger systems requires a creative solution.

After the CI Hamiltonian matrix has been formed in the FormH subroutine, the
Diag4 subroutine iteratively computes the low-lying energy eigenvalues and eigenvec-
tors using Davidson’s method [1], as described in Section 2.1.9. We define several
variables: NdO is the number of determinants in the initial approximation, and Nc4 is
an input parameter that specifies the number of configurations in the initial approx-
imation. The parameter Nc4 can be increased to get a better initial approximation,
leading to faster convergence, but the time for diagonalization will also grow very fast.
It is typically better to put leading configurations at the beginning of the configura-
tion list, rather than increasing Nc4 too large. We diagonalize a block of a reasonable
dimension (NdO, Nd0O) and use respective eigenvectors as a starting approximation for

the Davidson iterative procedure.
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The computational details of the Davidson procedure are as follows:
Initialization:

1. Init4 - Construct the initial approximation by selecting the configurations spec-
ified by the Nc4 parameter. Nc4 also defines the number of determinants in
the initial approximation. The initial approximation Hamiltonian is stored in
the matrix Z1 and is constructed by selecting the top-left block of the full CI
Hamiltonian matrix H. The diagonal elements of H are stored in a separate array
Diag.

2. Hould - Diagonalize the matrix Z1 using Householder’s method [72].

3. FormBO - Construct initial approximation eigenvectors stored in B1. The elements
of Bl in the initial approximation are chosen such that the first NdO elements are
eigenvectors of the matrix Z1, and all other elements are set to 0. The eigenvectors
are stored in an array ArrB of dimension (Nd, 3*N1v), where N1v is the number
of energy levels to be calculated. The array is broken into 3 partitions, each
with dimension (Nd, N1v): the first partition ArrB(1) stores the eigenvectors
B1, the second partition ArrB(2) stores matrix-vector products H*¥B1, and the
third partition ArrB(3) stores the residual vectors.

Davidson iterative procedure:

1. Check for convergence
2. Ortn - Orthonormalize the eigenvectors B1 and store them in ArrB(1).

3. Mxmpy (1) - Evaluate matrix-vector products H*¥B1 for N1v eigenvalues and store
them in ArrB(2).

4. FormP (1) - Form upper-left block of matrix P of dimension (N1v,N1lv).
5. Average the diagonal Diag over configurations for first iteration.

6. Dvdsn - Form residual vector C and construct associated eigenvectors B1, storing
them in ArrB(2).

7. Ortn - Orthonormalize new Bl vector in ArrB(2).

8. Mxmpy (2) - Evaluate matrix-vector products H¥B1 for new eigenvectors in ArrB(2)and
store them in ArrB(3).

9. FormP(2) - Form the other 3 blocks of matrix P of dimension (2N1v,2N1v).
10. Hould - Diagonalize the matrix P using Householder’s method.

11. FormB - Construct eigenvectors B2 for next Davidson iteration and store them in
ArrB(1).

12. Repeat from Step 1 until convergence criteria is met.
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3.1.6 dtm
The dtm program calculates matrix elements of one-electron operators between

many-electron states, under the density (or transition) matrix formalism. This for-
malism allows us to express the matrix elements between many-electron states via
one-electron matrix elements. The dtm program forms these reduced density (or tran-
sition) matrices and calculates the reduced matrix elements. The following quantities
can be calculated from this program:

e clectronic g-factors

e magnetic dipole and electric quadrupole hyperfine structure constants A and B

e clectric (Fk) and magnetic (Mk) multipole transition amplitudes, where k =
1,2, 3 correspond to the dipole, quadrupole, and octupole transitions

e nuclear spin independent parity nonconserving (PNC) amplitude

e amplitude of the electron interaction with the P-odd nuclear anapole moment

(AM)
e P, T-odd interaction of the electron electric dipole moment

e nucleus magnetic quadrupole moment

The program begins by reading the file CONF.INP for system parameters and the list
of configurations. Next, basis radial orbitals are read from the file CONF.DAT, and
radial integrals for all operators are calculated and written to the file DTM. INT. If this
file already exists, dtm uses it and does not recalculate the radial integrals. For the
diagonal matrix elements, the list of determinants and the eigenvectors corresponding
to the state of interest are read from the files CONF.DET and CONF.XIJ, respectively.
For the non-diagonal matrix elements, the initial state is read from the files CONF.DET
and CONF.XIJ, and the final state is read from the files CONF1.DET and CONF1.XIJ.
The results of the diagonal and non-diagonal matrix elements are written to the files
DM.RES and TM.RES, respectively.

The runtime of dtm varies from a minute to hours or days, depending on the size
of the system. Significant work has been done on this code, including modernization

and parallelization. This process will be described in Section 3.4.3.
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3.1.7 All-order part of the package

The all-order portion of the code package consists of three programs, allcore-ci,
valsd-ci and sdvw-ci. These programs calculate corrections to the bare Hamiltonian
for the conf program due to core shells using a variant of the LCCSD method, described
in Section 2.1.11. A large number of terms in order-by-order MBPT are included by it-
eratively solving the all-order equations until sufficient numerical converge is achieved.
The allcore-ci program calculates core excitations, the valsd-ci program calculates
core-valence excitations, and the sdvw-ci program calculates valence-valence excita-
tions. In the future, these three programs would be restructured into a single program,
modernized and parallelized using MPI. An OpenMP version is currently under devel-

opment in our group, and an MPI version will be developed later in 2021.

3.1.8 MBPT part of the package

The MBPT portion of the code package consists of three programs, sgc, scrc,
and second-cis. These programs calculate second-order MBPT corrections due to
the core shells to the Hamiltonian. These programs calculate corrections to the bare
Hamiltonian for the conf program due to core shells using second-order MBPT, but
for a much larger part of the Hamiltonian than the all-order code. If the all-order
calculation was carried out, it will overwrite the second-order results where applicable,
drastically improving the efficiency of the method. The sgc program calculates one-
electron effective radial integrals for the operator X (Eq. 2.142), and writes them to
the file SGC.CON. The scrc program calculates two-electron matrix elements of the
operator X, and writes them to the file SCRC.CON. The total number of two-electron
diagrams may be very large, making the calculations much more time-consuming than
for the one-electron diagrams. A fast variant of the sgc/scrc programs was also
developed (second-cis), but it has more limited choice of the initial DHF potential.
The Cl+all-order package uses this second-cis program.

The rpa program solves RPA equations [2], calculates radial integrals of the

effective operators and writes them to the files RPA n.INT, where n=1-13 numerates
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one-electron operators, for use in the dtm program. The one-electron operators include:

1. A_hf - magnetic dipole hyperfine constant
2. B_hf - electric quadrupole hyperfine constant
3. E1_L - electric dipole transition amplitude in the length gauge

4. EDM - Parity (P)-odd, Time (T)-odd interaction of the electric dipole moment of
the electron

5. PNC - P-odd nuclear spin-independent parity-nonconserving interaction
6. E1_V - electron dipole transition amplitude in the velocity gauge

7. AM - P-odd nuclear spin-dependent parity-nonconserving interaction, or the in-
teraction with the P-odd nuclear anapole moment

8. MQM - P, T-odd interaction with the magnetic quadrupole moment of the nucleus
9. M1 - magnetic dipole transition amplitude

10. E2 - electric quadrupole transition amplitude

11. E3 - electric octupole transition amplitude

12. M2 - magnetic quadrupole transition amplitude

13. M3 - magnetic octupole transition amplitude

3.1.9 conf pt

The conf _pt program is an optional extension program that was not published
with the standard CI+MBPT package. This code is used primarily in more complicated
cases, such as atoms with more than 6 valence electrons or systems with holes in
filled shells. It uses perturbation theory to quickly treat a much larger number of
configurations than conf can, then analyzes the weights of each configuration and
selects the most important configurations for a full conf run, with configurations of low
weights removed from the configuration list. For these complex systems, conf/conf _pt
is used to treat outer-core electrons, by allowing single and/or double excitations from
as many core shells as needed to achieve convergence. One caveat to using this program

is that the basis set should be diagonalized for efficient usage.
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In the CI+MBPT method, the valence electrons are treated with CI, and the
core-valence and core-core correlations are treated with MBPT. This method is very
effective for atomic systems with a low number of valence electrons (1-3), where the
valence CI space is not very large and can be easily saturated. However, for an increas-
ing number of valence electrons, the size of the valence CI space grows exponentially
and becomes impossible to solve the full CI problem. In this case, we can split the
valence space into a smaller subspace for CI, and account for the corrections from the
complementary valence space using second order Mgller-Plesset (MP2) perturbation
theory, as discussed in Section 2.1.12.

There are two main benefits acquired from using valence PT. First, we can use
MP2 corrections to form an optimal CI subspace within the full valence space. This
is done by first starting with a small CI space and calculating MP2 corrections for
the rest of the valence space. The configurations that take part of this calculation
are then weighted in the first order correction to the wave functions and re-ordered
such that the CI subspace is filled with configurations with higher weights. Finally,
we can repeat the CI procedure with this optimized CI space and then recalculate
MP2 corrections for the rest of the valence space to improve our approximation. This
procedure can be repeated until MP2 corrections decrease and results are obtained
with good convergence.

The program begins the same way conf begins, reading in several input pa-
rameters and the list of configurations stored in the file CONF.INP, the basis set from
CONF.DAT, and radial integrals from CONF.INT. The basis set of determinants is formed
as it was done in conf. Next, the CI eigenvectors are read from CONF.XIJ, and weights
of non-relativistic configurations are calculated for the CI eigenvectors. PT eigenvec-
tors are then read from CONF.XIJ, and the Hamiltonian in PT space is constructed in
two parts: the diagonal part and the non-diagonal part. Weights of the non-relativistic
configurations are then calculated for the PT corrections, and configurations below a
specified weight are removed. The remaining configurations with significant weights

are sorted and written out to a new input file CONF_new. INP, which has the same form
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as CONF . INP. This new CONF_new. INP file can be renamed CONF . INP, then subsequently
used for a better approximation for the energy levels. conf pt and conf can be ran
repeatedly until the energy levels converge.

The runtime of conf pt is similar to the runtime of conf, from a few minutes
to several days depending on the number of valence electrons and the size of the basis

set. Parallelization of this code was completed and is described in section 3.4.2.

3.2 Modernization of codes

The initial version of the CI/CI4+MBPT /CI+all-order codes was developed with
Fortran 77. For the first time, we try to take advantage of modern technologies and
methodologies, such as applying parallelism with high performance computing (HPC).
Common pre-F77 and F77 code hurt readability due to their COMMON blocks, implicit
variables, arithmetic IF statements, and GOTO statements in place of DO loops.

The codes conf, conf_pt, and dtm were modernized in this work. We converted
old Fortran 77 (F77) codes to Fortran 90 (F90), using modern design practices with the
intent of optimizing and refactoring our code. Some of the major changes of the code
include the removal of COMMON blocks, the removal of implicit variables, replacing old
logical operators with modern notation, addition of modules to encapsulate logically
related code, and refactoring from old fixed-style to modern free-form format.

The strategy is as follows. First, we add implicit none to each subroutine and
fix every compile error. This removes all implicit variables from our code, which will
be necessary for removing COMMON blocks. This process is very time consuming, but
necessary. Next, we move all variables and arrays from COMMON blocks to modules.
We do this to prevent having identical data in areas where they do not belong, and
make sure no two variables are named the same thing. We use modules to package all
physical constants and parameters together in a single file called variables.£90. We
do the same with the "main” subroutines, packaging them in another module ending

with _aux.f£90. The goal is to have many, small, self-contained files.
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Manually refactoring the code itself will also be a time-consuming process. To
refactor the code itself, we would have to go through every subroutine and convert
arithmetic IF statements to standard IF... ELSEIF... ELSE blocks, convert all
GOTO’s to select case blocks or DO loops, convert all DO loops to modern syntax, and
convert equivalenced common block members to allocatable memory, allocated in a
module. Refactoring and modernization is done in conjunction with running the old
F77 code to ensure there are no differences in the final result between each version.
Most of the debugging is done due to overlooking miscasted variables, e.g. setting a
double precision variable to be real.

Dynamic allocation was done to remove the requirement of user input in defining
array parameters and optimizing memory requirements, greatly improving the user
experience. In the old F77 version of the code, users of the program would have to define
the array parameters then recompile the program before each calculation. This also
created issues of incompatibilities of old data files. After extended calculations, users
would have files that could not be used since they do not know what parameters they
were compiled with. There were several disadvantages with the way array parameters
were dealt with. In the F77 version, several parameters (IP4, IPs, etc.) were defined to
determine the size of several arrays in COMMON blocks. If a parameter for an array was
set too low, then a segmentation fault would occur during code execution, requiring the
user to re-define the array dimension parameters, re-compile the program, then re-run
the calculation. If a parameter for an array was set too high, then there is a possibility
that the required memory for the run would be too high, causing the program to stop
before it finished. In this case, one would have to re-submit the job with more memory,
or lower the array size. In order to avoid these issues, we attempt to remove all large
array dimensions from the program, and have the code calculate exactly how much
memory each array should have during code execution. With the modern F90 version
of the code, the program calculates the exact required array sizes and allocates exactly

enough memory for most arrays.
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3.3 Memory requirements

The limit to the size of systems that can be ran with conf will depend on the
memory requirements of the program. For this reason, it was be essential to study
the data structures again and try to minimize memory allocations. The serial version
of the code utilized pre-allocated arrays with sizes set by specific parameters. In the
Modern Fortran standard, it is best practice to implement dynamic allocations for all
arrays.

The total memory requirements for the any program can be calculated by adding
the sizes of all arrays. In the case of conf, this can be estimated roughly by the 3 largest
arrays, Iarr, ArrB, H me, and J_me, where me refer to the indices and value of the matrix
elements. Iarr is an array storing the basis set of determinants, ArrB is an array storing
eigenvectors, matrix-vector products, and residual vectors in the Davidson procedure,
and Hme and J me stores the matrix elements of the Hamiltonian and the operator
J?, respectively, in each core. Iarr stores int*4 elements in a Ndx2Ne dimensional
array, where Nd is the total number of determinants and Ne is the total number of
valence electrons. ArrB stores double precision in a NdxNe dimensional array. H me
and J_me stores int#*4 indices n and k for each determinant pair resulting in non-zero
matrix elements, and the double precision value for the non-zero matrix element.
int*4 is stored with 4 bytes, and int*8 and double precision are both stored with
8 bytes.

The total memory required by Iarr is then calculated to be 8xNdxNe. The
total memory required by ArrB is also 8XNdxNe. The total memory required for H.me
and J_me is calculated to be 16 xnum_me, where num_me is the total number of non-zero
matrix elements. Therefore, the conf program requires about 16 xNdxNe+16 xnum me
bytes of memory, where num_me include matrix elements for both H and J2. Note that
Iarr, ArrB, and J.me are arrays that must be available on all cores, while the H_me
array can be split among cores. For this reason, each core requires memory from Iarr,
ArrB, and their chunk of H_me.

By studying the conf program more carefully, we realized that Iarr is only used
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for the first half of the program setting up the formation of the Hamiltonian matrix,
and ArrB is only used for the second half of the program in the Davidson procedure.
For this reason, using dynamic allocation will reduce the amount of memory required
for the conf program by 8xNdxNe. Effectively, all cores will require just the amount
of memory for Tarr/ArrB and their chunk of H_me.

The largest parallel run done for this work involved a total number of determi-
nants Nd=66M, a total number of valence electrons Ne=60, a total number of Hamiltonian
non-zero matrix elements H.num_me=100B and a total number of J? non-zero matrix
elements J_num me=987M. Here, M refers to a million, and B refers to a billion. From
this run, we can calculate the total per-core memory requirement using 310 cores to be
about 40 GB. This is nearly the largest computation that we can currently run in our
group with UD Caviness cluster resources of 12.7 TB of memory. Larger problems will
need to be run on other large-scale computational facilities. Note that the total number
of matrix elements is computed within the formation of the Hamiltonian matrix and
the formation of the operator J? and is not known before the program is initialized.
Further optimizations to memory can be made and will be looked into more deeply in

the future.

3.4 Parallelization of codes

So far, we've discussed modernization of some programs in the code package.
Next, we implemented MPI parallelization for three of the CI+MBPT code package’s
major programs: conf, conf _pt and dtm. The parallelization schemes utilized depends
on the structure of the problematic or time-consuming loops in the code. They will be
discussed for each code in the next few sections. For each code, there are typically 3-4
blocks of these code that have to be parallelized. MPI calls have to be made to ensure
that each core has the required global variables and arrays for subsequent calculations
done by the parallelized blocks of code. To validate the final results, we simply compare
our results from the parallel version to the results of the serial version. Speedup tests

are also done using the timing data extracted from final testing runs. Specific details
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regarding the MPI library and subroutines used in this work can be found in several
textbooks and references [73][74]. We have outlined several essential MPI subroutines

in Appendix D.

3.4.1 conf - the CI code
The parallelization of conf can be broken into 5 major problems:

e Modernization
e Formation of CI Hamiltonian matrix

Formation of J? matrix

Davidson procedure

I/O of matrix elements

Inclusion of MBPT /all-order

We start this process with the bare serial conf program, without any subroutines
that involve the all-order or MBPT parts. The MBPT /all-order sections of the code

are added in after the main portions of the code is parallelized.

3.4.1.1 Formation of CI Hamiltonian matrix

The formation of the CI Hamiltonian matrix is the most computationally expen-
sive algorithm in the conf program. The computational complexity of the calculation
of CI Hamiltonian matrix elements stems from the differing number of comparisons
done in the algorithm. The initial brute force algorithm is as follows: since the Hamil-
tonian is symmetric, we only need to calculate half of the entire matrix. Allowing
index n to run through rows and index k to run through columns, we only need part
of the Hamiltonian where 1 < n < Nd and 1 < k < n. In this case, the total number
of matrix elements is Nd*/2, where Nd is the total number of determinants. However,
many matrix elements will be reduced to zero when determinants differ by more than
two electrons. This is due to the Slater-Condon rules, which are described in Appendix
A. The Rspq subroutine compares determinants and returns the number of differences

and the indices of differing orbitals. We split up the inner loop over determinants
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into two (over Nc, the number of configurations and kx, the number of determinants
associated with a configuration). If it finds more than two differences, then nothing
has to be done and it continues to the next pair of determinants. If the determinants
belong to the configurations, which differ by more than two electrons, then it skips
the whole configuration in the inner loop and jumps to the next one. The non-zero
matrix elements are saved to memory and optionally to disc. In the F77 version of the
code, we save an integer*8 counter, the pair of integer*4 indices, and the double
precision value of the matrix element. In total, this requires 24 bytes of memory per
non-zero matrix element. In the modern version, we do not save integer*8 counter,
reducing the memory required per core to 16 bytes per number of non-zero zero matrix
elements, saving 33% of the memory requirements of the matrix elements.

In an initial brute force attempt of parallelizing the matrix element calculations,
the outermost loop over Nd was distributed evenly across many cores (dividing Nd by
npes, the total number of cores). While this did give a significant speedup with the
amount of cores, it was severely limited due to an uneven workload distribution of
matrix elements to each core. Cores assigned to the first blocks of the determinants
had very few non-zero matrix elements and would finish very quickly while cores as-
signed the last blocks of determinants had many non-zero matrix elements and would
take much longer. This uneven workload distribution eventually leaks through to the
Davidson procedure. Since matrix elements have to be read for multiplication later
in the program, each core would have big differences in the number of matrix ele-
ments they had to multiply. One way of combating this problem is by separating the
Hamiltonian problem into two stages: a comparison stage to evenly distribute the total
number of non-zero matrix elements, and a calculation stage to calculate the values of
the non-zero matrix elements.

In the second implementation of MPI, the computational workload is first com-
puted at the comparison stage. Here, we loop through all pairs of determinants for
the total number of non-zero matrix elements. Once the total number of non-zero

matrix elements is obtained, we divide the total workload by the number of cores, then
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assign each core a starting index and an ending index for the outer loop determinant.
This resulted in a more even workload distribution, which also accelerated the David-
son procedure utilized towards the end of the program. Each core allocates enough
memory to hold their total workload, then the calculation stage begins. In the calcu-
lation stage, each core calculates an approximately equal number of non-zero matrix
elements. However, we found that due to the nature of the problem, the calculation of
each matrix element takes a different amount of time since each calculation depends
on different numbers of comparisons. Because of this, it was not possible to perfectly
distribute the workload evenly across all cores in matrix elements and time. With this
implementation, an average speedup of about 50% was attained.

In another attempt to parallelize the Hamiltonian calculation, we introduce an
nk array that stores the n, k pairs of indices with non-zero matrix elements in memory
during the comparison stage. The nk matrix is populated during the comparison stage
where non-zero matrix elements are found and require very minimal computation time.
It is then duplicated to all cores, since it is not known which core will be assigned
which determinants yet. Once each core has a copy of the nk matrix, each core will
loop through their assigned range of n indices and calculate matrix elements where
the n, k pair is non-zero. This is then used to drastically accelerate the calculation
stage, reaching an average speedup of about 80%. However, the required memory
of this method was beyond the scope of the group’s currently accessible clusters and
supercomputers so the idea was scrapped. The total memory required for the nk matrix
is about 4xNdxNc, where Nd is the total number of determinants and Nc is the total
number of configurations. The test case of a small CI space had Nc=481 and Nd=15510,
resulting in a required memory of about 30 MB. The largest system tested with the nk
array was with Nc=24895 and Nd=17431323, which resulted in a required memory of
about 1.74 TB. This is not feasible for a final implementation since our group wants
to be able to achieve much larger system sizes in the future.

One major issue we ran into when developing the parallel version of FormH

was the size limitations of MPI restricting runs for large CI spaces. The limit during
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this development phase was 2 billion non-zero matrix elements. This was due to the
limitation of MPI message passing, where only a message of size 2 GB could be sent at
once. In order to work around this, we had to find the right MPI subroutines to work
with. The main problem was the use of the MPI_Gatherv subroutine, which required
displacements, which go beyond the size int*4. One possible workaround is to replace
these statements with MPI_A11Reduce statements, sending required arrays to each core.
The problem here is that this requires twice as much memory as before.

In the latest implementation, instead of dividing the outer loop of determinants
into blocks like the previous methods, we split the total number of determinants based
on their respective core ID mype. Each core is assigned determinants mype+1, 2*mype+1,
..., until Nd is reached. For example, with 4 cores and 13 determinants, core 0 would
be assigned determinants n=1,5,9,13, core 1 with n=2,6,10, core 2 with n=3,7,11,
and core 3 with n=4,8,12. Besides the new determinant assignment scheme, we also
introduce so-called ”chunks” to store non-zero matrix elements in dynamically allo-
cated arrays. Each core has an array that accumulates each index and value of the
matrix element in chunks, defined by the vaGrowBy parameter. This has a couple of
advantages over the previous methods. First, the determinant assignment gives a very
even workload distribution among the cores in terms of the number of saved non-zero
matrix elements. The problem of uneven distribution due to blocks of determinants
having varying numbers of non-zero matrix elements is resolved since each core takes a
part of each block of determinant, however the problem of uneven distribution in time
still persists, although it is reduced here. By dynamically allocating the arrays storing
the indices and values of the non-zero matrix elements, each core will have exactly
the amount of memory required. The main disadvantage of this method is that each
core does not hold successive matrix elements, and therefore, the Davidson procedure
becomes slower since arrays are not read successively during multiplication. Note that
generally, the Davidson procedure takes much less time than the construction of the

Hamiltonian matrix, so this was an acceptable trade off.
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3.4.1.2 Formation of J? matrix

The formation of the J? matrix is done in a similar way to the formation of
the Hamiltonian matrix. The subroutine FormJ follows a 3-loop structure. The outer
loop ranges over the number of configurations, and the middle loop and inner loop
range over the number of determinants associated with each configuration. The 3-loop
structure is written in a way to skip configurations that will not contribute a non-zero
matrix element, in a similar way to how it is done in the FormH subroutine. Since the
outer loop ranges over the configurations and not the determinants, it will be necessary
to make sure each core begin their work with the correct determinant indices. Thus,
a preliminary count of the number of determinants per configuration is done for each
core for their individual workload.

The current method of dividing the workload is by distributing the workload
in equal areas. As with the Hamiltonian matrix, the J? matrix is also symmetric.
Therefore, we consider a triangle with equal sides Nc. The total workload is the area
of this triangle Nc*Nc/2, and the workload per core is Nc*Nc/ (2*num_cores). How-
ever, note that each matrix element here requires a vastly different amount of work to
compute due to different numbers of comparisons leading to non-zero matrix elements.
This results in a heavily uneven workload distribution. There are plans to optimize
this subroutine, but since it is much smaller compared to the FormH subroutine, it is
not as important. Since the master core requires all matrix elements for use in the
Davidson procedure, a reduction is done to the master core, and the master core writes

out CONF.JJJ serially.

3.4.1.3 Davidson procedure

The most expensive subroutine in the Davidson procedure is Mxmpy, so this was
the only subroutine that was parallelized. In the Mxmpy subroutine, there is a single
loop through each core’s non-zero matrix elements for multiplication. In the Fortran
77 variant, this loop iteratively reads in the matrix elements from the CONF.HIJ file.

In the modernization and parallelization processes, we remove the 1/O since non-zero
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matrix elements are stored in memory, and parallelize the loop by allowing each core
to loop over the matrix elements they have stored from the FormH subroutine.

In the latest version of the parallel FormH subroutine described in the previous
section, the total number of non-zero matrix elements is evenly distributed between
all cores, but the successive indices have gaps determined by the number of cores.
The number identifier, pair of indices, and the value of the non-zero matrix element
is stored in arrays for each core in memory. Since the information for the CI matrix
is already stored in memory and is readily available, Mxmpy no longer requires reading
CONF . HIJ files, so it has been discarded. Each core reads matrix elements from memory
for multiplication. The multiplications are done and stored in a new array called
ArrB, which is then reduced using MPI Reduce for the master core to do subsequent
calculations.

The parallelization procedure for this is very simple since the workload was
already distributed in the previous FormH subroutine. The matrix elements calculated
by each core are saved in memory for each core to be re-used in the Mxmpy loop. In
this way, matrix-vector multiplications are done in parallel by each core. This is done

very efficiently since workload has been evenly distributed among cores.

3.4.14 1I/0

The new parallel version of conf does not rely on file input and output (1/0)
for any of the calculations. Subroutines such as Init4 and Mxmpy, which involve the
calculated matrix elements previously stored in CONF.HIJ files, now utilize the matrix
elements stored in memory. This is faster since there is no time wasted in I/O. However,
this does require higher memory consumption due to storage of matrix elements. The

required memory to store the CI Hamiltonian matrix and the J? matrix is given by

Memy, ; = (4, + 4x + 8;) X num me, (3.6)

where 4 and 8 represent the amount of memory required in bytes, n and k are the indices

for the non-zero matrix element, t is the value of the matrix element represented in
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double precision, and num me is the total number of matrix elements.

With the removal of all CONF.HIJ reading dependence from the conf code, a new
key Kw has been added. Kw can take either one of two values: 0 or 1. If Kw=0, CONF.HIJ
will not written, and if Kw=1, CONF.HIJ will be written. The main advantages of this
key are the following:

e If CONF.HIJ file does not need to be written for any reason, I/O can be completely
eliminated from the execution by setting Kw=0, allowing for significant speedup
of the code by removing potential writing of 1 GB — several TB files.

e If CONF.HIJ file is required for any reason, it can easily be obtained by setting
Kw=1. This will require several minutes depending on the size of the CI matrix.
Writing CONF.HIJ was a major computational bottleneck as previous version
wrote CONF.HIJ serially. The latest version of the code utilizes MPI I/O to write
a single CONF.HIJ file in parallel. Depending on the size of the constructed CI
Hamiltonian matrix, the CONF.HIJ file is typically written to a HPC system’s
large-scale parallel distributed file system, such as Lustre [75].

A key kXIJ has been added to define the intervals in which the wave functions
are written to the file CONF.XIJ. If kXIJ=1, the CONF.XIJ file will be written every
Davidson iteration, and if kXIJ=10, it will be written every 10 iterations. This is to
reduce the total amount of serial writing of the file to a minimum to save computation
time. From the parallelization of conf, some subroutines in the Davidson procedure
were rewritten to utilize data stored in memory instead of in disc, including data
stored in CONF.XIJ. This removed all serial reads from the program, and with the

limited amount of serial writes, this resulted in a noticeable speedup for large runs.

3.4.1.5 Inclusion of MBPT /all-order corrections

Re-implementing the MBPT /all-order portion of the conf program simply re-
quired adding in two subroutines RintS and FormD, which were left out during the
initial modernization and parallelization procedures. Most of the time spent on adding
MBPT /all-order capabilities were on modernizing and fixing data structure compati-

bility when removing the COMMON blocks.
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In addition to making MBPT /all-order compatible, memory requirements were
increased due to the large number of additional integrals from new input files SRC.CON
and SCRC.CON. The arrays storing these integrals have been designed with dynamic
allocation, so when MBPT /all-order is not required, the program does not allocate any
memory for them. Results for MBPT /all-order calculations were compared between

serial and parallel versions of the code and were found to be identical.

3.4.1.6 Achieved performance of parallelization

The performance of the parallel conf program was tested with calculations for
the Ir'™ ion. Our speedup tests are done for a small system with only the 4f shell
open with small [7spdfg] basis set. These calculations include Nv=14, Nc=2351, and
Nd=636892. In Table 3.1, we compare runtimes of the FormH and Diagd subroutines
for varying number of computing cores. For the FormH subroutine, we found that while
there is an 80% speedup found going to 50 computing cores from the serial code, the
parallel code scales perfectly linearly with increasing number of cores. One of the main
bottlenecks of parallel code is the communication overhead, where data will need to be
shared between processors for coordination. This communication between processors
adds additional runtime, and may be the main reason for the imperfect scaling from
1 to 50 cores. The parallel code has been tested up to 550 cores, resulting in nearly
perfect linear scalability for small systems. For the Diag4 subroutine, which realizes
the Davidson algorithm, we do not find great scalability since only the matrix-vector
product subroutine Mxmpy was parallelized, and a large majority of the procedure is
left serial. Since the Davidson procedure typically does not run as long as the FormH
subroutine, the performance of the Diagd subroutine was deemed sufficient for our
problems, leaving better optimization as a future project.

In Table 3.2, we compare runtimes of the FormH and Diag4 subroutines for
a much larger system. Here, the test system is Ir'"™" with 4f, 4d, and 4p shells
open with larger [8spdfg| basis set. These calculations include Nv=30, Nc=24895, and
Nd=17431323. Comparing large runs to the base N=50 case, we see that there is still
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Table 3.1: The runtime of subroutines FormH and Diag4 of the parallel conf program
for increasing number of compute cores and the speedups of the parallel
code are presented in seconds (s) for increasing number of cores N, relative
to the serial code (N=1), as well as N=50. These small test runs were done
with Ir'™ with 2351 relativistic configurations and 6.3 x 10° determinants.
Note that the total times include all serial subroutines outside of FormH

and Diag.
runtime (s) speedup (from N=1) | speedup (from N=50)
N | FormH Diag4 total | FormH Diag4 total | FormH Diag4 total
1 | 7097 288 7407 1 1 1 - - -
50 | 179 38 229 40 8 32 1 1 1
100 | 91 23 126 78 13 59 2 1.7 1.8
150 | 61 17 90 116 17 82 3 2.2 2.5
200 47 14 73 151 21 101 4 2.7 3.1
250 | 38 13 63 187 22 118 5 2.9 3.6
300 | 32 12 55 222 24 135 6 3.2 4.2
350 | 27 9 49 263 32 151 7 4.2 4.7
400 | 23 10 47 309 29 158 8 3.8 4.9
450 | 22 10 45 323 29 165 8 3.8 5.1
500 | 20 9 43 355 32 172 9 4.2 5.3
550 | 17 9 39 417 32 190 11 4.2 5.9

near perfect linear scalability up to 500 cores for the FormH subroutine, but see very
small increased performance for Diag with 200 to 500 cores. Again as with the small
system, the Davidson procedure takes much less time compared to the formation of
the CI Hamiltonian, so the total computation time is not completely hindered by the

performance of Diag, and we still see a modest total performance gain.

3.4.2 conf _pt - the valence PT code

Of the many subroutines in the conf_pt code, two subroutines: DiagH, which
calculates the diagonal, and PTE, which calculates off-diagonal matrix elements, dom-
inate in term of computational time and resource consumption, taking about 90% of
the whole run time. These two subroutines are the main subjects of the MPI par-
allelization procedure. In order to parallelize both subroutines, we must first divide

the total workload between the number of cores available. The entirety of the code is

100



Table 3.2: The runtime of subroutines FormH and Diag4 of the parallel conf program
for increasing number of compute cores and the speedups of the parallel
code are presented in seconds (s) for increasing number of cores N, relative
to the code ran with 50 cores (N=50). These large test runs were done with
Ir'™ with 24895 relativistic configurations and 17.4 x 10% determinants.
Note that the total times include all serial subroutines outside of FormH

and Diag.
runtime (s) speedup (from N=50)
N | FormH Diag4 total | FormH Diag4 total
50 | 22571 1343 24218 1 1 1

100 | 12843 1514 14593 | 1.8 0.9 1.7
200 | 5800 957 6927 3.9 1.4 3.5
300 | 3810 678 4610 2.9 2.0 5.3
400 | 2913 296 3646 7.8 2.3 6.6
500 | 2292 535 2958 9.9 2.5 8.2

ran by a master code and then forks for the duration of the diagonal and off-diagonal
calculations; i.e. the code forks when it reaches the subroutine that calculates diago-
nal matrix elements then joins back when the calculation is complete, and the same
is done for the calculation of the off-diagonal matrix elements. A fork refers to the
master core splitting its workload to a number of cores, each working on a piece of the
program simultaneously, and a join refers to when the individual cores are done work-
ing and the results are passed back to the master core. This is done differently for each
subroutine, where the diagonal part is more straightforward due to comparing same
determinants of the Hamiltonian matrix and the off-diagonal part is more complex due

to it comparing different determinants.

3.4.2.1 Diagonal part of the Hamiltonian

The DiagH subroutine is responsible for computing the diagonal elements of the
Hamiltonian matrix and storing the results in an array. This is parallelized by splitting
a single sum over relevant determinants into many different parts; i.e. we are splitting
a single loop into multiple loops depending on the number of cores available. To do

this, we give each core a starting and ending value of the loop and let them do their
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respective workload simultaneously until they are all done. When they are all done,
each core must report its results to the master core using the MPI functions, specifically
MPI_Gatherv, which takes in the individual sections of resultant array, computed by

each individual core, and sends them to the master core.

3.4.2.2 Off-diagonal part of the Hamiltonian

The PTE subroutine computes all of the off-diagonal elements that are necessary
to calculate MP2 corrections by looping through each configuration and the possible
determinants, instead of traversing through the off-diagonal matrix elements by row
and column. The main difference between the computational part of this code with
the diagonal is that this subroutine has two main loops: an outer loop that traverses
through the list of non-relativistic configurations, and an inner loop that traverses the
number of determinants within each non-relativistic configuration. Several schemes
were attempted to parallelize these loops and will now be discussed.

The first parallelization scheme attempted to split the outer loop into equal
portions for each core to work on. This worked well for very small numbers of cores of
about 1 to 8, but we quickly found that the speedup was not scalable to higher core
counts. This was due to the varying number of determinants in each configuration, i.e.
each configuration holds a different number of determinants so some cores had very
little work to do while others had a lot more work to do. To take into account this we
tried another scheme, where we evenly distribute the number of determinants between
the cores.

The second scheme starts by first counting the total number of determinants
in each individual configuration. Once this has been counted, the outer loop is split
unevenly among the cores, but in such a way that the total number of determinants
stayed relatively the same for each individual core. This worked very well for a modest
number of cores of about 1 to 16. However, we quickly found that this also had a
scalability issue when we tried to go up to 40+ cores. The main problem here was

that we were trying to distribute the outer loop into equal workloads, but there are
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some configurations that have such a big number of determinants that it would take
more time to finish than cores that were required to take a sum of determinants that
was less than the configuration with a high number of determinants. For example, if
the total number of determinants is Nd=135M, and we want to split this into 100 cores,
then we would need each core to work with, say 1.35 million determinants. However,
since we parallelize the outer loop, there will eventually be cores that are working with
a single configuration with maybe about 3 million determinants. The other cores with
1.35 million determinants will finish and they would have to wait for the last core with
3 million determinants. The other issue with this is that the number of iterations for
the outer loop is a lot less than the number of iterations in the inner loop, i.e. we will
not be able to scale this problem to much higher core counts of say 1000. If the total
number of configurations in the PT space is less than the total number of cores, then
there will be cores that will sit idle. This was the major bottleneck of this version
of parallelization. In order to develop an algorithm to efficiently parallelize the total
workload of both loops, we had to develop a method of parallelizing a 2-dimensional
array with varying sizes as the second index. We then tried another parallelization
scheme, which parallelizes the inner loop instead of the outer loop; i.e. splitting the
workload for each individual configuration.

The current parallelization scheme also involves first counting the total number
of determinants in each individual configuration. However, this time we work serially
with the outer loop and parallelize only the inner loop. During the outer loop iterations,
which is running in serial, we distribute the inner loop to multiple cores evenly and
allow the cores to calculate the contributions of the single non-relativistic configuration
and the first order eigenvectors. This method is similar to running the diagonal portion
of the code inside another loop. After each core has completed their workload, we sum
over all contributions to the energy correction from each core and gather all first order
eigenvectors. By parallelizing the off-diagonal code this way, we avoid situations where
some cores would have too much work to do, while others would sit idle. Instead, all

cores are now able to work equally through the entire two-loop process. This scheme
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Table 3.3: Left: Diagonal and off-diagonal run times in seconds (s) correspond to
the time it takes to calculate all diagonal and non-diagonal elements of
the Hamiltonian in the PT space, respectively. This also includes message
passing times in the MPI procedures. The total run time is the total
time it takes to complete both diagonal and off-diagonal run times. The
total runtime of the conf pt code adds a couple of minutes to the total
time. Right: The speedups of the parallel code relative to the serial code
(N=1). Speedups are presented for different number of cores N=1, 20, 40,
100, 200. This run is done with Ir'%* with 14318 relativistic configurations
and 83 x 10° determinants.

Ir16+ runtime (s) speedup
N diag off-diag total diag off-diag total
1 539.7  2161.98 2878.24 1 1 1
20 36.64 111.31 147.95 19.55 19.42 19.45
40  19.32 55.73 75.05 37.07 38.79 38.35
100  8.18 23.21 31.39 87.56 93.15 91.69
200 4.59 12.85 17.44 156.05 168.25 165.04

has given us by far the best speedup, with speedups close to the number of cores for
low numbers of cores and rounding off at higher core counts.

The main complication of these parallelization schemes was how to pass the
results from each individual core to the master core. Passing the results from each
individual core to the master core is done via the use of the MPI_Gatherv subroutine.
This had to be done to send the individually calculated first order eigenvectors to the
master core. MPI_Gatherv takes in an array of some size and data structure from
each core and sends them individually to some node. The complication is with its
requirement of two extra arrays, an array of the sizes of each array sent and an array

of the displacements from the receiving buffer at the master code.

3.4.2.3 Achieved performance of parallelization
The MPI parallelization of conf pt has been tested up to 15-valence electron sys-
tems. The number of electrons in the system significantly increases total computation

time and required resources. The main tests were done with Ir'%*, a highly-charged ion
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Table 3.4: Left: Diagonal and off-diagonal run times in seconds (s) correspond to
the time it takes to calculate all diagonal and non-diagonal elements of
the Hamiltonian in the PT space, respectively. This also includes message
passing times in the MPI procedures. The total run time is the total
time it takes to complete both diagonal and off-diagonal run times. The
total runtime of the conf pt code adds a couple of minutes to the total
time. Right: The speedups of the parallel code relative to the serial code
(N=1). Speedups are presented for different number of cores N=1, 20, 40,
100, 200. This run is done with Ir'%* with 25588 relativistic configurations
and 135 x 10° determinants.

Ir'6+ runtime (s) speedup
N  diag off-diag total diag off-diag total
1 922.68 5243.18 6165.86 1 1 1

20 57.10 331.50 388.60 16.16 15.82 15.87
40 31.20 166.51 197.71 29.57 31.49 31.19
100  12.54 68.52 81.06 73.58 76.52 76.06
200 6.71 36.62 43.33 13751 143.18  142.30

with one hole in the 4f shell. Among the highest number of relativistic configurations
and determinants tested so far, however, Ir'™" with 75446 configurations and 391 x 10°
determinants took about 14 hours to run with 80 cores. In Table 3.3, computational
run times of confpt are shown with different amounts of resources. Ir'6* was tested
here with 14318 relativistic configurations and 83 x 10° Slater determinants. N repre-
sents the number of cores utilized in the computation, and if available, greatly speeds
up the run time. Table 3.4 presents the computational run times testing Ir'6* with
25588 relativistic configurations and 135 x 10° Slater determinants. From the results
of both tests, we see that increasing the size of the valence space (number of configu-
rations and determinants) also decreases the amount of speedup. This is mainly due

to the amount of message passing that is done within the code.

3.4.3 dtm - the density (transition) matrix code
As with the conf and conf _pt programs, the first objective before parallelization

was to create a working modern F90 version and to validate the final results with those
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of the old F77 version. Dynamic allocation has also been implemented for the main
arrays in the program, to optimize memory requirements. With the dtm program,
there are two major functionalities that need to be parallelized: the formation of the
density matrix and evaluation of the expectation values, and the formation of the
transition matrix and evaluation of the amplitudes. The DM part of the code and TM
part of the code each require all cores to store all wave functions and determinants.
The DM part requires same parity determinants and wave functions stored in the
files CONF.DET and CONF.XIJ, respectively, whereas the TM part requires opposite
parity determinants and wave functions stored in the files CONF.DET and CONF.XIJ,
and CONF1.DET and CONF1.XIJ, respectively. The parallelization of these parts differ

since the loop structure is different between the two subroutines, FormDM and FormTM.

3.4.3.1 DM - density matrix

The FormDM subroutine calculates the density matrix elements and expectation
values. Wave functions and determinants from same parity states are first read from
CONF.XIJ and CONF.DET. The loop structure of FormDM involves a 4-loop structure, but
it can be thought of as two optimized loops: an outer loop that goes over configura-
tions associated with the final state, and an inner loop that goes over configurations
associated with the initial state. We split the total workload by splitting the outer loop
into intervals of size Nc/num_cores, where Nc is the total number of configurations as-
sociated with the determinants, and num_cores is the total number of cores used in

the calculation.

3.4.3.2 TM - transition matrix

The FormTM subroutine calculates the transition matrix elements and amplitudes
of matrix elements. Wave functions and determinants from opposite parity states are
first read in from CONF.XIJ, CONF1.XIJ, CONF.DET, and CONF1.DET. The loop structure
of FormTM is similar to that of the FormH subroutine in the conf program: there is an

outer loop goes over the determinants of the final state, and the inner loop is divided
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over the configurations of the initial state. The parallelization scheme follows one of
the older implementations of the FormH parallelization schemes, splitting up the outer
loop into even chunks for distribution. We split the total workload into intervals of
size Nd2/num_cores, where Nd2 is the total number of determinants associated with

the final state, and num_cores is the total number of cores used in the calculation.

3.4.3.3 Achieved performance of parallelization

Due to the already optimized algorithms used to compare configurations in the
FormDM and FormTM subroutines, the scalability and performance of the parallelization
was a great success. The average speedup achieved for the dtm program, for both
density matrix and transition matrix calculations, was about 85% with the number
of cores. Due to the already high speedup achieved, more optimized implementations

have not been looked into and will be subject to a future project.
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Chapter 4

DEVELOPMENT OF ATOMIC CLOCKS AND THE SEARCH FOR
VARIATIONS OF FUNDAMENTAL CONSTANTS

The development of the CI/CI+MBPT/Cl+all-order methods and codes are
motivated by the development of atomic clocks, which is essential for the search for
variation of fundamental constants. One of the main remaining stumbling blocks to-
wards development of many HCI clock proposals is the large uncertainties in the the-
oretical predictions of the clock transitions, in particularly in cases with holes in the
4f shell (for example Ir'" and Ir'™) or mid-filled 4f shell (Ho'**). While there are
high-precision methods that allow for reliable prediction of HCI transitions in ions with
1-4 valence electrons to a few percent or better [24], the approaches for the 4 f-hole
systems are still in the development stage and theory accuracy has not been estab-
lished. Lack of accurate theory predictions leads to years of delays in experimental
efforts. Rapid development of current clock was in part possible due to the ability to
accurately predict properties of monovalent and divalent systems, used in the present
most precise clocks.

We note that this work serves as a basis for efficient treatment of systems with
many valence electrons that can be used for a large variety of applications beyond HCI
calculations. Numerous problems in astrophysics and plasma physics require accurate
treatment of systems with many valence electrons, such as Fe. The lack of accurate
theory predictions creates problems in applications involving almost all lanthanides
and actinides as well as many other open-shell atoms and ions of the periodic table.
There are many other problems, besides HCI where our results are useful, for example
development of the neutral atom lattice clocks based on 4 f46s6p 3P — 4 f1365%5d (J =

2) transition in Yb [76, 77]. None of the currently existing ab initio methods are
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capable to reliably predict the atomic properties of this J = 2 state. In this chapter,

we describe the calculations of atomic properties of Ir'™*, Cf'** and Cf'"*.

4.1 Optical clocks based on Ir'™*

The work described in this chapter is published in Ref. [4]. The highly charged
ion Ir!"* is of particular interest for the development of novel atomic clocks due to
its very high sensitivity to the variation of the fine structure constant o and related
dark matter searches. While the M1 transitions in Ir'"* between same parity states
have been measured to good precision [3], the clock transitions, or in fact any E1
transitions between opposite parity states have not yet been identified despite over 6
years of experimental effort. While these F1 transitions are weak as they are only
allowed due to the configuration mixing, i.e. no “one-electron” FE'1 transitions are
allowed between these configurations (for example, 4f'25s? — 4 f1355), strong allowed
E1 transitions (between 4 f1255%—4 f125s5p and 4 f135s—4 f135p configurations) lie much
higher on the spectrum, in the EUV and VUV rather than the optical range. These
transitions were expected to be observed in recent experiments since their predicted
transitions rates [33] were well within the experimental capabilities; especially since
the M1 transitions with much smaller transition rates have been observed. The lack
of observations for the E1 transitions brought serious concerns about the accuracy of
theoretical predictions, even to the point of doubt of approximate spectral range, with
over 10 000 cm~! differences. In this work, we resolved this problem and for the first
time, definitively demonstrated the ability to converge the configuration interaction
(CI) in systems with a few holes in the 4f shell and place uncertainty bounds on the
results. Our results explain the lack of observations of the E1 transitions and provide
a pathway towards detection of clock transitions.

Ir'7* jon has [1s%...4d"] closed shells and complicated energy level structure
with 4112552, 41355 and 4f* low-lying levels shown in Fig. 4.1. Prior calculations
include the CI [32], CI Dirac-Fock-Sturm (CIDFS) [3], Fock space coupled cluster
(FSCCQC) [3], and the COWAN code [78] calculations. There is a reasonable agreement,
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from a few 100 cm ™ to 1500 cm™?, for the energy levels of the lowest 4 f135s states as all
energies are counted from the ground state which has the same electronic configuration.
However, there are very large, 5000 cm~! to 13000 cm~! differences for all other levels.
For convenience, we have shown in Fig. 4.1 the positions of the 4 2552 levels predicted
using CIDFS [3] and FSCC [3] calculations which are the most elaborate from all prior
approaches. The CI results of Ref. [32] place these levels much higher, by 5000 —
7000 cm™.

Berengut et al. [79] proposed to use the 4f125s%3Hg — 4f135s3F¢ transition
(K = —22) as a clock transition. It is a E3/M2 transition and can be enhanced
via the hyperfine-mixing with the 3Hs state. They also note a possibility of using
the 41418, — 4f1355 3F¢ transition which is a M2 transition and may be induced
by the hyperfine mixing with the 4f25s% 3P, level. The particular attraction of this
possibility is very high (predicted to be K = 143) sensitivity to the variation of «. For
comparison, all presently operating clocks have K < 1 with the exception of the Yb™
octupole clocks with K ~ —6. A factor of 100 increase means that the sensitivity to
the variation of « is 100 times higher than with K = 1, so the clocks with the same
accuracy will set 100 times better limit. Fig. 4.1 illustrates the difficulty in predicting
either one of these transition frequencies.

Nine of the M1 transitions in Ir'"* have been experimentally identified and
measured at a ppm level [3]. The main puzzle is the lack of observation of two weak
E1 transitions [33] between the even and odd levels, ie. 4f"5s* 3F, — 4355 °Fy,
transitions. Theoretical determination of the odd level splittings is much more reliable
in comparison with the odd-even energy difference and the observation of the E'1 tran-
sitions would have allowed for the determination of the wavelength of the proposed

412552 3Hg — 4f135s5 3F¢ clock transition with good precision.

4.1.1 Method of calculation
We start from the solutions of the Dirac-Hartree-Fock (DHF') equations in the

central field approximation to construct the one-particle orbitals. We find that the
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Figure 4.1: Low-lying energy levels of Ir'"* based on past CI Dirac-Fock-Sturm
(CIDFS) and Fock space coupled cluster (FSCC) calculations [3]. Wave-
lengths of 3 M1 transitions shown by vertical dashed lines have been
measured in [3]. The scheme is not to scale. From Ref. [4].

best initial approximation is achieved by solving the restricted DHF equations with
the partially filled shells, namely [1s...4d'°]4f'35s. Here, the hybrid approach that
incorporates core excitations into the CI by constructing an effective Hamiltonian with
the coupled-cluster method [64] cannot be used with such initial approximation. There-
fore, the inner shells have to be treated using the CI method, as described in Section
2.1.6, leading to exponential increase in a number of required configurations. While
the weights of most configurations are small, we find that the number of important
configurations is still very large.

The increased size of the valence space imposes much higher computational
demands. To resolve this problem, we developed a code utilizing MPI, as described in

Section 3.1.9, that pre-estimates the weights of a very large number of configurations
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using the perturbation theory (CI4+-PT approach [80] described in Section 2.1.12). We
also developed codes to analyze the results and identify and sort the most important
configurations. Finally, we developed a fast MPI version of the CI code, described in
Section 3.4.1, as the resulting set of important configurations was still extremely large.
Our new codes allowed us to increase the valence space from 14 electrons to all 60, and
to include 250,000 configurations, resulting in 133 million Slater determinants, a factor
of 20 increase to what was previously feasible.

In order to definitively ensure the reliability of the theoretical calculations, we
considered all possible contributions that may affect the accuracy of the computations
and ensure the convergence in all numerical parameters, including the number and type
of configurations included in the CI, the size of the orbital basis set used to construct
CI configurations, inclusion of the quantum electrodynamics (QED) corrections, and
inclusion of the Breit corrections beyond the Gaunt term. We find that by far the
largest effect comes from the inclusion of the inner electron shells into the CI and we

studied this effect in detail.

Double Basic configuration:
excitation 4f%5s
Singly excited conf.

® 4f12585p

@ 4125561 ...
Doubly excited conf.
4f115525d
4f115s26g ...

Figure 4.2: Single and double excitations from the 4f!35s configuration. From Ref.
[4].

We start with the most straightforward CI computation that includes single and

double excitations from the 4f and 5s valence shells, similar to [32]. This is illustrated
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in Fig. 4.2, which shows a few of the first configurations produced by exciting one and
two electrons starting from the main 4f'35s odd configuration. The excitations are
allowed to each of the basis set orbitals. We begin with the basis set that includes all
orbitals up to 7spdfg and discuss larger basis calculations below.

Next, we “open” a 4d shell as is illustrated in Fig. 4.3, i.e., allow all 4d elec-
trons into the valence space and allow excitations of any of the 24 electrons from the
4d1°4 1355 shells to the same basis set orbitals up to 7spdfg. We find drastic changes
in the frequencies of all of the (odd-even) E1 transitions and the position of the 1Sy
level. This effect accounts for the difference between previous CI calculations [32] which
prohibited excitations from the 4d electrons, and CIDFS calculations [3] which allowed
it. Due to such large contributions, we continued to include more and more electrons
of the inner shells into the CI valence space, until all 60 electrons have been included.
Both single and double excitations are allowed from the 4f,4d, 4p,4s and 3d shells,
and only single excitations are included for all other shells. We tested that the double
excitation contribution is small for these inner shells and can be omitted at the present
level of accuracy. The results, obtained with different number of shells included into
the CI valence space are given in Table 4.1. We note very large contributions of the
excitations from the 4s shell, which is the main source of the difference between our
results and the CIDFS calculations [3]. All calculations in Table 4.1 are carried out
with the same 7spdf g basis set.

Three different basis sets of increasing sizes, including all orbitals up to 7spdf g,
8spdfg, and 10spdfg were used to test basis set convergence. The resulting energy
differences between these different basis sets are shown in Table 4.2. The differences
between results obtained with 7spdfg and 8spdfg basis sets do not exceed 262 cm™!
for any level. The difference between results obtained with 8spdfg and 10spdf g basis
sets do not exceed 115 cm™! for any level. Due to the decreasing difference with basis
sets of higher principal quantum number, we concluded that the basis set has been
reasonably converged at the present level of accuracy, and there was no need to include

orbitals of higher principal quantum number at the time.
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Figure 4.3: “Opening” the 4d'° shell - including it into the valence space. From Ref.
[4].
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Table 4.2: Energy differences of Ir'"™* (in cm™!) obtained using CI with different sized
basis sets. The differences shown are between the 8spdf g and 7spdf g basis sets,
and the 10spdfg and 8spdf g basis sets. Due to the decreasing difference with
larger basis sets of higher principal quantum number, we concluded that the
basis set has been reasonably converged at the present level of accuracy.

8spdfg — Tspdfg | 10spdfg — 8spdf g

Configuration | 4f 4d  4p | 4f 4d 4p

4355  SF2 | 0 0 0 0 0 0
e | -3 -6 2 -7 4 -1
e | 8 200 28 | -3 -7 -12
ngf’ 11 24 -28 | -3 -7 -12

414 1Sy | -86 -21 -169 | 28 90 115

4112552 S3Hg | 176 109 262 | 9 -50 96
3y | 142 93 242 | -13 -70 76
SHy | 171 97 239 | 8  -56 87
3, | 148 60 213 | 6 -93 -34
'Gy [ 105 83 228 | -32 -69 72
3fy | 137 79 222 | -9 71 72
SHy | 144 71 204 |-11  -79 60
Dy | 82 37 184 | -40 -104  -67
6 [ 118 34 180 |-31 -101 40

In Table 4.3, we consider the contribution of the triple excitations from the 5s4 f
shells and found it to be small at the present level of accuracy: —600 cm™" for the 1S,
level and not exceeding —351 cm™? for all other levels. In Table 4.4, contributions from
full Breit are computed: 420 cm™? for the Sy level and not exceeding —459 cm™! for all
other levels. In Table 4.5, the contributions of QED are computed: —298 cm~! for the
1Sy level and not exceeding 299 cm ™! for all other levels. The sum of the corrections for
a large 10spdf g basis, triple excitations, Breit correction beyond the Gaunt term, and
QED corrections [81, 82] is given in the column labeled “Other” in Table 4.1. We note
that these unrelated corrections substantially cancel each other. Based on the size of
the inner shell contributions and all other corrections, we estimate uncertainties of the

final values for the even states to be on the order of 1000 cm™!, similar for all states.
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Table 4.3: Contribution of triple excitations (T) into energy levels of Ir'™" calculated
with single and double excitations (SD). Energy levels are calculated with
[7spdf g] basis set. Numbers under labels indicate the number of determi-

nants used in the calculation in even parity runs. All values are given in
~1

cm
Energy (SD) Energy (SDT)

Conf. Level 086x10°  49x10°  Aq
AfB5s 3R, 0 0 0
3F3 4714 4715 2

3Fy 25170 25167 -3
o 30137 30138 1

414 1So 9093 8493 -600

4f125s*  3Hg 36361 36118 -243

3Fy 46300 46050 -250

3Hj 29883 59624 -259

3Fy 68787 68521 -266

G, 69098 68301 -297

3F3 71962 71677 -286

3H, 91039 90765 -274

'D, 97472 97121 -351

' Js 109332 108991 -341

4.1.2 M1 and F1 transition rates and energies

The M1 transition energies are compared with the experiment [3] in Table 4.6,
and excellent agreement is observed with the exception of the Dy — 3Fy transition.
It is unclear if there might be an issue with the experimental identification, or if the
difference is due to the residual electronic correlations. The contribution of the inner
shells (1s to 3p) is particularly large here, a factor of 4 larger than for any other M1
transition listed in Table 4.6, by about 200 cm™?.

17 (in s7') obtained using CI with different number

The E1 transition rates of Ir
of electronic excitations are given in Table 4.7. While opening of the 4d shell drasti-
cally changed the energy levels, we found only small effects on the matrix elements;

the differences in transition rates were caused by differences in energies. When the
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Table 4.4: Contribution of full Breit interaction (Ag,) into energy levels of Ir'™"

calculated with Gaunt term. Energy levels are calculated with [7spdfg]

basis set. All values are given in cm™!.

Conf. Level Gaunt Full Breit Ag,

4f1355  3Fy 0 0 0
3y 4714 4714 1
3F, 25170 25159 -12
1Fy 30137 30131 -6

414 1S, 9073 9493 420

4112552 3Hg 36361 35910 -450
3Fy 46300 45853 -447
SHs 59883 59426 -457
3Fy, 68787 68332 -455
Gy, 69098 68650 -448
3F3 71962 71509 -453
SHy, 91039 90579 -459
Dy 97472 97023 -449
Js 109332 108875  -457
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Table 4.5: Contribution of QED corrections (Ag,) into energy levels of Ir'™". Energy

levels are calculated with [7spdfg] diagonalized basis set. All values are

given in cm~!.

Conf. Level Gaunt Gaunt+QED Aggep

Af355  3F, 0 0 0
SFy, 4730 4726 5
3F, 25407 25416 9
LFy 30376 30385 9

Af1 1Sy 2327 2029 298

Af12582 3, 42124 42401 277
3F, 52252 52530 278
3Hs; 65859 66149 291
SF, 74896 75188 292
1Gy 75296 75580 285
3p, 78151 78444 293
3H, 97338 97640 302
1D, 103937 104232 294
LJe 115342 115641 299

excitations from the 4p shells were included, we found only modest changes in the
energies (see Table 4.1), but drastic reduction of the values of the E1 matrix elements
for a number of transitions. The multi-electron E'1 transition rates are obtained from
the one-body matrix elements, with the appropriate weights based on the mixing of
the configurations. Allowing excitations from the 4p electrons accounted for previously
omitted 4p — 5s one-electron matrix elements, whose role is particular important when
the contributions from the one-electron 5s — 5p and 4d — 4 f matrix elements are close
in size, but have the opposite sign and, respectively, essentially cancel each other. The
final numbers include correlation of all 60 electrons, but the effect of all other shells
for stronger transitions was relatively small.

Previous calculations of transition rates in Ir'"* were only done with the FAC
code [33] and did not include correlations besides the 4 f5s electrons, leading to incor-

rect predictions. In particular, the 3F; — 3F and ®F) — 3FY transition rates which should
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Table 4.6: Comparison of Ir'™ M1 transition energies (in cm™!) with experimental
results [3]. Difference (in %) of the other theory (FSCC and CIDFS) values
from experiment [3] are given in the last two columns. From Ref. [4].

Transition Expt. Present Diff. % FSCC CIDFS

41855 SFY — F9 20711 20409 1.5% 1.0%  2.6%
IF9 — 3 30359 30395  -0.1%  0.5%  -0.6%
4112552 3Hy — 3Hg 23640 23515 0.5% 0.8% 1.4%
SHy — Gy 22430 22263 0.7% 0.5% 1.9%
Gy — 3Fy 22949 22697 1.1% 1.2% 1.3%
Dy — 3Fy 23163 24093 -4.0% -2.0% -5.4%
3y — 8Fy 25515 25616 -04%  1.0% -0.1%
Dy — 3F, 27387 27844  -1.7%  -0.1% -2.0%
3Hy — 3Hs 30798 30726 0.2% -02% 1.7%

have been observable with previous predictions became extremely small, well outside
of the detection range. We identified a number of other transitions for the future E'1
transition search where the transition rates are above 100 s~!. We have calculated all of
the E1 transitions between the states listed in Table 4.1, also including 2P, states but
only list the strongest transitions and a few representative examples where transition
rate changes drastically with the opening of the 4p shell (these small values should be

considered order-of-magnitude estimates due to large cancellations).

4.1.3 Selection of important configurations

It is necessary to be able to select the most important configurations for the
valence CI space when the dimensionality of the CI problem is huge. We started with
the computation of Ir'%*, then switched to the more complicated Ir'™. In the case of
Ir'%*+, which has 15 valence electrons, and Ir'"*, which has 14 valence electrons, the
complete basis set is limited to only a few principal quantum numbers n above closed
core shells, e.g. [8spdfygl; this designation includes the orbitals 1-8s, 2-8p, 3-8d, 4-8 f
and 5-8¢g, where the numbers indicate principal quantum numbers and the letters spdf g

indicate orbital angular momentum quantum numbers. Even with such a short basis
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Table 4.7: E1 42552 — 4f135s radiative transition rates Ag, of Ir!"* (in s71) obtained
using CI with different number of electronic excitations: including excitations
from the 4 f5s electrons, then adding excitations from 4d and 4p shells. The final

Final values of the transition

wavelengths A (in nm) and reduced E1 matrix elements D (in a.u.) are also
listed. From Ref. [4].

numbers include correlation of all 60 electrons.

Transition A D Transition rate Ay
a—>b 5s4f +4d +4p Final
3Py —3F¢ 91 4.1E-04 106 111 152 90
5Py — 3F¢ 112 9.6E-04 727 458 276 269
3P, — 'F? 118 1.2E-03 1432 1101 254 333
SHy— 3F 118 1.6E-03 798 479 366 358
Dy, — 3F9 118 5.2E-04 9 4 91 65
SHy— 3F¢ 125 1.8E-03 1325 891 347 369
SF3 — 3F? 153 1.3E-03 379 201 140 137
1Dy — 3F¢ 155 9.9E-04 515 277 103 104
1G4 —3F2 160 1.8E-03 677 362 181 184
3F3 — 3F¢ 165 1.2E-03 579 319 85 90
Dy, — 'Fy 169 1.2E-03 498 276 105 122
G, —3F§ 174 1.7E-03 376 209 123 129
SFy — 3F§ 176 1.5E-04 101 60 6 1.7
SHy— 'F¢ 184 72E-05 216 0.3 0.2 0.8
SFy— 3F2 252 4.9E-05 57 25 0.2 0.03
3Fy — 3FY 274 1.6E-04 60 26 0.3 047
SFy— 'Fy 287 4.3E-04 48 19 2 2.3
SFy— 3F§ 287 4.9E-04 64 30 1.2 2.2
Gy — 'F? 313 1.8E-04 34 15  0.02 0.2
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set, the number of configurations and determinants that take part in the CI calculation
is huge due to CI scaling exponentially with the number of valence electrons.

Initially, a configuration list with no weights is constructed by allowing excita-
tions from select basic configurations. A very small subspace, consisting of about 500
relativistic configurations in our case, is used for a pre-initialization run to generate
initial weights for each configuration. In this pre-initialization run, CI is ran for the
very small subspace and then CI4+PT is ran to obtain weights and re-order the initial
configuration list by descending weights. CI is then re-ran using the re-ordered con-
figuration list to obtain the energy levels. Several CI runs are done while increasing
the number of configurations to see how energy levels are converging with increasing
size of the CI space. The number of configurations selected is based on the weight of
the configuration, i.e. all configurations above a weight of 1072 would be selected for
a small CI run, all configurations with weights above 10~ would make up a medium
run, and so on. Once the energy differences between subsequent CI calculations are
relatively small, the CI4+PT procedure is then used on the largest CI run to calculate
the final energy levels. The final energy levels obtained from CI+PT are then com-
pared with the corresponding CI result to check convergence. If PT corrections are still
large, we can repeat this process from a newly re-ordered configuration list constructed
from the previous largest CI4+-PT run. By repeating the CI and PT steps, second-order
corrections iteratively decrease until convergence is met (in our case, until energy dif-
ferences obtained from successive runs are below 1500 cm™?), i.e., the CI space has
been saturated as it has taken into account the most important configurations.

Table 4.8 displays the total number of configurations and determinants used
for the largest CI+PT calculations of Ir'6* and Ir'"* energy levels. For both ions,
about 3000-5000 relativistic configurations are taken into account using CI, while the
remaining configurations are taken into account using CI4+PT. We find that for our
calculations, this is enough to reach saturation of CI. For the final calculations of Ir'¢*
energy levels, the total number of non-relativistic configurations for the odd parity

was 2904, but 2030 non-relativistic configurations were used and expanded into 78156
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Table 4.8: Total number of non-relativistic configurations generated (total) compared
with the number of non-relativistic configurations (non-rel) used in the
valence CI space of the final CI and CI4-PT runs. Numbers of relativistic
configurations (rel) and determinants (dets) in millions taking part in the
final CI valence space in final results are also shown.

Ton  Parity non-rel rel  dets (10°)
total wused wused

I

[0+ even 3001 294 5112 11
odd 2904 293 5890 6.6

Ir'™t  even 1633 214 3429 4.4
odd 2281 185 3436 6.3

CI+PT

[t even 3001 1328 44649 365
odd 2904 2030 78156 194
't even 1633 1633 38688 118
odd 2281 1850 75446 391

relativistic configurations with 194 x 10% determinants. For the even parity, the total
number of non-relativistic configurations was 3001, but only 1328 of them were included
and expanded into 44649 relativistic configurations and 365 x 10® determinants. For
the final CI+PT calculations of Ir'™ energy levels, 1633 non-relativistic configurations
are expanded into 38688 relativistic configurations with 118 x 10° determinants for
even parity. For the odd parity, a similar number of configurations and determinants
are used if only expanding a single basic configuration 4 f35s, but allowing excitations
from two basic configurations 4f135s and 4f'25s5p, there was a total of 2281 non-
relativistic configurations, but only 1850 non-relativistic configurations were accounted
for and expanded into 75446 relativistic configurations with 391 x 10° determinants.
The selection procedure for the final configurations is explained below. The most
computationally expensive run completed using this method was for the odd parity of
Ir'™ which included 391 x 10° determinants. This run required 2 days of computation

time to complete, while utilizing MPI with 40 cores.
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To analyze the importance of configurations, we start from the configuration
list generated by exciting electrons from a set of reference configurations to a number
of non-relativistic shells. The initial list includes all possible relativistic configurations
that can be obtained from the number of excitations, whether it is allowing singles
(S), doubles (D), triples (T), or any combination of these excitations. The number of
excitations and the number of non-relativistic shells determines the total number of
configurations that will make up the list, and subsequently, the total number of deter-
minants that will be used in the CI calculation. We take several steps in determining
the importance of each configurations. First, the weight of each configuration is calcu-
lated. This is done in the CI and CI+PT routines described above. We can then count
the number of times an orbital appears in non-relativistic configurations above some
weight threshold and compare this data to the weighted configuration list constructed
during the CI4+PT routine.

Table 4.9 displays the number of times an orbital appears in the list of non-
relativistic configurations for the even parity of Ir'”* with weights larger than threshold
values of 1 x 1072, 1 x 107*, 1 x 107° and 1 x 107%. This data shows how important
each orbital will be for the final CI4+PT calculation. For Ir'"*, we can see that for
configurations above the 1 x 107 threshold value, besides the orbitals that show in the
reference configurations 4 f and 5s, all 5pdf g will be important, but up to 8¢, all f and
g subshells will also play an important role.

Table 4.10 shows the top 10 weighted configurations that take part of the cal-
culations for the low-lying energy levels of Ir!™*. For the 4f'% 5s configuration, we
see that the most important configurations are those with double excitations to 4f!!,
and those with 5s, 5f, 6f, 6g, and 7¢ included. The 4f* configuration have double
excitations to 4f12, and those with 5f, 6f, 7f, 6g, and 7¢ as important configurations.
The important configurations for the 4f!? 5s* configuration include double excitations
to 4f1° 5p, 5f, 6f, 6g and 7g. Configurations from triple excitations had weights
less than 107% and were therefore not very important for the calculations. Due to the

lower importance of triple excitations, we increase the basis set and allow just S and
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D excitations in a calculation to be discussed later. We also see that in both Tables
4.9 and 4.10, the top configurations agree with the top appearances of orbitals in the
configuration list.

Table 4.11 compares the top 5 weighted configurations for the Ir'"* calculations
between a short basis set [8spdfg| and a longer basis set [10spdf]. It is clear that for
the larger basis set calculation, the weights of the basic configurations decreased by a
few thousandths and the top configurations remain mostly the same.

Table 4.12 shows the top 10 weighted configurations that take part of the cal-
culations for the low-lying energy levels of Ir'6*. For the 4f!3 5s configuration, we see
that the most important configurations are those with double excitations to 4 f!!, and
those with 5s, 5p, 5f, 6f, 7f, 6g, and 7g included. The 4f'* configuration have double
excitations to 412, and those with 5f, 6f, 7f, 6g, and 7g as important configurations.
The important configurations for the 4f'? 5s% configuration include double excitations
to 4f1° 5p, 5f, 6f, 6g and Tg. From this data, we can predict which shells must be
allowed for an accurate description of the Ir'6* ion.

For the Ir'™ even parity calculations, every configuration was taken into account
for, i.e. no configurations were left out in the final CI+PT calculation. The final energy
levels converged after 2 runs of the CI4+PT procedure for both even and odd parity runs
after the pre-initialization run, i.e. CI saturated within 2 iterations of PT. However, for
the Ir'®* and the odd parity of Ir'"*, it was impractical to include every configuration as
the inclusion of another valence electron grew the valence CI space to an unmanageable
size. In this case, orbital importance must be taken into account by parts, by allowing
excitations to specific shells one at a time and adding the weights to the configuration
list by parts.

In summary, we have developed new MPI CI codes that for the first time allowed
us to correlate all 60 electrons of Ir'"™* in the framework of the CI approach. Our
calculations explained the failed search for the E1 transitions: the transition rates
of the two transitions that were subject to search are well below detection threshold.

We made reliable prediction of the F1 and clock transition wavelengths, with the
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evaluation of their uncertainties and provided predictions of the sufficiently strong E'1
transitions for the experimental detection. As illustrated by Table 4.1, the energies
of the E1 and clock Hg — 3F¢ transitions are strongly correlated and as soon as any
of the FE1 transition wavelength is measured, we will be able to establish the clock
transition energy with much higher precision. We developed a method of selecting the
most important configurations of an atomic system using weights calculated during the
CI and CI4-PT procedures, and found them for the cases of Ir'* and Ir!"*. The final
large-scale Ir'™ calculations were done solely with the CI method.

The methods discussed here are very broadly applicable to many elements in the
periodic table. Numerous problems in atomic physics, astrophysics, and plasma physics
require accurate treatment of the open-shell systems similar to the one considered here.
An exceptional speed up of the CI computations demonstrated in this work will allow
one to perform computations for other systems where reliable predictions do not yet
exist. Present computations were only limited by the computer memory resources
presently available to us at the time this work was completed, about a year ago. At
that time, the largest run took less than 3 days on 80 CPUs. This largest run was
redone recently with 550 CPUs, lasting only about 13 hours, approximately 5 times
faster with almost 7 times the number of CPUs. The work presented here, coupled with
the development of new methods of efficiently selecting dominant configurations, and
larger computational resources, will eventually lead to accurate theoretical predictions

for most elements of the periodic table.
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Table 4.9: Number of times an orbital appears in non-relativistic configurations with
weights larger than the given threshold values. The system considered here
is Ir'"" with even parity. S, D and T excitations are allowed from basic
configurations, 44 and 42552 Other than 4f and 5s, all orbitals have
minimum and maximum occupation numbers of 0 and 2, respectively, with
5f being an exception, having 0 and 3, respectively.

Orbital 1x107% 1x107* 1x10™> 1x107°

Af 971 1963 3591 6459
5s 100 175 301 443
5p 20 38 86 134
5d 12 28 67 130
5f 15 33 69 126
59 10 25 34 92
65 3 9 32 64
6p 5 20 23 48
6d 6 19 36 80
6f 14 31 64 111
6g 13 27 50 109
Ts 3 5 29 57
p 6 20 24 42
7d 8 19 36 85
7f 14 27 55 105
79 14 20 54 109
85 4 5 27 53
8p 0 0 7 20
8d 0 0 3 16
8f 1 8 17 38
8¢ 13 22 39 76
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Table 4.10: List of the 10 most important configurations for calculation of Ir!™*

energy levels. Weights for 4f13 5s were calculated for the 3Fj level,
but 3F3, 3F, and 'Fy levels also have the approximately the same top
configurations. Weights for 4f'? 5s5? were calculated for the 3Hyg level,
but 3F,, 3Hs and 3F, levels also have approximately the same top 10

configurations.

Conf. Weight Conf. Weight
4113 55 J=4,3,2 4 f1 J=0
4f13 5s 0.9866 4 fH 0.9765

4fH 5s 7¢ 0.0015 412 552 0.0075
4f1 55 5f 6f  0.0012 4f13 5f 0.0038
41 55 69 g 0.0012 412 747 0.0017

4f1 5s 5f2 0.0009 413 6f 0.0016
4f1 55 6f 7f  0.0009 4112 69 7g 0.0015

4fH 5s 7f2 0.0008 4f125f6f 0.0015

42 5p 6g 0.0008 412 52 0.0011
4f1 5s 5 7f  0.0008 412 7f2 0.0009
4f1 55 79 8¢ 0.0006 4f126f7f 0.0009

4f12 552 J=06,4,5,2

412 552 0.9778

412 5p? 0.0053
4f1 552 5f 0.0022
410 55% 742 0.0013
4f1 55 5p 6g 0.0012
4f1 552 6f 0.0011

4f1 55 5p Tg 0.0009
410 552 69 Tg 0.0009

Af12 772 0.0009
Af052 5F 6f  0.0008
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Table 4.11: Comparison of top 5 most important configurations for Ir'”* between
short basis set [8spdfg| and long basis set [10spdf].

Conf. Weight Conf. Weight
8spdf g 10spdf

413 55 J=4,3,2
4f13 55 0.9866 4113 55 0.9848
4f1 55 747 0.0015 4f1 55 5% 0.0039
4f1 55 5f 6f 0.0012 4f1 55 5% 0.0013
4f1 55 69 7g 0.0012 4f1 55 5p 5f  0.00005
4f1 55 5f2 0.0009 42 55 5p  0.00003

4t J=0

44 0.9765 414 0.9750
412 552 0.0075 412 5s? 0.0055
4f1B3 5f 0.0038 413 5f 0.0050
412 747 0.0017 412 5f2 0.0045
4f1B36f 0.0016 4f12 592 0.0017

412 5s? J =6,4,5,2
412 552 0.9778 4f12 542 0.9758
4 f12 5p? 0.0053 4f1 552 5f  0.0037
4f1 552 5f 0.0022 4 f12 5p? 0.0029
419 55% 74* 0.0013 4119552 52 0.0020
4f1 5s 5p 6g 0.0012 4f1 5s 5p 5g  0.0001
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Table 4.12: List of the 10 most important configurations for calculation of Ir

energy levels E (cm™') and their weights W.

Configuration J E 44 Important Configurations

413 552 7/2 0 0.9775 4f13 552
0.0057 413 5p?
0.0016  4f'%2 55 5p 6g
0.0015 41 552 742
0.0013 4f1 552 5f 6f
0.0012 4111 552 69 Tg
0.0010 4fH 552 5f2
0.0010 42 55 5p Tg
0.0008 4fH 552 7f2
0.0008 4f1N 552 5f 7f

413 552 5/2 24770 0.9776 413 552
0.0056 413 5p?
0.0016 4f'2 55 5p 6g
0.0015 4fH 552 742
0.0013 4f1 552 5f 6f
0.0012 4111 552 69 Tg
0.0010 4fH 552 5f2
0.0010 42 55 5p Tg
0.0010 4f'2 55 5p 5g
0.0008 4fH 552 7f2

414 55 1/2 37861 0.9778 414 5s
0.0039 413 5s5f
0.0017 412 5s 7
0.0016 413 55 6f
0.0015 4f12 55 5f 6f
0.0014 4112 55 69 Tg
0.0012 412 5s 5f2
0.0010 413 5p 6g
0.0009 4f12 55 5f Tf
0.0009 4f2 55 6f Tf
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4.2 Optical clocks based on the Cf'** and Cf'"* ions

The work described in this section is published in Ref. [34]. Here, we explore
the possibility of developing optical clocks using the transitions between the ground
and a low-lying excited state of the highly-charged Cf!** and Cf'"* ions. Three out of
eight main Cf isotopes have a long half-life: A =249, 1 =9/2 (351 y), A=250,1 =0
(13.1 y), and A = 251,71 = 1/2 (898 y), where A is the number of nucleons and /
is the nuclear spin. Using the Cl+all-order approach, we predicted the energies of
clock transitions. Calculations of wavelengths of clock transitions and other relevant
atomic properties, as well as an analysis of a number of systematic effects that affect the
accuracy and stability of the optical clocks, including electric quadrupole, micromotion,
and quadratic Zeeman shifts of the clock transitions, can be found in Ref. [34].

Both Cf'** and Cf7* ions have the [1s%, ...,5d', 6s%] core. The former, Cf1oF,
is a Bi-like ion with three valence electrons above the core, while Cf!”* has one va-
lence electron above the core, allowing to consider it as a univalent element. But as a
detailed analysis shows, more correct and accurate results are obtained if we consider
Cf'™ as a trivalent ion including both 6s electrons into the valence field. This is partic-
ularly important for correct determination of the lowest-lying even-parity energy levels
whose main configuration, according to our calculation, is (6s5f2), which contains an
unpaired 6s electron.

Both the Cf"" and Cf'7" ions were studied previously in Refs. [83, 84] and found
to be particularly good candidates for testing variation of the fine-structure constant.
The calculation carried out in Ref. [84] identified the ground state (5f6p? QFE?/Z) and

the first excited state (5f26p ¢

§/9) of Cf'>* as the states with high sensitivity to «

variation and convenient clock wavelength. The dimensionless sensitivity factor |AK|
to a variation of « for the Cf17+ and Cf!5* clock pair was predicted to be 107 [28], while
the largest |AK| factor for any of the currently operating clock pair is 7 (for E3/E2
transitions in Yb™), with most others below 1.

We consider Cf'** and Cf'7* as ions with three valence electrons above closed

cores [1s%,...,5d"6s%] and [1s?, ..., 5d'°], respectively. We start from the solution of the
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Dirac-Hartree-Fock (DHF) equations in the V=3 approximation for both ions, where
N is the total number of valence electrons. The initial self-consistency procedure was
carried out for the core electrons and then the 5f, 6p, 6d, 7s, and 7p orbitals (and also
6s in the case of Cf7T) were constructed in the frozen-core potential. The remaining
virtual orbitals were formed using a recurrent procedure described in [2, 85] The newly
constructed functions were then orthonormalized with respect to the functions of the
same symmetry.

For both ions, the basis sets included in total 7 partial waves (lh.x = 6) and
orbitals with principal quantum number n up to 25. We included the Breit interaction
on the same footing as the Coulomb interaction at the stage of constructing the basis
set. QED corrections were also included following Ref. [5, 86].

We use the CI (as described in Section 2.1.6) and CI+MBPT (as described in
Section 2.1.10) methods to see how large core correlations and higher-order effects were,
and use the Cl+all-order (as described in Section 2.1.11) method for final calculations.

In general, we can express the effective Hamiltonian as
Heg(E) = Hpc + 2(E), (4.1)

where Hpc is the Hamiltonian in the frozen-core approximation, and the energy-
dependent operator ¥(E) accounts for virtual excitations of the core electrons. We
constructed this operator in three ways: using (i) second-order many-body perturba-
tion theory (MBPT) over residual Coulomb interaction [87], (ii) the linearized coupled
cluster single-double (LCCSD) method [64, 88], and (iii) the coupled cluster single
double (valence) triple (CCSDT) method. In the last case, using the expressions for
cluster amplitudes derived in Ref. [89], we included the non-linear (NL) terms and
valence triple excitations into the formalism of the CI+-all-order method developed in
Ref. [64]. We note that the equations for the valence triples are solved iteratively.
In the following we refer to these approaches, as the CI+MBPT, CI4+LCCSD, and
CI+CCSDT methods, respectively.
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The sets of Cf'** configurations for the odd- and even-parity states were con-
structed by allowing single and double excitations from the 5f6p? and 5f26p configu-
rations and from the 6p?6d, 5f6p6d and 5 f26d configurations, respectively, to 7 — 20s,
7—20p, 7T—20d, 6 — 19f, and 5 — 13g shells (we designate it as [20spd19f13¢g]). The
sets of Cf!™* configurations for the odd- and even-parity states were formed allowing
single and double excitations from the 6525 f and 6s%6p and from the 655 f2 and 655 f6p
configurations, respectively, to [20spd19f13¢g]. We checked for both ions that if we al-
lowed the single and double excitations to higher lying f and ¢ shells and also triple
excitations from the main configurations, the energies (counted from the ground state)
changed only by few tens cm™*.

The level schemes for low-lying levels of Cf'™" and Cf'** are given in Fig. 4.4
and Fig. 4.5, respectively. The energies of the lowest-lying states of Cf'** and Cf!"*+
obtained in different approximations are listed in Table 4.13. The energies of the
excited states (in cm™') are counted from the ground state. The assignments of the

Cf'* odd levels are from Ref. [84]. For designation of all other terms we use the main

configuration and the total angular momentum J of the state as a subscript.
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E2 clock
A~485 nm
5f5/2

Figure 4.4: The level scheme for low-lying odd-parity levels of Cf1"*. From Ref. [34].
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Figure 4.5: The level scheme for low-lying odd-parity levels of Cf!5*. From Ref. [34].
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In the third and fourth columns, we present the pure CI and CI+MBPT values.
Contributions from higher-order (HO) correlations (difference of the CI4+-LCCSD and
CI4+MBPT calculations) and from the NL terms and triple excitations (difference of
the CI+CCSDT and CI+LCCSD calculations) are given separately in columns labeled
“HO” and “NLTr”. Following an empiric rule obtained for Ag-like ions in Ref. [90]
and applied for Cd-like and Sn-like ions in Ref. [91], we estimate the contribution of
the higher (I > 6) partial waves as the contribution of the [ = 6 partial wave obtained
as the difference of two calculations where all intermediate sums in the all-order and
MBPT terms are restricted to ln.x = 6 and [, = 5. This contribution is listed in
Table 4.13 in the column labeled “Extrap”. The final theoretical results, listed in the
Final column, are obtained as the sum of the CI+MBPT values and HO, NLTr, and
Extrap corrections.

We find that the clock transition energies between the ground and first excited
state are very sensitive to different corrections for both ions. The CI+MBPT value
differs from the CI value by more than a factor of 2 for both ions, i.e., the contribution of
the core-valence correlation corrections is as large as the CI result. An inclusion of the
HO corrections, the NL terms and valence triples in the framework of the CI+LCCSD
and CI+CCSDT methods further changed the energies by several thousands of cm™!.

The CfT clock transition energy found at the CI+LCCSD stage is in a reason-
able agreement with the results of Refs. [5, 84]. The quadratic NL terms and valence
triples, contributing 3675 cm™! to the transition energy, were not taken into account
in Refs. [5, 84], which explains the difference between the present result and the clock
transition energy predicted in those works. Taking into account the importance of the
NL terms and valence triple excitations, and also noting that the present calculation
still omits the core triples and higher-order NL terms, we estimate the uncertainty
of the clock transition energies as half of the difference between the CI+CCSDT and
CI4+-LCCSD values.

This conservative estimate is based on a conclusion drawn from calculations for

Na [92] and Cs [93], that the contribution from the valence triples and NL terms is
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(much) larger than the contribution from core triples. Thus, the uncertainty of the
clock transition energy is ~ 1800 cm~! for Cf"**, and ~ 600 cm™! for Cf!"™*. Taking
these uncertainties into account, we neglect corrections to the transition energies due to
effective three-particle interactions between valence electrons. These corrections were
found to be at the level of 100 cm™! or less for the low-lying states of Cf** [5].
Beyond the calculations of the energy levels, other properties of the low-lying
states, such as wavelengths between the ground and excited states, and the lifetimes of
the excited states for Cf'** and Cf'"*, were obtained in the CI4+-CCSDT approximation
and compared with other calculations where available [34]. A number of systematic
effects that affect the accuracy and stability of the optical clocks were also analyzed
in detail, including the electric quadrupole, micromotion, and quadratic Zeeman shifts
of the clock transitions. The hfs magnetic dipole constants of the clock states and the
BBR shifts of the clock transitions were also calculated. The calculations done here in
Ref. [34] act as a guide for future experimental work, providing a detailed assessment

of both ions for clock development.
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Chapter 5
THE 3C/3D LINE INTENSITY RATIO IN FE XVII

The work described in this chapter is published in Ref. [43]. Space X-ray obser-
vatories, such as Chandra and XMM-Newton, resolve L-shell transitions of iron domi-
nating the spectra of many hot astrophysical objects. Some of the brightest lines arise
from Fe XVII (Ne-like iron) around 15 A: the resonance line 3C' ([(2p°)1/23d3/2] /=1 —
2p°]7=0) and the intercombination line 3D ([(2p°)3/23d5/2]j=1 — [2p°]=0). They are
crucial for diagnostics of electron temperatures, elemental abundances, ionization con-
ditions, velocity turbulences, and opacities. However, for the past four decades, their
observed intensity ratios persistently disagreed with advanced plasma models, dimin-
ishing the utility of high-resolution X-ray observations. L-shell soft X-ray fluorescence
of Fe XVII ions was just measured in an electron beam ion trap following resonant
photo-excitation using synchrotron radiation provided by the P04 beamline at PE-
TRA III [43]. The experiment measured the most accurate 3C'/3D oscillator strength
ratio to date, in an attempt to explain the discrepancy between theory and experi-
ment. We carried out a precision calculation correlating all 10 electrons, including full
Breit and QED [5] corrections, to predict the transition rates with 1-2% accuracy. Our
calculations ruled out incomplete inclusion of the electronic correlations in theoretical
calculations as the potential explanation of the puzzle.

In this work [43], we start from the solution of the DHF equations in the central
field approximation to construct the one-particle orbitals. The calculations are carried
out using the CI method, as described in Section 2.1.6, correlating all 10 electrons. Breit
interaction is included in all calculations, and the QED effects are included following
Ref. [48]. The basis sets of increasing sizes are used to check for convergence of the

values. The basis set is designated by the highest principal quantum number for each
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partial wave included. For example, [5spdf6g| means that all orbitals up to n =5 are
included for the spdf partial waves and n = 5,6 orbitals are included for the g partial
waves. We find that inclusion of the 6, 7h orbitals does not modify the results of the
calculations and omit higher partial waves.

We start with all possible single and double excitations to any orbital up to
5spdf6g from the 2s22p8, 2522p°3p even and 2s522p°3s, 25%2p°3d, 2s52p°3p, 2522p°4d,
2522p°5d odd configurations, correlating 8 electrons. We verified that inclusion of the
252p53s, 2522p°4 f, 2522p°5 f even and 2s52p%4p, 2522p°4s, and 2s522p°5s odd configura-
tions as basic configurations have negligible effect on either energies of relevant matrix
elements.

The only unusually significant change in the ratio, by 0.07, is due to the inclusion
of the 2522p33d® and 2p°3d® configurations. These are obtained as double excitations
from the 2522p°3d odd configuration, prompting the inclusion of the 2522p°4d, 2522p°5d
to the list of the basic configurations.

Contributions to the energies of Fe'®* calculated with different size basis sets
and number of configurations are listed in Table 5.1. The results are compared with
experimental data from the NIST database [94] and from a revised analysis of the
experimental data [95]. We use LS coupling and NIST data term designations for
comparison purposes, but note that 77 coupling would be more appropriate for this
ion. Contributions to the E1 reduced matrix elements D(3D) = D(2p° 1Sy —2p°3d 3 D;)
and D(3C) = D(2p° 1Sy —2p°3d ' P,) and the ratio of the respective oscillator strengths

_ (DBO)\? _ AE(30)
k= <D(3D)) * AE(3D)

are listed in Table 5.2. The energy ratio is 1.01655.
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We include a very wide range of configurations obtained by triple excitations
from the basic configurations as well as excitations from the 152 shell and find negligible
corrections to both energies and matrix elements as illustrated by Tables 5.1 and 5.2.
These contributions are listed as “Triples” and “1s2” in both tables. Significant increase
of the basis set from [5spdf6g] to [12spdfg| improves the agreement of energies with
experiment but gives a very small, -0.009, contribution to the ratio. We find that the
weights of the configurations containing 12fg orbitals are several times higher than
those containing 12spd orbitals, so we expand the basis to include more df g orbitals.
We also include 2s5?2p*nd® and 2p°nd?® configurations up to n = 14. The contributions
to the energies of the orbitals with n = 13 — 17 are 3 — 5 times smaller than those with
n = 6—12, clearly showing the convergence of the values withe increase of the basis set.
The effect on the ratio is negligible. The uncertainty of the NIST database energies,
3000 cm™! is larger than our differences with the experiment. The energies from the
revised analysis of FelT spectra [95] are estimated to be accurate to about 90 cm™*
and the scatter of the differences of different levels with experiment is reduced. The last
line of Table 5.1 shows the difference of the 3C' and 3D energies in eV, with the final
value 13.44(5)eV. We explored several different ways to construct the basis set orbitals.
While the final results with infinitely large basis set and complete configurations set
should be identical, the convergence properties of the different basis sets vary, giving
about 0.04 difference in the ratio and 0.04 eV in the 3C' — 3D energy difference at the
12spdf g level. Therefore, we set an uncertainty of the final value of the ratio to be
0.05. As an independent test of the quality and completeness of the current basis set,
we compare the results for D(3C) and D(3D) obtained in length and velocity gauges
for the [12spdf g] basis, see rows L and V' in Table 5.2. The difference of the results is
only 0.001.
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Table 5.2: Contributions to the E1 reduced matrix elements D(3D) = D(2p° 1Sy —
2p°3d 3D;) and D(3C) = D(2p°® 'Sy — 2p°3d ' P;) (in a.u.) and the ratio
of the respective oscillator strengths R. See caption of Table 5.1 for desig-
nations. L and V rows compared results obtained in length and velocity
gauges for the [12spdfg] basis. All other results are calculated using the
length gauge. Transition rates are listed in the last row in s7'. From Ref.

[43].

D(3C) D(3D) Ratio
55pdf6g] 0.33492  0.17842  3.582
[5spdf6g] +Triples  0.33493 0.17841 3.583

Triples 0.00001 -0.00001
[5spdf6g] +1s? 0.33480 0.17849 3.577
1s? -0.00012 0.00007
[12spdfq] L 0.33527  0.17884  3.573
V 0.33551 0.17894 3.574
[12spdf g] 0.00036  0.00042
+[17df g] 20.00001  0.00001
QED -0.00017 0.00030
Final 0.33498 0.17921 3.552
Recomm. 3.55(5)
Transition rate 2.238x 10 6.098x 1012
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Chapter 6

THE LOWEST-LYING ODD-PARITY ATOMIC LEVELS IN Ac

The work described in this chapter is published in Ref. [96]. Actinium (Z = 89)
lends its name to the actinide series, of which it is the first member. The longest-lived
isotope of actinium **7Ac (71,2 & 22y) is found in trace amounts as a member in the
decay chain of natural ?*>U. Actinium isotopes can be produced in nuclear reactors en-
abling their use in various applications based on their specific radioactivity. The isotope
225 Ac, an a-emitter with a half-life of 10 days, is used in cancer radiotherapy [97, 98, 99,
while 22" Ac is considered for use as the active element of radioisotope thermoelectric
generators. In combination with beryllium, ?*"Ac is an effective neutron source [100],
applied in neutron radiography, tomography and other radiochemical investigations.
Moreover, ?*"Ac is used as a tracer for deep seawater circulation and mixing [101]. On
the fundamental-physics side, actinium can be considered as a possible system to study
parity-nonconservation and time-reversal-invariance violation effects [102, 103]. Rare
isotopes of actinium are produced and were studied at different on-line facilities world-
wide. These research activities started at TRIUMF, Canada [104] and, together with
contributions from the LISOL facility in Belgium [105], are still ongoing. At ISOLDE
CERN, production of the isotope #?Y Ac was investigated, acting as mother for the 22Th
isomer proposed as a nuclear clock [106]. Further rare isotopes will become available
with high yield at the Facility for Rare Isotope Beams (FRIB) [107]. Studies of rare
actinium isotopes contribute to deriving nuclear physics properties and trends in this
region of the nuclear chart and help to decode astrophysical processes, to understand
fundamental interactions, and to develop practical applications, for example, in nuclear

medicine and material sciences.
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Table 6.1: The determined excitation energies and lifetimes, and comparison with
theory and literature. From Ref. [96].

State Energy (cm™!) 7 (ns)
Exp. Calc. Lit. Exp. Cale. I Cale. 1T Lit. [116, 117]
T 2P, TAT7.36(4) 7701(250) 7565 [116] 668(11) 647 707(53) 733(70)
T 2Py, 12276.59(2) 12475(250) 12345 [116] 255(7) 200 219(16) 238(20)
7sTp6d  F9, 13712.74(3) 13994(370) 13712.90 [118] 352(11) 327 351(29) 317(30)

The atomic structure of actinium was elucidated by Judd who calculated the
ordering and properties of low-lying levels of actinide atoms [108]. This work was
extended by calculations of energy differences between the lowest states [109] and a
prediction of the parameters of electric-dipole (E1) transitions in actinium [110] using
the Hartree-Fock method, as well as other theoretical studies [111, 112, 113, 114, 115].

Recently, Dzuba, Flambaum, and Roberts calculated atomic parameters of 86
low-lying states of neutral actinium with energies below 36218 cm™! [116]. Of these,
only 28 levels had been confirmed experimentally prior to the present work. In par-
ticular, puzzling was the absence of the lowest-lying odd-parity levels 7s27p QPf/Q and
75%Tp 2P§’/2, which should be directly accessible by E1 transitions from the 7s*6d 2Ds o
even-parity ground state. Since these predicted strong transitions are of primary im-
portance for spectroscopic applications (e.g., fluorescence and photoionization spec-
troscopy, optical pumping, cooling and trapping, etc.), experimental confirmation and
determination of these states’ parameters (e.g., accurate energies, lifetimes, hyper-
fine structure, etc.) are urgently needed. In this work, a new theoretical calculation
of actinium levels is presented which allows the determination of several atomic level
properties. Therefore, the present work also sets a benchmark of theoretical accuracy in
Ac, tests methods to estimate theoretical uncertainties, and identifies future directions
of theory development. Precise atomic calculations of Ac hyperfine constants and iso-
tope shifts will be used for accurate extraction of nuclear properties from forthcoming
laser-spectroscopy experiments.

A comparison of the calculated and experimentally determined energies and
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lifetimes is shown in Table 6.1. While we list results for the three states of experimen-
tal interest, we calculated energies of 18 states using the Cl+-all-order approach, as
described in Section 2.1.11, including 114 840 configurations, and demonstrated con-
vergence of the results with increasing number of configurations. QED and full Breit
corrections are included as described in Refs. [119, 34]. Our results for even and odd
levels agree with previous experiments [118] to 40 — 120 ecm™! and 200 — 350 cm™?,
respectively, with theory values being larger than the experimental ones in all cases.
Such regular differences with experiment let us predict that we overestimate the en-
ergies of the 2P; levels by about 200 cm™!, with about 50 cm™! uncertainties which
is in excellent agreement with measured values. We list the lifetimes obtained using
theoretical values of energies and electric-dipole (E1) matrix elements in the column
labeled “Calc.1”. We use experimental energies and theoretical values of F1 matrix
elements to calculate the final theoretical lifetimes listed in column labeled “Calc. I1”.
The uncertainties in the lifetimes are estimated from the size of the higher-order correc-
tions to E1 matrix elements determined from the difference of the CI+LCCSD values
and another calculation that combines CI with many-body perturbation theory [62].
Note that the lifetime values listed in [116] were recently corrected [117]; the
corrected values are given in Table 6.1. Within the respective uncertainties, there is

agreement between the two independent calculations and the experiment.
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Chapter 7
PREDICTING ATOMIC PROPERTIES OF NEGATIVE IONS

Negative ions are important for both fundamental and practical reasons, such as
medical applications [120, 121]. They are key constituents of terrestrial and space-based
plasmas [122], and they play crucial roles in many chemical reactions, as highlighted,
for example, in the very recent study of the astatine negative ion [121]. Beams of
short-lived radioactive nuclei are needed for frontier experimental research in nuclear
structure, reactions, and astrophysics, and negatively charged radioactive ion beams
have unique advantages and can provide the highest beam quality with continuously
variable energies [123]. Laser cooling of negative ions may allow for sympathetic cool-
ing of antiprotons for the production of cold antihydrogen for tests of fundamental
symmetries [124, 125]. From a fundamental standpoint, since the extra electron in a
negative ion is not bound by a net Coulomb force, their properties critically depend
on electron-electron correlation and polarization, giving valuable opportunities to gain
insight into these important multibody interactions [126, 127, 128]. Therefore, negative
ions serve as key test systems for state-of-the art atomic structure calculations.

Excited states of negative ions, both bound and quasibound states known as res-
onances, pose even more challenges and opportunities for both theory and experiment
[120, 126, 129]. They are important in low energy electron scattering from atoms and
molecules [130, 131, 132], electron attachment [131, 133], chemical reactions [134, 135],
and photoabsorption [120, 126, 127, 136, 137]. Recent studies of negative ion excited
states have focused on a diverse range of aspects, including the possibility of laser
cooling negative ions [124, 125, 138, 139, 140, 141, 142], negative ion resonance spec-
troscopy using ultralong-range Rydberg molecules [143], and resonances in inner-shell

photodetachment from small carbon molecular negative ions [144]. Clearly, progress
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in theoretical calculations of negative ion excited states would be very valuable for a
wide variety of both practical applications and fundamental insights.

We demonstrate for the first time that a high-precision relativistic hybrid ap-
proach that combines the configuration interaction and the coupled-cluster methods
(Cl+all-order) [64, 125] can be used to accurately predict the energies of quasibound
states of negative ions. This method was designed for low-lying bound states and gen-
erally bound state approaches cannot be used to compute properties associated with
levels beyond the ionization (or in this case photodetachment) threshold for reasons
described below, but we have developed successful ways to extend this technique to

quasibound states of complex negative ions.

7.1 Identification of quasibound spectrum of La~

The work described in this section is submitted for publication [145]. Here, we
demonstrated the accurate prediction of a quasibound spectrum of a negative ion using
a novel high-precision theoretical approach. We used La™ as a test case due to a recent
experiment done by collaborators from the Denison University that measured energies
of 11 resonances in its photodetachment spectrum attributed to transitions to quasi-
bound states [6]. We identified all of the observed resonances, and predicted one more
peak just outside the range of the prior experiment. Following the theoretical predic-
tion, the peak was observed at the predicted wavelength, validating the identification.
The same approach is applicable to a wide range of negative ions. Moreover, theory
advances reported in this work can be used for massive generation of atomic transi-
tion properties for neutrals and positive ions needed for a variety of applications. The
work done in this section was done in collaboration with experimental group from the
Denison University [6]. Our experimentalist collaborators performed the measurements
done in this section, and we did the theoretical work to validate identifications.

The negative ion of lanthanum, La™, is one of the most intriguing of all atomic
negative ions. Whereas most negative ions only have a single bound state config-

uration because of the shallow, short-range nature of their binding potentials [126],
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La~ possesses multiple bound states of opposite parity [138, 139]. Indeed, La~ has
the richest spectrum of bound-bound electric-dipole transitions yet observed for any
atomic negative ion [139], and it has emerged as one of the most promising negative
ions for laser-cooling applications [125, 138, 139, 140, 146]. Beyond the complex bound
structure of La™, very recent measurements of its photodetachment spectrum done by
our collaborators from the Denison University have revealed a remarkably rich near-
threshold spectrum including at least 11 prominent resonances due to excitation of
quasibound negative ion states in the continuum [6]. This recent observation of its
photodetachment spectrum allowed for an immediate test of our theoretical predic-
tions of the quasibound state structure of La~. We were able to identify all of the
11 observed resonances (peaks), and predicted several peaks that were too weak to be
observed in Ref. [6]. Our theoretical resonance energies agree with their experiment
to 0.03 — 0.3% for “narrow” peaks and to 2.3 — 3% for “wide” peaks associated with
higher energy levels. We also predicted that there should be a resonance peak just
outside the photon energy range of the original experiment. Following our prediction,
the peak was observed at exactly the predicted position, validating the identification;
this new measurement done by our collaborators is reported here. We start with a
description of the theoretical computations and specific solutions that allowed us to
extract the quasibound states and identify the measured resonances.

While we used La™ as an example, the same approach is applicable to a wide
range of negative ions. Moreover, we developed a way to reliably extract hundreds of
states in the framework of the Cl4-all-order method, as described in Section 2.1.11,
instead of just a few bound states. This advance will allow to significantly extend the
applicability of the Cl+all-order method for neutrals and positive ions, allowing for
massive data generation (energies, transition rates, lifetimes, branching ratios, etc.) of
a large part of the periodic table for a variety of applications.

In 2018, the Cl+all-order approach was used to accurately predict energies of
then unmeasured bound states of La™ as well as transition rates and branching ratios

relevant to the laser cooling of La~ [125]. La~ is considered as a system with four
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Table 7.1: Quasibound levels of La™ energy levels in meV. All energies are counted
from the 3F, even ground state. Levels labeled A, B, C, and D in exper-
imental work [6] are assigned terms. Calculated g-factors are compared
with the non-relativistic values (NR) in the last two columns. From Ref.

[145].
Level Term Theory  Expt.  Diff.(%) g-factor
NR  Cl+all
6525d6p 5P, 567.0
6525d6p 3P, 643.2
6s5d2(“F)6p 5Go 7250 723.34(4) -0.2%  0.333 0.347
6s5d2(*F)6p 3Gy T63.0 T761.26(7) -0.2%  0.917 0.924
6s5d2(‘F)6p G, 8141 811.27(4) -0.3% 1150 1.150
6s5d2(1FY6p °Gs  8TT.T 1.267  1.266
6s5d*(*F)6p °Gy 955.7 1.333  1.333
6s5d*(*F)6p °F) 900.4 0.000 0.083
6s5d2(AFY6p °F,  920.1 1.000  1.001
6s5d2(*F)6p 5F,  953.3  979.3(11)  2.7% 1250 1.231
6s5d2(*F)6p 5F,  1005.9 1.350  1.312
6s52(*F)6p SFs  1068.0 1400 1.386

valence electrons and Xe-like 54-electron core. The Cl+all-order method, as described
in Section 2.1.11, uses Dirac-Hartree-Fock one-electron wave functions for the low-
lying valence electrons, 6s, bd, 4f, 6p, 7s, and 7p in the present work. We use a finite
basis method to construct all other orbitals (up to 35spdfghi) in a spherical cavity
using B-splines. Such an approach discretizes the continuum spectrum: a sum over
the finite basis is equivalent (to a numerical precision) to a sum over all bound states
and integration over the continuum. The obvious downside of this approach is the
limitation of its applicability to relatively low-lying bound states. For example, even
for the largest practical size of the cavity (a few hundreds atomic units) the method
is limited to the orbitals with the principal quantum number less than 20, so higher
Rydberg, or other delocalized states cannot be treated accurately. The situation for
negative ions is more favorable, where there are (if any) only a few bound states, no

usual Rydberg series, and quasibound states (if any) are still highly localized.
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There are two major problems in using the CI+all-order method to find quasi-
bound states of negative ions. The first problem is the separation of true quasibound
states from spurious “continuum-like” states that are artifacts of the finite basis (i.e.
states containing orbitals with n > 9 that do not fit inside the cavity and represent
near-continuum states). We solved this issue by running two set of calculations that
were identical with the exception of the size of the cavity. We have theorized that the
cavity size will affect the number and energies of the spurious states. The bound and
quasibound states will not be affected as the smaller cavity size is chosen to fit them
inside the cavity (we expect quasibound states to be well localized). We find that our
supposition is correct and the energies of the quasibound states are indeed stable with
the change in the cavity size from 60 a.u. to 85 a.u. The difficulty of this approach
comes from the second problem: a large number of spurious states drastically affect
convergence of the iterative procedure used by the CI, which is already very poor for
negative ions making the computations prohibitively long. Furthermore, the conver-
gence procedure was known to break down when some states reached convergence while
other closely-lying states were still strongly varying. We separated the computation
into seven different ones, each for a single value of the total angular momentum from
J =0 to J = 6 to improve convergence as well as resolved the issue of disparate
convergence levels.

Building upon the MPI version of the CI code developed here, we improved both
efficiency and memory use, allowing to run such a large number of already complicated
computations in a short time. Each of the computations contained 110000 — 186 000
configurations, corresponding to 4 — 6.6 million Slater determinants and requiring at
least 100 iterations (where usual is under 20). We computed a total of 74 odd states
with J = 0 — 6 and identified eight of these states as known bound states and twelve
more states as quasibound states. We verified that the bound states agree with exper-
iment to 0.1 — 2%. We find that dominant configurations for “spurious” states contain
a large fraction of the np electrons with n > 8, unlike the quasibound states where

configurations with 6p and 7p dominate.
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The energies of quasibound states are listed in Table 7.1 relative to the 3F}
even ground state (detachment threshold is 557.546(20) meV [147, 148]). Two of the
quasibound states complete the 3P; triplet, with the 3P, state being the last bound
state. We classify the remaining 10 states as 2 quintets, 6s5d?6p G and 5F. Both
quintets can be formed by attachment of a 6p electron to the 6s5d*(*F') excited states of
La. To verify our term assignments, we compute the g-factors for all states and compare
them to the g-factors obtained from the non-relativistic Lande formula. We find a near
perfect agreement of the calculated g-factors with the non-relativistic values (see the
last two columns of Table 7.1), unambiguously confirming our term identification.

The dipole selection rules allow for eight transitions from the three lowest-lying
6s°5d* 3Fy34 even states to the °G odd levels and nine transitions to the *F odd
levels. There are no allowed transitions involving the °Gg level. The transition energies
for these 17 transitions are listed in Table 7.2, along with the identification of peaks
observed by our collaborators in Ref. [6] and their measured energies. All “narrow”
(<1 meV width) peaks 13-19 observed in Ref. [6] involve the °G levels. Due to excellent
agreement of the theoretical predictions with the measured energies, all of these peaks
were straightforward to identify. All of the transition energies agree to 0.03 — 0.3%.
The only allowed transition that was not observed by our collaborators in Ref. [6] is
3Fy — 5@, which is expected to be weaker than the observed 3F273 — °(3 transitions.
All observed transitions are illustrated in Fig. 7.1 a) which shows a partial energy level
diagram of relevant states of La~ and La showing quasibound excited states in the 5G
manifold. The numbered arrows indicate resonance transitions that have been assigned
in this study.

The remaining “wide” (>1 meV width) peaks 20-23 in the spectrum are asso-
ciated with transitions to the ®F multiplet. Peaks 20 and 23 have to involve the same
°F; level, as they are separated by 89 meV, which matches the energy difference of
the 3F3 and 3F) even states [139, 147, 148]. However, complete identification of the
peaks 20-23 is more complicated as there are multiple ways to match these observed

transitions to theory predictions. We expect theory to be less accurate for these higher
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Table 7.2: Identification of peaks observed in [6]. Transition energies are given in
meV. The recommended values given in “recomm.” column are shifted
by 22 meV from the ab initio values. Last column gives the difference
between the experimental and theoretical values in meV. From Ref. [145].

Transition Theory Expt. Peak Diff.

ab initio recomm.
SFy — %Gy 725.0 723.34(6) 17 1.7
SFy — %Gy 640.5 639.41(5) 4 11
3F, — 5Gs  763.0 761.24(9) 19 18
3Fy — %G5 678.5 677.36(5) 15 1.1
3Fy — °G3 5875 not observed
3SFy — %Gy 729.6 727.32(3) 18 2.3
SFy — %G, 638.6 638.41(3) 13 0.2
3F, — 5G5  T02.2 701.01(4) 16 1.2
3SEY — 5Ky 900.4 876.4 not observed
3Fy — °F, 920.1 898.1 blended with 23
3y — °F,  835.6 813.6 not observed
3F, — 5F;  953.3 931.3 predicted

observed 930.5(9)*

5Fy — 5Fy  868.8  846.8 847.8(9) 21 210
3Ey — °Fy 7778 755.8 not observed
3SFy — 5Fy 921.4 899.4 895.6(19) 23 25.8
3Fy — 5F, 8304  808.4 806.3(13) 20  24.1
3Fy — °F 892.5 870.5 872.1(12) 22 20.4

*Present work

states due to stronger configuration mixing. The study of the fine-structure splittings
within the >F quintet shows these to be regular, i.e. matching non-relativistic values
to within a few meV. Therefore, we expect similar differences between theory and ex-
periment for all 4 measured transitions, with the deviation not exceeding a few (~5)
meV. This requirement leaves only one possible identification of peaks 20-24 given in
Table 4.6 in which all 4 measured energies differ from the theory by 20-25 meV. We
predict that 3 transitions where total angular momentum J is lower for the quasibound
state than for the even state were too weak to be observed. Two of the transitions,

3Fy — 5Fy and 3F, — 5[, have nearly the same energy, resulting in blending of two
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Figure 7.1: Partial energy level diagram of relevant bound states of La~ (black),
neutral La (blue), and quasibound excited states of La~ (red) in the a)
5@ and b) °F manifolds. Numbered arrows indicate resonance transitions
observed previously by the Denison University group [6] (Peaks 13-23)
and in the present study (Peak 24) that have been identified in the present
study. From Ref. [145].

transitions in Peak 23; note that the expected separation of these two transitions of
only 1.3 meV is substantially less than Peak 23’s width of 8.8(18) meV [6]. To improve
theory prediction for other peaks, we shift the calculated energies by 22 meV and list
these recommended values in the “recomm.” column, with expected uncertainties of
less than 5 meV.

Importantly, from our identification of the quasibound state structure, we expect
a new resonance photodetachment peak associated with the 3F, — °Fj transition at
slightly higher energy than the previously measured spectrum of Walter et al. [6]. Its
predicted resonance energy can be calculated based on the energy of Peak 21, which
is due to transition to the same ®F5 upper state but from a different lower state, 3 F3.
Thus, the predicted energy of new Peak 24 is the energy of Peak 21 (847.8(9) meV)
plus the La~ (3Fy — 3F3) fine structure splitting (83.941(20) meV [139, 147, 148]),
yielding a predicted energy for Peak 24 of 931.7(9) meV. Peak 20-23 identification and
new Peak 24 are illustrated in Fig. 7.1 b), which shows transitions to the 5F manifold.
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Figure 7.2: Measured La~ photodetachment spectrum above the ground state thresh-
old energy of 557.546 meV. Data below 920 meV are from previous work
[6, 139]; data above 920 meV are from the present study. The numbered
peaks are due to resonant detachment via excitation of quasibound neg-
ative ion states; the newly observed Peak 24, which was predicted and
verified in the present study, is indicated in red. From Ref. [145].

To test the theoretical interpretation of the La™ resonance spectrum, previous
measurements [6] were extended to slightly higher photon energies to search for the
predicted resonance due to the La~ 3Fy, — 5F3 transition near 931 meV. The relative
photodetachment cross section was measured as a function of photon energy using a
crossed ion-beam-OPO laser-beam system described in detail in Refs. [6, 149, 150]. In
the present study, the tuning range of the OPO was extended beyond its nominal short
wavelength limit of 1350 nm by manually controlling its crystal in order to measure
photodetachment from 920 - 948 meV (1350 - 1310 nm).

Figure 7.2 shows the La~ photodetachment spectrum from Walter et al. [6],
together with the present measurements above 920 meV. The continuum photodetach-
ment cross section rapidly rises above 920 meV in a nearly linear fashion due to the
opening of photodetachment channels from bound states of La~ to the La *F manifold.
Most importantly, the new measurements reveal an additional resonance peak, Peak

24, which appears as a weak hump in the cross section at an energy near 931 meV. The
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Figure 7.3: Measured photodetachment spectrum in the vicinity of the newly ob-
served Peak 24, which is due to the La~ 3Fy — °F4 transition. The
solid line is a fit to the data of a Fano profile with a linear background.
The inset shows the remaining peak after the linear background has been
subtracted from the measured neutral signal. From Ref. [145].

measured photodetachment spectrum in the vicinity of the newly observed Peak 24 is
shown in Fig. 7.3, together with a fit of the Fano resonance formula [151] with a linear
background continuum cross section. The Fano profile provides an excellent fit to the
data, yielding a resonance energy of 930.5(9) meV and peak width of 5.8(10) meV.
The measured energy of Peak 24 of 930.5(9) meV agrees with the predicted
value of 931.7(9) meV based on its theoretical identification as the 3Fy — °F3 transi-
tion. Furthermore, the measured widths of Peaks 21 and 24 (6.2(10) meV and 5.8(10)
meV, respectively) are the same within uncertainties, as expected since the peak width
depends on the lifetime of the ®F5 upper state which is the same for both peaks.
The agreement between the predicted and measured energy and width of the newly
observed Peak 24 clearly verifies the present theoretical interpretation of the La™ qua-
sibound resonance spectrum and demonstrates the power of the methods used in these
calculations. It is important to note that the theoretical calculations were absolutely
necessary in finding the new peak, since it is very weak (< 8% of the background signal)

and situated on a steep slope due to a rapidly increasing continuum photodetachment
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cross section.

7.2 Observation of an electric quadrupole atomic transition in Bi~

The work described in this section is submitted for publication [7]. Electric
quadrupole atomic transitions are of great interest due to applications such as tests of
fundamental physics [23, 84, 152], optical clocks [153], and quantum information [154],
and they provide important benchmarks for detailed state-of-the-art theoretical calcu-
lations [155]. The properties of negative ions crucially depend on electron correlation
effects [120, 126, 128, 156, 157, and E2 transitions in negative ions provide uniquely
valuable opportunities to gain insights into these subtle but important interactions.
Accurate theoretical computations are very difficult for negative ions with complex
electronic structure due to large configuration mixing in comparison with neutral or
positive ions [9, 126].

There is a great urgency for studying forbidden transitions in negative ions with
the advent of new cryogenic storage ring facilities, such as DESIREE [158, 159] and
the CSR [160, 161], that can measure lifetimes of excited states of negative ions over
unprecedentedly long scales of up to hours [159]. While most of the negative ion excited
state lifetime experiments to date have involved M1 transitions, one recent study at
DESIREE measured the E2 decay of an excited state of Pt~ [162].

In this work, we investigate an F2 transition in the negative ion of bismuth
with experimentalist collaborators from Denison University. The hyperfine-averaged
binding energy of the Bi~ (6p* *P,) ground state relative to the Bi (6p® *Ss/2) ground
state was previously measured by Bilodeau and Haugen to be 942.369(13) meV [163].
While there have not been any previous measurements of the fine structure of Bi™, Su
et al. very recently reported calculations that indicated an interesting inversion in the
ordering of the excited fine structure levels, with 3P, being bound and *P; unbound
[164]. Although there have been previous observations of transitions in negative ions
that had both M1 and E2 contributions [165, 166], to our knowledge, this is the first

transition observed in a negative ion with E2 as the lowest-order allowed interaction.
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The Bi~ fine structure and E2 transition properties were independently calculated
using a high-precision hybrid theoretical approach to account for the strong multi-level
electron interactions and relativistic effects. The experiment and theoretical results
are in excellent agreement, providing valuable new insights into this complex system
and testing the accuracy of the theoretical approach.

We carried out calculations of the Bi~ binding energies and the Bi~ 6p* 2 Py—3P,
transition energy and transition rate using the CI+all-order method, as described in
Section 2.1.11 [64]. Alternatively, we carry out identical computation constructing the
entire effective Hamiltonian using the second-order MBPT [2] to evaluate the impor-
tance of the higher-order corrections; we refer to such results as the CI+MBPT.

We treat Bi as a system with 3 valence electrons and a [Xe]4f!45d'%6s% core.
The core is the same as for the Bi~ calculation. The difference between the Bi~ and
Bi calculation is in the CI part, which contains 4 valence electrons for Bi~. There
is an exponential growth in the number of possible configurations with the addition
of extra valence electrons and care must be taken to ensure a sufficiently large set of
configuration for Bi~. The problem is exacerbated for the weakly-bound negative ion
which exhibits very strong configuration mixing. All calculations incorporate the Breit

interaction as described in Ref. [34].
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The results of the CI4-all-order and CI+MBPT calculations and specific contri-
butions to the energies are summarized for neutral Bi, and the electron affinity and the
6p* 3P, —3P;, transition energy are presented for Bi~ in Table 7.3. Binding energies
are shown relative to the Bi 6p® S5/, ground state. Contributions of the higher orders
(HO) are calculated as the differences of the CI+-all-order (CI+all) and the CI+MBPT
calculations. To evaluate the accuracy of the calculations, we calculated several smaller
corrections separately. We originally ran Cl+all-order and CI+MBPT calculations al-
lowing excitations to all partial waves up to [ = 5, with maximum principal quantum
number n = 35 for each (relativistic) partial wave. The contribution of the [ = 6 partial
wave is listed in the column “/ = 6”. From the extrapolations carried out for simpler
systems, we find that the contribution of all other partial waves is on the same order
as the [ = 6 contribution. QED corrections are calculated following Ref. [5]. Both
the contributions of the | = 6 partial wave and the QED corrections are relatively
small. Next, we increase the number of CI configurations allowing excitations up to
23spdf18g and 22spdf18¢ orbitals for Bi and Bi™, respectively, an increase from the
initial 22spd18 f14¢g set. All single, double and a large subset of triple excitations are
included. These changes increase the number of included configurations for the Bi~
from 73 719 to 126 168, with corresponding increase in the number of Slater determi-
nants from 3 090 923 to 4 952 692. Finally, we carry out a complete Cl4-all-order run
that incorporates all corrections (QED, | = 6, and larger number of configurations)
simultaneously. These results are listed as “Final” in Table 7.3.

Our final calculated binding energy of the Bi~ P, ground state is in excellent
agreement with the measured value of Bilodeau and Haugen [163], differing by only
0.05% (see Table 7.3). We find that the binding energy of the ground state, or the
electron affinity (EA), is strongly affected by the inclusion of more configurations, but
not by the inclusion of the higher orders. This is expected as Bi and Bi~ computations
share the same core, and differences in its treatment is expected to cancel to a degree.
A sensitivity to extra configurations is also expected as configuration mixing for Bi~

is much stronger than for Bi. There is also excellent agreement for the binding energy
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Table 7.4: The energy levels of Po counted from the ground state. The experimental
values are from NIST [94]. From Ref. [7].

Level  Expt. CI+MBPT CI+All HO Final Diff. Diff.%
6p* 3P, 0 0 0 0 0 0

6p* P, 7515 8022 7739 =283 7717 -202  -2.6%
6p* P, 16832 16508 16189 -318 16272 560 3.4%
6p* 'Dy 21679 21370 21183 -187 21181 499 2.4%

of the fine structure excited state 3P, with our calculated value of 2992 cm™! being

1 1

within 17 ecm™! or 0.6% of the measured value of 3009 cm™!.

However, in contrast
to the ground state, the higher orders contribute significantly (5.7%) to the binding
energy of the 3P, state and therefore affect the 3P, —3P; transition energy. Finally,
our calculations indicate that the Bi~ 3P, state is not bound, which is in agreement
with the calculations of Su et al. [164].

We find it interesting to also explore if Po, which has the same two lowest
electronic states as Bi™, may be used as a homologue system to improve prediction
for a negative ion. We carried out a Po computation with all parameters identical to
Bi~. The results are listed in Table 7.4. We find that the difference with experiment
is actually larger in Po than in Bi~. This is most likely due to uneven cancellation of
some omitted effects, such as core triple excitations and non-linear terms that tend to
strongly cancel. We also find as expected that there is much stronger configuration
mixing in a negative ion, for example, only 11 non-relativistic configurations contribute
a total of 99% for the ground state of Po, but 22 for Bi~. Our results demonstrate
the significant fact that an isoelectronic neutral system cannot always be used as a
homologue for a negative ion.

The present theoretical results for the Bi~ 2P, — 3P, E2 transition is given in
Table 7.5, together with previous calculations. Our calculated transition energy (4605
cm™1) is in excellent agreement with the experimental value (4591 cm™!), differing by
only 14 cm™! or 0.3%. In contrast, the calculated transition energy from Su et al. [164]

is 444 cm~! larger than the recent measurement, while the earlier calculation of Konan
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Table 7.5: Present results and previous calculations for the Bi~ 3P, — 3P, E2
transition energy and upper-state lifetime. From Ref. [7].

Study Method 3P, — 3P, Energy (cm~1) Lifetime (s)
Present Experiment 4591 -
Present Theory 4605 16.5(7)
Su [164] Theory 5033 15.20
Konan [168] Theory 8872 -

et al. is even farther away. Our computations include higher-order inner-shell electronic
correlations and, therefore, are expected to be more accurate than Multiconfigurational
Dirac-Hartree-Fock calculations [164, 168] for both energies and transition rates.
Turning now to the transition rate, we calculate the electric quadrupole 6p*

3Py =3Py reduced matrix element to be 16.30(33)ea? using the CI+all-order method.
There is only a 1% difference between the Cl4-all-order and the CI+MBPT results,
and there is a 1.7% difference between the results obtained with medium and large sets
of CI configurations. We add these in quadrature to estimate the final uncertainty of
the matrix element to be 2%. Using the experimental value of the transition energy,
we obtain 0.0607(24) s~! for the transition rate, corresponding to a 3P, lifetime of
16.5(7) s. At first glance, the previous calculated lifetime by Su et al. of 15.20 s appears
to be fairly close to our value. However, it is important to consider that Su et al.’s
quoted lifetime was obtained using their calculated transition energy for 3P, —3P,,
which is larger than the precisely measured energy by 10%. Since the E2 lifetime
scales inversely with transition energy to the fifth power, revising their lifetime using
our measured energy would yield an adjusted lifetime of 24.05 s, which is significantly
longer than our value. Finally, note that although our calculated lifetime of the P,
upper state of 16.5(7) s indicates that the transition is far too narrow ( 2 x 107! meV)
for a direct measurement of the lifetime from the peak width in the present experiment,
the theoretically predicted lifetime cold be rigorously tested in storage ring experiments
using established techniques [159, 162].

In summary, we have calculated the binding energies of the Bi~ bound states
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and transition energy for 6p* 3P, — 3Py in cm~!. We have confirmed the fine structure
of Bi~ and the E2 character of the transition through detailed theoretical calculations
including the transition rate. The measured and calculated energies are in excellent
agreement, demonstrating the power of the theoretical methods used to account for
the important correlation and relativistic effects in this complex multielectron system.
Similar theoretical methods can be applied to study F2 transitions in other negative
ions that have appropriate excited bound state structures, opening a new avenue for
investigations of forbidden transitions in atomic systems. Such studies can be combined
with the new ability of accurately measuring lifetimes of excited negative ions over long
time scales, recently developed at cryogenic storage ring facilities such as DESIREE
and the CSR, to give further insights into many-body correlation effects and decay

dynamics.
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Chapter 8

CONCLUSION

We have developed a broadly-applicable approach that drastically increases the
ability to accurately predict properties of complex atoms. The computational advances
demonstrated in this work are widely applicable to most elements in the periodic table
and will allow one to solve numerous problems in atomic physics, astrophysics, and
plasma physics.

Our systematic study of the atomic properties of highly charged Ir'"™" demon-
strates new capabilities for high precision relativistic atomic calculations required for
modern experiments relevant for the development of novel atomic clocks with high
sensitivity to the variation of the fine-structure constant. Previously predicted E1
transitions have eluded observation despite years of effort raising the possibility that
theory predictions are grossly wrong. We provide accurate predictions of transition
wavelengths and F'1 transition rates, explaining the lack of observation and providing
a pathway towards detection of clock transitions.

In the Cf%* and Cf'"* highly charged ions, we have carried out a systematic
study of properties needed for the development of optical clocks using the hybrid ap-
proach combining the CI and coupled cluster methods. We analyzed a number of
systematic effects, including electric quadrupole- micromotion-, and quadratic Zeeman
shifts, of the clock transitions that affect the accuracy and stability of the optical
clocks. We also calculated the hfs magnetic dipole constants of the clock states and
the BBR shifts of the clock transitions.

In the neutral Ac atom, we collaborated with experimentalists from the Univer-

sity of Mainz to locate the two lowest-lying odd-parity states, and measure the energies
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and lifetimes, as well as hyperfine parameters of the 2P3°/2 state, finding excellent agree-
ment between theoretical predictions and experimental measurements, implying good
understanding of the atomic structure of the actinium atom. Our theoretical findings
aid in developing techniques for cooling and trapping of actinium, of potential interest
for measuring the nuclear Schiff moment enhanced in Ac, as well as in optimization
of specific resonance-ionization processes. The results will be useful for production of
225 Ac for nuclear medicine, and may support the design of fundamental physics ex-
periments such as investigations of fundamental symmetries with this atom. Precise
atomic calculations of Ac hyperfine constants and isotope shifts will be used for accu-
rate extraction of nuclear properties from forthcoming laser-spectroscopy experiments.

In the Fe'S* ion, we carried out a precision calculation all 10 electrons, including
full Breit and QED corrections, to predict the transition rates with 1-2% accuracy. Our
calculations ruled out incomplete inclusion of the electronic correlations in theoretical
calculations as the potential explanation of the puzzle. We saturated the computation
in all possible numerical parameters, including over 230 000 configurations in the largest
basis set 12sp17dfg. We verified that all the energies of all 18 states considered, counted
from the ground state, agree with the NIST database well within the experimental
uncertainty of 0.05%. The theoretical 3C — 3D energy difference of 13.44 eV is in
agreement with the experimental value to 0.3%.

We demonstrated the ability to accurately predict the quasibound spectrum
of negative ions with our calculations of atomic properties of La™ and Bi~. The
Cl+all-order method was designed for low-lying bound states and generally bound
state approaches cannot be used to compute properties associated with levels beyond
the ionization threshold, but we developed successful ways to extend this technique to
quasibound states of complex negative ions. In La™, we identified all of the observed
resonances, and predicted one more peak just outside the range of the prior experi-
ment. Following the theoretical prediction, the peak was observed at the predicted
wavelength, validating the identification. In Bi™, we calculated the binding energies

of the Bi~ bound states and transition energy for 6p* 3P, —3F) in em~!. We have
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confirmed the fine structure of Bi~ and the E2 character of the transition through
detailed theoretical calculations including the transition rate. The measured and cal-
culated energies are in excellent agreement, demonstrating the power of the theoretical
methods used to account for the important correlation and relativistic effects in this

complex multielectron system.

166



1]

BIBLIOGRAPHY

E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices,” Journal of
Computational Physics, vol. 17, pp. 87-94, Jan. 1975.

M. G. Kozlov, S. G. Porsev, M. S. Safronova, and 1. I. Tupitsyn, “CI-MBPT: A
package of programs for relativistic atomic calculations based on a method com-

bining configuration interaction and many-body perturbation theory,” Computer
Physics Communications, vol. 195, pp. 199-213, 2015.

A. Windberger, J. R. Crespo Lopez-Urrutia, H. Bekker, N. S. Oreshkina,
J. C. Berengut, V. Bock, A. Borschevsky, V. A. Dzuba, E. Eliav, Z. Harman,
U. Kaldor, S. Kaul, U. I. Safronova, V. V. Flambaum, C. H. Keitel, P. O. Schmidt,
J. Ullrich, and O. O. Versolato, “Identification of the predicted 5s—4f level cross-
ing optical lines with applications to metrology and searches for the variation of
fundamental constants,” Phys. Rev. Lett., vol. 114, p. 150801, Apr. 2015.

C. Cheung, M. S. Safronova, S. G. Porsev, M. G. Kozlov, I. I. Tupitsyn, and A. I.
Bondarev, “Accurate Prediction of Clock Transitions in a Highly Charged Ion
with Complex Electronic Structure,” Phys. Rev. Lett., vol. 124, p. 163001, Apr.
2020.

I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba,
“Quantum electrodynamical shifts in multivalent heavy ions,” Phys. Rev. Lett.,
vol. 117, p. 253001, 2016.

C. W. Walter, N. D. Gibson, N. B. Lyman, and J. Wang, “Photodetachment
spectroscopy of quasibound states of the negative ion of lanthanum,” Phys. Rewv.
A, vol. 102, Oct. 2020.

C. W. Walter, S. E. Spielman, R. Ponce, N. D. Gibson, J. N. Yukich, C. Che-
ung, and M. S. Safronova, “Observation of an electric quadrupole transition in
a negative ion: Experiment and theory,” arXiv:2011.10872, 2020. submitted to
Phys. Rev. Lett. (2020).

NIST  Multiconfiguration — Hartree-Fock and — Multiconfiguration — Dirac-
Hartree-Fock Database, Charlotte Froese Fischer and Georgio Tachiev,
http://nlte.nist.gov/MCHF.

167



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

C. F. Fischer, G. Tachiev, G. Gaigalas, and M. R. Godefroid, “An MCHF atomic-
structure package for large-scale calculations,” Computer Physics Communica-
tions, vol. 176, pp. 559-579, Apr. 2007.

P. Jonsson, X. He, C. F. Fischer, and I. Grant, “The grasp2k relativistic atomic
structure package,” Computer Physics Communications, vol. 177, pp. 597-622,
Oct. 2007.

P. Jonsson, G. Gaigalas, J. Bieron, C. F. Fischer, and I. Grant, “New version:
Grasp2k relativistic atomic structure package,” Computer Physics Communica-
tions, vol. 184, pp. 2197-2203, Sept. 2013.

A. Hibbert, “CIV3 — a general program to calculate configuration interaction
wave functions and electric-dipole oscillator strengths,” Computer Physics Com-
munications, vol. 9, pp. 141-172, Mar. 1975.

W. EISSNER, “SUPERSTRUCTURE - AN ATOMIC STRUCTURE CODE,”
Le Journal de Physique IV, vol. 01, pp. C1-3—-C1-13, Mar. 1991.

R. D. Cowan, “Theory of  atomic structure and spec-
tra.” University of California Press, Berkeley, 1981.
http://www.tcd.ie/Physics/People/Cormac.McGuinness/Cowan/.

R. D. Cowan, The theory of atomic structure and spectra. Berkeley: University
of California Press, 1981.

A. Bar-Shalom, M. Klapisch, and J. Oreg, “HULLAC, an integrated computer
package for atomic processes in plasmas,” Journal of Quantitative Spectroscopy
and Radiative Transfer, vol. 71, pp. 169188, Oct. 2001.

M. Amusia, Computation of atomic processes : a handbook for the ATOM pro-
grams. Bristol, UK Philadelphia, Pa: Institute of Physics Pub, 1997.

M. F. Gu, The flexible atomic code, Canadian Journal of Physics, 86, 675-689
(2008).

E. V. Kahl and J. C. Berengut, “AMBiT: A programme for high-precision
relativistic atomic structure calculations,” Computer Physics Communications,
vol. 238, p. 232, May 2019.

J.-P. Uzan, “The fundamental constants and their variation: observational and
theoretical status,” Reviews of Modern Physics, vol. 75, pp. 403-455, Apr. 2003.

E. Peik and C. Tamm, “Nuclear laser spectroscopy of the 3.5 eV transition in
Th-229," Europhysics Letters (EPL), vol. 61, pp. 181-186, Jan. 2003.

M. Safronova, “In search of the nuclear clock,” Nature Physics, vol. 14, pp. 198—
198, Feb. 2018.

168



[23]

[24]

[25]

[30]

[31]

J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, “Enhanced laboratory sensi-
tivity to variation of the fine-structure constant using highly charged ions,” Phys.
Rev. Lett., vol. 105, Sept. 2010.

M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. 1. Safronova, S. G. Porsev,
and M. G. Kozlov, “Highly charged ions for atomic clocks, quantum information,
and search for o variation,” Phys. Rev. Lett., vol. 113, p. 030801, 2014.

A. Derevianko, V. A. Dzuba, and V. V. Flambaum, “Highly charged ions as
a basis of optical atomic clockwork of exceptional accuracy,” Phys. Rev. Lett.,
vol. 109, Oct. 2012.

V. A. Dzuba, A. Derevianko, and V. V. Flambaum, “Ion clock and search for
the variation of the fine-structure constant using optical transitions in Nd***and
Sm'®*)” Phys. Rev. A, vol. 86, Nov. 2012.

V. A. Dzuba, V. V. Flambaum, and H. Katori, “Optical clock sensitive to vari-
ations of the fine-structure constant based on the Ho'** ion,” Phys. Rev. A,
vol. 91, Feb. 2015.

M. G. Kozlov, M. S. Safronova, J. R. Crespo Lépez-Urrutia, and P. O. Schmidt,
“Highly charged ions: optical clocks and applications in fundamental physics,”
Rev. Mod. Phys., vol. 90, p. 045005, 2018.

E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, “The 2018 CO-
DATA recommended values of the fundamental physical constants,” 2020.
Database developed by J. Baker, M. Douma, and S. Kotochigova. Available at

http://physics.nist.gov/constants. National Institute of Standards and Technol-
ogy, Gaithersburg, MD 20899.

V. A. Dzuba, V. V. Flambaum, and J. K. Webb, “Space-time variation of physical
constants and relativistic corrections in atoms,” Phys. Rev. Lett., vol. 82, pp. 888—
891, Feb. 1999.

V. A. Dzuba, V. V. Flambaum, and J. K. Webb, “Calculations of the rela-
tivistic effects in many-electron atoms and space-time variation of fundamental
constants,” Phys. Rev. A, vol. 59, pp. 230-237, Jan. 1999.

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, “Electron-hole
transitions in multiply charged ions for precision laser spectroscopy and searching
for variations in «,” Phys. Rev. Lett., vol. 106, p. 210802, May 2011.

H. Bekker, private communication.

S. G. Porsev, U. I. Safronova, M. S. Safronova, P. O. Schmidt, A. I. Bondarev,
M. G. Kozlov, I. I. Tupitsyn, and C. Cheung, “Optical clocks based on the Cf**
and Cf'™ ions,” Phys. Rev. A, vol. 102, p. 012802, July 2020.

169



[35]

[36]

[37]

[38]

[39]

V. A. Dzuba, A. Derevianko, and V. V. Flambaum, “High-precision atomic clocks
with highly charged ions: Nuclear-spin-zero f!2-shell ions,” Phys. Rev. A, vol. 86,
Nov. 2012.

V. A. Dzuba, A. Derevianko, and V. V. Flambaum, “Erratum: High-precision
atomic clocks with highly charged ions: Nuclear-spin-zero f2-shell ions [phys.
rev. a86, 054501 (2012)],” Phys. Rev. A, vol. 87, Feb. 2013.

L. Schmoger, O. O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest,
S. Feuchtenbeiner, J. Pedregosa-Gutierrez, T. Leopold, P. Micke, A. K. Hansen,
T. M. Baumann, M. Drewsen, J. Ullrich, P. O. Schmidt, and J. R. C. Lopez-
Urrutia, “Coulomb crystallization of highly charged ions,” Science, vol. 347,
pp. 1233-1236, Mar. 2015.

T. Leopold, S. A. King, P. Micke, A. Bautista-Salvador, J. C. Heip, C. Ospelkaus,
J. R. C. Lopez-Urrutia, and P. O. Schmidt, “A cryogenic radio-frequency ion
trap for quantum logic spectroscopy of highly charged ions,” Review of Scientific
Instruments, vol. 90, p. 073201, July 2019.

S. Johansson, A. Derkatch, M. P. Donnelly, H. Hartman, A. Hibbert, H. Karlsson,
M. Kock, Z. S. Li, D. S. Leckrone, U. Litzén, H. Lundberg, S. Mannervik, L.-O.
Norlin, H. Nilsson, J. Pickering, T. Raassen, D. Rostohar, P. Royen, A. Schmitt,
M. Johanning, C. M. Sikstrom, P. L. Smith, S. Svanberg, and G. M. Wahlgren,
“The FERRUM project: New f-value data for Fe II and astrophysical applica-
tions,” Physica Scripta, vol. T100, no. 1, p. 71, 2002.

N. C. Deb and A. Hibbert, “Electric-dipole allowed and intercombination transi-
tions among the 3d°, 3d*4s and 3d*4p levels of Fe IV,” Atomic Data and Nuclear
Data Tables, vol. 96, pp. 358-480, July 2010.

N. C. Deb and A. Hibbert, “Strong infrared lines among the lowest three even con-
figurations of Fe I1,” in APS Division of Atomic, Molecular and Optical Physics
Meeting Abstracts, vol. 40 of APS Meeting Abstracts, p. OPM.10, May 2009.

C. Reynolds, “Fluorescent iron lines as a probe of astrophysical black hole sys-
tems,” Physics Reports, vol. 377, pp. 389-466, Apr. 2003.

S. Kiithn, C. Shah, J. R. C. Lépez-Urrutia, K. Fujii, R. Steinbriigge, J. Stierhof,
M. Togawa, Z. Harman, N. S. Oreshkina, C. Cheung, M. G. Kozlov, S. G. Porsev,
M. S. Safronova, J. C. Berengut, M. Rosner, M. Bissinger, R. Ballhausen, N. Hell,
S. Park, M. Chung, M. Hoesch, J. Seltmann, A. S. Surzhykov, V. A. Yerokhin,
J. Wilms, F. S. Porter, T. Stohlker, C. H. Keitel, T. Pfeifer, G. V. Brown, M. A.
Leutenegger, and S. Bernitt, “High resolution photoexcitation measurements ex-
acerbate the long-standing Fe XVII oscillator strength problem,” Phys. Rev.
Lett., vol. 124, June 2020.

170



[44] W. R. Johnson, Atomic Structure Theory. Springer Berlin Heidelberg, 2007.

[45] G. Drake, Springer Handbook of Atomic, Molecular, and Optical Physics. New
York: Springer, 2006.

[46] 1. Lindgren and J. Morrison, Atomic Many-Body Theory. Springer Berlin Hei-
delberg, 1986.

[47] K. Szalewicz, “PHYS838: Advanced Molecular Science,” Dec. 2017.

[48] I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba,
“Quantum electrodynamical shifts in multivalent heavy ions,” Phys. Rev. Lett.,
vol. 117, p. 253001, 2016.

[49] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-FElectron
Atoms. Springer Berlin Heidelberg, 1957.

[50] J. A. Gaunt, “The triplets of helium,” Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character, vol. 122,
pp. 513-532, Feb. 1929.

[51] G. Breit, “The effect of retardation on the interaction of two electrons,” Physical
Review, vol. 34, pp. 553-573, Aug. 1929.

[52] G. Breit, “The fine structure of He as a test of the spin interactions of two
electrons,” Physical Review, vol. 36, pp. 383-397, Aug. 1930.

[53] G. Breit, “Dirac’s equation and the spin-spin interactions of two electrons,” Phys-
ical Review, vol. 39, pp. 616-624, Feb. 1932.

[54] M. Kozlov, S. Porsev, and I. Tupitsyn, “Breit interaction in heavy atoms,”
arXiv:physics /0004076, May 2000.

[55] 1. Grant, “Relativistic calculation of atomic structures,” Advances in Physics,
vol. 19, pp. 747-811, Nov. 1970.

[56] J. B. Mann and W. R. Johnson, “Breit interaction in multielectron atoms,” Phys.
Rev. A, vol. 4, pp. 41-51, July 1971.

[57] W. R. Johnson, S. A. Blundell, and J. Sapirstein, “Finite basis sets for the dirac
equation constructed from B-splines,” Phys. Rev. A, vol. 37, pp. 307-315, Jan.
1988.

[58] J. J. Sakurai, Modern quantum mechanics. Boston: Addison-Wesley, 2011.
[59] C. D. Carl de Boor, A Practical Guide to Splines. Springer-Verlag GmbH, 2001.

[60] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, “New
extended model of hadrons,” Phys. Rev. D, vol. 9, pp. 3471-3495, June 1974.

171



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

[72]

[73]
[74]

R. B. Morgan and D. S. Scott, “Generalizations of Davidson’s method for com-
puting eigenvalues of sparse symmetric matrices,” Journal on Scientific and Sta-
tistical Computing, vol. 7, pp. 817-825, July 1986.

V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, “Combination of the many-
body perturbation theory with the configuration-interaction method,” Phys. Reuv.
A, vol. 54, pp. 3948-3959, Nov. 1996.

V. A. Dzuba and J. S. M. Ginges, “Calculations of energy levels and lifetimes of
low-lying states of barium and radium,” Physical Review A, vol. 73, Mar. 2006.

M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, “Development of
a configuration-interaction plus all-order method for atomic calculations,” Phys.
Rev. A, vol. 80, p. 012516, July 2009.

M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body
calculations of energy levels, hyperfine constants, electric-dipole matrix elements,
and static polarizabilities for alkali-metal atoms,” Phys. Rev. A, vol. 60, pp. 4476—
4487, Dec. 1999.

R. Pal, M. S. Safronova, W. R. Johnson, A. Derevianko, and S. G. Porsev, “Rel-
ativistic coupled-cluster single-double method applied to alkali-metal atoms,”
Phys. Rev. A, vol. 75, Apr. 2007.

S. G. Porsev, K. Beloy, and A. Derevianko, “Precision determination of elec-
troweak coupling from atomic parity violation and implications for particle
physics,” Phys. Rev. Lett., vol. 102, May 2009.

Y. G. Rakhlina, M. G. Kozlov, and S. G. Porsev, “The energy of electron affinity
to a zirconium atom,” Optics and Spectroscopy, vol. 90, pp. 817-821, June 2001.

K. Blum, Density Matriz Theory and Applications. Springer-Verlag GmbH, 2012.

E. Davidson, Reduced density matrices in quantum chemistry. New York: Aca-
demic Press, 1976.

S. A. Kotochigova and I. I. Tupizin, “Theoretical investigation of rare-earth and
barium spectra by the hartree-fock-dirac method,” Journal of Physics B: Atomic
and Molecular Physics, vol. 20, pp. 47594772, Sept. 1987.

J. D. F. Richard L. Burden, Numerical Analysis. Brooks Cole Pub. Co., 2010.
W. Gropp, E. Lusk, and A. Skjellum, Using MPI. MIT Press Ltd, 2014.

W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI : modern
features of the Message-Passing-Interface. Cambridge, MA: The MIT Press,
2015.

172



[75]
[76]

[77]

[78]

[79]

[30]

[31]

[82]

[33]

[84]

[85]

[86]

“Lustre.” https://wiki.lustre.org/.

M. S. Safronova, S. G. Porsev, C. Sanner, and J. Ye, “Two Clock Transitions
in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure
Constant,” Phys. Rev. Lett., vol. 120, p. 173001, 2018.

V. A. Dzuba, V. V. Flambaum, and S. Schiller, “Testing physics beyond the
standard model through additional clock transitions in neutral ytterbium,” Phys.
Rev. A, vol. 98, p. 022501, Aug. 2018.

U. I. Safronova, V. V. Flambaum, and M. S. Safronova, “Transitions between
the 4 f-core-excited states in Ir'6*, Ir'"*, and Ir'®* ions for clock applications,”
Phys. Rev. A, vol. 92, p. 022501, Aug. 2015.

J. C. Berengut, V. A. Dzuba, and V. V. Flambaum, “Enhanced laboratory sensi-
tivity to variation of the fine-structure constant using highly-charged ions,” Phys.
Rev. Lett., vol. 105, p. 120801, 2010.

R. T. Imanbaeva and M. G. Kozlov, “Configuration interaction and many-body
perturbation theory: Application to scandium, titanium, and iodine,” Ann. Phys.
(Berlin), vol. 531, p. 1800253, 2019.

V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, “QEDMOD: Fortran program
for calculating the model lamb-shift operator,” Computer Physics Communica-
tions, vol. 189, pp. 175-181, 2015.

I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba,
“Quantum electrodynamical shifts in multivalent heavy ions,” Phys. Rev. Lett.,
vol. 117, p. 253001, 2016.

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and A. Ong, “Optical transitions
in highly charged californium ions with high sensitivity to variation of the fine-
structure constant,” Phys. Rev. Lett., vol. 109, p. 070802, 2012.

V. A. Dzuba, M. S. Safronova, U. I. Safronova, and V. V. Flambaum, “Actinide
ions for testing the spatial a-variation hypothesis,” Phys. Rev. A, vol. 92, Dec.
2015.

M. G. Kozlov, S. G. Porsev, and V. V. Flambaum, “Manifestation of the nuclear
anapole moment in the M1 transitions in bismuth,” Journal of Physics B: Atomic
and Molecular Physics, vol. 29, no. 4, pp. 689-97, 1996.

V. M. Shabaev, I. 1. Tupitsyn, and V. A. Yerokhin, “Model operator approach
to the lamb shift calculations in relativistic many-electron atoms,” Phys. Rev. A,
vol. 88, p. 012513, July 2013.

173



[87]

8]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, “Combination of the many-
body perturbation theory with the configuration-interaction method,” Phys. Reuv.
A, vol. 54, p. 3948, 1996.

M. G. Kozlov, “Precision calculations of atoms with few valence electrons,” Int.
J. Quant. Chem., vol. 100, p. 336, 2004.

S. G. Porsev and A. Derevianko, “Triple excitations in the relativistic coupled-
cluster formalism and calculation of Na properties.,” Phys. Rev. A, vol. 73,
p. 012501, 2006.

M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev,
and M. G. Kozlov, “Highly charged Ag-like and In-like ions for the development
of atomic clocks and the search for o variation,” Phys. Rev. A, vol. 90, p. 042513,
2014.

M. S. Safronova, V. A. Dzuba, V. V. Flambaum, U. I. Safronova, S. G. Porsev,
and M. G. Kozlov, “Atomic properties of Cd-like and Sn-like ions for the devel-

opment of frequency standards and search for the variation of the fine-structure
constant,” Phys. Rev. A, vol. 90, p. 052509, 2014.

C. C. Cannon and A. Derevianko, “Complete fourth-order relativistic many-body
calculations for atoms,” Phys. Rev. A, vol. 69, p. 030502(R), 2004.

A. Derevianko and S. G. Porsev, ““Dressing” line and vertices in calculations of
matrix elements with the coupled-cluster method and determination of c¢s atomic
properties,” Phys. Rev. A, vol. 71, p. 032509, 2005.

Yu. Ralchenko, A. Kramida, J. Reader, and the NIST ASD Team. NIST Atomic
Spectra Database. Available at http://physics.nist.gov/asd. National Institute of
Standards and Technology, Gaithersburg, MD.

A. Kramida, preliminary critical analysis of Fe XVII spectral data, private com-
munication (2019).

K. Zhang, D. Studer, F. Weber, V. M. Gadelshin, N. Kneip, S. Raeder, D. Budker,
K. Wendt, T. Kieck, S. G. Porsev, C. Cheung, M. S. Safronova, and M. G. Kozlov,

“Detection of the lowest-lying odd-parity atomic levels in actinium,” Phys. Rev.
Lett., vol. 125, Aug. 2020.

R. Boll, D. Malkemus, and S. Mirzadeh, “Production of actinium-225 for alpha
particle mediated radioimmunotherapy,” Appl. Radiat. Isotopes., vol. 62, pp. 667—
79, May 2005.

A. A. Kotovskii, N. A. Nerozin, I. V. Prokof’ev, V. V. Shapovalov, Y. A. Yakovsh-
chits, A. S. Bolonkin, and A. V. Dunin, “Isolation of actinium-225 for medical
purposes,” Radiochemistry, vol. 57, no. 3, pp. 285-291, 2015.

174



[99]

100]

101]

[102]

103]

[104]

[105]

[106]

[107]

A. Morgenstern, C. Apostolidis, and F. Bruchertseifer, “Supply and clinical appli-
cation of actinium-225 and bismuth-213,” Seminars in Nuclear Medicine, vol. 50,
no. 2, pp. 119 — 123, 2020.

A. M. Russell and K. L. Lee, Structure-Property Relations in Nonferrous Metals.
John Wiley & Sons, 2005.

W. Geibert, M. R. van der Loeff, C. Hanfland, and H.-J. Dauelsberg, “Actinium-
227 as a deep-sea tracer: sources, distribution and applications,” Farth. Planet.
Sc. Lett., vol. 198, no. 1, pp. 147 — 165, 2002.

V. A. Dzuba and V. V. Flambaum, “Parity violation and electric dipole moments
in atoms and molecules,” International Journal of Modern Physics E, vol. 21,
no. 11, p. 1230010, 2012.

B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, “Parity nonconservation
in Fr-like actinide and Cs-like rare-earth-metal ions,” Phys. Rev. A, vol. 88,
p. 012510, July 2013.

S. Raeder, M. Dombsky, H. Heggen, J. Lassen, T. Quenzel, M. Sjodin,
A. Teigelhofer, and K. Wendt, “In-source laser spectroscopy developments at
trilis—towards spectroscopy on actinium and scandium,” Hyperfine Interact.,
vol. 216, no. 1-3, pp. 33-39, 2013.

E. Verstraelen, A. Teigelhofer, W. Ryssens, F. Ames, A. Barzakh, M. Bender,
R. Ferrer, S. Goriely, P.-H. Heenen, M. Huyse, P. Kunz, J. Lassen, V. Manea,
S. Raeder, and P. Van Duppen, “Search for octupole-deformed actinium isotopes
using resonance ionization spectroscopy,” Phys. Rev. C vol. 100, p. 044321, Oct
2019.

M. Verlinde, S. Kraemer, J. Moens, K. Chrysalidis, J. G. Correia, S. Cottenier,
H. De Witte, D. V. Fedorov, V. N. Fedosseev, R. Ferrer, L. M. Fraile, S. Geld-
hof, C. A. Granados, M. Laatiaoui, T. A. L. Lima, P.-C. Lin, V. Manea, B. A.
Marsh, I. Moore, L. M. C. Pereira, S. Raeder, P. Van den Bergh, P. Van Dup-
pen, A. Vantomme, E. Verstraelen, U. Wahl, and S. G. Wilkins, “Alternative
approach to populate and study the ??*Th nuclear clock isomer,” Phys. Rev. C,
vol. 100, p. 024315, Aug 2019.

E. P. Abel, M. Avilov, V. Ayres, E. Birnbaum, G. Bollen, G. Bonito, T. Bredeweg,
H. Clause, A. Couture, J. DeVore, M. Dietrich, P. Ellison, J. Engle, R. Ferrieri,
J. Fitzsimmons, M. Friedman, D. Georgobiani, S. Graves, J. Greene, S. Lapi,
C. S. Loveless, T. Mastren, C. Martinez-Gomez, S. McGuinness, W. Mittig,
D. Morrissey, G. Peaslee, F. Pellemoine, J. D. Robertson, N. Scielzo, M. Scott,
G. Severin, D. Shaughnessy, J. Shusterman, J. Singh, M. Stoyer, L. Sutherlin,

175



108

[109]

[110]

[111]

[112]

113]

[114]

[115]

[116]

[117)

[118]

A. Visser, and J. Wilkinson, “Isotope harvesting at FRIB: additional opportuni-
ties for scientific discovery,” Journal of Physics G: Nuclear and Particle Physics,
vol. 46, p. 100501, Aug. 2019.

B. R. Judd, “Low-lying levels in certain actinide atoms,” Phys. Rewv., vol. 125,
pp. 613-625, Jan 1962.

L. J. Nugent and K. L. V. Sluis, “Theoretical treatment of the energy differences
between fid's* and f?*1s? electron configurations for lanthanide and actinide
atomic vaporsx,” J. Opt. Soc. Am., vol. 61, pp. 1112-1115, Aug 1971.

L. Ozdemir and G. Urer, “Electric dipole transition parameters for low-lying
levels for neutral actinium,” Acta. Phys. Pol. A, vol. 118, Oct. 2010.

L. Brewer, “Energies of the electronic configurations of the lanthanide and ac-
tinide neutral atoms,” J. Opt. Soc. Am., vol. 61, pp. 1101-1111, Aug 1971.

E. Eliav, S. Shmulyian, U. Kaldor, and Y. Ishikawa, “Transition energies of
lanthanum, actinium, and eka-actinium (element 121),” The Journal of Chemical
Physics, vol. 109, pp. 3954-3958, Sept. 1998.

P. Quinet, C. Argante, V. Fivet, C. Terranova, A. V. Yushchenko, and
E. Biémont, “Atomic data for radioactive elements Ra I, Ra II, Ac I and Ac
IT and application to their detection in HD 101065 and HR 465, Astronomy &
Astrophysics, vol. 474, pp. 307-314, Oct. 2007.

G. Urer and L. Ozdemir, “Productioenergy levels and electric dipole transitions
for neutral actinium (Z = 89),” Arab. J. Sci. Eng., vol. 37, pp. 239-250, Jan.
2011.

E. Eliav and U. Kaldor, Study of Actinides by Relativistic Coupled Cluster Meth-
ods, ch. 2, pp. 23-54. John Wiley & Sons, Ltd, 2015.

V. A. Dzuba, V. V. Flambaum, and B. M. Roberts, “Calculations of the atomic
structure for the low-lying states of actinium,” Phys. Rev. A, vol. 100, p. 022504,
Aug 2019.

V. A. Dzuba, V. V. Flambaum, and B. M. Roberts, “Erratum: Calculations
of the atomic structure for the low-lying states of actinium [Phys. Rev. A 100,
022504 (2019)],” Phys. Rev. A, vol. 101, p. 059901, May 2020.

A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team.
NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available:
https://physics.nist.gov/asd [2016, January 31]. National Institute of
Standards and Technology, Gaithersburg, MD., 2019.

176



119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

I. I. Tupitsyn, M. G. Kozlov, M. S. Safronova, V. M. Shabaev, and V. A. Dzuba,
“Quantum Electrodynamical Shifts in Multivalent Heavy lons,” Phys. Rev. Lett.,
vol. 117, p. 253001, Dec. 2016.

D. J. Pegg, “Structure and dynamics of negative ions,” Rep. Prog. Phys., vol. 67,
pp. 857-905, 2004.

D. Leimbach, J. Karls, Y. Guo, R. Ahmed, J. Ballof, L. Bengtsson, F. B. Pamies,
A. Borschevsky, K. Chrysalidis, E. Eliav, D. Fedorov, V. Fedosseev, O. Forstner,
N. Galland, R. F. G. Ruiz, C. Granados, R. Heinke, K. Johnston, A. Koszorus,
U. Koster, M. K. Kristiansson, Y. Liu, B. Marsh, P. Molkanov, L. F. Pasteka, J. P.
Ramos, E. Renault, M. Reponen, A. Ringvall-Moberg, R. E. Rossel, D. Studer,
A. Vernon, J. Warbinek, J. Welander, K. Wendt, S. Wilkins, D. Hanstorp, and
S. Rothe, “The electron affinity of astatine,” Nature Comm., vol. 11, p. 3824,
July 2020.

T. J. Millar, C. Walsh, and T. A. Field, “Negative ions in space,” Chem. Reuv.,
vol. 117, no. 3, pp. 1765-1795, 2017.

Y. Liu, D. W. Stracener, and T. Stora, “Production of negatively charged ra-
dioactive ion beams,” New J. Phys., vol. 19, p. 085005, Aug. 2017.

A. Kellerbauer and J. Walz, “A novel cooling scheme for antiprotons,” New J.
Physics, vol. 8, p. 45, 2006.

G. Cerchiari, A. Kellerbauer, M. S. Safronova, U. I. Safronova, and P. Yzombard,
“Ultracold anions for high-precision antihydrogen experiments,” Phys. Rev. Lett.,
vol. 120, p. 133205, Mar 2018.

T. Andersen, “Atomic negative ions: structure, dynamics and collisions,” Phys.
Rep., vol. 394, pp. 157-313, Jan. 2004.

V. K. Ivanov, “Theoretical studies of photodetachment,” Rad. Phys. Chem.,
vol. 70, pp. 345-370, 2004.

M. T. Eiles and C. H. Greene, “Extreme correlation and repulsive interactions
in highly excited atomic alkali anions,” Phys. Rev. Lett., vol. 121, p. 133401, Sep
2018.

S. J. Buckman and C. W. Clark, “Atomic negative ion resonances,” Rev. Modern
Phys., vol. 66, no. No. 2, p. 539, 1994.

S. J. Buckman, D. T. Alle, M. J. Brennan, P. D. Burrow, J. C. Gibson, R. J.
Gulley, M. Jacka, D. S. Newman, A. R. P. Rau, J. P. Sullivan, and K. W.
Trantham, “Role of Negative Ion Resonances in Electron Scattering from Atoms
and Molecules,” Aust. J. Phys., vol. 52, p. 473, 1999.

177



131]

132]

[133]

[134]

135

[136]

[137]

138

[139]

[140]

[141]

S. Schippers, E. Sokell, F. Aumayr, H. Sadeghpour, K. Ueda, I. Bray,
K. Bartschat, A. Murray, J. Tennyson, A. Dorn, M. Yamazaki, M. Takahashi,
N. Mason, O. Novotny, A. Wolf, L. Sanche, M. Centurion, Y. Yamazaki, G. Laric-
chia, C. M. Surko, J. Sullivan, G. Gribakin, D. W. Savin, Y. Ralchenko, R. Hoek-
stra, and G. O’Sullivan, “Roadmap on photonic, electronic and atomic collision
physics: II. electron and antimatter interactions,” Journal of Physics B: Atomic
and Molecular Physics, vol. 52, p. 171002, Aug. 2019.

C. Szmytkowski and P. Mozejko, “Recent total cross section measurements in
electron scattering from molecules,” Fur. Phys. J. D, vol. 74, no. 5, p. 90, 2020.

I. Fabrikant, S. Eden, N. Mason, and J. Fedor, “Recent progress in dissociative
electron attachment: From diatomics to biomolecules,” Adv. Atom. Mol. Opt.
Phys., vol. 66, pp. 545657, Apr. 2017.

J. Mikosch, M. Weidemiiller, and R. Wester, “On the dynamics of chemical re-
actions of negative ions,” Int. Rev. Phys. Chem., vol. 29, no. 4, pp. 589-617,
2010.

J. Meyer and R. Wester, “lon-molecule reaction dynamics,” Ann. Rev. Phys.
Chem., vol. 68, pp. 333-353, 2017.

H. Kjeldsen, “Photoionization cross sections of atomic ions from merged-beam

experiments,” Journal of Physics B: Atomic and Molecular Physics, vol. 39,
pp. R325-R377, 2006.

S. Schippers, A. Perry-Sassmannshausen, T. Buhr, M. Martins, S. Fritzsche, and
A. Miiller, “Multiple photodetachment of atomic anions via single and double
core-hole creation,” Journal of Physics B: Atomic and Molecular Physics, vol. 53,
p- 192001, Aug. 2020.

S. M. O’Malley and D. R. Beck, “Lifetimes and branching ratios of excited states
in La=, Os™, Lu™, Lr~, and Pr™,” Phys. Rev. A, vol. 81, p. 032503, 2010.

C. W. Walter, N. D. Gibson, D. J. Matyas, C. Crocker, K. A. Dungan, B. R.
Matola, and J. Rohlén, “Candidate for laser cooling of a negative ion: Observa-
tions of bound-bound transitions in La™,” Phys. Rev. Lett., vol. 113, p. 063001,
Aug. 2014.

E. Jordan, G. Cerchiari, S. Fritzsche, and A. Kellerbauer, “High-resolution
spectroscopy on the laser-cooling candidate La~,” Phys. Rev. Lett., vol. 115,
p. 113001, Sept. 2015.

P. Yzombard, M. Hamamda, S. Gerber, M. Doser, and D. Comparat, “Laser
cooling of molecular anions,” Phys. Rev. Lett., vol. 114, p. 213001, May 2015.

178



[142)

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

R. Tang, R. Si, Z. Fei, X. Fu, Y. Lu, T. Brage, H. Liu, C. Chen, and C. Ning,
“Candidate for laser cooling of a negative ion: High-resolution photoelectron
imaging of Th™,” Phys. Rev. Lett., vol. 123, p. 203002, Nov 2019.

F. Engel, T. Dieterle, F. Hummel, C. Fey, P. Schmelcher, R. Low, T. Pfau, and
F. Meinert, “Precision spectroscopy of negative-ion resonances in ultralong-range
rydberg molecules,” Phys. Rev. Lett., vol. 123, p. 073003, Aug 2019.

A. Perry-Sassmannshausen, T. Buhr, A. Borovik, M. Martins, S. Reinwardt,
S. Ricz, S. O. Stock, F. Trinter, A. Miiller, S. Fritzsche, and S. Schippers, “Mul-
tiple photodetachment of carbon anions via single and double core-hole creation,”
Phys. Rev. Lett., vol. 124, p. 083203, Feb 2020.

M. S. Safronova, C. Cheung, M. G. Kozlov, S. E. Spielman, N. D. Gibson, and
C. W. Walter, “Predicting quasibound states of negative ions,” arXiv:2010.02489,
2020.

L. Pan and D. R. Beck, “Candidates for laser cooling of atomic anions: La~
versus Os™,” Phys. Rev. A, vol. 82, p. 014501, 2010.

Y. Lu, R. Tang, X. Fu, and C. Ning, “Measurement of the electron affinity of the
lanthanum atom,” Phys. Rev. A, vol. 99, p. 062507, Jun 2019.

C. Blondel, “Comment on “measurement of the electron affinity of the lanthanum
atom”.” Phys. Rev. A, vol. 101, p. 016501, Jan 2020.

C. W. Walter, N. D. Gibson, D. J. Carman, Y.-G Li, and D. J. Matyas, “Electron
affinity of indium and the fine structure of In™ measured using infrared photode-
tachment threshold spectroscopy,” Phys. Rev. A, vol. 82, p. 032507, 2010.

C. W. Walter, N. D. Gibson, Y.-G Li, D. J. Matyas, R. M. Alton, S. E. Lou, R.
L. Field III, D. Hanstorp, L. Pan, and D. R. Beck, “Experimental and theoretical
study of bound and quasi-bound states of Ce™,” Phys. Rev. A, vol. 84, p. 032514,
2011.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,”
Phys. Rev., vol. 124, pp. 1866-1878, 1961.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and
S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature,
vol. 567, pp. 204208, Mar. 2019.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. Schmidt, “Optical atomic
clocks,” Reviews of Modern Physics, vol. 87, pp. 637-701, June 2015.

179



[154]

[155]

[156]

[157]

158

[159]

[160]

[161]

P. Schindler, D. Nigg, T. Monz, J. T. Barreiro, E. Martinez, S. X. Wang, S. Quint,
M. F. Brandl, V. Nebendahl, C. F. Roos, M. Chwalla, M. Hennrich, and R. Blatt,

“A quantum information processor with trapped ions,” New Journal of Physics,
vol. 15, p. 123012, Dec. 2013.

U. I. Safronova, M. S. Safronova, and W. R. Johnson, “Forbidden m1 and e2
transitions in monovalent atoms and ions,” Phys. Rev. A, vol. 95, Apr. 2017.

C. F. Fischer, “Correlation in negative ions,” Physica Scripta, vol. 40, pp. 2527,
July 1989.

V. K. Ivanov and P. I. Yatsyshin, “Resonances in the cross section of photode-
tachment of 2p electrons from negative ions Na~,” Technical Physics, vol. 54,
pp- 712, Jan. 2009.

R. D. Thomas, H. T. Schmidt, G. Andler, M. Bjorkhage, M. Blom, L. Brannholm,
E. Béackstrom, H. Danared, S. Das, N. Haag, P. Halldén, F. Hellberg, A. 1. S.
Holm, H. A. B. Johansson, A. Kallberg, G. Kallersjo, M. Larsson, S. Leontein,
L. Liljeby, P. Lofgren, B. Malm, S. Mannervik, M. Masuda, D. Misra, A. Orbén,
A. Padl, P. Reinhed, K.-G. Rensfelt, S. Rosén, K. Schmidt, F. Seitz, A. Simon-
sson, J. Weimer, H. Zettergren, and H. Cederquist, “The double electrostatic
ion ring experiment: A unique cryogenic electrostatic storage ring for merged

ion-beams studies,” Review of Scientific Instruments, vol. 82, p. 065112, June
2011.

E. Béckstrom, D. Hanstorp, O. Hole, M. Kaminska, R. Nascimento, M. Blom,
M. Bjorkhage, A. Kallberg, P. Lofgren, P. Reinhed, S. Rosén, A. Simonsson,
R. Thomas, S. Mannervik, H. Schmidt, and H. Cederquist, “Storing keV negative
ions for an hour: The lifetime of the Metastable 2]310/2 level in 325~” Phys. Reuv.
Lett., vol. 114, Apr. 2015.

R. von Hahn, A. Becker, F. Berg, K. Blaum, C. Breitenfeldt, H. Fadil, F. Fel-
lenberger, M. Froese, S. George, J. Gock, M. Grieser, F. Grussie, E. A. Guerin,
O. Heber, P. Herwig, J. Karthein, C. Krantz, H. Kreckel, M. Lange, F. Laux,
S. Lohmann, S. Menk, C. Meyer, P. M. Mishra, O. Novotny, A. P. O’Connor,
D. A. Orlov, M. L. Rappaport, R. Repnow, S. Saurabh, S. Schippers, C. D.
Schréter, D. Schwalm, L. Schweikhard, T. Sieber, A. Shornikov, K. Spruck, S. S.
Kumar, J. Ullrich, X. Urbain, S. Vogel, P. Wilhelm, A. Wolf, and D. Zajfman,
“The cryogenic storage ring CSR,” Review of Scientific Instruments, vol. 87,
p.- 063115, June 2016.

C. Meyer, A. Becker, K. Blaum, C. Breitenfeldt, S. George, J. Gock, M. Grieser,
F. Grussie, E. Guerin, R. von Hahn, P. Herwig, C. Krantz, H. Kreckel, J. Lion,
S. Lohmann, P. Mishra, O. Novotny, A. O’Connor, R. Repnow, S. Saurabh,
D. Schwalm, L. Schweikhard, K. Spruck, S. S. Kumar, S. Vogel, and A. Wolf,

180



[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

“Radiative rotational lifetimes and state-resolved relative detachment cross sec-
tions from photodetachment thermometry of molecular anions in a cryogenic
storage ring,” Phys. Rev. Lett., vol. 119, July 2017.

K. C. Chartkunchand, M. Kaminska, E. K. Anderson, M. K. Kristiansson, G. Ek-
lund, O. M. Hole, R. F. Nascimento, M. Blom, M. Bjorkhage, A. Kallberg,
P. Lofgren, P. Reinhed, S. Rosén, A. Simonsson, R. D. Thomas, S. Mannervik,
V. T. Davis, P. A. Neill, J. S. Thompson, D. Hanstorp, H. Zettergren, H. Ced-
erquist, and H. T. Schmidt, “Radiative lifetimes of the bound excited states of
Pt=,” Phys. Rev. A, vol. 94, Sept. 2016.

R. C. Bilodeau and H. K. Haugen, “Electron affinity of Bi using infrared laser
photodetachment threshold spectroscopy,” Phys. Rev. A, vol. 64, p. 024501, Aug.
2001.

Y. Su, R. Si, K. Yao, and T. Brage, “The structure and radiative lifetimes of
negative ions homologous to N™,” Journal of Physics B: Atomic, Molecular and
Optical Physics, vol. 52, p. 125002, May 2019.

M. Scheer, H. K. Haugen, and D. R. Beck, “Single- and multiphoton infrared
laser spectroscopy of Sb™: A case study,” Phys. Rev. Lett., vol. 79, pp. 4104—
4107, Nov. 1997.

M. Scheer, R. C. Bilodeau, C. A. Brodie, and H. K. Haugen, “Systematic study
of the stable states of C~, Si™, Ge™, and Sn~ via infrared laser spectroscopy,”
Phys. Rev. A, vol. 58, pp. 2844-2856, Oct. 1998.

M. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, “Development of a
configuration-interaction plus all-order method for atomic calculations,” Phys.
Rev. A, vol. 80, p. 012516, 20009.

G. G. Konan, L. Ozdemir, and N. G. Atik, “Correlation and relativistic effects
on the level structure of negative ions of atoms with half-filled p shell,” Journal
of Mathematical and Fundamental Sciences, vol. 45, pp. 105-113, Mar. 2013.

“Caviness community cluster.” https://sites.udel.edu/research-
computing/caviness-cluster/.

T. G. S. R. Mattson, I. Mattson, Y. H. He, and A. E. Koniges, The OpenMP
Common Core. MIT Press Ltd, 2019.

“OpenMPL.” https://www.open-mpi.org/.

181



Appendix A
SLATER-CONDON RULES

Let us define one-particle operators as

=1
and two-particle operators as
A1
=3 or) (A2
i#]
The rules for the operator F are
(V] F) = Z fi (4.3)
(UIEW) = fi (A.4)
(U|F0") =0, (A.5)

where U denotes the determinant built from the set of spin-orbitals {¢1, ¢ ..., dn},
@’ differs from W by replacing the spin-orbital ¢; by the spin-orbital ¢, where k > N,

and ¥” includes two of such replacements. Here we have also introduced a short-hand

notation,
= (ol =3 [ s (A.6)
The rules for the operator G are
1 N
(Y|ew) =5 > (gijis — 9ijii) (A7)

1]
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N
(P|GV) = Z(gijkj — Gijik)

J

<‘I’|G‘I’”> = Gijkl — YGijlk

(WG = 0,

where U denotes a triply substituted Slater determinant, and

gt = (ilguictn) = 3 [ [ dordtvv; (05160) )
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Appendix B
ANGULAR MOMENTUM DIAGRAMS

In this appendix, we introduce graphical rules for angular momentum diagrams
and reduction, as introduced by Lindgren and Morrison [46, 57]. When carrying out
sums of products of 3-j symbols over magnetic quantum numbers, one can use a set of
graphical rules to replace analytical derivations, easing the required calculations. We
introduce mainly the rules that are used in the derivations in Section 2, leaving unused
rules and diagrams to the source [46, 57]. We will define the basic elements of the
angular momentum diagrams, then introduce the rules of summations and reduction
using this diagrammatic method.

The basic element of these angular-momentum diagrams is a line segment that

joins a pair of angular momentum indices

Jima Jama

= 6jlj2 5m1m2' (B1>
An arrow attached to a line segment, or a directed line, represents

Jima J2ma2 Jama2 Jimq o
> - ~ = <—1)]2 2(53'1]'2 57m1m2' (BQ)
The 3-j symbol is represented as
Jimi
3 Jamz _ N _ 1 J2 s ’ (B.S)
my Mo M3
Jams

where the (—) sign designates that the lines are read in clockwise order, and the (+)
sign designates that the lines are read in counter-clockwise order, from jim; to joms

to jsmg, to obtain the 3-j coefficient.
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Having defined the basic elements of the angular momentum diagrams (line seg-
ment, directed line and 3-j symbol), we can introduce rules for summing over products
of 3-j symbols over magnetic quantum numbers using these elements.

Summing over the magnetic quantum numbers of two line segments corresponds

to connecting the vertices of the summed quantum number

Z Jjima Jama jama Jjzms Jima Jjzms

= 6j2j3 : (B4)

m3

Two arrows pointed in the same direction gives an overall phase

Jjimi Jama Jimi Jama

- = g = (_1)2j26j1j25m1m2' (B5)

Two arrows pointed in opposite directions cancel

Jjimy Jama Jjima Jama

- = > = 5j1j26ﬂ11m2' (BG)

Switching the direction of an arrow gives a factor of (—1)% from the j of the

initial direction

Jima Jama Jimi Jama

. = (-1 - . (B.7)

Thickening a segment of the line represents a factor of \/2j + 1 for that line

Jjm Jgm

= V2j+1 . (B.8)

Changing the sign of a 3-j symbol gives an overall factor of (—1)711721Js

Jjima Jjima
_ Jams — (_1)j1+j2+j3 + jZmQ. (B.9)

Jjams Jjams
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Attaching an arrow to a line segment of a 3-j symbol gives an overall factor of

(-1
Jjimi
" . (B.10)
—T1my Mo M3
Jams

Attaching arrows on all 3 lines on a 3-j symbol directing outward from or inward

towards the vertex has no effect on the overall phase of the 3-j symbol

(B.11)

Having listed the basic elements and diagrammatic rules, we now list formulas
that are used to carry out angular reduction in Section 2. These can be derived from
the rules listed above.

The Clebsch-Gordan coefficient can be written in terms of a diagram as

C(j17j27j;m17m27m> = <j1m17j2m2‘jm>

Jjimi
B im (B.12)
Jama
The Wigner-Eckart theorem can be written in terms of a diagram as
. ki - j1—mq jl k jQ . ki -
(rma| Ty |jama) = (1) Gl TN 2)
—mi q Mg
(B.13)
Jjimi
kq . .
= - Gl T [172)-
Jama
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The following are a list of useful identities used in angular reduction
Jimi
Jama

00
Qj = 2+1, (B.15)
J
J2
J3

1

i s B.14
2]1+1 J1J2 1 ( )

Ji
jsms  + —  Jayymagr 1
40733 = m Ojsiy Omamay (B.16)
J2
M@ = /22 + 16,0 6myo, (B.17)
Jimi
g2 [273+ 1
— = m 5]20 5j1j115m1m1/' (B-18)
Jprmys
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Appendix C
HOUSEHOLDER’S METHOD OF DIAGONALIZATION

In this appendix, we introduce Householder’s method of diagonalization, follow-
ing Ref. [72]. Here, we focus on the details of the method, leaving proofs of theorems to
the source. Given a symmetric matrix A, one can use Householder’s method to find a
similar symmetric tridiagonal matrix B. Suppose there is a normalized vector v € R",

with vI'v = 1. We define an n x n matrix
P=1-2vv", (C.1)

called the Householder transformation, which selectively zeroes out blocks of elements
in vectors, or columns in matrices. It can be shown that since this transformation is
symmetric and orthogonal, P! = P.

We begin by determining a transformation P such that A® = PM AP zeros
out the elements of the first column of A beginning with the third row, i.e. aﬁ) =0,

for j = 3,4,...,n. By symmetry, we also have ag) =0, for j =3,4,...,n.

Expanding the matrix, we get

A® = pWAPW — (T —2vvT)A(T — 2vv7T), (C.2)
where aﬁ) = aq; and aﬁ) =0, for y =3,4,...,n.
Setting v; = 0 ensures that aﬁ) = ay;. We want the transformation P =
I —2vv' to satisfy
P(l)(alla a921,031, - - - 7a’n1>T - (all) «, 07 o 70)T7 (CS)

where the value of « is to be obtained later. To simplify notation, let

v = (vg,v3,...,0,)" € R"H (C4)
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~

Yy = (a217 31, 7an1)T € Rn_la (05)

and let P be the (n — 1) x (n — 1) Householder transformation

A

P=1,,—2vv". (C.6)

With this notation, Eq. C.3 then becomes

aiy 110 -+ --+ -+ 0 aiy a aiy
21 0 a
pO _ A = . |= . (C.7)
P y Py
an1 O 0
where
Py =(I,1 — 293Ny =y —2(379)v = (,0,...,0)T". (C.8)

Defining r = v7y, this gives
Py = (a,0,...,0)" = (az — 2rvy, as; — 2rvs, ..., ap — 2rv,)7, (C.9)

with which we can determine all components of the vector v by matching components.

Equating the components, we obtain
2rvy = a9 — «, (C.10)

and

2rvj =an, for j=3,...,n. (C.11)

Squaring both sides of the equations and adding, we get

n

472 Z v = (a1 — @)® + Z ay. (C.12)
=3

j=2
Since the vector v is a normalized vector, and v; = 0, the first term is simply

n

d wr=1 (C.13)

=2
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Substituting, we obtain
n
4r? = Z a?l — 20a91 + 0.
j=2

From the orthogonality of P, we get from Eq. C.8

I
S

which gives
n
22 = g a?l — ao1.
=2

To ensure that 272 = 0 only if as; = as; = - -+ = a,1 = 0, we choose

a = —sgn(as)

Substituting a into Eq. C.16, we obtain

n
27”2 = ZCL?l + |a21|
j=2

With this choice of a and 7, we can solve Eqgs. C.10 and C.11 to obtain

91 — X
V2= 2r
and
vj:%, for each j =3,...,n.
We then obtain
aﬁ) ag) o --- 0
2 2 2 2
ag1) agz) ag; T aén)
A® — p) gpM) — 0 agé) a%) a:(;)
ERCIFCI
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Having found P and computed A®), this process is repeated for k = 2,3,...,n — 2

with
a = —sgn(ag)
1
p— - 2 -
r =4/ 5 (a2 — ag0),
o <off o= off o,
k)
k) _ Y1 — @
k+1 — o )
e
Uj(-k) :J—k, forj=k+2,k+3,...,n,
2r
Pk —7 _ 2V(k)(v(k))T7
and

AU+ — pk) A8) pk)

aﬁﬂ) agl;+1) 0
ay’”
0 algk,jji 0
- Wik G G
0
0 0 e

(C.22)
0
(ko | (C.23)
+1
a’k—l—l,n
(k-+1)

Repeating this process n — 2 times, we obtain a tridiagonal and symmetric matrix

A= where

A=) — p(n=2) p(n=3) . p1) 4 pl) .. . pr-3)ph-2)
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Appendix D
HIGH PERFORMANCE COMPUTING

Computational problems that are too large or would take too long on standard
desktop computers can be done on modern HPC architectures, such as supercomput-
ers or clusters. Whereas a standard desktop computer would typically have a single
processor, a HPC system would contain a network of nodes, each containing one or
more processors. Applications that were traditionally written for serial computation
have to be re-written for parallel computing. Application developers who port their
codes to HPC systems must re-design their applications to run in parallel on multi-
ple processors in order to take advantage of the available computational resources. In
general, the computations would have to be broken down into parts that can be solved
concurrently, and instructions from each part would be executed simultaneously on
different processors.

There are three major models of parallel computing: the shared memory model,
the distributed memory model, and the hybrid shared /distributed model. In the shared
memory model, all parallel processes share a global memory space where data can
be read and written to asynchronously. In the distributed memory model, parallel
processes with their own separate segment of memory send and receive data between
each other via high speed networks. The hybrid model contains properties of both the
shared memory and distributed memory models; several nodes, each consisting of a
set of processors sharing memory, are connected through a high speed network system.
For example, the UD Caviness Community Cluster, where most of this work was done,
consists of 126 compute nodes (4536 cores, 24.6 TB memory), each with 36 cores and
varying amounts of memory during its first generation [169]. As of October 2020, the

Caviness cluster was expanded in the Generation 2.1 initiative, now representing 265
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compute nodes (10124 CPU cores, 77 TB memory) [169]. The work done in this thesis,
including development and testing of parallel codes, as well as calculations done on all
ions, were done primarily on the UD Caviness cluster.

Parallel codes are typically written in either C++ or Fortran, with OpenMP
and MPI. OpenMP was designed for the shared memory model, whereas MPI was
designed for the distributed memory model. The programs developed in this work
require large amounts of processors, so MPI was the obvious choice for parallelization.
After a fully optimized MPI program has been developed, OpenMP could be used to
further optimize the scalability of the codes. Hybrid MPI+OpenMP parallelization is
beyond the scope of this work, but is planned as a future project.

OpenMP is an API for creating code that can run on a system of threads,
making it possible to write parallel code without the use of external libraries. OpenMP
is typically considered more user friendly due to its use of directives, which appear as
comments in the source code, to direct parallelism. However, OpenMP is limited due
to the number of threads that are available on a node. On the UD Caviness Cluster,
this means no more than 40 processors can be utilized with OpenMP depending on the
node. OpenMP was not applied to any of the codes developed in this thesis, so more
information about OpenMP will be left to the many textbooks and online resources
[170].

MPI is a message passing library standard used for handling parallel processing
using objects called communicators that define a group of processes that have the
ability to communicate with one another. Unlike OpenMP, MPI is compatible with
multi-node structures, allowing for very large, multi-node applications that are limited
by the total number of processors that are available to the system. However, MPI is
often less accessible and more difficult to implement due to the requirement of code
restructuring. More information about MPI can be found in many textbooks and
online resources [73, 74, 171]. MPI is an ongoing project, with new subroutines and
functionalities being developed [171]. Here, we introduce the main concepts along with

the subroutines used throughout the parallel codes.
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One main concept of message-passing is the concept of a communicator. A
communicator is an object that describes a group of processes that can pass messages
to each other. The default communicator MPT_COMM _WORLD describes the group that all
processes in the program starts with. In most cases, this is all that is necessary, but
in some applications that utilize dynamic workload distributions and MPI windows, it
is necessary to split the global communicator into sub-communicators.

The basic structure of an MPI parallel program includes initiating communi-
cators, passing messages to communicate data between processors, and exiting from
the message-passing interface. The MPI_Init subroutine initializes the MPI environ-
ment, then the number of processors and the id’s for each processor is defined by the
subroutines MPI_Comm Size and MPI_Comm Rank, respectively. Communications can be
done using point-to-point or collective communications, or a mixture of both types.
Point-to-point communication uses subroutines such as MPI_Send and MPI_Recv to
send and receive data, respectively. Collective communication uses subroutines such as
MPI Bcast to send data from one process to all other processes in that group of com-
municators. The types of communicators used in the parallelization of the codes done
in this thesis are mainly collective. Finally, we exit and close the MPI environment
using the MPI _Finalize subroutine.

Next, we list a number of essential collective MPI subroutines that were used

throughout the parallel codes:

e MPI Barrier - This subroutine forms a barrier where no processes in the com-
municator can pass until all processes in the communicator reach that point of
the program. This is used in all parallel programs to synchronize data before
a data-dependent calculation begins, insuring all processes do in fact have the
required data stored in memory.

e MPI Bcast - This subroutine allows one process to send a specified data to all
processes in a communicator. One of the main uses of this subroutine is to send
out inputs and parameters to all processes. This is used in all parallel programs
to share input data that is read from the core process to all other processes. For
example, the number of configurations, array sizes and other parameters are read
into the program by the master core, then it is broadcasted to all other cores
with this subroutine.
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MPI Scatter - This subroutine allows one process sends chunks of an array to
different processes in a communicator.

MPI_Gather - This subroutine is the inverse of MPI_Scatter. Instead of spread-
ing elements from one process to all processes in a communicator, this subroutine
takes elements from all processors in a communicator and gathers them to a single
process. This is used in the conf program to gather the number of determinants
each process has to run through for comparisons in order to calculate displace-
ments used for subsequent collective communication subroutines.

MPI_Allgather - This subroutine is essentially an MPI_Gather followed by an
MPI_Bcast. Given a set of elements distributed across all processes in a commu-
nicator, this subroutine gathers all elements and gathers them to all processes. In
the conf program, this is used to gather the number of non-zero matrix elements
each process has calculated in order to calculate displacements used for writing
the matrix elements out to disc.

MPI Reduce - This subroutine takes an array of elements from each process in
the communicator, applies an operator to the array of elements, then returns a
resultant array of elements to a single process. The reduction operators include,
but are not limited to the following:

— MPI Max - returns the maximum element

— MPI_Min - returns the minimum element

— MPI_Sum - returns the sum of the array of elements

MPI_Prod - returns the product of all the elements

For example, in the conf program, this subroutine is used in the Davidson proce-
dure after matrix multiplications. Each core has their own array of Hamiltonian
matrix elements, and does multiplications with these matrix elements with eigen-
vectors. After multiplications, a reduction is done so the core process has the
complete result for subsequent orthonormalization procedures.

MPI_Al1lReduce - This subroutine is essentially an MPI_Reduce followed by an
MPI Bcast. An array of elements from each process in the communicator are
applied with an MPI reduction operator, then the result is broadcasted to all
processes in the communicator. For example, in the conf program, this subrou-
tine is used to calculate the total number of non-zero matrix elements computed
during the formation of the CI Hamiltonian. Each process keeps a count of the
total number of matrix elements, and after each core is done their calculations,
a reduction is done to sum over all counts to obtain the total number of matrix
elements. It is also used to find the minimum energy of all matrix elements and
then broadcast that energy to all processes.
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e MPI Win_allocate_shared - This subroutine creates a window with shared mem-
ory in a communicator. Introduced in MPI-3, this is MPI’s solution to shared
memory in a distributed parallel system. A window is created with shared mem-
ory, allowing all processes in a communicator to remotely read data from the
memory allocated in the window. However, window creation is limited to each
node, i.e. the windows created only exist for the communicators in the individual
nodes. Due to this, each node is associated with a sub-communicator, and each
sub-communicator take part in their own window. This is useful for storing a
large constant array that would otherwise have to be broadcasted to every core.
For example, in the conf program, the basis set of determinants (of dimension
(Nd,Nv), where Nd is the total number of determinants, and Nv is the total num-
ber of valence electrons) is stored in a window, and each core remotely reads
the determinants during the formation of the CI Hamiltonian matrix and the
J? matrix. The core process in the master communicator broadcasts the whole
2-dimensional array of to the core processes of each sub-communicator, instead
of every single process. The core processes of each sub-communicator then cre-
ates a window for the basis set of determinants for remote access by all other
processes in the sub-communicator. The processes that are not labeled core pro-
cesses in the sub-communicator are can then remotely read the basis set during
calculations of matrix elements.
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