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ABSTRACT

This work presents a path planning methodology for designing centralized

control laws which can provably steer a group of robotic agents to fall into a free-

floating formation of arbitrary shape, while following collision free trajectories.

The planning scheme is based on the concept of navigation functions, a special

type of artificial potential functions without local minima. In this thesis, we describe

how this idea can be generalized from its original formulation for single-robot sys-

tems, to multi-robot formations. Further, we indicate why existing solutions that

have appeared in literature, although potentially functional, have not unequivocally

established the non-degeneracy of undesirable critical points of the potential func-

tion. The problem is therefore reconsidered here, and a new (nonsmooth) potential

function is proposed along with the associated control strategy.

We show that the new construction of the multi agent navigation function

allows analytic proofs for the convergence of the closed loop system and the non-

degeneracy of the critical points of the underlying potential field.
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Chapter 1

INTRODUCTION

1.1 The Motion Planning Problem - Description

The Motion Planning Problem is traditionally divided into three tasks: Path

Planning, Trajectory Generation and Robot Control.

1.1.1 What is Motion Planning

The process of steering a mobile agent or a group of agents to a specified

destination/formation without any collisions and in a finite amount of time is the

basic idea of motion planning.

obstacle1

obstacle 2

obstacle 3

qinit

qgoal

Figure 1.1: General Motion Planning

1.1.2 Path Planning

Definition 1 (Path). A path is a continuous curve of robot positions in the workspace,

not necessarily being a function of time.

1



Definition 2 (Trajectory). A continuous function τ from [0, 1] into the workspace

such that τ(0) = qi and τ(1) = qd.

In path planning, the objective is to design an algorithm that generates a

path in the workspace based on the geometric data available without considering

the dynamics of the robot. Path planning, hence, constitutes the problem of planning

collision-free paths in the workspace. The initial and final configurations of the robot

are assumed to be fixed and the goal is to find a collision-free path that connects

them. The robot is assumed to be a free-moving object in space capable of moving

in any direction without any constraints except the obstacles in the environment.

The basic path planning problem can be viewed as follows

Definition 3 (Path Planning). Assuming the robot to be omnidirectional,1 find

an algorithm that moves the robot from the start point to the destination avoiding

collision with the obstacles.

There are various methods of finding a solution to the basic path planning

problem which are described in Section 2.3.

1.1.3 Trajectory Generation

The path generated by the path planning algorithm, may be infeasible for the

robot due to the constraints (minimum turning radius, maximum velocity possible,

etc.) on the robot. This path needs to be converted into a trajectory which can be

followable by the robot.

In the basic path planning problem the robot was assumed to be capable of

moving in any direction from any given location in the workspace. Apart from the

geometric constraints imposed by the obstacles on the agents, the constraints are

classified as holonomic and nonholonomic constraints. Holonomic constraints are

1 A robot is said to be omnidirectional if it can move in any direction.
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the veloctiy/acceleration constraints which can be integrated to yield constraints

on the position variables and nonholonomic constraints are those which cannot be

integrated to yield constraints on the position variables). In the presence of such

constraints on the robot, a sequence of positions for the robot as a function of time

is to be generated.

1.1.4 Robot Control

In Robot Control we develop the control inputs that drive the robot along

the trajectory generated in the trajectory generation task.

The generated trajectory needs to be followed by the robot closely with a

feedback control. A suitable feedback controller is designed for this purpose so that

the required inputs to the robot are obtained from this controller.

1.2 Motivation For This Work

The main motivation for this work is to cater to the need to navigate multiple

agents in a workspace. Formation control of multiple agents allows the distribution

of complex tasks among the agents thus increasing the efficiency of the system.

Also, since multiple agents could perform a task in lesser time than would a single

agent, as in the case of exploration of unknown environments with multiple agents

in a specific formation, the need to develop control strategies for the navigation of

multiple agents has evolved. As a result, the need to control multiple robots at the

same time has gained momentum. While open-loop planning approaches lack the

required robustness, closed-loop approaches guarantee the convergence even with

some degree of uncertainty. Closed-loop approaches such as potential field based

navigation functions have thus gained importance in motion planning. A number

of attempts have been made to extend the potential field based single-agent naviga-

tion to multiple agents based on the seminal work by Rimon and Koditschek [28].
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Although, these approaches seem to perform well in tests (numerical and experi-

mental) the proof of correctness has not been fully established in a mathematically

rigorous way. The main motivation for this work is to complete the correctness

proof of the potential field based multi-agent navigation function; it turns out that

an alternative design is needed.

1.3 Contribution of this work

The main contribution of this work lies in identifying the limitations in exist-

ing approaches to extending the potential-field based single agent navigation func-

tion to a multi-agent setting, and overcoming these limitations by proposing a new

framework for the multi-agent navigation function.

Contrary to the claims therein, in existing literature the proof of convergence

for the multiple robots in formation control is based on assumptions that are vi-

olated. Although the the mathematical mishap does not manifest itself easily in

numerical testing, it does not allow one to establish all the desired properties of

the potential field. We propose a new construction for the multi-agent navigation

function, and a proof of correctness for all the required properties.

1.4 Thesis Overview

The rest of the thesis is organized as follows.

Chapter 2 provides technical background that forms the basis for the subse-

quent chapters. The general motion planning problem is described and the current

state of research in multi-agent navigation control is discussed. Existing planning

approaches are presented along with their limitations.

In Chapter 3 we narrow down our focus to the navigation function introduced

by Rimon and Koditschek in [28]. We discuss its construction and the challenges

encountered in extending the same to multiple agents.

4



In Chapter 4 we present few results from nonsmooth analysis, which are

later utilized in demonstrating the proof of correctness of the new construction of the

navigation function. We discuss the properties of the (nonsmooth) distance function

in detail and describe its differentiability properties. The generalized gradient of the

distance function is discussed here and its role in the new navigation function.

In Chapter 5 we present the new construction for the navigation function

and its properties. In Chapter 6 we demonstrate the proof of correctness of the

new multi-agent navigation function. In Chapter 7 we present the numerical and

experimental results associated with the new construction. The experimental setup

for the simulation is described. Computer simulation results for the 3-agent and

6-agent cases are shown, while the experimental results for the 3-agent case with

the Corobots are presented.
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Chapter 2

TECHNICAL BACKGROUND AND LITERATURE

SURVEY

This chapter is intended to give a review of the state-of-the-art in path-

planning, emphasizing the methods on navigation function based formation control

stabilization. We shall have a thorough look at some of the existing methods for

path planning, their advantages and disadvantages.

2.1 Introduction

With increase in the efficiency and performance of portable computational

devices, the focus in motion planning has shifted to the theoretical aspects of plan-

ning and control. The study of theory bridges the gap between the fast hardware

architecture and the design criterion behind motion planning. The algorithms that

go into planning can afford to be complex with the advent of such hardware. Several

design techniques have appeared in literature, and a partial list can include [40], [6],

[36], [47], and [23]. The primary focus of this work is on a specific methodology that

generalizes a potential field approach for single robots, to groups of robots. This

methodology promises algorithmic completeness, a combined motion planning and

path following control construction that employs feedback, and a closed loop sys-

tem that enjoys global convergence guarantees. It is based on an artificial potential

function which can be tuned so that it does not have any local minima, known as a

navigation function [38]. We shall have a look at the existing work on multi-agent

navigation and formation control.
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2.2 General Navigation Problem Description [29]

Let A be an agent moving in a subsetW of the Euclidean space RN , where N

is the dimension of the workspace W and let B1, B2, . . .Bm represent the obstacles

in the workspace W . Assuming that the location and shape of B1, B2 , . . .Bm
is accurately known and that A is a omnidirectional, meaning that there are no

kinematic constraints on A, we can define the problem as

Given an initial position and orientation and a goal position and orientation of A in

W, find an algorithm that defines the course of travel of A from the initial location

to the destination avoiding contact with Bi’s and report failure if no such path exists.

2.3 General Path Planning Approaches

There are a number of methods for solving the path planning problem, how-

ever not all solve the problem in full generality, i.e. some planners are not complete,1

and some have the problem of getting stuck in non-optimal configurations. We look

at some of the traditional planning methods and their limitations.

2.3.1 The Roadmap Method

A roadmap is the set of curves in the free space that are constructed based

on a specific topological feature. It is a data base of all the possible collision-free

paths between the starting point to the destination. The roadmap R can be written

as,

R =
⋃

τi

Different methods of constructing roadmaps are visibility graph method, re-

traction method, and silhoutte method. After the roadmap is constructed using

any of these methods, the start and end points are connected to the roadmap. The

path from the start point to the destination is therefore a concatenation of the path

1 A planner is said to be complete if it finds a solution when one exists and reports
a failure otherwise.
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connecting the goal to the roadmap, the path contained within the roadmap and,

the path that connects the roadmap to the destination configuration. A number of

methods to construct roadmaps have been proposed. We describe two of them, the

visibility graph and Voronoi diagram methods.

2.3.1.1 Visibility Graph

This method is limited to the configuration spaces which are subsets of R2

where the obstacles are all polygonal. The visibility graph is an undirected graph

whose nodes are the initial and goal configurations qinit and qgoal, and the obstacle

vertices. The visibility graph VG edges consist of straight lines joining all the nodes

which do not intersect with the obstacles. The shortest path between the qinit and

qgoal configurations is the solution to the path planning problem.

qinit

qgoal

Figure 2.1: Visibility Graph (cf. [29])

2.3.1.2 Voronoi Diagram

In a Voronoi diagram the curves are so constructed that the distance of

any point in the diagram is always equidistant from the two closest obstacles. The
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advantage of the Voronoi diagram is that, the robot is always at the farthest distance

from the nearest obstacles. A Voronoi diagram can be defined as

V =
⋃
Fi

where,

Fi = {q ∈ Qfree|di(q) ≤ dh(q)∀h 6= i}

Qfree is the obstacle-free space defined as Qfree =W −⋃QOi
QOi is the ith obstacle.

di(q) is the distance of the point q to the obstacle QOi
Unlike the visibility graph approach, this method is not restricted to polyg-

onal obstacles.

2.3.2 The Cell Decomposition Method

The cell decomposition method is the most commonly used method for mo-

tion planning. The workspace is divided into simple regions called cells, so that a

path between any two adjacent cells is generated. Two cells are said to be adjacent

if they share a common boundary. An adjacency graph using these cells is thus

constructed, in which each node represents a cell and a link connecting the nodes

corresponds to the common edge shared between those cells.

Once the adjacency graph is constructed, the cells in the graph that contain

the start and end points are located, and the graph is searched for a feasible path

between those nodes.

2.3.3 The Potential Field Method

In the potential field method, the workspace is modeled as a landscape of

mountains and valleys where the obstacles are represented by mountains, free space

as valleys, and the destination is the point with the lowest elevation.
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Figure 2.2: Cell Decomposition (cf. [29])

In the potential field approach, the primary idea is to generate artificial

attractive and repulsive forces within the workspace and create controllers that

respond to these forces guiding the robot to the target destination while avoiding

obstacles. The obvious choice was to attribute attractive field to the destination and

repulsive field to the obstacles. Due to continuous interaction between the attractive

and repulsive forces, the potential field method thus provides a solution to the path

planning problem that allows the use of feedback for online planning.

In classical potential field methods the resultant artificial force acting on

the robot at any point is the sum of attractive and repulsive fields. Ignoring the

dynamics, we can view the potential field as a velocity reference at each point.

The total potential field is expressed as

Utotal = Uatt + Urep .

The first instance of the usage of potential field technique in robotics is at-

tributed to O. Khatib [27] for a single obstacle case, and later extended to multiple

agents [48]. The problem in this implementation [27], [48] is the existence of the spu-

rious local minima where the agent can get stuck. In fact precisely, the local minima

occur at configurations where the attractive and repulsive forces cancel each other.
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Although by careful choice of potential fields the local minima may be reduced [48],

there is no guarantee that they are eliminated.

2.3.4 Combination of Cell Decomposition and Potential Field Method

An instance of this method is found in [17], in which the free space is decom-

posed into cells and the navigation control problem for each cell is solved using a

potential field built local information. The control policy is switched as the system

moves from cell to cell.

Once the workspace is decomposed into cells, an adjacency graph is formed

with the root node as the cell containing the goal, and a partial ordering of the

cells using a graph search algorithm such as Dijkstra’s algorithm [29] is determined.

Each individual cell is then associated with a policy called component control policy

which is so designed as to direct the robot in that specific cell along the trajectory

that leads to the next adjacent cell, specified by the partial order generated by the

graph search algorithm. The resulting composition of all the control policies via

the partial order forms the hybrid control policy for the entire free space called

the global control policy. The component control policy for each cell is obtained by

solving the navigation problem for each cell. As the robot moves from one cell to the

other cell, the control policy is switched to the one corresponding to the new cell.

As the cells do not contain any obstacles, there is no problem of local minima. A

similar approach for nonholonomic agents was used in [26], in which the workspace

is decomposed either into triangular or rectangular torus cells depending on whether

the workspace is polygonal or orthopolygonal, and a smooth feedback controller is

designed for each cell to reach a particular state in the configuration space. The

obstacles are assumed to be polygonal as well.

11



2.4 Motion planning for groups of robots

The need to control more than one agent at a time has led to the study of

the problem of navigation for multiple agents. Based on the extent of information

available to each agent in the workspace, the planning scheme can be classified either

as centralized or decentralized.

Two types of control strategies for multiple robots based on potential fields

are discussed below: the centralized, and the decentralized control schemes.

2.4.1 Centralized Navigation Scheme

In this scheme, a single navigation controller is used that has information

about all the agents in the workspace. The limitation of using a centralized controller

is that the required communication bandwidth and the computational load increase

with the number of agents in the workspace.

A centralized architecture [49], [31], [45], [32] typically involves a single con-

troller that depends on the configuration of all the members. Each agent has infor-

mation about all the other robots in the workspace. This type of control strategy

allows to generate the collision free trajectories to all the agents in the composite

workspace. The gradient of the function is computed at a central location which is

then communicated to all the agents. The main advantage with this scheme is that

in principle, the analytical proofs of convergence can be provided in a straightfor-

ward way.

In [7], centralized planning of the trajectories of holonomic disk shaped robots

was generated offline based on the potential field approach. The problem of local

minima in [7] has been overcome in [8], [9] using an offline potential field based

randomized path planner that used random motions to escape local minima.

The multi-agent functions constructed in [49], [31], [45] and [32] are an ex-

tension of the potential field based closed loop navigation function for a single point

agent developed by Rimon and Koditschek in [28], [38]. In [31], the volume of the
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agent is taken into account, with imposed holonomic constraints, using the central-

ized architecture scheme. However, we see that, these extensions to multiple agents

is not as straightforward as it seems and the current work provides a more complete

framework for generalization to multiple agents.

2.4.2 Decentralized Navigation Scheme

In the decentralized approach, each agent has information about its own

position and that of the agents in an area local to its position. While centralized

path planners have the disadvantage of increased complexity with increase in number

of agents in the workspace, the decentralizing path planning techniques enjoy the

advantage of improved memory usage and efficient communication among the agents.

The constructions in [51], [21] and [20] are a direct extension to multiple agents of

the single robot navigation function described in [28], similarly to how it is done

in [49]; the construction in [51], [21] requires knowledge of the number of agents in

the workspace, because it uses n-ary relations between agents to single out which

agents are close(r) to colliding with each other at each given instance in time. In

both of these approaches, there are no stationary obstacles in the environment. The

idea in [28] is also extended to multiple agents using the decentralization planning

scheme as can be found in [52] and [21], where the agents are assumed to have global

sensing capabilities.

Formation control of multiple agents is also achieved using structural poten-

tial functions where the potential function for the formation is obtained from its

algebraic structural constraints. In [37], the formation stabilization of n agents to

a desired undirected formation is achieved using structural functions. In [30], co-

ordinated control of multiple agents is achieved using artificial potential functions

and virtual leaders. Virtual leader is a moving reference point that manipulates

the motion of the agents in formation with its associated local potential field. The

13



fact that no agent is selected as a leader adds to the robustness in case of an agent

failure.

In [19], the emphasis is on formation control, and the workspace includes

agents as well as obstacles, with each agent having a limited communication region

within which the agent can properly communicate with any other agent. In [44] and

[43], the problem of formation control is treated in a scenario where agent relative

position specifications are expressed through a directed graph. Unlike [52] and [21],

the decentralization is limited in [44] because each agent has a copy of the global

navigation function and thus needs complete group state information. In [43] on the

other hand, the degree of decentralization is increased since the navigation function

is decomposed into local navigation functions which are implemented and used by

individual agents. In both [44] and [43], the communication capability of each agent

is assumed limited.

2.4.3 Approaches based on formal languages

Some of the existing planning approaches use computer science tools like

motion description languages (MDLe) and dynamic networks to navigate multiple

robots. MDLe (where e stands for extended) is an extension of the framework of

motion description languages introduced by Roger Brockett [11]. MDL is designed to

overcome the limitations of transfering the theoretical control algorithms to software.

MDLe [33] is a device independent programming language that allows the usage

of hybrid controllers, and accomodates multi-system interactions and inter-agent

communications.

Motion planning for multiple robots in dynamic environments using dynamic

networks was described in [15] with the agents assumed to have limited sensing capa-

bilities. This planning framework combines centralized and decentralized planning

techniques for navigation. As the robots move in the workspace, the communica-

tion links among the robots keep changing and form new networks (the network area
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could be the local area for which the robots’ sensing capabilities exist). While the

robots are in a particular network formation, they exchange the information among

themselves and a trajectory is constructed using a centralized scheme. However,

planning over multiple networks is decentralized. The advantages of both central-

ized and decentralized schemes can be utilized using this planning scheme. Though

[15] is an improved version of [42] and [14], the disadvantage with these techniques

is the inability to guarantee that they will provide a solution when one exists, i.e.,

they are not complete.

2.5 Challenges

Since real world applications demand safe maneuverability of robots in un-

certain workspaces, which is the general scenario in industrial areas, the navigation

of robots in dynamic environments certainly requires efficient real time online plan-

ning to reduce the uncertainties which can be made possible through potential field

based navigation functions. The need to have a complete planner is also important,

and establishing theoretical correctness is the first step towards demonstration in

practical applications. As we have seen earlier the potential field based navigation

functions for a single agent enjoy the advantage of global optimal convergence and

hence are complete.

The existing techniques for multi-robot systems, as it may be expected, are

the above generalizations of the single-robot navigation function to the multiple

agents which follow the analysis steps of the original construction in [28]. The

assumptions made about the topology of the environment and the robots can be

directly related, for the most part, to the assumptions appearing in the single-

agent case of [52] and its first multi-agent generalization in [49]. It turns out,

however, that some of these assumptions unavoidably break down in the multi-

agent case. One of these critical assumptions that may have been overlooked is

the one that requires that obstacles are isolated. In the single-robot case where
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this assumption was originally imposed, the statement implies that as the system

approaches a collision configuration (with an obstacle), there is a single obstacle

the distance to which continuously decreases, whereas distances to other obstacles

remain bounded above zero. In the multi-robot case, collisions can occur between

multiple robots, and since all robots can move, it is not clear why only two robots

can collide with each other at any given time; in fact, it is conceivable that all

robots collapse on each other simultaneously, and the n-ary relations of [52], [21]

are a testimony to that.

In view of the above, we find that, in the existing work it is not entirely clear

how convergence proofs for single agents generalize to multiple agents in a math-

ematically rigorous way. We, therefore, study the potential field based navigation

functions, and provide a new framework for the centralized scheme of planning for

multi robot navigation.
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Chapter 3

A CLOSER LOOK AT EXISTING METHODS

In this chapter we will have a closer look at the existing navigation function

based methods to steer multiple robots. We reveal some of the open issues associated

with these methods which we highlight by the end of this chapter.

Informal definitions of few mathematical terms are given below. The in-

tention here is to provide some intuitive explanation to facilitate further reading,

and not to give a precise definition. Mathematical definitions can be found in the

Appendix.

1. Compact Set: A subset of a metric space is said to be compact if it is both

closed and bounded.

2. Connected Space: A topological space is said to be connected, if any two

points in that space can be connected by a path, with the path itself being a

proper subset of that topological space.

3. Analytic function: A function is said to be analytic if at every point on

its domain there exists a Taylor series that converges to that point. Analytic

functions are infinitely differentiable.

4. Manifold: A manifold is a metric space in which the neigborhood of each

point is topologically equivalent to a Euclidean space of a particular dimension,

say n, known as the dimension of the manifold.
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5. Manifold with boundary: A closed manifold is a manifold with bound-

ary. It consists of both the interior points and the points on its boundary.

6. Critical Point: A critical point of a function is that point at which the

function’s gradient becomes zero.

7. Hessian of a function: The Hessian of a multi-variable function is a matrix

of second partial derivatives of the function.

8. Non-degenerate critical point: A critical point is non-degenerate if the

function’s Hessian at that point is full-rank.

3.1 Single agent navigation function construction

The major drawback of the potential field technique, the problem of local

minima, is overcome by Rimon and Koditschek in [28] by a new construction that

replaces the superposition of attractive and repulsive fields for the goal and obstacles

respectively, with a gradient field of a single potential function, specially designed

so that its critical points have particular properties.

In its original “model” form, the navigation function [38] was defined for a

single robot agent, with trivial, single integrator kinematics

q̇ = u ,

moving in a workspace given by

W , {q ∈ Rn : ‖q‖2 ≤ ρ2
0}.

The workspace W is populated by M spherical obstacles given by

Oi , {q ∈ Rn : ‖q − ci‖2 < ρ2
i } ,
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where each Oi is an open set. Here, ci and ρi are the center and radius of obstacle

i, respectively. The boundary ofW is referred to as the zeroth obstacle, centered at

the origin. Then the free workspace for the robot is the set

F ,W \
M⋃
i=1

Oi .

This workspace F is said to be valid if the closures of all Oi are in the interior

of F , and that none of them intersect:

‖ci − cj‖ > ρi + ρj (3.1)

Definition 4 (Navigation Function [38]). Let F ⊂ Rn be a compact connected

analytic manifold with boundary. A map ϕ : F → [0, 1] is a navigation function if

ϕ is

1. Analytic on F −M, where M is a set of measure zero.

2. Polar on F , i.e., ϕ has a single minimum on its domain at qd.

3. Morse on F , i.e., all the its critical points are non-degenerate.

4. Admissible on F ,i.e., ϕ attains a uniform maximal value on its boundary.

The first requirement of ϕ being analytic is due to the intention of the authors

of [28], to make the controller commands to the robot analytically simple. If ϕ

is analytic, it can be expressed in closed form as a single mathematical function,

which makes the computation of its gradient straightforward. This avoids patching

together gradients of multiple functions. However, if ϕ is analytic, it is a C∞

function, which is too much in terms of ensuring the desired properties for the

function, a C2 differentiability for ϕ would suffice.

Having ϕ as a polar function means that it has have a unique minimum at

the destination configuration qd on its domain F . Though it is highly likely that ϕ

19



can have local minima, we see that with appropriate tuning of a parameter κ, they

can be moved close to the obstacles and turned into saddles.

Admissible functions, as defined earlier, have a uniform maximum value on

their boundary. An admissible ϕ ensures that the robot does not slide along the

boundary of the free space. With a uniform value on the boundary, the gradient of

the function on that boundary would always point into the interior of the free space.

For ϕ to be Morse [35], all its critical points have to be non-degenerate. A

non-degenerate critical point is either a local minimum, or a local maximum or a

saddle point. The navigation function ϕ, once tuned appropriately, will exhibit a

single minimum qd, and have a number of possible saddles in the free space. If the

conditions on the robot agent are set away from the set of measure zeroM which is

the region of attraction of the saddle points, then all integral lines of the field will

converge to qd.

3.2 The goal function

The goal function γ : F → [0,∞) is a metric that measures how close the

robot is to the destination configuration. It is defined using the Euclidean norm as

γ(q) , γd
κ(q) , (3.2)

with

γd , ‖q − qd‖2 , (3.3)

where q is the robot configuration at which the the goal function is calculated, qd is

the destination configuration, and κ is the navigation function’s tuning parameter

which regulates the shape of the graph of the goal function, and consequently that

of ϕ.
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3.3 The obstacle function

The obstacles Oi are modeled initially as sphere-shaped objects. In a realistic

workspace, not all obstacles are sphere-shaped, however, it was shown in [38] that

a star-shaped obstacle can be transformed into a sphere-shaped obstacle through a

diffeomorphic mapping. The proximity of the agent to obstacle Oi is captured using

the Euclidean norm in a positive semi-definite obstacle function βi. Each βi thus

corresponds to some isolated obstacle Oi.
An individual obstacle function is defined as,

βi(q) , ‖q − ci‖2 − ρ2
i , (3.4)

where ρi is the radius of the obstacle i, and ci its center with i ranging from 1 to

M .

The boundary of the workspace is considered as the “zeroth” obstacle and

defined as

β0(q) , ρ2
0 − ‖q‖2 ,

where ρ0 is the radius of the workspace boundary.

A measure of proximity of the robot to the whole collection of obstacles can

be constructed by multiplying all the individual obstacle functions βi. The obsta-

cle function for the workspace is constructed as the product of individual obstacle

functions is

β(q) ,
M∏
i=0

βi(q) (3.5)

where i ranges from 0 toM . When robot is close to the ith obstacle the corresponding

obstacle function βi approaches zero and hence the function β vanishes.

A first attempt to constructing a navigation function is as

ϕ =
γ

β
. (3.6)

However, the above function fails to have the properties defined in definition

[28] and hence is not a navigation function in a strict sense. It is polar, Morse
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everywhere except at qd, and is admissible by attaining∞ on the boundary. Function

(3.6) can be transformed into another function that has the desired properties by

the series of transformations described in Section 3.3.1.

3.3.1 Analytical switches

A diffeomorphism is a differentiable bijective map between manifolds. These

functions preserve the properties of the navigation function [38]. Different dif-

feomorphisms are also used to transform the star-shaped obstacles into spherical

obstacles. Under these obstacle transformations the navigation properties of the

workspace do not change, as shown in [38]. The first diffeomorphism used here is

to reduce the range of (3.6) to make the function bounded. The following function

σ : [0,∞)→ [0, 1] is a diffeomorphism whose range is constrained to [0,1].

σ =
x

1 + x
(3.7)

The function given by (3.6) is polar, is admissible, and is Morse almost ev-

erywhere except at the destination qd. When this function is put through the trans-

formation σ given by (3.7) we get,

ϕ =
γ

γ + β

which is thus polar, admissible, analytic and is non-degenerate almost everywhere

except at the destination. To make the above function non-degenerate even at the

destination, the below transformation σd : [0, 1]→ [0, 1], is used.

σd(x) = (x)1/κ, κ ∈ N . (3.8)

The result of this transformation is the following function with the properties

given in Definition 4

ϕ =
γd

[γdκ + β]1/κ
. (3.9)
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3.4 Decomposition of the workspace F
To describe the behavior of ϕ, the workspace F is first decomposed into

different regions. Let ε be a small positive parameter which defines the neighborhood

of the obstacles and the workspace boundary.

The destination configuration, {qd}, is the single global minimum of the nav-

igation function in the bounded workspace F .

Around each obstacle, Oi, a region is constructed as a function of ε. Repre-

sented by Bi(ε), it is defined as

Bi(ε) , {q ∈ W : 0 < βi < ε} .

Since the boundary of the workspace is considered as the “zeroth” obstacle, B0(ε)

represents the neighborhood region close to the workspace outer boundary.

The boundary of the free space, where the navigation function vanishes, is

denoted by δF .

The union of Bi(ε) regions of all obstacles Oi is denoted F0(ε), and defined

as

F0(ε) ,
M⋃
i=1

Bi \ {qd} .

The region “close” to the workspace boundary is the region B0(ε) excluding

the destination configuration qd and any Bi(ε) regions of other obstacles that might

overlap with the B0(ε). It is defined as

F1(ε) , B0 \ ({qd} ∪ F0) .

The region away from the obstacles includes the entire workspace W exclud-

ing the destination configuration, the regions F0, F1 and δF . It is defined as

F2(ε) , F \ ({qd} ∪ δF ∪ F0 ∪ F1) .
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qdF0

F0

F1
F2

Figure 3.1: A figurative description of the decomposition of the workspace F into
different regions. F0 represents the neighborhood of the obstacles. F1

represents the neighborhood of the boundary of workspace ∂F . qd
denotes the destination configuration in the free workspace F2.

3.5 Why ϕ is a navigation function

The sequence of propositions that establish the proof of correctness for ϕ

when the workspace is valid are stated informally as follows:

1. The destination qd is a non-degenerate local minimum of ϕ

2. The critical points of ϕ are in the interior of the free space

3. For every ε one can choose a κ so that γ
β

has no critical points away from

obstacles

4. There exists a lower bound for ε, below which the critical points of γ
β

close to

the obstacle boundary are not local minima

5. There is another lower bound for ε, below which there are no critical points

close to the workspace boundary
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6. There is a last lower bound for ε, below which whatever critical points besides

the destination are inside the free space, are non-degenerate (and therefore,

they have to be saddles).

The detailed proofs for these propositions can be found in [28].

3.6 Attempts at extending to multiple agents

To extend the single-agent construction to multiple agents the number of

agents is increased from one to N . The notation is changed slightly to denote this

fact, and for simplicity we assume that there are no stationary obstacles in the

agents’ environment. Rather, the agents may run into each other, and therefore

each one of them poses an obstacle to all others. The dynamics of each agent is:

ṗi = ui, pi ∈ Rn, i = 1, . . . , N (3.10)

where pi and ui are the position and control input of agent i, respectively. Let p

denote the stack vector of all pi, and define P as the set of p for which ‖pi−pj‖ ≥ ρ,

for all i, j = 1, . . . , N . Set P plays the role of F here.

A straightforward approach followed in existing literature is to start with

(3.9), define a goal function γd and the obstacle function β in a similar way as in

(3.4)-(3.5) and then set

ϕ =
γ

(γκ + β)1/κ
. (3.11)

These choices have advantages and disadvantages: on one hand, a γd de-

fined as in (3.2)-(3.3) requires each robot to achieve a pre-specified position in the

workspace and thus does not allow the formation to “float” freely in space; on the

other hand it ensures that the destination point will eventually turn out to be a

non-degenerate critical point in P .

In the original construction of the navigation function [28], the obstacle func-

tion β was defined as the product of individual obstacle functions βi. When the agent
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approaches any obstacle Oi , βi would tend to zero. When the same exact method-

ology is extended to scenarios with multiple agents, it can happen that any number

of agents, not limited to two, can come close enough to each other in which case

more than one βi would tend to zero. In such cases with sufficient number of βi

vanishing at the same time one can have ∇2β vanishing too. This makes the task

of proving the claim 4 in the list of the previous section, impossible (at least using

the known approach of [28]).

The approach used in [28] to establish the Morse properties of the navigation

function makes use of the following lemma.

Lemma 1. ([28, Lemma 3.1]) Let Rn = P ⊕ N and let the symmetric matrix

Q ∈ Rn×n define a quadratic form on Rn.

ξ(υ)
4
= υTQυ

If ξ|P (the restriction of ξ in P) is positive definite and ξ|N is negative definite, then

Q is non-singular and

index(Q) = dim(N ) .

The set of all critical points of ϕ is denoted Cϕ. Any critical point of ϕ in F0

is naturally in Cϕ ∩ F0. The tangent space at q ∈ Cϕ ∩ F0 is decomposed into two

orthogonal components P and Q. The idea is to express the quadratic form of the

Hessian at each critical point and a vector in both P and Q and show that they are

positive-definite and negative-definite respectively.

At the critical point,

∇2

(
γ

β

)
∝ 2
‖∇β‖
‖∇γ‖I −∇

2β . (3.12)

Let us see through an example why a direct extension might fail. While

computing ∇2β for the case of multiple agents, it is possible that more than one of
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βi might tend to zero. For an example with four agents, the obstacle function would

be β(x) = β1(x) · β2(x) · β3(x) · β4(x).

The gradient of β would be

∇β(x) = β′1(x) · β2(x) · β3(x) · β4(x) + β1(x) · β′2(x) · β3(x) · β4(x)

+ β1(x) · β2(x) · β′3(x) · β4(x) + β1(x) · β2(x) · β3(x) · β′4(x)

The Hessian in this case would be

∇2β(x) = 2β3(x) · β4(x) · (β1)′ (x) · (β2)′ (x) + 2β2(x) · β4(x) · (β1)′ (x) · (β3)′ (x)

+ 2β1(x) · β4(x) · (β2)′ (x) · (β3)′ (x) + 2β2(x) · β3(x) · (β1)′ (x) · (β4)′ (x)

+ 2β1(x) · β3(x) · (β2)′ (x) · (β4)′ (x) + 2β1(x) · β2(x) · (β3)′ (x) · (β4)′ (x)

+ β2(x) · β3(x) · β4(x) · (β1)′′ (x) + β1(x) · β3(x) · β4(x) · (β2)′′ (x)+

β1(x) · β2(x) · β4(x) · (β3)′′ (x) + β1(x) · β2(x) · β3(x) · (β4)′′ (x) (3.13)

With any combination of three of β1(x), β2(x), β3(x) and β4(x) approaching

zero, the Hessian ∇2β in (3.13) approaches zero. If ∇2β → 0 the Hessian of the

navigation function at a critical point (see (3.12)) would become positive and hence

a negative eigenvalue for ∇2
(
γ
β

)
can never be found. It is thus unclear how to prove

the Proposition 4 for multiple agents.

Having said this, it is not necessarily the case that a potential function built

in this way may fail to stabilize a multi-agent formation; in fact, reported numerical

results point to the opposite. This could be because potential problems may arise

only in extreme situations that may not be predicted beforehand. It could also be

the case, for example, that a critical point in question is not a local minimum but

rather just a degenerate critical point. Such critical points present problems mainly

when the system is initialized in their zero measure attraction region, or when one

applies diffeomorphic transformations to the configuration space.
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3.7 Challenges

Having identified the limitation of the choice of the obstacle function as a

product of individual obstacle functions, we conclude that the extension of the

navigation function methodology to multiple agents remains a challenge.

Using the existing approach, establishing the Morse properties of the naviga-

tion function close to the obstacles has not been formally achieved. We believe that

this challenge can be overcome by using an alternate construction for the navigation

function for which the eigenvalues of the Hessian can be decomposed into strictly

positive and negative values using the same approach.

We present such an alternate form of the obstacle function β, in the form of

a function of the distance between the two nearest agents in the workspace. For the

agents not to have an influence over each other when they are far away, we construct

β in a way that it approaches a constant value beyond certain distance between the

nearest agents. This ensures that the interaction between the agents remains local.

In certain cases where the minimal distance could be between more than two

agents, it turns out that the obstacle function is non-differentiable. We hence present

concepts from nonsmooth analysis in the next chapter, which are later utilized in

the proof of correctness for the new multi-agent navigation function construction.
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Chapter 4

NONSMOOTH ANALYSIS AND THE DISTANCE

FUNCTION

This chapter deals with the analysis of nonsmooth functions. These functions

represent the class of functions which are not differentiable everywhere. To define

the solutions of a gradient flow at points where the gradient switches we use the

concepts from the nonsmooth analysis. As we reach the end of this chapter we see

some of the differential properties of such functions and the conditions under which

these properties can be applied. The results presented here are utilized later for

establishing the proof of correctness of ϕ. Most of the results in this section are

from [39].

4.1 Generalized directional derivative

At a point where a function does not have (even a directional) derivative a

generalized derivative can be defined.

Definition 5 (Generalized directional derivative). The Clarke generalized derivative

of f(x) at x in the direction v is defined as

f o(x; v) = lim
y→x

sup
h↓0

f(y + hv)− f(x)

h
(4.1)

For the generalized derivative, since only the upper limit is considered, the

limit need not exist at x. We now define the right directional derivative which is

used in the definition of a regular function.
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Definition 6 (Right directional derivative). The right directional derivative of f :

Rd → R at x in the direction of v ∈ Rd is defined as

f
′
(x; v) = lim

h→0+

f(x+ hv)− f(x)

h
,

4.2 Generalized gradient

Definition 7. The Clarke generalized gradient of f(x) at x ∈ X∗ is

∂f(x) = {ζ ∈ X∗|f o(x; v) ≥ 〈ζ, v〉} (4.2)

where X∗ is the dual space of continuous linear functionals on X, f o(x; v) generalized

derivative of f(x) at x in the direction v and 〈ζ, v〉 denotes the value of functional

ζ at v.

In fact, when X is finite dimensional, and if Ωf ⊂ X is the set of points

where f is not differentiable, we can write

∂f(x) = co{ lim
i→∞
∇f(xi) : xi → x, xi /∈M∪ Ωf} (4.3)

where co stands for the convex hull, M can be any set of measure zero, and xi any

sequence converging to x.

The generalized gradient is thus the convex hull of all the points of the form

lim∇f(xi), where {xi} is a sequence converging to x avoiding M∪ Ωf .

4.3 Generalized gradient-pointwise minima

In this section, we deal with the generalized gradient for a function that

attains pointwise minima. An existing result on pointwise maxima is quoted and is

utilized to prove the result on pointwise minima.

Definition 8 (Regular Function). A function is said to be regular when its right

directional derivative and its generalized derivative are equal i.e.,

f
′
(x; v) = f o(x; v)
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We present here a result related to the generalized gradient of a function that

is defined as a pointwise maximum ([16], Proposition 2.3.12).

Suppose {fi} is a finite collection of functions (i = 1, 2, . . . n) each of which

is Lipschitz near x. The function f defined by

f(x′) = max{fi(x′) : i = 1, 2, . . . , n}

is also Lipschitz at x. For any x′ we let I(x′) denote the set of indices for which

fi(x
′) = f(x′) (i.e., the indices at which the maximum defining f is attained). The

proof for the following proposition can be found in [16].

Proposition 1 (Pointwise maxima).

∂f(x) ⊂ co{∂fi(x) : i ∈ I(x)} ,

and if fi is regular at x for each i in I(x), then equality holds and f is regular at x.

Using the above proposition we compute the generalized gradient for the case

of pointwise minima too. The following proposition was not found in the literature

in the form stated below, so a proof for it is provided. Stronger versions of this

proposition can be shown for the case where the functions fi are convex or regular,

similar to the stronger version (i.e., the case of equality) of pointwise maxima as

seen in the previous proposition.

Proposition 2 (Pointwise minima).

∂ min
i=1,...,n

fi(x) ⊂ co{∂fi(x) : i = 1, . . . , n}
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Proof.

∂ min
i=1,...,n

fi(x) = ∂(−max{−fi(x))})

= −∂(max{−fi(x))})

[Proposition2]

⊂
− co{∂(−fi(x)) : 1 ≤ i ≤ n}

= −co{−∂(fi(x)) : 1 ≤ i ≤ n}

= co{∂(fi(x)) : 1 ≤ i ≤ n}

(4.4)

4.4 Filippov Solutions

Filippov has developed a technique for finding solutions to differential equa-

tions with discontinuous right hand sides [1].

At a point x ∈ Rd, the vector field X (x(t)) is evaluated at B(x, δ), an open

ball centered at x with radius δ > 0. The effect of δ approaching zero is examined

by evaluating X for smaller and smaller δ. The notion of Filippov solution is based

on the differential inclusion of the nonsmooth equation.

Definition 9 (Set-Valued Map [18]). A set-valued map is a map that assigns sets

to points. The set-valued maps are of the form F : [0,∞) × Rd → B(Rd) where

B(Rd) denotes the collection of all subsets of Rd. The map F assigns to each point

(t, x) ∈ [0,∞)× Rd the set F(t, x) ⊆ Rd.

Differential inclusion and the notion of Filippov solution are defined as fol-

lows.

Definition 10 (Filippov solution, Differential Inclusion [1]). Let the vector-valued

function X(t, x) be defined almost everywhere and measuarable in the domain G of
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the (t, x)-space (x ∈ Rn) and let there exist, for each bounded closed domain D ⊂ G,

an almost everywhere finite solution m(t) such that

|X(t, x)| ≤ m(t)

almost everywhere in D.

Let F (t, x) be the smallest closed convex set containing all limit values of the

vector function X(t, x′), where tending to x, x′ spans almost the whole neighborhood

(that is, except for a set of measure zero) of the point x, that is,

F (t, x) =
⋂
δ>0

⋂
µ(S)=0

co{X(t, xδ) \ S)} .

Here co implies convex closure; intersection is taken over all sets S of measure zero

and over all δ > 0, and, F is the Filippov set-valued map.

Consider an equation or a system in vector notation

ẋ = X(t, x) (4.5)

with a piecewise continuous function X in a domain G, x ∈ Rn, ẋ = dx
dt

; M is a set

(of measure zero) of points of discontnuity of the function X. A solution of equation

(4.5) is called a solution of the differential inclusion

ẋ ∈ F (t, x) , (4.6)

that is, an absolutely continuous vector-valued function x(t) defined on an interval

or on a segment I for which ẋ(t) ∈ F (t, x(t)) almost everywhere on I.

Let for each point (t, x) ∈ G the set F (t, x) be the smallest convex closed set

containing all the limit values of the vector-valued function X(t, x∗) for (t, x∗) /∈M ,

x∗ → x, t =const. A solution of equation (4.5) is a Filippov solution of the inclusion

(4.6).

A point xe is an equilibrium of the differential inclusion if 0 ∈ F(t, xe) for all

t ∈ [0,∞). The possible evolutions of the system is defined using a set-valued map

F(t, x) : [0,∞)× Rd → B(Rd).
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Definition 11 (Maximal solution [39]). Consider the differential inclusion given by

ẋ ∈ X(x(t)), x ∈ G, x(t0) = x0 (4.7)

A solution x of this inclusion is said to be maximal if it does not have a proper right

extension i.e. there is no solution defined on an interval G̃ which properly contains

the interval G.

In other words, there is no solution x in G̃ such that G ⊂ G̃.

Definition 12 (Precompact solution [39]). A solution x(t) of (4.7) is said to be

precompact, if it is maximal and the closure cl(x([t0, ω)) of x(t) is a compact subset

of G.

Definition 13 (Limit set [39]). Let x(t) be a maximal solution of (4.7). A point

x̄ ∈ RN is an ω-limit point of x(t) if there exists an increasing sequence tn ⊂ [0, ω)

such that tn → ω with n → ∞ implies that x(tn) → x̄. The set Ω(x) of all limit

points of the solution x(t) is the ω-limit set of x(t).

Definition 14 (Weak invariance [39]). With respect to (4.7), a set S ⊂ RN is weakly

invariant if for each x(0) ∈ S ∩G, there exists at least one maximal solution of x(t)

of (4.7) with ω =∞ and with x([0, ω)) ∈ S. We say that S is strongly invariant if

every trajectory emanating from x(0) remains in S with ω →∞.

The following proposition is the nonsmooth equivalent of the known result

that states that differentiable solutions bounded in a compact set have a nonempty

attractive invariant set.

Proposition 3 ([39]). If x is a precompact solution of (4.7), then Ω(x) is a non-

empty, compact, connected subset of G. Moreover Ω(x) is the smallest closed set

approached by x and is weakly invariant.
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We next present Ryan’s version of the invariance principle [39]. Compared

to other results available in literature [5], Ryan’s version differs for not imposing

regularity assumptions on the Lyapunov-like function.

Theorem 1 ([39]). Let V : G → R be locally Lipschitz. Define

u : G → R, z → u(z) := max{V o(z, v)|v ∈ X(z)} ,

Suppose that U ⊂ G is non-empty and that u(z) ≤ 0 for all z ∈ U ,

If x is a precompact solution of (4.7) with trajectory in U , then, for some

constant c ∈ V (cl(U)∩G), x approaches the largest weakly invariant set in Σ∩V −1(c),

where

Σ = {z ∈ cl(U) ∩ G|u(z) ≥ 0}

4.5 The distance function and its properties

The obstacle function in the new construction ((5.4)) is modeled as a function

of the minimum of the distances among all the robots. In the case of multiple agents,

the function is nondifferentiable, and its nonsmooth properties affect those of the

gradient of the navigation function.

Definition 15 (The distance function). The Euclidean distance function dc of a

point v to set C ⊂ Rn is defined as

dc(v) = inf{||v − c|| : c ∈ C}

4.6 The distance function in the new multi-agent navigation function

The distance function, in the present case, is the minimum among all the

different inter-agent distances, qij, i.e.,

d(q) , min
ij
{‖qij‖} , (4.8)

35



The distance function d of a point x to a set Ω is typically defined as the

minimum norm of the difference between the point and any other point in the set.

d(x) , min
z∈Ω
‖x− z‖ .

Comparing to (4.8), x is identified with q and the set Ω is the manifold where any

of the components of q becomes zero.

With the exception of trivial cases, q cannot be continuously visualized in

three dimensions. The easiest case that can be reasonably depicted is that of three

planar agents: the formation configuration can be uniquely described in terms of the

horizontal and vertical relative position of agents 1 and 2, x12 and y12, respectively,

and the horizontal and vertical position of agents 1 and 3, x13 and y13, respectively.

In this case, q is (still) four-dimensional. But we can attempt to visualize the zero

level sets of (4.8) using three-dimensional slices of this four-dimensional space (see

Figure 4.1).

The distance-to-collision function is generally nonsmooth, not only at the

origin, but anywhere agents that were originally the closest are not anymore (the

pair of closest neighbors changes). Several interesting properties of the distance

function and its (generalized) derivative come handy.

We define the finite sets

Ω , {pi ∈ Rn | 1 ≤ i ≤ N},

Ωi , {pj ∈ Ω | j 6= i} .

Set Ω includes all agent position vectors, and Ωi just excludes the position of agent

i. These two sets allow us to express the distance function we introduced in (4.8),

in the form,

d(q) , min
i,j∈{1,...,N}

i 6=j

‖qij‖ ,
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(a) y1 − y3 < 0
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(b) y1 − y3 = 0

x12
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x13

(c) y1 − y3 > 0

Figure 4.1: Three 3-D slices of an inter-agent distance function defined in a four-
dimensional space. The collision configurations between agents 1 and 2
are marked by the cylinder that contains the (hyper)line x12 = y12 = 0.
In the three-dimensional slices where the dimension y13 is not pictured,
the collision configurations between agents 1 and 3 are shown as the
“thick” hyperplane passing through the origin on the y1 − y3 = 0
slice. Note the diagonal cylinder with axis on the x13-x12 plane: this
represents collisions between agents 2 and 3 (although x23 and y23 are
not mapped). This diagonal collision region expresses the fact that
when q12 = q13, agents 2 and 3 overlap; at the slice where y13 = 0,
therefore, and on the plane where y12 = 0 = y13, the diagonal line
x12 = x13 maps configurations where all three agents have the same
y coordinate, and agent 2 is on top of agent 3. These three graphs
illustrate that pairwise obstacle functions (i.e., collision between 1 and
2, or collision between 1 and 3) define regions in the relative position
space which are not isolated, and irrespectively of the agents’ volume
the origin of this space will always be a point common to all regions.

in terms of the distance di between a point pi ∈ Ω and the rest of its groupmates

which form the set Ωi,

di(pi) , min
z∈Ωi
‖pi − z‖ = min

j=1,...,N
i 6=j

‖qij‖ (4.9)

as follows:

d(q) = min
1≤i≤N

di(pi) = min
i=1,...,N

min
j=1,...,N
i 6=j

‖qij‖ . (4.10)

With reference to the point-to-set distance di, we define the set

W (pi) = {z ∈ Ωi | ‖pi − z‖ = di(pi)} ,
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which identifies the nearest neighbor(s) of agent i. The indices of the nearest neigh-

bors (the agents equidistant from i with the smallest distance from i) are contained

in the sets

Ii =
{
j ∈ {1, . . . , N} : pj ∈ W (pi)

}
.

Existing literature [22, Theorem 1] allows us to state the following fact about

the distance di, defined in (4.9) in terms of the Euclidean norm:

Corollary 1. For pi 6= pj, for all j ∈ {1, . . . , N} \ {i}, (i.e., when qij 6= 0),

∂di(pi) = co {∂‖qij‖ | j ∈ Ii} .

Note that away from qij = 0, ∂‖qij‖ = ∇‖qij‖ =
pj−pi
‖qij‖ , i.e., the unit vector

that points away from pi and toward pj.

As a result of proposition 2, we can write

∂d(q) ⊂ co{∂‖qij‖ : i, j ∈ {1, . . . , N}, j ∈ Ii} ,

where the derivatives are taken with respect to qij. Away from points where there

exists a pair i, j ∈ {1, . . . , N} such that qij = 0, ∂‖qij‖ is a singleton (recall that

gradients are taken with respect to qij, so in each case the derivative is that of the

distance of a vector from the origin) and therefore, given (4.3),

∂d(q) ⊂ co

{
lim
q′→q
∇q‖qij‖ : i ∈ {1, . . . , N} qij 6= 0, j ∈ Ii

}
.

It may not be obvious, but these convex hulls never contain the zero vector

away from qij = 0. This may become clear with the following two-dimensional

example.

4.7 Example: generalized gradient of pointwise minima

Let f(x, y) = min{|x|, |y|}, in which case we have f1(x, y) = |x|, and f2(x, y) =

|y|. The graph of f(x, y) is shown in Figure 4.2(a)
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(b) Generalized gradient along the x = y line

Figure 4.2: The min{|x|, |y|} function and its generalized derivative. Figure 4.2(a)
shows that the function has minima along the x and y axes. Along the
lines x = y and x = −y the function is not differentiable. Figure 4.2(b)
illustrates why the generalized gradient along the x = ±y lines does
not contain zero: (0, 0) 6∈ co{(0, 1), (1, 0)}! There is no positive λ for
which (0, 0) = λ(0, 1) + (1− λ)(1, 0).

The generalized gradient of f1 away from x = 0 is given by

x 6= 0⇒ ∇|x| =

(1, 0), x > 0

(−1, 0), x < 0

while for f2 we have

y 6= 0⇒ ∇|y| =

(1, 0), y > 0

(−1, 0), y < 0

.

Therefore, away from the axes and the lines x = ±y, the generalized gradient
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of f will be a singleton:

∇f(x, y) =



(0, 1), 0 < x < y

(1, 0), 0 < y < x

(−1, 0), −y < x < 0

(0, 1), x < −y < 0

(0,−1), x < y < 0

(−1, 0), y < x < 0

(1, 0), 0 < x < −y

(0,−1), 0 < −y < x.

, x 6= ±y, x, y 6= 0 .

It can now be seen (and Fig. 4.2(b) illustrates), that along the lines x = ±y for

x, y 6= 0, ∂f is a convex set that does not contain the origin.

The distance function d(q) is practically a generalization of f(x, y) in multiple

dimensions and behaves very similarly in terms of its (generalized) derivatives. A

notable property of ∂d (which can be verified in the example) is the following:

Lemma 2. Let d(q) be defined by (4.10). Then for q 6= 0, and for any z, w such

that z ∈ ∂d(q) and w ∈ −∂d(q), we have 〈z, w〉 ≤ 0. In addition, 〈z, w〉 = 0 only

when z ∈ δ∂d and w ∈ δ∂d.

Proof. The generalized gradient of d(q) is the convex hull of unit vectors ei along

different coordinate directions. Any z ∈ ∂d(q) is thus written as z =
∑
aiei,

with
∑
ai = 1 and ai > 0, while w =

∑
bi(−ei), with

∑
bi = 1 and bi > 0,

where i takes values in a finite set {1, . . . , k} for some k. Therefore, 〈z, w〉 =∑
i,j∈{1,...,k}(−aibj)〈ei, ej〉, where we note that 〈ei, ej〉 = 1 if i = j and zero other-

wise. Since ai, bj ≥ 0, the sum is negative semidefinite. For 〈z, w〉 = 0 we need

to f have (−aibi)〈ei, ei〉 = 0 ⇒ aibi = 0. For all i therefore, either ai or bi are
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zero, implying that in this case both z and w are on the boundary of ∂d and −∂d,

respectively.

For functions expressed as pointwise minima (the case of maxima can be

treated similarly) where Proposition 2 applies, we know the following:

Lemma 3 ([13]). The origin is contained in the interior of the convex hull of a set

of n arbitrary vectors {vi ∈ Rm, i = 1, . . . , n} iff there exists a vi such that for all

w ∈ Rm, 〈w, vi〉 > 0.
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Chapter 5

A NEW CONSTRUCTION FOR MULTI-AGENT

NAVIGATION

In this chapter we introduce the new construction of the multi-agent naviga-

tion function and its properties. We have seen in Chapter 3 the limitations involved

in extending the case of single agent navigation function to multiple agents using

the existing approach. We therefore define a different structure for the navigation

function for multiple agents for which we provide a proof of correctness.

5.1 Construction

We follow a similar construction for the goal function as in the case of a

single agent navigation function, however the obstacle function differs, in that, we no

longer use the product of the individual beta functions. We use a non-differentiable

obstacle function arising from the need to limit the interaction between the agents

to be local.

We treat the agents as autonomous identical sphere-shaped agents of diameter

d0. For the sake of simplicity we do not consider any static obstacles to be present

in the environment. This makes the collisions to occur only among the agents. At

the cost of not being able to generalize the proposed method to star-shaped words,

we relax the requirement for having analytic and admissible functions. It appears

that there can be benefits in using nonsmooth functions to construct ϕ, which we

intend to exploit.
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The goal is to steer the agents from any relative initial configuration so that

they fall into a pre-specified formation, without colliding with each other and with-

out fixing the location of that formation in space. The formation itself is described

by means of a graph:

5.2 The formation graph

The final formation that needs to be achieved by the agents is represented in

the form of a directed graph called formation graph. The relative distances between

the agents can be decoded from it. The absolute positions of the agents can then be

known by the application of Moore-Penrose pseudo inverse on the relative distances

vector.

Definition 16 (Formation graph [43]). The formation graph G = {V , E , C} is a

directed labeled graph consisted of:

• a set of vertices V = {v1, . . . , vN}, indexed by the mobile agents,

• a set of edges E = {(i, j) ∈ {1, . . . , N}×{1, . . . , N}}, containing ordered pairs

of nodes that represent inter-agent position specifications, and

• a set of labels (formation specifications) C = {cij | (i, j) ∈ E}.

Whenever there is a cij ∈ C, it implies that the desired relative position

between agent i and agent j is cij, that is, ideally, we should have ‖pi−pj−cij‖ = 0.

If graph G is (weakly) connected, then the formation is uniquely specified.

Meeting the formation specifications depends on relative positions only, and

our analysis is therefore performed in the space of relative differences.

qij , pi − pj .

If we denote p the stack vector of absolute agent positions, and q the stack

vector of relative agent positions (differences), then

q = Bp,
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where B is the incidence matrix of graph G. Shifting the analysis to the space of

relative positions (exclusively) avoids mixing absolute and relative coordinates (e.g.,

when considering both formation specifications and static obstacle avoidance), which

leads to both analytic and conceptual problems when it comes to establishing the

properties of a potential function.

Since the maximum number of possible edges in a graph of size N is N(N−1)
2

,

the workspace in this case is

Q = RN×N(N−1)
2 − {q| ‖q‖ > ρ0, ‖qij‖ ≤ 2d0,∀(i, j) ∈ N ×N} ,

that is, it excludes collision configurations between agents and configurations where

agents are too far apart from each other to be regarded as a group. We assume a

decomposition of Q similar to the decomposition of F . We will work with a function

ϕ, which is not a navigation function in the strict sense, but it is just polar, Morse,

and it blows up at the boundary of the collision free space:

ϕ(q) =
γ(q)

β(q)
, (5.1)

where γ(q) is the goal function, and β(q) is the obstacle function.

5.3 The goal function

We extend the goal function defined in [38] to multiple agents by using the

sum of the norms of the differences between relative position vectors and their cor-

responding formation specifications. The goal function thus captures the proximity

of the current group configuration to the desired formation configuration.

We define the goal function γ : R→ R+ as

γ(q) = γd(q)
κ , (5.2)

where γd(q) is a scalar valued positive definite function which is a measure of how

close the current group configuration is to the desired formation and κ is a tuning
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parameter, used to change the slope of the goal function γ(q). The value of κ can

be changed to alter the location and nature of the critical points in the workspace.

Function γd(q) is thus defined as

γd(q) ,
∑

(i,j)∈E
‖qij − cij‖2 . (5.3)

5.4 The obstacle function

We define the obstacle function for multiple agents as

β = log(µ− a e−(−r+d+d2)
2

) , (5.4)

with µ > 2, and a, r positive scalar parameters that can be chosen to determine the

location where β vanishes, and set its derivative at this location. Specifically, if one

needs β to vanish when d = d0, i.e., on the boundary of the obstacle, and have a

derivative equal to ζ there, then the choice

r = d2
0 + d0 +

ζ

2(1− µ)(1 + 2d0)
(5.5a)

a = (µ− 1) e([d0
2+d0−r]2) (5.5b)

meets the requirement. The argument of β is the minimum distance between agents

d(q) , min
ij
{‖qij‖} , (5.6)

measured between the centers of their spherical shapes. The minimum is taken over

every combination of i, j ∈ {1, . . . , N}. If the agents’ radii are equal to ρ, then it

follows that one needs to choose r and a so that β vanishes when d = 2ρ. The

properties of this distance function which were discussed in some detail in Section

4.5 are important in the present analysis.
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5.5 Properties of the goal and obstacle functions

5.5.1 Goal function properties

The goal function is a scalar positive definite function which turns zero only

when the agents are at their destination configuration. Decrease in the parameter

κ, “sharpens” the graph of γ towards the destination. Figure 5.1 illustrates this.

5.5.2 Obstacle function properties

The β function is a positive definite scalar function of the distance between

agents, varying in the interval [0,1], that vanishes when any two agents are in contact

with each other. The choice of β as in (5.4) gives the obstacle function the following

attributes.

1. It vanishes whenever any two agents collide and remains positive otherwise;

2. It approaches a constant asymptotically as agents grow further apart;

3. It is non-differentiable.

The need to resort to a non-differentiable function comes from the require-

ment to establish convergence properties for ϕ while maintaining the local nature

of interaction between agents. This requirement is refined into the following list of

conditions for β. Within the range of differentiable functions, one can verify that

these conditions cannot be all satisfied:

1. q → ∂F ⇒ β → 0: at collision configurations, β needs to vanish.

2. As ‖q‖ increases, β → constant < ∞, because as agents grow apart their

interaction is supposed to weaken.

3. β > 0 for q ∈ F .

4. ∂β
∂x
> 0 for β to serve as a metric of distance to collision configurations.
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Figure 5.1: Variation in the shape of the goal function γ with the tuning parameter
κ. The destination for the model goal function ((x− 1)2 + (y − 1)2)κ

is (1, 1) Fig. 5.1(a) shows the graph for κ = 0.3, where the shape of
the function is more sharpened towards the destination. Fig. 5.1(b)
shows the same for κ = 0.6. For higher κ, the shape of γ looks smooth
towards the destination as can be seen in Fig. 5.1(c)
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5. ∇β 6= 0 at ∂F so that we do not end up with critical points on, or have to

slide along the boundary of the free space (needed in Proposition 6).

6. ∂2β
∂x2

> 0 near the critical points, to avoid running into the situation illustrated

in (3.12).

One can observe that the requirement for β being strictly increasing and

bounded in [0, 1] is inconsistent with the specification that its second derivative is

positive, at least for differentiable functions; the curvature has to switch. It may be

the case that these particular conditions are not necessary in the form stated above,

but it is not obvious how to relax them either. On the other hand, one might give up

the requirement for a bounded β, forcing the agents to “feel” each other’s influence

anywhere they are in their workspace (no localized collision avoidance interaction).

In this work, we attempt to address the requirement for localized interaction directly,

by adopting a nonsmooth structure for β that fits within the specifications set above.

In view of (5.1) and (4.8), the proposed potential function can be expressed

as

ϕ(q) = max
i∈{1,...,N}

j 6=i

{
γ(q)

β(||q||)

}
. (5.7)

It becomes evident from the structure of the navigation function in (5.7),

that it is nonsmooth. As it can be imagined, in the case where two or more agents

achieve the same minimum β value, the max function would generate two or more

values, the gradient for which cannot be computed using the differential tools for

smooth functions. The new nonsmooth navigation function thus requires the results

from Chapter 4 on nonsmooth analysis.
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Chapter 6

PROOF OF CORRECTNESS

In this chapter the proof of correctness for the new construction of the navi-

gation function is discussed in detail. The chapter is divided into two sections, the

first of which deals with the case when the distance function is differentiable and the

other when the distance function is non-differentiable. The results on nonsmooth

analysis from Chapter 4 are used in the latter case.

6.1 When the distance function is differentiable

This section demonstrates the proofs for the situations where the distance

functions is differentiable, namely away from configurations where inter-agent dis-

tances become equal to each other, and away from configurations where qij = 0.

The latter configurations are infeasible since the agents are assumed to have a non-

zero spherical volume, and a configuration where qij = 0 corresponds to a situation

where they overlap in their workspace.

6.1.1 The destination is non-degenerate

The following proposition establishes the fact that the destination configu-

ration qd is a non-degenerate local minimum of ϕ. This is important because the

destination configuration needs to be isolated.

Proposition 4. (cf. [28, Proposition 3.1]) If the workspace is valid, the destination

point, qd, is a non-degenerate local minimum of ϕ.
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Proof. We have

ϕ =
γ

β
,

where β = log(µ − a e−(−r+d+d2)
2

). To make the destination configuration qd non-

degenerate we apply the following diffeomorphic transformation on the navigation

function ϕ,

σ(x) = (x)1/k .

The result of the above transformation on ϕ would be

ϕ̄ =
γd(q)

β1/k
.

We use the result from the Proposition 2.7 of [28], which states that the transfor-

mation of the navigation function ϕ with a monotonically increasing function such

as σ(x) produces a function ϕ̄ whose critical points are same as that of ϕ. We state

the proposition below.

Proposition 5 (Proposition 2.7 [28]). Let I1, I2 ⊂ R be intervals, ϕ : F → I1 and

σ : I1 → I2 be analytic. Define the composition ϕ̂ : F → I2, to be

ϕ̂ , σ ◦ ϕ .

If σ is monotonically increasing on I1, then the set of critical points of ϕ̂ and ϕ

coincide, i.e

Cϕ = Cϕ̂

and the index of each point is identical,

index(ϕ)|Cϕ = index(ϕ̂)|Cϕ̂

We, therefore, use ϕ̄ to prove that qd is non-degenerate.

At configurations where d is differentiable, we can write

∇ϕ̄ =
1

β2/k

(
β1/κ∇γd − γd∇β1/κ

)
=

1

β2/κ

(
β1/κ∇γd − γd

1

κ
∇β1/κ−1

)
. (6.1)
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Evaluating ∇ϕ̄ at the destination qd gives

∇ϕ̄ (qd) =
∇γd(qd)
β(qd)1/k

.

The Hessian of ϕ̄, on the other hand, is

∇2ϕ̄ =
1

β4/κ

[
β2/κ∇(β1/κ∇γd − γd∇β1/κ)

−(β1/κ∇γd − γd∇β1/κ)∇
(
β2/κ

)]
=

1

β4/κ

[
β2/κ

(
β1/κ∇2γd +∇β1/κ∇γTd

−∇γd∇β1/κT − γd∇2β1/k
)

−(β1/κ∇γd − γd∇β1/κ)2β1/κ∇β1/κT
]

At qd, we have ∇γd(qd) = 0 and γd(qd) = 0. We thus have

∇ϕ̄(qd) = 0 ,

and the Hessian therefore reduces to

∇2ϕ̄ =
1

β4/κ

[
β1/κ∇2γd

]
=
∇2γd

β
3
κ
−2

.

Since ∇2γd = 2I we have

∇2ϕ̄ =
2

β
3
κ
−2
I ,

where I here denotes the N(N−1)
2

-dimensional identity matrix. With β(qd) > 0, it

follows that qd is a non-degenerate critical point.

In the following proposition we show that critical points do not exist on the

workspace boundary.
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6.1.2 There are no critical points on the workspace boundary ∂F
Proposition 6. (cf. [28, Proposition 3.2]) If workspace is valid, all critical points

of ϕ are in interior of free space F2.

Proof. Recalling (6.1), we have

∇ϕ̄ =
β1/κ∇γd − γd∇β1/κ

β2/κ
=
κβ∇γd − γd∇β

κβ1+1/κ
,

note that on the boundary of the collision space (i.e., on ∂F) we have β = 0, while

both γd and ∇β (the latter by choosing ζ > 0) do not vanish. Therefore, as q → ∂F ,

the magnitude of ∇ϕ̄ blows up while it aligns with that of ∇β 6= 0, establishing the

transversality of ∇ϕ̄ on the boundary.

In the following proposition, we show that by varying the tuning parameter

κ, the critical points can be pushed away from the free workspace F2 arbitrarily

close to the collision configurations in F0.

6.1.3 The critical points can be pushed toward collision configurations

Proposition 7. (cf. [28, Proposition 3.3]) For every ε > 0 there exists a positive

integer N(ε) such that if κ ≥ N(ε) then there are no critical points of ϕ in F2(ε).

Proof. Let q be a critical point of ϕ. Since at a critical point ∇ϕ = 0, from (6.1) it

follows that at this configuration

β∇γ = γ∇β .

Substituting for γ from (3.2) we get

βκγd
κ−1∇γd = γd

κ∇β ⇒ βκ∇γd = γd∇β .

Taking norms on both sides

κβ ‖∇γd‖ = γd‖∇β‖ .
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A sufficient condition for the above equality not to hold is

κ >
γd‖∇β‖
β ‖∇γd‖

. (6.2)

The gradient of the obstacle function defined in (5.4) is expressed as

∇β =
2a(2d+ 1)(d+ d2 − r)

µ e(d+d2−r)2 − a ∇d ,

where ∇d is the gradient of the distance function (4.8). We therefore have

‖∇β‖ =

∣∣∣∣2a(2d+ 1)(d+ d2 − r)
µ e(d+d2−r)2 − a

∣∣∣∣ ‖∇d‖ .
It can be verifed that both ‖∇γd‖ (as long as qd is away from collision configurations)

and ‖∇β‖ and hence the right hand side of (6.2) are bounded in F2. In fact, since∇β
is upper bounded everywhere in F2 and β attains a minimum of ε at the boundary

of F2, it follows that the ratio ‖∇β‖
β

is upper bounded in F2. In addition, since γd

and ‖∇γd‖ are continuous functions that must attain their extremum points in F2,

and given that as q → qd,
γd
‖∇γd‖ → 0, the bound for κ on the right hand side of (6.2)

is finite anywhere in F2.

The next result is a critical one. It ensures that with an appropriate choice of

parameters, the critical points that have been pushed toward the obstacles are not

local minima; the Hessian has at least one negative eigenvalue there (later shown to

be only one).

6.1.4 Critical points close to collision configurations are not minima

Proposition 8. (cf. [28, Proposition 3.4]) For any valid workspace, there exists an

ε0 > 0 such that ϕ has no local minimum in F0 as long as ε < ε0.
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Proof. We first evaluate the Hessian of ϕ, as

∇2ϕ =
1

β4

[
β2∇(β∇γ − γ∇β)− (β∇γ − γ∇β)∇

(
β2
)]

=
1

β4

[
β2
(
β∇2γ +∇β∇γT

−∇γ∇βT − γ∇2β
)
− (β∇γ − γ∇β)2β∇βT

]
=

1

β3

[
β
(
β∇2γ − γ∇2β +∇β∇γT −∇γ∇βT

)
−2(β∇γ − γ∇β)∇βT

]
. (6.3)

At the critical point since β∇γ − γ∇β = 0, (6.3) after plugging in (3.2)

reduces to

∇2ϕ =
1

β2

[
β∇2γd

κ − γdκ∇2β
]

(6.4)

=
γd
κ−2

β2

[
κβ
(
γd∇2γd + (κ− 1)∇γd∇γdT

)
− γd2∇2β

]
. (6.5)

Substituting (3.2) in the equation for vanishing gradient at the critical point

we have,

κβ∇γd = γd∇β , (6.6)

and taking the outer product on both sides,

(κβ)2∇γd∇γdT = γd
2∇β∇βT (6.7)

substituting for ∇γd∇γdT from the above equation in (6.5) yields

∇2ϕ =
γκ−1
d

β2

[
κβ∇2γd +

(
1− 1

κ

)
γd
β
∇β∇βT − γd∇2β

]
(6.8)

From (6.6), by taking norms on both sides we have,

κβ =
γd‖∇β‖
‖∇γd‖

substituting for κβ in (6.8), we have

∇2ϕ =
γκ−1
d

β2

[
γd‖∇β‖
‖∇γd‖

∇2γd +

(
1− 1

κ

)
γd
β
∇β∇βT − γd∇2β

]
=
γd
κ

β2

[ ‖∇β‖
‖∇γd‖

∇2γd +

(
1− 1

κ

)
1

β
∇β∇βT −∇2β

]
. (6.9)
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Let υ̃ be any unit vector orthogonal to ∇β, that is υ̃T ·∇β = 0 with ‖υ̃‖ = 1.

Then the quadratic form υ̃T (∇2ϕ) υ̃ expands to

υ̃T
(
∇2ϕ

)
υ̃ =

γd
κ

β2
υ̃T
( ‖∇β‖
‖∇γd‖

· ∇2γd −∇2β

)
υ̃

=
γd
κ

β2
υ̃T
(

2I
‖∇β‖
‖∇γd‖

− ∇2β

)
υ̃ , (6.10)

where I is the N(N−1)
2

-dimensional identity matrix. Now, the right hand of (6.10)

to be negative, the following condition suffices

max

{
2
‖∇β‖
‖∇γd‖

}
−min {σ

(
∇2β

)}
< 0 (6.11)

where σ(·) denotes the spectrum of a matrix. Toward this end, we recall (5.4),

β = log(µ− a e−(−r+d+d2)
2

)

and we treat it as a function of two (not necessarily independent) variables, x1 , d

and x2 , d2: β = β(x1, x2). Then the first partial derivative of β with respect to q

can be written

∇β =
∂β

∂x1

∂x1

∂q
+
∂β

∂x2

∂x2

∂q
.

while the second is

∇2β =
∂2β

∂x1
2

(
∂x1

∂q

(
∂x1

∂q

)T)
+
∂β

∂x1

(
∂2x1

∂q2

)
+
∂2β

∂x2
2

(
∂x2

∂q

(
∂x2

∂q

)T)
+
∂β

∂x2

(
∂2x2

∂q2

)
With reference to (5.4) we have,

∂β

∂x1

=
∂β

∂x2

=
2a(x1 + x2 − r)
µ e(x1+x2−r)2 − a > 0 , (6.12)

and

∂2β

∂x1
2

=
∂2β

∂x2
2

=
2a[µ (4r(x1 + x2)− 2(x1 + x2)2 − 2r2 + 1) e(x1+x2−r)2 − a]

(a− µe(x1+x2−r)2)
2 ,

which for (x1+x2)→ r+, in the region where the critical point is expected, converges

to 2a
µ−a > 0, for a < µ.
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To determine min {σ (∇2β)}, we first note that with the partial derivatives

of β being positive, and write

min
{
υ̃T∇2βυ̃

}
=

∂2β

∂x1
2

min

{
υ̃T
∂x1

∂q

(
∂x1

∂q

)T
υ̃

}
+
∂β

∂x1

min

{
υ̃T
∂2x1

∂q2
υ̃

}

+
∂2β

∂x2
2

min

{
υ̃T
∂x2

∂q

(
∂x2

∂q

)T
υ̃

}
+
∂β

∂x2

min

{
υ̃T
∂2x2

∂q2
υ̃

}
. (6.13)

The first and third term in (6.13) involve rank-one matrices made of the same vector,

and thus their minimum eigenvalue is zero. With this observation, (6.13) we write

min
{
υ̃T∇2βυ̃

}
≥ ∂β

∂x1

min

{
υ̃T
∂2x1

∂q2
υ̃

}
+
∂β

∂x2

min

{
υ̃T
∂2x2

∂q2
υ̃

}
,

and given that ∂β
∂x1

= ∂β
∂x2

,

min
{
υ̃T∇2βυ̃

}
≥ ∂β

∂x1

[
min

{
υ̃T
(
∂2x1

∂q2
+
∂2x2

∂q2

)
υ̃

}]
Rewrite x1 = d = min ‖qij‖ =

√
min qTijqij and name the relative vector qij

with the minimum norm w for convenience. Since d is assumed to be differentiable,

around the critical point it will hold:

∂2x1

∂q2
=
∂2
(√
‖w‖2

)
∂2q2

=
∂

∂q

(
∂

∂q

(√
‖w‖2

))
=

∂

∂q

(
[0 · · · 0 w 0 · · · 0]T√

‖w‖2

)
=

∂

∂q

(
[0 · · · 0 w 0 · · · 0]T

‖w‖

)

=
‖w‖∂[0···0 w 0···0]T

∂q
− [0 · · · 0 w 0 · · · 0]T ∂‖w‖

∂q

‖w‖2

=
‖w‖diag{0, . . . , 0, In, 0, . . . , 0} − [0 · · · 0 w 0 · · · 0]T

(
[0···0 w 0···0]T

‖w‖

)T
‖w‖2

=
1

‖w‖diag

{
0, . . . , 0,

‖w‖2In − wwT
‖w‖2

, 0, . . . , 0

}
.

On the other hand,

∂2x2

∂q2
=
∂2‖w‖2

∂q2
= 2diag{0, . . . , 0, In, 0, . . . , 0} .
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Putting it together,

min υ̃T
∂2β

∂q2
υ̃ ≥ 1

‖w‖
∂β

∂x1

min

{
υ̃Tdiag

{
0, . . . , 0, 2‖w‖In +

‖w‖2In − wwT
‖w‖2

, 0, . . . , 0

}
υ̃

}
=

1

‖w‖
∂β

∂x1

min

{
2‖w‖+ 1− υ̃T ww

T

‖w‖2
υ̃

}
= 2

∂β

∂x1

With reference to (6.11), a sufficient condition for the quadratic form υ̃T∇2ϕυ̃

to be negative in F0 is that

max
F0

‖∇β‖
‖∇γd‖

< min
F0

{
∂β

∂d

}
. (6.14)

With ∂d2

∂q
growing as fast as ‖∇γd‖, and with the magnitude of ∂β

∂d
being regulated

arbitrary through the choice of ζ and a, there is always an appropriate choice of

parameters ζ and a so that (6.14) is satisfied. Practically, the further the desired

formation encoded in γd is from F0 (the near collision configurations), the easier

(6.14) is to satisfy.

To show that ϕ is Morse we use the same lemma as Lemma 1, which says

that the non-singularity of a linear operator follows from the fact that its associated

quadratic form is sign definite on complementary subspaces.

Let ξq(υ) denote υT∇2ϕ(q)υ, where q ∈ F0(ε), and υ is a vector in the tangent

space Tq of F0(ε) at q. Then we can show that the remaining nonnegative eigenvalues

of the Hessian of ϕ are all positive. The following proposition establishes the Morse

nature of ϕ.

6.1.5 The navigation function is Morse

Proposition 9. (cf. [28, Proposition 3.6]) There exists an ε2 > 0 such that for

every ε < ε2 at each critical point of ϕ in F0(ε), there is a direct sum decomposition

Tq = Pq ⊕ Nq, for which ξq|Pq is positive definite, ξq|Nq is negative definite, and

dim (Pq) = 1.
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Proof. Assume q ∈ B(ε) where B(ε) = {q : 0 < β < ε}. Define Pq = span {∇β(q)}
and let Nq be the orthogonal component of Pq in Tq. In Proposition 8 it was shown

ξq|Nq is negative definite as long as ε < ε0; the goal now is to show that ξq|Pq is

positive definite.

Let υ = ∇β
‖∇β‖ . From (6.1) and (3.2), at a critical point we recall (6.6):

κβ∇γd = γd∇β .

Just as in the proof of Proposition 8, taking outer products in (6.6) yields (6.7),

and substituting in (6.5) we get (6.8). Here, we instead take squared norms on both

sides of (6.6) to solve for κβ as follows

(κβ)2‖∇γd‖2 = γ2
d‖∇β‖2 ⇒ κβ =

γd
4κβ
‖∇β‖2 , (6.15)

exploiting the fact that ‖∇γd‖2 = γd
2. Substituting for κβ as found in (6.15) in

(6.5)

∇2ϕ(q) =
γd
κ−1

β2

[
γd

4κβ
‖∇β‖2∇2γd +

(
1− 1

κ

)
γd
β
∇β∇βT − γd∇2β

]
=
γd
κ

β2

[‖∇β‖2

2κβ
I +

(
1− 1

κ

)
1

β
∇β∇βT −∇2β

]
Evaluating ξq|Pq with υ = ∇β

‖∇β‖

υT ∇2ϕυ =
γd
κ

β2

[
1

2κβ
‖∇β‖2 +

(
1− 1

κ

)
1

β
υT∇β∇βTυ − υT∇2βυ

]
=
γd
κ

β2

[
1

2κβ
‖∇β‖2 +

(
1− 1

κ

)
1

β

(∇βT∇β
‖∇β‖

)2

− υT∇2βυ

]

=
γd
κ

β2

[
2κ− 1

2κβ
‖∇β‖2 − υT∇2βυ

]
Thus, υT∇2ϕυ is positive, if

min

{
2κ− 1

2κβ
‖∇β‖2

}
−max

{
υT∇2βυ

}
> 0 (6.16)
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Expanding ∇2β as in the proof of Proposition 8,

max
{
υT∇2βυ

}
≤ ∂2β

∂x1
2

max

{
υT
∂x1

∂q

(
∂x1

∂q

)T
υ

}
+
∂β

∂x1

max

{
υT
∂2x1

∂q2
υ

}

+
∂2β

∂x2
2

max

{
υT
∂x2

∂q

(
∂x2

∂q

)T
υ

}
+
∂β

∂x2

max

{
υT
∂2x2

∂q2
υ

}
≤ ∂2β

∂x1
2
(1 + 4‖w‖2) +

∂β

∂x1

(
2‖w‖+ 1

‖w‖

)
, (6.17)

simplified by the fact that ∂β
∂x1

= ∂β
∂x2

and ∂2β
∂x12

= ∂2β
∂x22

. The terms ∂2β
∂x12

and ∂β
∂x1

that appear in the right hand side of (6.17), are both positive and bounded when

q ∈ B(ε), with bounds dependent on parameters ζ and d0 as indicated in (5.5). In

view of (6.16), it therefore suffices to show that an appropriately small choice of

ε can make the first term of (6.16) sufficiently large so as the whole difference is

positive. Indeed, for a sufficiently small ε, ∂2β
∂x12

is decreasing in B(ε) and can be

upper bounded by its limit as x1 → d0, whereas ∂β
∂x1

is increasing and can be upper

bounded by its value at d = β−1(ε). The corresponding bounds are

max
Q0

∂β

∂x1

≤ 2(µe−ε − 1)

√
log

(
a

µ− eε
)

max
Q0

∂2β

∂x1
2
≤ 2a[µ(1− 2(d2

0 + d0 − r)2)e(d20+d0−r)2 + a]

(a− µe(d20+d0−r)2)2
.

Note that the former increases almost linearly with ζ (see (5.5)), while the latter

decreases with ζ. To this end, note first that min
{

2κ−1
2κ
‖∇β‖2
β

}
> 0 when κ > 1

2
,

and that 2κ−1
2κ

is strictly increasing and upper bounded by 1 as κ→∞. The factor

involving β and its gradient can be bounded as follows. First recall that

∇β =
∂β

∂x1

· ∂x1

∂q
+
∂β

∂x2

· ∂x2

∂q
=

∂β

∂x1

w

‖w‖ + 2
∂β

∂x2

w .
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Then, given that ∂β
∂x1

= ∂β
∂x2

, write

min

{‖∇β‖2

β

}
= min

F0

{
1

β

(
∂β

∂x1

)2(
2w +

w

‖w‖

)2
}
≥ (4d0

2 + 4d0 + 1) min

{
1

β

(
∂β

∂x1

)2
}

=
4d0

2 + 4d0 + 1

ε
min
F0

{(
∂β

∂x1

)2
}

,

since maxF0 β = ε. On the other hand, ∂β
∂x1

is lower bounded in F0, with its value at

d = d0 being equal to ζ
2d0+1

. Thus we have the first term of (6.16) rising quadratically

with ζ, while the second increasing at most linearly in Q0. Therefore, for sufficiently

large ζ and small ε, (6.16) can be satisfied.

The above proposition 9 implies that if ϕ is tuned properly, that is, for

a sufficiently large κ, then ϕ will be Morse, because at the critical points in the

interior of the free space the Hessian of ϕ will have a single positive eigenvalue while

all other will be negative. Together, Propositions 4 through 9 establish that ϕ is

a Morse function which has a single minimum at the destination configuration. As

a consequence, the solutions of the gradient field that ϕ produces (at least those

solutions that can be defined in the classical form) lead almost any initial condition

(with the exception of a zero-measure set) to the destination configuration.

The next section deals with the case where the classical gradient is not de-

fined, that is, the function ϕ is nonsmooth due to the non-differentiability of the

distance function. We show using the calculus of generalized gradients and differen-

tial inclusions introduced in Chapter 4 that there can still be no local minimum to

trap the integral lines of the negated gradient of the navigation function, and that

invariance theorems for nonsmooth systems can be applied to establish the (almost

global) asymptotic stability of the destination.
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6.2 When the distance function is not differentiable

To analyze the stability of the formation in the case when the distance func-

tion d is not differentiable, the results from Chapter 4 on nonsmooth analysis and

invariance principle are utilized. Based on these invariance results, and the charac-

terization of the generalized gradient of the distance function discussed in Section

4.6, we establish the (almost1) global attractive properties of the desired formation

configuration.

Without reconsidering the proofs given in the above section, which are ap-

plicable even here, we extend the proofs to the above propositions at the points of

nondifferentiablility.

When the right-hand side of the differential equation (3.10) is only piecewise

continuous, the solution p(t) (and therefore q(t)) for t ≥ 0, cannot be defined in

the classical sense anymore. Instead, it takes the form of a Filippov solution to the

differential inclusion

q̇ = F (q(t)), q(t) ⊂ F (6.18)

where F(.) is the Filippov set-valued map which in this case will be given by

F (q) = co
{

lim
k→∞

Bu(q[k]) : q[k]→ q, q′ 6=M
}
, (6.19)

where co denotes the convex closure of the convex hull, q[k] is any sequence of points

at which ϕ is differentiable, B is the incidence matrix of the formation graph, andM
can be any set of measure zero. Such Filippov solutions are absolutely continuous

curves q : [0;∞) → F , which satisfy (6.18) for almost all t ∈ [0,∞). For the

existence and uniqueness properties of Filippov solutions, we refer to [1], [18].

We can show that Propositions 4 through 9 hold for the nonsmooth case as

well. In fact, the analysis is actually simplified in some cases using the calculus of

1 With the exception of a set of configurations of measure zero, that include the
unstable critical points of the potential function and their attraction regions.
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generalized gradients. The following sections indicate how each one of the proposi-

tions of Section 6.1 extends to the nonsmooth case. The proofs of Section 6.1 are

not repeated; instead we indicate why and how they can be adapted to include cases

where generalized gradients have to be used.

6.2.1 Extension of Proposition 4

When the distance function is not differentiable at qd, then according to

Definition 26, since qd is a non-smooth critical point, we have∑
i

λidϕ̄i =
∑
i

λi
∇γd − γd

κβ
dβi

β
1
κ

= 0 , (6.20)

where the subscript i has been dropped from βi since all βi involved in the sum

are equal at the critical point. Because of (6.20), the second differential of the

Lagrangian L(q, λ) when evaluated at a critical point simplifies to

∑
i

λid
2ϕ̄ =

∑
i

λi
β

1
κ∇2γd − γdd2βi

1
κ

β
2
κ

.

Since∇2γd = 2I, γd(qd) = 0, and
∑

i λi = 1, the second differential of the Lagrangian

reduces to 2β
−1
κ I 6= 0 and is therefore regular at qd.

6.2.2 Extension of Proposition 6

Where d(q) is not differentiable, at critical point q, and in view of (6.20), we

can see that using the chain rule [16, Theorem 2.3.9(ii)] on ∂β, we get

∂ϕ =
1

κβ1/κ

(
κ∇γd −

γd
β

∂β

∂d
∂d

)
. (6.21)

As one approaches collision configurations, β → 0, (6.21) suggests that ∂ϕ →
−γd(κβ

1
κ

+1)−1 dβ
dd
∂d which does not contain the zero vector. Therefore, the ar-

guments of Proposition 6 apply.
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6.2.3 Extension of Proposition 7

Now let d(q) be non-differentiable at q. Then a necessary condition for q to

be a critical point is 0 ∈ ∂ϕ. Equation (6.21) hence yields the following necessary

condition for the existence of a critical point:

κ
2β

γd
∂β
∂d

(q − qd) ∈ ∂d .

While the left hand side can be turned into an arbitrarily large number by an

appropriate assignment to κ, ∂d is always lower and upper bounded. This is because

away from the destination and collision configurations, β and q − qd are lower and

upper bounded by ε and
√
ε, respectively. In any domain containing qd, on the other

hand, the terms in the denominator, γd and ∂β
∂d

upper bounded. Thus, repeating

the argument, for a sufficiently large κ establishes the statement of Proposition 7,

namely that for a sufficiently large κ the critical points of ϕ can be pushed in the

ε-neighborhood of the collision configurations.

6.2.4 Extension of Proposition 8

To extend Proposition 8 to the case where d is not differentiable, we do not

have to employ the Hessian of ϕ. We need to adapt and use a number of results

from [13]; the next proposition is a dual to [13, Proposition 3], with slightly more

relaxed conditions. Due to the relaxation, we provide a proof.

Proposition 10. [13, Proposition 3] Let V : Q → R,q → maxi fi(q) be a mapping

where all fi are smooth functions. If 0 ∈ int(∂V (y)) then y is a local minimum of

V .

Proof. If fi are smooth, then they are regular and from the positive maxima theorem

[16], and ∂V (q) = co {limqk→q∇fi(qk) : i ∈ I(q)}, where I(q) is the set of indices for

which fi(q) = V (q). Based on Lemma 3, for the origin to belong in the interior of

∂V (q), it is necessary that there exists an i such that 〈∇fi(q), w〉 > 0, for every

63



w ∈ TqQ (the tangent space of Q at q). Following the same reasoning as in the

proof of [13, Proposition 3], there must be a function fi that increases along any

direction w from point q. This implies that V (q) is a local minimum.

The proofs of the following two statements can be constructed in a straight-

forward manner, similarly to how the proposition above was established from [13,

cf. Proposition 3].

Proposition 11 ([13], Proposition 4). Let V (q) = maxi fi(q) where all fi are smooth

functions. At a saddle point, V is nonsmooth, and the origin is contained in δ∂V .

Proposition 12 ([13], cf. Proposition 5). Let V (q) = maxi fi(q) where all fi are

smooth functions. At a local maximum of V, 0 = ∂V .

In view of the above statements, there is a simple argument that shows

why nonsmooth critical points of ϕ can only be saddles: note that the interior

of a convex hull of k ≤ n vectors in an n-dimensional vector space is empty;

all points are on the boundary. In the case of d(q), even when every qij is one-

dimensional, the number of any nontrivial different distances between agents can-

not be more than the dimension of Q, in other words, and with reference to (4.10),

| {(i, j) : i, j ∈ {1, . . . , N} i 6= j} | ≤ dimQ. Therefore at points where d(q) is not

differentiable, any point ∂d will be a boundary point. According to the chain rule

for generalized gradients [16, Theorem 2.3.9(ii)], and based on (6.21),

∂ϕ = co

{
κβγκ−1

d ∇γd − γκd ∂β∂d ζ
β2

: ζ ∈ ∂d(q)

}
(6.22)

which means that ∂ϕ is essentially ∂d, scaled by−γκd
β2

∂β
∂d

and translated by
κβγκ−1

d

β
∇γd.

Since all the points of ∂ϕ are boundary points, according to Proposition 11, nons-

mooth critical points of ϕ are necessarily saddles.
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6.2.5 Extension of Proposition 9: The navigation function is Morse

To extend Proposition 9 to the case where d is not differentiable, we use the

nonsmooth critical point condition as defined in Definition 26 and show that the

conditions required for a nonsmooth critical point to be non-degenerate are met by

ϕ. To prove the first condition (ND1), consider the linear combination of the set of

differentials in
{
dϕj(x0)|j ∈ Î(x0) \ {i}

}
,where x0 is the nonsmooth critical point.

We have the linear combination as,

Σλidϕi = Σλi
βdγ − γdβ

β2

= Σ
dγ

β
− Σλi

γ

β2

∂β

∂d
Dddi

=
κγκ−1

d

β
Σλi − γκd

∂β

∂d
Σλiddi

=
γκd
β2

[
κβΣ

dγd
γd

λi −
∂β

∂d
Σλiddi

]
.

In the above equation (6.23), the vectors in
{
−∂β
∂d

Σλiddi
}

can be compared with the

vectors x1, x2, . . . , xn in the linearly independent set X of Proposition 14, because

the vectors in ddi are the unit vectors along the coordinate axes, and hence linearly

independent.

Further, the coefficients of the vectors in the term κβΣλi
dγd
γd

of equation

(6.23) can be compared to the coefficients µ1, µ2, . . . , µn in Proposition 14. Since the

coefficients κβ dγd
γd

are all positive, it follows from Proposition 14 that the differentials

dϕi at a nonsmooth critical point of ϕ are always linearly independent.

According to Definition 26, at a nonsmooth critical point, we have∑
i

λidϕi = Σiλi
βdγ − γdβi

β2
i

= 0 . (6.23)

The subscript to β has been neglected due to the fact that all the βi’s are same at

a non-smooth critical point. Simplifying and substituting for γ as γκd , we get

κβdγd − γdΣiλidβi = 0 .
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Taking inner product with γd on both sides, we have

κβ ‖dγd‖2 − γd 〈Σiλidβi, dγd〉 = 0 .

Using, ‖dγd‖2 = 4γd, we get κβ as

0 < κβ =
1

4
〈Σiλidβi, dγd〉 . (6.24)

Now, consider a vector v in the tangent space T̂ (x0). According to Definition 27

T̂ (x0) = ∩i∈Î(x0)kerndϕi(x0) ,

i.e.,

v ∈ ∩ikerndϕi = ∩ikern(βdγ − γdβi) .

Since v is orthogonal to (βdγ − γdβi), we have

〈
v, βκγκ−1

d dγd − γκddβi
〉

= 0 .

Substituting for γ as γκd , and simplifying we get

〈v, dγd〉 =
γd
κβ
〈dβi, v〉 . (6.25)

Noting that v is orthogonal to dϕi, the convex combination of the Hessians ϕi can

be evaluated to be found as

vTΣλid
2ϕiv = vTΣ

βd2γ − γd2βi
β2
i

, (6.26)

= vTΣiλi
d2γ

β
v − vTΣiλi

γ2
dβi
β2

v.

Since, βi is the same for all i ∈ I(q0) , it can be factored out. Substituting

for γ as γκd , we get

vTΣλid
2ϕv = vT

d(κγκ−1
d dγd)

β
vΣiλi −

γ

β2
vTΣiλid

2βiv
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=
κ

β
vTd(γκ−1

d dγd)v.1−
γ

β2
vTΣiλid

2βiv

=
κ

β
vT
{

(κ− 1)γκ−2
d dγddγ

T
d + γκ−1

d d2γd
}
v

− γ

β2
vTΣiλid

2βiv

=
κ

β
γκ−2
d vT

{
(κ− 1)

[
dγddγ

T
d

]
+ γd2I

}
v

− γκd
β2
vTΣiλid

2βiv

=
γκ−2
d

β2
v
{
κβ((κ− 1)

[
dγddγ

T
d

]
+ 2γdI)− γ2

dΣiλid
2βi
}
v

=
γκ−2
d

β2

{
2κβγdI +

(κ− 1)γ2
d

κβ

∥∥vTdβi
∥∥2 − γ2

dv
TΣiλid

2βiv
}
. (6.27)

Substituting for κβ from (6.24) and using (6.25) in the above equation, we get

vTΣλid
2ϕv =

γκd
β2

{
2

dγTd
∑

i λidβi
γd

I +
(κ− 1)

∥∥vTdβi
∥∥2

dγTd
∑
λidβi

−vTΣλid
2βiv

}
(6.28)

From the above equation two cases arise

Case 1: When v is 6⊥ dβi

When v 6⊥ dβi, the value of κ can be raised to make sure that the sum of the

first two terms in the brackets in equation (6.28) is large enough to make the whole

term positive. This adjustment on κ is consistent with the proof of Proposition 9

for the smooth case.

Case 2: When v is ⊥dβi

When v⊥dβi, then the middle term in the parenthesis in equation (6.28)
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vanishes and we are left with the following equation.

vT
∑
i

d2ϕv =
γκd
β2

{
2

dγTd
∑

i λidβi
γd

I − vT
∑

λid
2βiv

}
(6.29)

γd
κ

β2

{
2

(
dγd
‖dγd‖

)T ∑
λidβi
‖dγd‖

− vT
∑

λid
2βi v

}
(6.30)

≥ γd
κ

β2

{
2 max
F0

‖∑λidβi‖
‖dγd‖

−min
F0

λ
(∑

λid
2βi
)}

, (6.31)

where λ(·) denotes an eigenvalue. Obviously, if the right hand side of (6.31) is nega-

tive, the left hand side has to bee also. Relating
∑
λidβi to∇β and

∑
λid

2βi to∇2β,

the similarity between (6.31) and (6.10) becomes apparent, and thus choosing ζ ap-

propriately large along the lines of the proof of Proposition 8, makes vT
∑

i∈Î λid
2ϕi v

negative definite.

Thus, (6.28) can be made non-singular—either positive or negative definite—

by a proper selection of ζ. This makes the nonsmooth critical point a nondegenerate

critical point.

It has been therefore shown that irrespectively of whether ϕ is differentiable

or not, when appropriately tuned the construction given by (5.1)-(5.2)-(5.3)-(5.4)

yields a Morse function with a single minimum at qd; with all other critical points

being saddles. Remarkably, regions where ϕ is not differentiable can only produce

saddles, but tuning is still necessary to adjust critical points at locations where ϕ is

differentiable. We next show that properties established by Propositions 4 through

9 and their nonsmooth extensions are sufficient to ensure almost global asymptotic

convergence of (6.18) to qd.

6.3 Proof of convergence of ϕ

Let us first design the right hand side of (6.18) by setting

Bu = −Ln(∂ϕ)(q) (6.32)
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where Ln(S)(q) is a set valued map that assigns to each subset of S the set of least-

norm elements in the closure of S [18]; in cases where S is a convex and closed (as

for S = ∂ϕ), Ln(S)(q) maps to a singleton which is the orthogonal projection of the

zero vector on S. The right hand side of (6.18) takes the form of (6.32) if the agent

inputs are chosen as

u = −B†Ln(∂ϕ)(q) , (6.33)

where B† = (BTB)−1BT is the Moore-Penrose generalized inverse of the incidence

matrix of the formation graph G, B. With this choice of control inputs,

F (q) = −∂ϕ(q) , (6.34)

that is, (6.18) takes the form of nonsmooth generalized gradient flow [18].

The set {V o(z; v)|v ∈ F (z)} in Theorem 1 can take values in a superset of

the generalized Lie derivative L̄F (∂f) of [18], [5], making the task of establishing the

sign (semi)definiteness much harder when applying Theorem 1; arguably, there is a

price for relaxing the regularity condition on V . In our case, however, ϕ is locally

Lipschitz and regular because it is a pointwise maximum function [16, Proposition

2.3.12]. We can therefore bring to bear a much stronger result that directly applies

to nonsmooth generalized gradient flows [18, Proposition 11]:

Proposition 13 ([18]). Let V : RN → R be locally Lipschitz and regular. Then

the strict minimizers of V are strongly stable equilibria of the nonsmooth gradient

flow of V . Furthermore, if the level sets of V are bounded, then the solutions of the

nonsmooth gradient flow asymptotically converge to the set of critical points of V .

In our case taking ϕ(q) as V , we know that the level sets of ϕ are bounded in

Q. The convergence of the closed loop system (6.18)-(6.33) therefore follows from a

direct application of Proposition 13.

An alternative proof using Theorem 1 is provided below.
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6.4 Proof of convergence using Ryan’s invariance principle

We take ϕ as V (q). Function ϕ is continuous and locally Lipschitz. At

every q where d(q) is differentiable, q̇ = −∇ϕ, so V o(q, q̇) = V̇ (q) = −||∇ϕ||2.

At configurations q where d(q) is non-differentiable, q̇ takes the form of Filippov

solution to a differential inclusion, i.e.,

q̇ ∈ F (q) ,

where F (q) = −∂ϕ(q).

In such cases, we have

V o(q, q̇) ∈ {w|∃v ∈ ∂ϕ, ∃ζ ∈ ∂ϕ(q) : 〈ζ, v〉 = w} .

Given (6.22),

V o(q, q̇) ∈
{
w|∃v, ζ ∈ ∂d : − 1

β4
(κβγk−1

d ∇γd − γκd
∂β

∂d
v)T · (κβγk−1

d ∇γd

− γκd
∂β

∂d
ζ) = w

}
=

{
w|∃v, ζ ∈ ∂d : −γ

2κ−2
d

β4

(
κ2β2||γd||2 + γ2

d(
∂β

∂d
v)T (

∂β

∂d
ζ) . . .

− γd(
∂β

∂d
v)Tκβ∇γdκβγd∇γTd (

∂β

∂d
ζ)
)}

=

{
w|∃v, ζ ∈ ∂d : −γ

2κ−2
d

β4
(4κ2β2γd − γdβ

∂β

∂d

[
vT∇γd∇γTd ζ

]
κ . . .

+ γ2
d(
∂β

∂d
)2vT ζ)

}

(6.35)

Rephrasing, there exist ζ ∈ ∂d and v ∈ −∂d for which

V o(q, q̇) = −γ
2κ−1
d

β4
(4β2 · κ2 − β∂β

∂d

[
vT∇γd +∇γTd ζ

]
· κ+ γd(

∂β

∂d
)2vT ζ) ,

where we identify a second order polynomial in κ, having negative definite coefficient

for κ2, and negative semidefinite (2) constant coefficient, everywhere in the interior
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of Q. The term multiplying κ, can be bounded in Q using a tight bound that

exploits the fact that ∂d is a closed orthant:

β
∂β

∂d

[
vT∇γd +∇γTd ζ] ≤ max

Q

{
β
∂β

∂d

}
do(q;∇γd)

]
,

and therefore there is an upperbound on κ for which V o(q; q̇) becomes negative

semi-definite everywhere in int(Q). Away from qd, the locations where V o vanishes

are necessarily saddles due to Proposition 11, and therefore isolated.

The fact that q(t) is a pre-compact solution of (6.18) is established by invok-

ing the invariance of the level sets of ϕ: since the directional derivative of ϕ along

the system’s trajectories is non-positive, level sets that contain the initial configura-

tion q(0) are positively invariant (strongly, in this case, since no solution increases

ϕ). With ϕ being positive definite in Q once the coordinate system is shifted at qd,

that implies that the invariant level sets are also compact. The closedness of the

solution q(t) is given by definition (see [39]); the boundedness follows by the positive

invariance of the level sets. According to Theorem 1 therefore, q(t) approaches the

largest weakly-invariant set in the level set of ϕ for which y(q) = 0. The points in

Q that satisfy y(q) = 0 are the saddle points of ϕ and qd.
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Chapter 7

NUMERICAL AND EXPERIMENTAL VALIDATION

In this chapter, we validate the proof of correctness of the navigation function

with numerical and experimental results. We investigate the nature of the critical

points of the proposed construction for ϕ, as the tuning parameter κ increases.

7.1 Numerical Results

We perform a side-by-side comparison of the new construction of the naviga-

tion function with a conventional construction as in (3.9). A three agent formation

is the largest formation for which we can reasonably illustrate the location of crit-

ical points in two-dimensions. For a three agent formation, we identify the critical

points of a potential function numerically. The computation of the critical points

is done using standard numerical optimization methods available in matlab. This

parallel numerical investigation provides evidence that both constructions may not

give Morse functions for low values of their tuning parameter. Although the results

appear contaminated by numerical noise at high values of the tuning parameter,

giving several probable spurious critical points, they still seem to indicate that for

low values of κ, there is continuum of critical points which excludes the possibility

of them being non-degenerate.
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7.1.1 Assessment of the critical points

Here we shall compare the traditional navigation function with the new con-

struction on the basis of the behavior of critical points with change in the parameter

κ. The standard routine fmincon of MATLAB is used.

7.1.1.1 Nature of the critical points - A comparison between the tradi-

tional construction and the new construction

In the traditional as well as the new construction, the desired formation

configuration is set to c21 = (0.2, 0.2) m, and c31 = (0.3, 0.3) m. Figure 7.1 shows

the critical points for different values of the tuning parameter, marking the location

of the two agents in a coordinate system fixed on the third agent. In such a setup,

the relative position of each of the other two agents can be mapped on the plane.

Figure 7.2 depicts the location of critical points in the same setup for the proposed

potential function construction, as the tuning parameter is increased.

In the case of Figure 7.1 we see a crescent-shape manifold of critical points

appearing for small values of κ. In Figure 7.2, this manifold takes a circular shape

surrounding the agent at which the local coordinate system is attached. As the

parameter increases, however, the critical points seem to converge to qd in both

cases. The spurious critical points around qd, and the few far away from it, are

attributed to numerical noise; when the parameter κ increases, since the latter

resides in the exponent of the denominator of ϕ, the function may exhibit dramatic

variations.

7.1.2 Simulation of agent paths

This section presents numerical results for the agent paths with the agents

starting from different initial positions. The relative positions between different

agents is plotted against time. The simulation test assesses the behavior of the

closed loop system under (6.33), in the neighborhood of a suspected saddle. In this
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Figure 7.1: Numerical computation of critical points in a traditional multi-agent
navigation function as given by (3.9). Agent 1 is assumed at the center,
and the relative position of the other two agents when ϕ has a saddle
is marked by a pair of small circles. Points (0.2, 0.2) and (0.3, 0.3)
mark the desired configuration. For small values of κ a continuum of
critical points appears; it later disappears as the parameter increases
beyond a certain threshold.
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Figure 7.2: Numerical computation of critical points in the proposed multi-agent
navigation function given by (5.1)-(5.2)-(5.3)-(5.4). Agent 1 is as-
sumed at the center, and the relative position of the other two agents
when ϕ has a saddle is marked by a pair of small circles. Points
(0.2, 0.2) and (0.3, 0.3) mark the desired configuration. For small val-
ues of κ a ring of critical points appears and then disappears as the
parameter increases beyond a certain threshold.
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scenario we set c12 = (0.1, 0.1) m and c23 = (0.2, 0.2) m, so that the agents are

expected to align along a 45 degree line, with agent 2 in the middle, agent 1 at the

top right, and agent 3 at the bottom left.

In the first run we choose initial positions for the agents so that they are all

along the 45 degree line, but at the “wrong” place: agent 1 is at the bottom left,

agent 2 is at the top right, and agent 3 is in the middle. The agents have to swap

relative positions to reach the desired configuration given by c12 and c23 defined

earlier. The initial relative positions are hence given by q12(0) = (−0.3,−0.3) m,

and q23(0) = (0.1, 0.1) m. As it may be expected, the symmetry of the initial

configuration would force the agents to a deadlock; indeed, this is exactly what

happens as shown in Fig. 7.3. Additional simulations have shown that the final

relative position reached by the agents in Fig. 7.3 is also attractive for other initial

conditions along the 45 degree line, with the agents in the same order but with

different initial spacing. As shown next, the configuration where x12 = y12 = −0.4

and x23 = y23 = 0.2 is a saddle.

Figure 7.4 shows what happens when the formation is initialized slightly off

the region of attraction of the saddle. Agents are able to swap positions, minimize

their goal function asymptotically, and achieve their desired configuration.

Additional numerical simulations with initial conditions in the neighborhood

of the saddle at q12 = (−0.4,−0.4) m, q23 = (0.2, 0.2) m exhibited the same behavior,

confirming that the attraction region of that saddle is restricted to the straight line

defined by the formation specification vectors cij given initially (Fig. 7.5). What

Fig. 7.5 also confirms is that the fact that the agents swap positions with each other

in the case of Fig. 7.4 (where agent 1 ends up at the initial position of agent 2, agent

2 goes where agent 3 initially was, and agent 3 converges to the initial location

of agent 1) is just coincidental and due to the symmetry in the initial conditions;

when the agents are initialized in the neighborhood of the saddle point, their final
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Figure 7.3: Simulation of a formation control maneuver where all agents have to
switch positions, starting within the region of attraction of a saddle
point which eventually traps them. In Figure 7.3(a) the continuous
curve shows the evolution of x1 − x2, the dashed curve shows that of
y1−y2, the dot-dashed curve depicts x2−x3, and the thick dotted one
gives y2 − y3. Figure 7.3(b) reveals that the agents are not capable of
minimizing their goal function γ. In Figure 7.3(c) the continuous path
corresponds to that of agent 1, the dashed curve to agent 2, and the
dot-dashed to agent 3. The initial positions of the agents are marked
with a dot and their corresponding numeral, while the small arrows
at the end of the paths denote the final positions for the agents at
the end of the time period of simulation. Figure 7.3(c) shows that the
agents stay on the same line they started at as they converge to the
saddle. The chattering that occurs at steady-state is due to the fixed
integration step of the numerical solver.
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Figure 7.4: Simulation of a formation control maneuver where all agents have to
switch positions, starting close but not in the attraction region of a
saddle. The notation is the same as that in Figure 7.3. In the initial
configuration, q12(0) = (−0.305,−0.3) m and q23(0) = (0.1, 0.1) m. In
Figure 7.4(a) the continuous curve shows the evolution of x1−x2, the
dashed curve shows that of y1−y2, the dot-dashed curve depicts x2−x3,
and the thick dotted one gives y2 − y3. Figure 7.4(b) indicates that
the desired formation is reached since the goal function γ converges to
zero. Figure 7.4(c) shows the paths of the three agents as they switch
positions to reconfigure themselves into the desired formation.
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positions have a fixed off-set with respect to those of Fig. 7.4. This goes to show

that what is being controlled is the relative position of the agents, rather than their

absolute position in some fixed coordinate frame.

In the second simulation test, we assess the system with six agents to establish

its non-trivial nature. Along similar lines to the previous simulation, we set the

initial and final configurations in a 45o straight line, in a way that they switch their

positions in a manner shown in Figure 7.6. Figure 7.7 shows the simulation results.

The numerical simulations were performed on a 32 bit Intel Core 2 Duo

processor (each core @ 2GHz) employed with a 3GB RAM. MATLAB software

was used for the computation. Under such a computing environment, the times

taken by different number of agents is shown in Table 7.1.

Table 7.1: Computation Time

Agents Time(sec)

3 28.735
4 55.446
5 93.620
6 320.235

7.2 Experimental Validation

In this section we describe the hardware setup for the experimental demon-

stration of the formation control and present the related results.

7.2.1 Corobots

The Corobots, developed by the Coroware Inc., are employed to act as mobile

agents in our experiments. To each Corobot, a set of reflective markers is attached

which enables the motion capture system to determine its location. The Corobots
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Figure 7.5: Simulation of a formation control maneuver where all agents have
to switch positions, starting in the neighborhood of a saddle config-
uration. The notation is the same as that in Fig. 7.3. The initial
configuration, q12(0) = (−0.405,−0.4) m and q23(0) = (0.2, 0.2) m. In
Fig. 7.5(a) shows with continuous line the evolution of x1 − x2, with
dashed curve that of y1−y2, with dot-dashed curve that of x2−x3, and
with thick dotted one the trajectory of y2 − y3. Figure 7.5(b) shows
the paths of the three agents as they switch positions to reconfigure
themselves into the desired formation, where it can be seen that their
final position is different from that of the case depicted in Fig. 7.4.
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Figure 7.6: Initial and final configurations for the 6-agent simulation test

are programmed using the Player/Stage interface which works on the C/C++ plat-

form.

The Corobots have a 1.5GHz processor, 1 GB of memory and an Ethernet

card used for wireless communication. Each Corobot can hence be viewed as a com-

puter capable of on board processing. They are also equipped with a 2 MP camera,

encoders, laser ranger and bumper sensors. A 4-dof arm with a gripper sensor

embedded to the Corobot platform allows some interaction with the workspace.

7.2.2 Vicon Motion Capture System

The Vicon motion capture system (Vicon MX in short) is used to obtain the

real-time position information about the agent.

The Vicon system consists of 8 infrared cameras, each of them placed at

certain height from the laboratory workspace. The cameras track the location of

the markers embedded on the corobots which gives their current position. Though,

mathematically, 3 cameras are sufficient to accurately determine the location of a

marker in space, additional cameras are installed to exclude the possibility of 2 or

more cameras getting obstructed (people moving around, desks obstructing, etc).

A C++ program is written to obtain the position of markers and the angular

orientation of the axes on the robots. The numerical data so obtained from the

Vicon form the input to the formation controller described in the next section.
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Figure 7.7: Simulation of a 6-agent formation control maneuver where the agents
switch positions in accordance with Fig. 7.6. The agents begin on a
45o straight line in the neighborhood of a saddle configuration. The
relative distances between successive agents is (0.1, 0.1). Figure 7.7(a)
shows the agent paths, with unprimed numbers representing the ini-
tial configuration and primed numbers the final configuration. Fig-
ure 7.7(b) shows the evolution of the relative x-distances between the
agents. Figure 7.7(c) shows the evolution of the relative-ydistances
between the agents.

7.2.3 The formation controller

The formation controller described here generates the linear velocity and

angular velocity vectors that the Corobots take as input.
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The gradient of the navigation function prescribes the desired relative veloc-

ity vectors between the agents. The relative velocities are then mapped to absolute

velocities using the Moore-Penrose inverse. The inverse generates a least-norm so-

lution to the absolute-velocities. The velocities so generated could be very high

in terms of the magnitude due to the nature of the gradient of ϕ and may not

be practically implementable on the Corobots. These velocities are therefore pro-

portionally scaled down for all the agents to velocities attainable by the Corobots

using the hyperbolic tangent function. The absolute velocity vectors obtained from

the Moore-Penrose generalized inverse are then converted into velocity and angular

velocity inputs to the Corobots using the following procedure.

Let fx and fy denote the absolute velocity vectors in x and y directions.

The resultant direction of motion for each agent can be calculated using the inverse

tangent of fy
fx

. We denote the desired direction of motion θd.

The current direction of motion, θc, of the agent is obtained from the Vicon

motion capture system. The error in θ is the difference between θc and θd i.e.,

eθ = θc − θd

We build a proportional controller for stabilizing the error eθ

ėθ = −K(eθ) (7.1)

Since eθ = θ − θd, we have

ėθ = θ̇c − θ̇d

since θ̇c = ω, we get

ω = ėθ + θ̇d (7.2)

Substituting (7.1) in (7.2), we get,

ω = −K1eθ + θ̇d
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At any position of the agent, the desired direction θd can be computed using the

velocity gradients in the x and y directions as

θd = atan2(fy, fx)

The angular velocity ω thus becomes

ω = −K1eθ +
d

dt
atan2(fy, fx)

The above equation, on evaluating the derivative, becomes

ω = −K1 [θ − atan2(fy, fx)]+
v

||F ||2
[
fx(

∂fy
∂y

sin θ +
∂fy
∂x

cos θ)− fy(
∂fx
∂fy

sin θ +
∂fx
∂fx

cos θ)

]
The velocity vector as described earlier is given by

v = K2tanh(f)

where f is the absolute velocity vector.

7.2.4 Experimental results

We present the results from our laboratory, with the experiments performed

on the Corobots. We employed 3 Corobots to analyze the behavior the system.

Three tests were performed to make the analysis exhaustive. In the first case, the

agents were to form a straight line from almost any initial configuration, the results

of which are shown in Figure 7.8. In the second case, the agents switch their relative

positions in a straight line along a 45o line. The test results are shown in Figure 7.9.

In the final case, the agents switch their positions in a triangle. Figure 7.10 shows

the results. Again, we see from Figures 7.9 and 7.10 that it is the relative positions

among the agents that is being switched and not their absolute positions. The dot

signifies the destination location of the agent.

The jitter that we see in the agent paths is due to the possible overshoot of

the Corobots occurring due to the fixed time step associated with each Corobot.
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Close to the destination, the gradient vector varies sharply and hence difficult to be

followed by Corobots. The feedback obtained from the Vicon maintains the Corobot

close to the required trajectory. This jitter might sometimes be useful, in that, the

configuration could escape from any possible saddle points at which the Corobots

might get stuck.
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Figure 7.8: Experimental results for the line formation of three agents from almost
any initial configuration
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Figure 7.9: Experimental results showing the switching of relative positions of
three agents in a straight line.
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Figure 7.10: Experimental results showing three agents switching in a triangle.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

This work presents a methodology to drive a group a robots from an ar-

bitrary initial configuration to a free-floating destination formation. This was an

open problem because the generalization of the single agent navigation function

to multiple agents is problematic. The approach adopted in the literature in the

construction of the navigation for multiple agents employs the product of positive

semidefinite scalar functions as a metric of distance of the system from collision

configurations. We indicate that in that context, and following the proof techniques

that have appeared in literature, one may fail to establish the Morse character of

the functions critical points, on which the convergence properties of the potential

field that function generates, rely upon.

In this work, we propose an alternative construction of the potential func-

tion for which we can establish the properties sufficient for the (almost global)

convergence of the system to the desired configuration. The new construction is a

nonsmooth positive definite function, and using the proof techniques based on non-

smooth analysis, and control theory for dynamical systems expressed in the form of

finite dimensional differential inclusions we establish the convergence properties of

the multi-agent system with single integrator kinematics.

A centralized planning scheme has been employed in the construction of the

new navigation function. Given the limitations of the centralized architecture, this

work could be extended to achieve the formation control of multiple robots using the
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decentralized control scheme. The construction of the obstacle function, β, in our

navigation function facilitates decentralization. Assuming each agent has knowledge

about the agents only in its neighborhood, a local obstacle function, say βi, for each

agent i can be constructed with agents within that neighborhood. Similarly, a goal

function γdi , is constructed for the same neighborhood. A local navigation function

ϕi, when minimized for agent i would steer it towards the destination formation.

The agents considered in the multi-agent system are assumed to be holo-

nomic agents with omnidirectional properties. In our implementation, we employed

control designs [46] that allowed the application to nonholonomic systems, but ve-

hicle orientation is not controlled. Another important issue with the multi-agent

navigation functions is the parameter tuning process. So far, no formal procedure

to tune the navigation function has been published. In this work, the tuning has

been done using the trial and error approach. Developing a better technique for the

parameter tuning, possibly through learning, can be taken up as a good challenge.
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Appendix

DEFINITIONS

Definition 17 (Homeomorphism [50]). A mapping f : X → Y of metric spaces is

called a homeomorphism, and the spaces X, Y homeormorphic if (1) f is bijective,

(2) f is continuous, and (3) the inverse mapping f−1 is continuous.

Definition 18 (Diffeomorphism [24]). A smooth map f : X → Y , of subsets of two

Euclidean spaces is a diffeomorphism if it is one to one and onto, and if the inverse

map f−1 : Y → X is also smooth. X and Y are diffeomorphic if such a map exists.

Definition 19 (Limit Point [50]). A point x ∈ A is said to be a limit point of the

set A if there is atleast one point x′ ∈ A other than x in each neighborhood Ω(x) of

the point x.

Definition 20 (Closed Set [50]). Let X be a topological space. A set A ⊂ X is

closed if and only if it contains all its limit points.

Definition 21 (Connected Space [34]). A topological space X is said to be connected

if the only two subsets of X that are simultaneously open and closed are X itself and

the empty set Φ.

Definition 22 (Analytic function [41]). A function f : Rn → R is analytic at

a ∈ Rn if f can be expressed as a power-series in the (xi − ai) which converges in

some neighborhood of a.
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Definition 23 (Manifold [41]). A manifold is a metric space M with the following

property:

If x ∈ M , then there is some neighborhood U of x and some integer n ≥ 0

such that U is homeomorphic to Rn. An n-dimensional manifold thus is “locally”

similar to the metric space Rn.

Definition 24 (Convex Hull[12]). The convex hull of a set of vectors {vi : i = 1, . . . , n}
is

Co {vi : i = 1, . . . , n} = {Σn
i=1λivi : λi ∈ R such that λi > 0∀i and Σn

i=1 = 1}

Definition 25 (Continuous selection of functions [2]). Let M be an n-dimensional

manifold topological, and let f : M → R and f1, . . . , fm : M → R be continuous

functions. If I(x) = {i ∈ {1, . . . ,M} |fi(x) = f(x)} is nonempty at every point

x ∈ M, then f is called a continuous selection of fucntions f1, f2, . . . , fm. We

denote by CS(f1, . . . , fm) the set of all continuous selections of f1, f2, . . . ,
f
m. The

set I(x) is called the active index set of f at the point x.

Definition 26 (Nonsmooth critical point [25]). If x̄ is a critical point for f ∈
CS(fi, i ∈ I), then there exist real numbers λi, i ∈ I(x̄) with

Σi∈I(x̄)λidfi(x̄) = 0,Σi∈I(x̄)λi = 1, λi ≥ 0 , i ∈ I(x̄)

Definition 27 (Nondegenerate critical point-The nonsmooth case [2]). Let M be

a smooth n-dimensional manifold, f1, f2, . . . , fm : M → R be C2-functions, and

f ∈ CS(f1, f2, . . . , fm). A critical point x0 ∈ M of f is called nondegenerate if the

following two conditions hold:

(ND1) For each i ∈ Î(x0), the set of differentials
{

dfj(x0)|j ∈ Î(x0) \ {i}
}

is linearly independent;

(ND2) The second differential d2L(., λ̂)(x0) of x→ L(x, λ̂) is regular on
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T̂ (x0) =
⋂

i∈Î(x0)

kern dfi(x0), (A.1)

where,

L(x, λ) =
∑
i∈Î(x0)

λifi(x),

and the reals λi are such that

dL(., λ̂)(x0) = 0,
∑
i∈Î(x0)

λi = 1, λ̂i ≥ 0∀i ∈ Î(x0)

The linear subspace T̂ (x0) at x0 is nothing but the tangent space at x0 and

can be written as

T̂ (x0) =
{
ζ ∈ Rn : ζTdfi(x0) = 0∀i ∈ Î

}
and for the second condition ND2 to be satisfied the following condition needs to be

satisfied

νT (d2L(., λ̂)(x0))ν 6= 0

where ν is a column vector in the tangent space T̂ (x0).

Definition 28 (Continuous function [34]). Let (X, d) and (Y, d′) be metric spaces,

and let a ∈ X. A function f : X → Y is said to be continuous at the point a ∈ X
if given ε > 0, there is a δ > 0, such that

d′(f(x), f(a)) > ε

whenever x ∈ X and

d(x, a) > δ

The function f : X → Y is said to be continuous if it is continuous at each point of

X.
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Definition 29 (Isolated Point [50]). A point x ∈ A is said to be isolated if there is

a neighborhood Ω(x) of the point x such that it does not contain any points of the

set A other than x.

Definition 30 (Upper semicontinuous function [18]). The function f : Rd → R is

upper semicontinuous at x ∈ Rd if −f is lower semicontinuous at x.

Definition 31 (Lower semicontinuous function [18]). A function f : Rd → R is

lower semicontinuous at x ∈ Rd if, for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such

that, for y ∈ B(x, δ), f(y) ≥ f(x)− ε. The function f is lower semicontinous if and

only if its epigraph is closed.

Definition 32 (Epigraph [18]). The epigraph of a function f(x) is the set of points

lying on or above its graph, that is

epi(f) =
{

(x, µ) ∈ Rd × R : f(x) ≤ µ
}
⊂ Rd+1

Definition 33 (Curve [3]). A set of the Euclidean space is called an elementary

curve if this set is the image of an interval of the real axis under a one-to-one

continuous map, whose inverse map is continuous too.

Definition 34 (Manifold-with-boundary [41]). A manifold-with-boundary is a met-

ric space M with the following property:

If x ∈M , then there is some neighborhood U of x and some integer n ≥ 0 such that

U is homeomorphic to either Rn or Hn (the closed half-space).

Definition 35 (Convex function [12]). A function f is said to be convex if ∀xi

f(
n∑
i=1

λixi) ≤
n∑
i=1

λif(xi), i = 1, . . . , n
n∑
i=1

λi = 1 and 0 ≤ λi ≤ 1

Definition 36 (Absolutely continuous function [18]). A function γ : [a, b] → R is

absolutely continuous if, for all ε ∈ (0,∞), there exists δ ∈ (0,∞) such that, for
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each finite collection {(a1, b1), . . . , (an, bn)} of disjoint open intervals contained in

[a, b] with Σn
i=1(bi − ai) < δ, it follows that

n∑
i=1

‖γ(bi)− γ(ai)‖ < ε

Definition 37 (Moore Penrose Generalized inverse [10]). The Moore-Penrose gen-

eralized inverse or pseudoinverse of a finite matrix A (square or rectangular) of

real or complex elements is a matrix X which satisfies the following equations (the

Penrose equations)

• AXA = A

• XAX = X

• (AX)∗ = AAX

• (XA)∗ = XA

where ()∗ denotes the conjugate transpose of the matrix.

For a real matrix A, the pseudoinverse, written as A† is

A† = (ATA)−1AT

Definition 38 (Continuously differentiable function [4]). Let f : X → R be a

function with non-empty domain. f is said to be continuously differentiable in its

domain if the function ∇f(x) is continuous, where ∇f(x) is the gradient of f at x.

Definition 39 (Lower semicontinuous set-valued map [18]). A set-valued map F :

Rd → B(Rd) is lower-semicontinuous at x ∈ Rd, if for all ε ∈ (0,∞), there exists

δ ∈ (0,∞) such that F (x) ⊆ F (y) +B(0, ε) for all y ∈ B(x, δ).

Definition 40 (Upper semicontinuous set-valued map [18]). A set-valued map F :

Rd → B(Rd) is upper-semicontinuous at x ∈ Rd, if for all ε ∈ (0,∞), there exists

δ ∈ (0,∞) such that F (y) ⊆ F (x) +B(0, ε) for all y ∈ B(x, δ).
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Definition 41 (Critical point [28]). If h : En → Em then Dh denotes the Jacobian-

that is, the matrix of parital derivatives of h. If [Dh](x) is not surjective then x ∈ En

is a critical point of h.

Definition 42 (Non-degenerate critical point [28]). Let ϕ ∈ C2[En, E]. A critical

point of ϕ is non-degenerate if the Hessian, D2ϕ, has full rank at that point.

Definition 43 (Saddle point [28]). Any non-degenerate critical point which is nei-

ther a maximum nor a minimum is called a saddle point.

Definition 44 (Morse index of a critical point [28]). The Morse index of f(x) at a

critical point x0 is the dimension of the subspace of Rn spanned by eigenvectors of

the Hessian.

Proposition 14. Let x1, x2, . . . xn belong to a linearly independent set X ⊂ Rn, and

y ∈ Rn be added to each of the vectors x1, x2 . . . xn in X . If y can be written as a

linear combination of the vectors in X , then the condition for the vectors y+x1, y+

x2, . . . , y + xn to be linearly independent is that µ1 + µ2 + . . . + µn = −1, where

µ1, µ2, . . . , µn are the coefficients in the linear combination of the vectors y+x1, y+

x2, . . . , y + xn

Proof. Since the vectors x1, x2, . . . xn are linearly independent, we have

λ1x1 + λ2x2 + . . .+ λnxn = 0⇔ λ1 = λ2 = . . . = λn = 0

Let y be expressed as a linear combination of the vectors x1, x2, . . . xn ∈ X with

µ1, µ2, . . . , µn as respective coefficients, i.e.

y = µ1x1 + µ2x2 + . . .+ µnxn

If y is added to the set X , then the new vectors obtained are

y + x1, y + x2, . . . , y + xn
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Assume λ1 (y + x1)+λ2 (y + x2)+. . .+λn (y + xn) = 0 with |λ1|+|λ2|+. . .+|λn| 6= 0

substituting for y in the above equation we get,

λ1 (µ1x1 + . . . µnxn + x1)+λ2 (µ1x1 + . . . µnxn + x2)+. . .+λn (µ1x1 + . . . µnxn + xn) = 0

rearranging the terms in above equation we get

x1 [(λ1 + . . . λn)µ1 + λ1]+x2 [(λ1 + . . . λn)µ2 + λ2]+. . .+xn [(λ1 + . . . λn)µn + λn] = 0

Since X is a linearly independent set none of it elements x1, x2, . . . , xn is a zero

vector. Thus we have

(λ1 + . . . λn)µ1 + λ1 = 0

(λ1 + . . . λn)µ2 + λ2 = 0

...

(λ1 + . . . λn)µn + λn = 0

Rearranging the above equations, we get

(µ1 + 1)λ1 + λ2µ1 + λ3µ1 . . .+ λnµ1 = 0

µ2λ1 + (µ2 + 1)λ2 + µ2λ3 + . . .+ λnµ2 = 0

...

µnλ1 + λ2µn + λ3µn . . .+ λn(µn + 1) = 0

when written in matrix notation, we have
µ1 + 1 µ1 . . . µ1

µ2 µ2 + 1 . . . µ2

...
...

. . .
...

µn µn . . . µn + 1




λ1

λ2

...

λn

 = 0
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Now, since |λ1|+|λ2|+. . .+|λn| 6= 0, equation (A) will have solutions for det(A) = 0,

where

A =


µ1 + 1 µ1 . . . µ1

µ2 µ2 + 1 . . . µ2

...
...

. . .
...

µn µn . . . µn + 1


The above determinant can be calculated as

µ1 + µ2 + µ3 + . . .+ µn + 1

which proves the proposition.
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