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The world’s population is growing exponentially, with a current growth rate of 

approximately 1.1% per year. As of 2017, the number of undernourished people in the 

world was estimated as 821 million (FAO).  Climate variability is increasingly viewed 

as a significant cause of hunger.  Due to climate change and global warming, different 

biotic and abiotic stresses pose a severe threat to the agricultural sector limiting crop 

productivity worldwide. In the natural environment, plants face multiple biotic and 

abiotic stresses and the combined effect of these stresses has a tremendous impact on 

crop yield. In this regard, it is important to take steps for a genome-scale molecular 

understanding of stress response mechanisms in plants to help develop stress-tolerant 

cultivars. The amount of scientific literature on plant stress responses keeps increasing 

and this could pose a challenge to researchers as important information could be 

buried in the text. Biologists need to obtain a comprehensive knowledge of biological 

systems. For this reason, an approach to combine our knowledge in ‘omics’ studies 

and text mining to link genes to their function in plants when imposed with 

environmental stress has been implemented. The overarching objective of this 

dissertation is to improve our understanding of stress response in plants using ‘omics’ 

technologies and to complement standard enrichment analysis with text mining 

methods. 

 

ABSTRACT 



 xix 

• First, RNA-Seq approach was used to understand the molecular 

mechanisms underlying stress response in an important bioenergy crop 

switchgrass (Panicum virgatum L.). Switchgrass was exposed to a 

single drought (DT) treatment and combinations of DT and heat (HT) 

(DTHT) stress treatment at different times points. Unique and 

overlapping genes and pathways were identified in response to DT and 

combined DTHT stress. 

• Secondly, we established a pipeline to automatically retrieve 

information on plant stress from the scientific literature to support the 

annotation of switchgrass. This pipeline integrates data from relevant 

resources to efficiently retrieve publications to study stress response in 

plants. The data collected is stored in MongoDB and used to predict 

additional role of the stress-responsive genes in switchgrass from the 

first study. We validated a candidate gene, Phenylalanine ammonia-

lyase 1, involved in stress response in switchgrass. A preliminary work 

was conducted by evaluating in-house and publicly available tools to 

build a pipeline to retrieve literature to study stress response in the 

model plant Arabidopsis.  

• Lastly, to support the enrichment analysis performed in the first study, 

we created and visualized a functionally organized group of terms and 

pathways using ClueGO. The differentially expressed genes (DEGs) of 

the switchgrass transcriptome data was uploaded into ClueGO, a plug-

in of Cytoscape software. ClueGO integrates files from Gene Ontology, 
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KEGG and Reactome, they were used to perform a ClueGO network of 

terms and pathways. 

The approach of combining systems biology and text mining methods to study 

stress response has generated valuable data to complement existing knowledge on 

plant stress. Such knowledge will eventually be useful to create a resource for the 

plant biology community and help with crop improvement in the long term.  
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INTRODUCTION AND BACKGROUND 

Plants (Viridiplantae in Latin) are living organisms of the kingdom Plantae. 

Plantae includes all lands plants: mosses, ferns, vines, herbs, bushes, trees, conifers, 

flowering plants, and green algae. Plants are one of the significant groups of living 

organisms required for the function of the biosphere. There are over 300,000 plant 

species identified on earth. As autotrophs, plants can make their food through 

photosynthesis. The oxygen released by plants in the same process promotes aerobic 

life.  Essential foods produced by plants include carbohydrates, fats, and proteins, and 

it will be impossible to have most life on earth without these food sources. Plants 

uptake carbon dioxide during photosynthesis which helps to reduce the greenhouse 

effect and climate change [1]. Besides food, humans depend on plants for their basic 

needs, such as clothing, shelter, and medicine. Plants are essential to the ecosystem 

they occupy and contribute to improving the habitat by filtering the air, water and soil.  

Due to the growing world population, the basic needs of humans are also increasing. 

Bennett (2010) asserted that humans obtain 85% of their calories from 20 different 

plant species while  60% of their calories are obtained from three plant species Oryza 

sativa (rice), Triticum  aestivum (wheat), and Zea mays (maize) [2,3]. 

The world's population is predicted to exceed nine billion by 2050, with a 95% 

certainty that by 2050 the expected population growth will be between 9.4 and 10.1 

billion [4,5]. This increase in population is of significant interest to various disciplines 

in Agriculture and the food production industry. This means the amount of food 
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produced would need to be doubled to meet the nutritional demand of the growing 

population. One of the significant challenges in the 21st century is the issue of the 

changing climate and extreme weather conditions making it one of the utmost 

importance in research communities and among interested stakeholders . The risks and 

challenges of climate change in addition to the use of land for biofuel production, also 

reduce the production of crops and supply of food.  Abiotic and biotic stresses  

severely affect crops production globally with average yield loss of more than 70% 

[6]. Abiotic stresses greatly influence plant growth and yield; they include both 

physical and chemical factors such as DT, HT, cold, salinity, UV-B light intensities, 

flooding, nutrient deficiencies, and gas emissions.   These abiotic stresses have been 

extensively studied, and it is estimated that abiotic stresses decrease the yield of major 

crops ranging from 50 to 70% [7]. Similarly, a recent report revealed the loss of crop 

yields worldwide up to 51-82% from the effect of DT, extreme temperatures, 

deficiency, and toxicity of nutrients [8].  Biotic stresses, including pathogens, bacteria, 

fungi, viruses, nematodes, and pests, invade plants causing vast economic losses 

[9,10]. A previous survey on major crops showed that pathogens, insects, pests, and 

weeds caused an average yield loss of potatoes ranging from 17.2% to 30% in rice, 

21.4% in soybean, and 22.5% in maize [11].   

Under natural conditions, plants are exposed to combinations of two or more 

stresses such as DT and salinity, salinity and HT, and combinations of DT and HT. 

The damage becomes even more deleterious due to the co-occurrence of multiple 

abiotic stresses or the interaction of multiple abiotic and biotics stresses.  Previous 

reports indicate the influence of high temperatures on the spread of pests and 

pathogens. Furthermore, many abiotic stresses have been shown to reduce the defense 
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mechanisms  of plants rendering them susceptible to pathogen infection [12]. A study 

which compared all the major US weather disasters between the period of 1980 and 

2012 identified that a combination of DT and HT stress caused severe agricultural 

losses of about $200 billion. However, over the same period of the study, the effect of 

only DT on agricultural production was $50 billion, suggesting that  the presence of 

the second stress can increase the impact of the first  [10].    

Being sessile organisms plants are unable to escape biotic and abiotic stresses. 

As a result, they have evolved to live in environments where they are usually exposed 

to these stress factors. Plants sense these stresses and produce enormous molecular, 

biochemical, physiological, and morphological responses. Additionally, the regulatory 

or transcriptional machinery of plants become activated during stress and eventually 

generate an appropriate response. Whereas some of the responses produced by plants 

to different stress conditions can be general;  being commonly manifested irrespective 

of the type of stress applied , others can be specific to a particular stress. Many studies 

have reported the transcriptome changes of plants to single stresses[13,14]. Despite the 

effort of studying the effect of individual stress, the complex interactions between 

multiple biotic and abiotic stresses have been under explored. Therefore understanding 

the mechanisms of how plants respond to single and combinations of stresses is 

therefore crucial in developing a broad-spectrum stress-tolerant crops [8,15]. Recent 

studies have shown that the molecular response of plants to multiple stresses is unique  

and cannot be directly inferred from the response of plants to to the individual stresses 

applied separately. The simultaneous occurrence  of biotic and abiotic stresses adds a 

degree of complexity since the responses are usually regulated by various hormone 

signalling pathways that may inhibit or interact one another [16].  
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As such, plant scientist uses systems biology approach to understand the 

complex biological system of plants by focusing on their highly interconnected 

components.  As a biology-based interdisciplinary field, system biology focuses on 

complex interactions among different components in the biological system.  The 

interconnected components of a self-sustaining unit functioning together is referred as 

a system [17].  A system in the biological world could refer to a biological ecosystem, 

organisms, organ system, tissue system, cellular system, genes, proteins and 

metabolites. For the functional sustainability of the system, the member components 

need to function together. System biology offers a comprehensive view of plant 

systems, utilizing a holistic approach by integrating the molecular data at various 

hierarchical levels. It is an approach whereby a system of interacting units is analyzed 

as a whole rather than analyzing its individual members separately. The knowledge 

and research in system biology has increased over the last decade. Systems biology 

has been evolving as a promising tool to study stress responses and adaptation. The 

rapid progress in high-throughput data generation has provided the platform for multi-

omics systems biology research, offering answers to complex issues by enabling 

virtual test and analysis and hypothesis testing.  The core datasets of systems biology 

are; transcriptomics, proteomics, and metabolomics, providing the expression levels of 

transcripts, proteins, and metabolites. Omics technology and bioinformatics are 

important to understanding the molecular systems underlying plants' function. A 

significant aspect of systems biology is network analysis which provides a platform 

for omics data visualization. Data visualization helps to reduce the intrinsic 

complexity of the data [18–21]. 
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Several microarray and transcriptome experiments have been used to study the 

transcriptional response pattern(s) to different biotic and abiotic stresses. These 

experiments have mostly been conducted in the model plant Arabidopsis thaliana. 

Models in biological science are organisms with huge amount of existing biological 

information that makes them conducive as examples for other species. Models are 

usually less complex and easy to use them for experiments.  Among the other plant 

models available, Arabidopsis is the most widely studied ‘reference system’ for all 

biological processes by the plant science community. Over the last decade Arabidopsis 

has emerged as the primary experimental system for essentially all aspects of plant 

biology.   In addition, because of the close evolutionary relationships between all 

flowering plants, discoveries in Arabidopsis have been readily translated to other plant 

species such as economically important crops. Interestingly, discoveries made in 

Arabidopsis have impacted research in human biology. Almost all major research 

breakthroughs in plant science over the last 20 years have relied on development of 

Arabidopsis as a reference system. Arabidopsis has a small genome size (~132 Mbp) 

with available complete and annotated sequenced genome. Moreover, Arabidopsis has 

a rapid life cycle  and has efficient transformation methods utilizing Agrobacterium 

tumefaciens [22]. As of September 2012, 23913 people and 9968 institutes/groups 

registered as Arabidopsis researchers in the Arabidopsis Information Resource (TAIR) 

[23]. 

Current omics technology has provided a good platform to conduct various 

studies to understand the molecular mechanisms underlying stress response in plants. 

This has produced an enormous amount of data such as transcriptome data in plants 

during stress conditions. There are a number of resources developed with data on 
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stress response genes in plants. This information keeps increasing making it a 

challenge for researchers and curators to keep up to date. The relevant information 

hidden in the text needs to be extracted automatically without being labor intensive in 

less time. Text mining helps to answer specific research questions, it filters a large 

amount of research and extracts the relevant information. It can identify and match 

patterns and trends across millions of articles which is helpful in determining 

additional research that is needed to answer research questions. Additionally, text 

mining helps to draw inferences by combining information from multiple sources [24]. 

Text mining applications which include information extraction  system aim to extract 

facts reported in the biology literature [25,26]. Significant efforts have been made to 

develop methods to extract relation between biological entities (e.g. genes-disease or 

drug-disease relation) [27].  The three main methods discussed for relation extraction 

are; co-occurrence-based, rule-based and machine learning. In the co-occurrence-

based,  the co-reference of the bioentities in the same sentence or paragraph indicates a 

relation [28,29]. In the rule-based method of relation extraction, automatic programs 

encoded with linguistics and or biological knowledge ( such as plain-text, syntactic 

pattern, specific words linked to the biological relation) are implemented to extract 

relations from text [25,30]. Classification of entities have been used in the machine 

learning method of relation extraction. Naïve Bayes [31] and Support Vector Machine 

[32] are examples of machine learning methods that have been used in relation 

extraction. Co-occurrence-based method have been widely used for example in 

extracting mutation-disease relation [33]. We established a pipeline that integrates 

relevant resources to find  signicant data to study plant stress. We use the co-

occurrence method of extraction to identify stress genes and important keywords and 
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sentences describing the role of the genes from the literature. Since a n number of 

plant resources is targeted on the reference plant Arabidopsis thaliana compared to 

non-model crops such as switchgrass our goal is to use the data collected with the 

pipeline to study stress-responsive genes in switchgrass. 

Switchgrass is of interest due to its high biomass and its ability to maintain 

growth and development with small amounts of water. It grows in marginal areas and 

has a potential to be used as a biofuel crop. Switchgrass is classified as a weedy or 

invasive warm season plant that grows throughout North America [34].  Drought is a 

serious abiotic threat to the sustainability of the switchgrass, especially under the 

current paradigms of changing climate across the globe. Similarly, various studies 

have reported the impact of high temperatures on switchgrass, emphasizing 

physiology, cell wall composition, biomass, and yield.  

Like many plants, switchgrass is impacted by multiple environmental stresses. 

However, there have been no high-throughput studies (transcriptome analysis) of 

switchgrass during single DT and DT and HT stress combinations. Thus, the unique 

molecular response by switchgrass to combination of abiotic stresses has been 

underexplored. Exploring these using a system biology approach can elucidate new 

knowledge about stress-responsive genes in not just switchgrass but plants in general. 

We generated gene expression data on switchgrass when exposed to single DT and 

combination of DTHT stress. Bioinformatics tools and network analysis resources 

were utilized for GO enrichment, co-expression, pathway and gene network analysis. 

Since reports on adequate knowledge of genes to support crop production and 

adaptation have primarily focused on a small number of well-studied model plants , 

one of the objectives was to predict the role of the switchgrass stress-genes by 
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homology. To support the annotation of the stress-responsive genes, a pipeline 

integrating text mining methods was established to automatically retrieve stress genes 

from literature and link them to their function or biological process. The role of a 

candidate stress gene in the phenylpropanoid pathway of switchgrass was 

experimentally validated using proteomics and bioinformatics methods. The overall 

goal of this study is to improve our understanding on plant stress response using 

systems biology and text mining methods. This study combines high throughput 

technologies, bioinformatics tools, and text mining to extract stress-responsive genes 

and their relationship with biological processes. This approach is useful to develop 

resources to help with the sustainability of improving switchgrass ecotypes to tolerate 

multiple stresses. Understanding plants response to adverse environmental conditions 

and importantly crops that can withstand multiple stresses is crucial for sustainable 

food security.  
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GLOBAL ANALYSIS OF SWITCHGRASS (PANICUM VIRGATUM L.) 

TRANSCRIPTOMES IN RESPONSE TO INTERACTIVE EFFECTS OF 

DROUGHT AND HEAT STRESSES 

Hayford, R.K., Serba, D.D., Xie, S. et al. Global analysis of switchgrass (Panicum 

virgatum L.) transcriptomes in response to interactive effects of drought and heat 

stresses. BMC Plant Biol 22, 107 (2022). 

(https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-022-03477-0) 

 

2.1  Abstract 

Background: Sustainable production of high-quality feedstock has been of 

great interest in bioenergy research. Despite the economic importance, high 

temperatures and water deficit are limiting factors for the successful cultivation of 

switchgrass in semi-arid areas. There are limited reports on the molecular basis of 

combined abiotic stress tolerance in switchgrass, particularly the combination of 

drought and heat stress. We used transcriptomic approaches to elucidate the changes in 

the response of switchgrass to drought and high temperature simultaneously. Results: 

We conducted solely drought treatment in switchgrass plant Alamo AP13 by 

withholding water after 45 days of growing. For the combination of drought and heat 

effect, heat treatment (35 °C/25 °C day/night) was imposed after 72 h of the initiation 

of drought. Samples were collected at 0 h, 72 h, 96 h, 120 h, 144 h, and 168 h after 

treatment imposition, total RNA was extracted, and RNA-Seq conducted. Out of a 

total of 32,190 genes, we identified 3,912, as drought (DT) responsive genes, 2,339 

and 4,635 as , heat (HT) and drought and heat (DTHT) responsive genes, respectively. 

Chapter 2 
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There were 209, 106, and 220 transcription factors (TFs) differentially expressed 

under DT, HT and DTHT respectively. Gene ontology annotation identified the 

metabolic process as the significant term enriched in DTHT genes. Other biological 

processes identified in DTHT responsive genes included: response to water, 

photosynthesis, oxidation-reduction processes, and response to stress. KEGG pathway 

enrichment analysis on DT and DTHT responsive genes revealed that TFs and genes 

controlling phenylpropanoid pathways were important for individual as well as 

combined stress response. For example, hydroxycinnamoyl-CoA shikimate/quinate 

hydroxycinnamoyl transferase (HCT) from the phenylpropanoid pathway was induced 

by single DT and combinations of DTHT stress. Conclusion: Through RNA-Seq 

analysis, we have identified unique and overlapping genes in response to DT and 

combined DTHT stress in switchgrass. The combination of DT and HT stress may 

affect the photosynthetic machinery and phenylpropanoid pathway of switchgrass 

which negatively impacts lignin synthesis and biomass production of switchgrass. The 

biological function of genes identified particularly in response to DTHT stress could 

further be confirmed by techniques such as single point mutation or RNAi. 

 

2.2 Background 

Plants in the field are exposed to various environmental stresses which affect 

production and yield. These environmental stresses include abiotic factors such as DT, 

HT, and salinity and biotic stresses like pathogens, and insect pests, [1]. Abiotic 

stresses are reported to reduce about 50% of crop production [2]. Stress tolerance 

research has primarily focused on the response of plants to individual stress with 

limited information on plants' adaptability to combined stresses such as HT and DT 
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and salinity and DT [3–5]. Moreover, plants exhibit a unique expression pattern when 

exposed to multiple stresses [6]. Hence to bridge the knowledge gap, we have 

compared the transcriptional response of switchgrass when exposed to individual DT 

stress or a combination of DT and HT stresses. The combined effect of DT and HT 

stresses has been shown to cause more damage to plants than when these stresses 

occur at separate times [7,8]. The mechanisms used by plants to adapt to multiple 

stresses can be complex. It has been shown that the effect of one stress could have a 

synergistic or antagonizing effect on other stress. DT, salinity, high and low 

temperature have been shown to promote the occurrence of pathogens and pests [5]. In 

addition, the antagonizing effect of cold stress on osmotic stress during the induction 

of dehydration-responsive gene RD29A has been reported [9]. Abscisic acid (ABA) 

was found to antagonize jasmonate-ethylene signaling pathways and mediates defense 

gene expression and disease resistance in Arabidopsis [10]. Multiple stress in plants 

led to the expression of common overlapping genes due to a cross-talk of a signaling 

pathway. A previous study identified 22 genes that were induced commonly during 

DT, cold, and NaCl treatment [11]. Some of the molecular mechanisms adopted by 

plants to combat stress include the release of HT shock proteins or chaperons that are 

expressed during exposure to environmental cues [12]. 

Transcriptome analysis of Arabidopsis showed that HT resistance is conferred 

by HT stress-responsive genes, plant hormones, and antioxidant enzymes [13]. The 

importance of transcriptional gene regulation in plants under DT and HT stresses has 

been previously reported [13]. RNA sequencing (RNA-Seq) has been commonly used 

to identify genome-wide transcript profiles in plants. Stress-responsive genes have 

been identified in tobacco and Arabidopsis when exposed to combined DT and HT 
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stress by RNA-Seq technology [14,15]. Plant responses to single stress treatment of 

cold, high light, salt, HT, and flagellin have been compared to various combinations of 

these six pair of stresses (cold and high light, salt and HT, salt and high light, HT and 

high light, HT and flagellin respectively). The outcome of this study revealed how 

plants have evolved to withstand combination of these stresses [4]. The combined 

effect of DT and HT stress has been studied in wheat [16]. The effect of combined 

abiotic stress signaling such as DT, salinity, and metal in rice was found to be complex 

with the involvement of multiple genes, differential expression patterns in different 

developmental tissues, and  protein-protein interaction [17]. Furthermore, the separate 

impact of DT and HT and their combined effect on grain filling, physiological, 

vegetative, and yield traits were investigated in wheat [8].  

Switchgrass (Panicum virgatum L.) is a C4 warm-season perennial grass 

identified as a potential bioenergy crop [18,19]. It has been investigated for 

lignocellulosic ethanol production in the US, Canada, and Europe [20] due to its high 

biomass yield. It serves as a potential alternative to nonrenewable fossil fuels, thereby 

providing energy security sources [21]. Switchgrass requires a minimal amount of 

water and nutrients and can grow on marginal croplands [22]. Its rapid growth rate and 

broad adaptability contribute to a stable and high biomass supply. Switchgrass 

positively impacts the soil by improving soil quality, preventing erosion, and reducing 

soil nutrients  [23]. 

Switchgrass, like many other plants, is generally faced with extreme biotic and 

abiotic stresses. These stresses can be detrimental by causing retardation in plant 

growth, development, and even death [24]. DT is a significant abiotic stress that limits 

switchgrass use as biofuel production. There is evidence of DT as an essential 
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economic risk factor affecting biofuel production [25]. Molecular mechanisms 

underlying DT responses in plants have been addressed in various articles [26]. A 

previous report suggests DT could considerably reduce the yield and quality of 

biomass for biofuel production [27].  The effect and response of switchgrass 

germplasms to DT stress have been evaluated in previous studies [28–30]. High 

temperatures in the Southern United States are projected to reduce switchgrass 

biomass in 2080-2090 [22]. Similarly, various studies have reported the impact of high 

temperatures on switchgrass, emphasizing physiology, cell wall composition, biomass, 

and yield. A significant decrease in biomass yield was observed across various 

switchgrass genotypes due to the impact of high temperatures [22,31]. There is 

increasing research in switchgrass, and among the area of research is gene regulation. 

Transcriptome analysis has been used to determine genes associated with biomass 

production in switchgrass [29]. The characterization of DT and HT responsive 

microRNAs has been recently reported [18]. Besides, the role of microRNAs during 

DT and salt stress in switchgrass has been reported [32].  

Although switchgrass is an essential bioenergy crop, less information on the 

biology of switchgrass is available when imposed with abiotic stresses [23]. The 

molecular mechanisms of the tolerance of switchgrass to hot and dry climates is not 

well studied [18]. Therefore, understanding the effect of stress combinations in 

switchgrass will be important to reveal genes associated with important traits such as 

biomass and biofuel production in response to multiple environmental stresses. 

Additionally, breeding DT and HT resistant switchgrass cultivars will be an important 

milestone. Although several studies have reported switchgrass response to a single DT 

or HT stress, there are no reports as far as we know on the combination of DT and HT 
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abiotic stresses in switchgrass, especially with prolonged exposure to DT and HT 

stresses. 

 To better understand plant responses to the full complement of environmental 

stresses, it is important to compare data on single stresses with data on multiple 

stresses. It is also important to identify the early transcriptional response to DT and 

HT stress versus the prolonged exposure of switchgrass to these stresses. This will 

provide an idea of signaling cross-talk in systems biology [33]. In this study, we used 

RNA-Seq approach to characterize and quantify gene expressions in  response to DT 

and combined effects of DT and HT stresses in switchgrass.  

 

 2.3    Results 

2.3.1 RNA-Seq data quality and summary 

A total of 6,965 million paired-end reads were obtained from RNA-Seq 

samples. The number of reads in each sample was 129 million on average. Around 

85% of the reads can be aligned to the reference genome. About 63% of reads were 

aligned to genic regions. To assess the similarities and differences among these 

samples, we performed a hierarchical cluster analysis of the RNA-Seq data (Figure 

2.1). We found that non-treated samples were grouped together except the 72 h DT 

treated samples. In the group of stress treated samples, DTHT samples were grouped 

together except 144 h DTHT sample, which clustered with the group of DT samples.  
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Figure 2.1: Hierarchical clustering analysis of Control, DT, and DTHT treated 

samples. 

2.3.2 Analysis of DT and DTHT responsive genes in switchgrass  

From the analysis, many genes were identified in response to the DTHT 

compared to only DT stress. In total, 3,912 out of 32,190 genes were identified as DT 

and 4,635 as DTHT responsive genes. Among those, 1,615 genes were shared between 

the DT and DTHT data sets, when DT samples were compared to plants exposed to 

combined DTHT stress. These commonly expressed genes likely play critical roles in 

DT and HT tolerance in switchgrass. Further analysis showed that 1,432 out of 2,282 

of the up-regulated responsive genes were unique(Figure 2.2A) and 1,604 out of  



 

 

20 

2,345 down-regulated genes were unique to DTHT (Figure 2.2B). Similarly, for DT 

samples, 1,307 out of 2,157  up-regulated responsive genes were unique, while 1,013 

out of 1,754 down-regulated genes were unique(Figure 2.2A and 2.2B).  

 

Figure 2.2: The number of common and specific up-regulated (A), and down-regulated 

(B) genes among switchgrass during DT and DTHT stress in the Venn 

diagram. The genes were significantly differentially expressed (DE) in 

more than one comparison of the time point, 0 h, 72 h, 96 h, 120 h, 144 h, 

and 168 h. DE genes for each comparison were quantified at log2 fold 

changes and P-value <0.05.  

In our data, Pavir.6 KG130600.v4.1 provided the best hit to Arabidopsis 

AT1G22360.1 (UDP-glucosyl transferase 85A2 (UGT85A2) and it is the only DT-

responsive gene that showed both up and down-regulation between the time points 

after imposing DT treatment (Additional file 5, DT). This gene was significantly 

down-regulated at time points DT 96 h and DT 120 h after which its expression 

markedly up-regulated at 168 h. 

Through GO enrichment analysis (Figure 2.3a, 2.3b, Additional file 6), we 

found that there were significantly enriched terms in all biological process, molecular 
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function, and cellular component functional categories. In the biological process 

category, the enriched GO terms included photosynthesis, single-organism metabolic 

process, and metabolic process. GO enrichment analysis show that  the GO terms; 

“response to stress” and “response to water”, with p-values (0.00042 and 0.00054, 

respectively) were smaller than 0.05 although the FDR values were above 0.05 (0.083 

and 0.093, respectively). Eight out of 15,902 genes belonged                                                                                                                                                                                                                                

to the GO term of response to water in the switchgrass genome whereas seven out of 

3,912 DT responsive genes also belonged to the GO term of response to water. In 

molecular function, some of the enriched terms were oxidoreductase activity, catalytic 

activity, and cofactor binding. In the cellular component category, the enriched terms 

were photosystem, photosynthetic membrane, and thylakoid part. We further 

performed KEGG enrichment analysis on the DT responsive genes. We found that 

these DEGs were enriched in the following KEGG pathways (Additional file 7): 

protein phosphatase 2C, glutaredoxin 3, homeobox−leucine zipper protein, jasmonate 

ZIM domain−containing protein, and solute carrier family, xyloglucan: xyloglucosyl 

transferase, HSP20 family protein, adenylate kinase, and UDP-glucuronate 

decarboxylase.  
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Figure 2.3: a. The Gene Ontology (GO) terms enriched by responsive genes to DT 

stress. The DEGs were annotated against the GO database. The GO terms 

are in the three GO domains (biological process, molecular function and 

cellular compartment). These terms were significantly enriched (p < 0.05) 

in DT treated samples compared to control plants. The number of genes 

enriched in each term were plotted against the GO term. b. The Gene 

Ontology (GO) terms enriched by responsive genes to DTHT stress. The 

DEGs were annotated against the GO database. The GO terms are in the 

three GO domains ( biological process, molecular function, and cellular 

compartment). These terms were significantly enriched (p < 0.05) in 

combined DT and HT treated samples compared to control plants. The 

number of genes enriched in each term were plotted against the GO term. 

Pavir.9NG755000.v4.1 which provided the best hit to (ATHCHIB, B-CHI, 

CHI-B, HCHIB, PR-3, PR3) is a basic chitinase gene was significantly down-

regulated at 144/72 h and subsequently up-regulated after prolonged DT and HT stress 

at 168/96 h.  Similarly, genes such as Pavir.5KG627200.v4.1, Pavir.2NG348700.v4.1 

and Pavir.2NG348700.v4.1 with best hit to Arabidopsis genes encoding delta 1-

pyrroline-5-carboxylate synthase 2 (AT3G55610.1), cytochrome P450, family 76, 

subfamily C (AT2G45550.1), polypeptide 4, and DUF1012 (AT5G43745.1) 

respectively were significantly down-regulated at 144/72 h (Additional file 5, 

DTHT). These genes at 168/96 h were significantly up-regulated after prolonged DT 

and HT stress, suggesting the possible role of these genes in protecting the plant 

during extreme environmental conditions  

To study the functions of these responsive genes, GO enrichment analysis was 

performed. The main GO term from the enrichment analysis was the GO term 

(GO:0008152; metabolic process) which showed significant enrichment (FDR; 

0.0014) (Figure 2.3). None of the GO terms shows significant enrichment in 

combined DT and HT stress responsive genes, indicating that DTHT transcriptomic 
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changes were not predictable from single stress treatments. In the category of 

biological process, there were 10 most enriched GO terms with P-value <= 0.05. 

These 10 GO terms were response to water, single-organism metabolic process, 

single-organism biosynthetic process, response to abiotic stimulus, organonitrogen 

compound metabolic process, photosynthesis, oxidation-reduction process, response to 

stress, nitrogen compound transport, and transmembrane transport respectively. We 

further performed KEGG enrichment analysis on the DTHT responsive genes (4,635 

genes). We found that these responsive genes were enriched in the following KEGG 

pathways (Additional File 7): adenylate kinase and protein phosphatase 2C.  

 

2.3.3 HT responsive genes in switchgrass  

The HT stress genes were deduced from the DEGs of DT and DTHT. In total, 

2,338 out of 32,190 genes were identified as HT responsive genes (Additional file 5). 

There were 1,064 up-regulated genes and 1,274 down-regulated genes. The functions 

of these responsive genes and GO annotation were presented (Additional file 6). In 

the category of biological process, these genes showed enrichment in the GO terms of 

organic cyclic compound catabolic process, organonitrogen compound catabolic 

process and heterocycle catabolic process, etc. In the category of molecular function, 

these genes showed enrichment in the GO terms of organic cyclic compound catabolic 

process, organonitrogen compound catabolic process and heterocycle catabolic 

process, etc. In the categories of cellular components, these genes showed enrichment 

in the GO terms of photosystem II oxygen-evolving complex, photosystem II, and 

thylakoid membrane. We also performed KEGG enrichment analysis on the HT 
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specific responsive genes. We found that these responsive genes were enriched in the 

jasmonate ZIM domain-containing protein pathway (Additional File 7).  

2.3.4 Transcription factors (TF) for DT, DTHT and HT responses 

The TFs identified from the analysis are shown in Table 1, and Additional file 

8. These DT and DTHT responsive TFs belong to 45 different TF families. Out of 

91,838 proteins on the switchgrass genome, 3,948 were identified as transcription 

factors (TFs). A total of 1,383 TFs were identified out of 32,190 genes that were used 

for identifying stress responsive genes. There were 209 genes identified as TFs out of 

3,912 DT responsive genes. Heat  maps were generated to show expression patterns of 

these 209 genes in all the samples (Figure 2.4A). Similarly, there were 220 genes 

identified as TFs out of 4,635 DTHT responsive genes. A heat map was generated to 

show expression patterns of these 220 genes in all the samples (Figure 2.4).  A total of 

106 genes out of the 2,339 predicted HT responsive genes, were identified as TFs. 

Heat map was generated to show expression patterns of these 106 genes in all the 

samples (Figure 2.4C).  

Table 2.1. Different families of TFs responsive to solely DT and combined DTHT 

stresses. 

Transcription factor type DTvsCtrl DTHTvsCtrl DTHTvsDT 

bHLH 22 20 10 

NAC 16 15 13 

ERF 19 19 6 

bZIP 17 17 5 

MYB_related 10 17 10 

MYB 12 15 7 

WRKY 14 11 6 

HD-ZIP 15 7 3 
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C3H 7 13 1 
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Figure 2.4: Heat map with clusters based on FPKM values for A) DT vs Control, B) 

DTHT vs control and C) DTHT vs DT TFs. The Heat map shows a 

grouping of control samples and stress samples. Extended periods of 

DTHT to stress samples showed abundant up-regulated TFs (A and B) 

and down-regulated TFs (C) compared to their control samples. For 

example, there were more responsive TFs which were up-regulated at 

time 144/72 h compared to its control sample at Control 144/72 h (A) 

2.3.5 Pathway analysis of DT and HT responsive genes  

An overview of the secondary metabolism pathway is displayed in Figure 2.5 

(A and B). We found a large number of plant secondary metabolites such as 

flavonoids, terpenes, and phenylpropanoids were down-regulated in DTHT vs control 

samples compared to DT vs control samples.  

 

 

 

a) 
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Figure 2.5: Metabolism overview in MapMan showing the DEGs between DT vs 

Control (A) and DTHT vs control (B) switchgrass samples. The log-fold 

ratio is indicated as a gradient with red color (down-regulated) and blue 

color (up-regulation). 

2.3.6  Co-expression network 

We performed weighted gene co-expression network analysis to identify genes 

involved in response to the DT and DTHT stresses. Most of co-expressed genes 

usually participate in the same biological processes [34–36]. In our co-expression 

analysis,  we identified 68 modules with distinct expression patterns (Additional file 

11). To study whether the DEGs were enriched in some of the modules, Fisher’s exact 

test and multiple test correction (Benjamini-Hochberg method) were performed [4] . 

Of the modules that have more than 100 genes, DT responsive genes were enriched in 

module 5, 7, 14, 17 and 25. DTHT responsive genes were enriched in module 1, 2, 3, 

7 and 17. HT responsive genes were enriched in module 1, 2, 8, 9, 15, 16, 17 and 25. 

GO enrichment analysis of the genes of these modules were performed using agriGO. 

b) 
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Results for GO enrichment are provided in (Additional file 12). Heat maps were 

generated for these 12 unique modules (Additional file 2). In module 7 and module 

17, both DT responsive genes and DTHT responsive genes were enriched. In module 7 

and module 17, genes were up-regulated after stress treatment. In module 7, the genes 

were enriched in GO terms of response to water, response to acid chemical, lipid 

biosynthetic process, and response to the oxygen-containing compound, or biological 

process. In module 17, the genes were enriched in GO terms of regulation of nucleic 

acid-templated transcription, regulation of RNA biosynthetic process, regulation of 

RNA metabolic process and regulation of transcription, DNA-templated, etc. for 

biological process. In module 1 (Figure 2.6), most genes were up-regulated during the 

initial HT treatment at DTHT 96/24h. Downregulation of most of the genes in the 

same module occur and then up-regulated again at an extensive HT at DTHT168/96h. 

Similarly, in module 8 which is enriched with HT responsive genes, showed 

upregulation of genes at the initial stage of imposing HT at DTHT96/24h. In module 

1, the genes were enriched in GO term biological processes such as translation, 

peptide biosynthetic process, amide biosynthetic process and peptide metabolic 

process. In module 8, the genes are enriched in GO terms including; multi-organism 

reproductive process, multi-multicellular organism process, cell recognition, and 

pollination for biological processes. Also, DTHT responsive genes were enriched in 

module 9 with most of the responsive genes recorded at time point DTHT96/24h and 

DTHT120/48h. A number of the genes recorded at DTHT96/24h and DTHT120/48h 

were enriched in different class of metabolic processes.  
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Figure 2.6: Heat map indicating genes enriched in module 1 from the WGCNA 

analysis.  DTHT and HT responsive genes were enriched in module 1 

2.3.7 DT and DTHT responsive genes in DroughtDB  

There were 386 genes from the switchgrass genome that have the best hits to 

Arabidopsis genes in the droughtDB [37] Of these 386 genes, 172 were found in the 

32,190 genes in this study. Detailed gene expression patterns of these 172 genes were 

shown in the heat map (Additional file 3). Out of these 172 genes, there were 35 DT 

responsive genes and 27 DTHT responsive genes in which 12 were common 

(Additional file 13). A list of the DT and DTHT genes have been indicated in Table 

2.2 and 2.3, respectively. The gene IDs, biological functions, the phenotype of 

mutants, references, tags of the genes from Arabidopsis can be obtained. For example, 
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three genes are described in detail which play an important role in DT response: 

Pavir.1KG544600.v4.1 is homologous to KAT2 in Arabidopsis. In Arabidopsis, the 

kat2-3 mutant shows ABA-insensitive phenotypes and KAT2-overexpressing 

transgenic lines show strong ABA-hypersensitive phenotypes (ABA-induced stomatal 

closure and inhibition of stomatal opening) [26]. In our data, Pavir.1KG544600.v4.1 

showed increased gene expression levels under both DT and DTHT treatments. In 

Arabidopsis, HAB1/PP2C is known as a major negative regulator of ABA signaling 

and its mutant shows hypersensitive to ABA [38]. In our data, Pavir.8NG117400.v4.1, 

homologous to HAB1/PP2C, showed increased gene expression level under both DT 

and DTHT treatments. Additionally, the ABCG22 (Pavir.9NG742000.v4.1) from 

Arabidopsis is an ABC-transporter and a knockout of ABCG22 caused Arabidopsis to 

be more susceptible to DT stress [39]. From our data Pavir.9NG742000.v4.1 showed 

increased gene expression level under both DT and DTHT treatment. The 386 

switchgrass genes with best hits to Arabidopsis genes in droughtDB were used to 

generate the heat map (Additional file 3).  
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Table 2.2: List of DT-responsive genes identified in switchgrass in the droughtDB. 

Gene id Gene Biological Function       

Pavir.9NG610900.v4.1 GolS1 

Galactinol Synthase, catalyzes the first step in the biosynthesis of 

Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.6NG274900.v4.1 AREB1 
bZIP TF, ABRE 
binding       

Pavir.6KG307800.v4.1 ABF4 

ABA responsive element 

(ABRE) binding bZIP factor      

Pavir.5KG406700.v4.1 ABCG40 

ABC-transporter, 

ABA import       

Pavir.2KG548500.v4.1 OST1/SRK2E 

Kinase-like (open stomata 1), 

activated by ABA, activates SLAC1     

Pavir.2NG401700.v4.1 ATHB6 

homeodomain protein, target 

of ABI1      

Pavir.2NG618000.v4.1 GolS2 

Galactinol Synthase, catalyzes the first step in the biosynthesis of 

Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.9KG306600.v4.1 GSTU17 

glutathion s-

transferase U17       
Pavir.2NG248100.v4.1 MYB44 MYB type TF        
Pavir.7KG296100.v4.1 AGO1 Argonaute1        

Pavir.9KG354500.v4.1 MYC2 

transcriptional activator of 

ABA signaling      

Pavir.4KG090000.v4.1 AVP1 

vacuolar membrane H+-

Pyrophosphatase      

Pavir.9KG421700.v4.1 GolS1 

Galactinol Synthase, catalyzes the first step in the biosynthesis of 

Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.6KG279400.v4.1 FAD8 fatty acid desaturase       

Pavir.1KG544600.v4.1 KAT2 

3-ketoacyl-CoA 

thiloase-2       

Pavir.1KG312700.v4.1 ERD1 

chloroplast-targeted Clp 

protease reg SU      

Pavir.3KG112200.v4.1 DHAR2 

dehydroascorbate 

reductase       

Pavir.6NG207900.v4.1 XERICO 

small protein, N-term- TM domain 

and RING-H2 zinc-finger motif     
Pavir.1NG392600.v4.1 PIP1;4 PIP        

Pavir.1NG081300.v4.1 AVP1 

vacuolar membrane H+-

Pyrophosphatase      
Pavir.8NG117400.v4.1 HAB1 PP2C        

Pavir.6KG334900.v4.1 XERICO 

small protein, N-term- TM domain 

and RING-H2 zinc-finger motif     

Pavir.2KG570400.v4.1 GolS2 
Galactinol Synthase, catalyzes the first step in the biosynthesis of 
Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.5KG405500.v4.1 HAB1 PP2C        
Pavir.9KG536300.v4.1 SQE1 squalene epoxidase1       

Pavir.J678200.v4.1 AAO3 

Arabidopsis aldehyde oxidase, catalyzes final 

step in ABA biosynthesis    

Pavir.9KG308600.v4.1 GSTU17 
glutathion s-
transferase U17       
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Table 2.3: List of genes responsive to combined DT and HT stress in switchgrass from 

the droughtDB 

Gene_id Gene 

Biological   

Function       

Pavir.9NG211300.v4.1 ABO1/ELO1 

subunit of Elongator, a multifunctional complex with roles in 

transcription elongation, secretion and tRNA modification  

Pavir.9NG493600.v4.1 GSTU17 

glutathion s-

transferase U17       

Pavir.2NG618000.v4.1 GolS2 

Galactinol Synthase, catalyzes the first step in the biosynthesis of 

Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.5NG017000.v4.1 SLAH3 

guard cell S-type anion 

channel (SLAC1 

homolog)      
Pavir.7KG296100.v4.1 AGO1 Argonaute1        
Pavir.1NG551600.v4.1 PIP1;4 PIP        

Pavir.9NG671400.v4.1 PEPCK 

PEP 

carboxykinase       

Pavir.6KG279400.v4.1 FAD8 

fatty acid 

desaturase       

Pavir.9KG480900.v4.1 APX2 

Ascorbate peroxidase 2, 

H2O2 scavenger      

Pavir.1KG544600.v4.1 KAT2 

3-ketoacyl-CoA 

thiloase-2       

Pavir.1KG312700.v4.1 ERD1 

chloroplast-targeted Clp 

protease reg SU      

Pavir.3KG112200.v4.1 DHAR2 

dehydroascorbate 

reductase       
Pavir.1NG545200.v4.1 AGO1 Argonaute1        

Pavir.9NG719800.v4.1 GPA1 

alpha subunit of 
heterotrimeric GTP-

binding protein      

Pavir.J075500.v4.1 AAO3 

Arabidopsis aldehyde oxidase, catalyzes 

final step in ABA biosynthesis    

Pavir.9KG118700.v4.1 GSTU17 

glutathion s-

transferase U17       

Pavir.1NG081300.v4.1 AVP1 

vacuolar membrane H+-

Pyrophosphatase      
Pavir.8NG117400.v4.1 HAB1 PP2C        

Pavir.9NG671500.v4.1 PEPCK 

PEP 

carboxykinase       

Pavir.6KG334900.v4.1 XERICO 
small protein, N-term- TM domain 
and RING-H2 zinc-finger motif     

Pavir.2KG570400.v4.1 GolS2 

Galactinol Synthase, catalyzes the first step in the biosynthesis of 

Raffinose Family Oligosaccharides (RFOs) from UDP-galactose 

Pavir.7NG063700.v4.1 MRP4 

multidrug resistance-associated 

protein, ABC transporter     

Pavir.9KG517100.v4.1 PEPCK 

PEP 

carboxykinase       
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Pavir.3KG456000.v4.1 ERD1 

chloroplast-targeted Clp 

protease reg SU      

Pavir.6NG268500.v4.1 XERICO 

small protein, N-term- TM domain 

and RING-H2 zinc-finger motif     

Pavir.7KG292400.v4.1 CBF4 
DREB family 
TF        

Pavir.2KG247300.v4.1 PARP1 

poly(ADP-

ribose) 

polymerase       

 

 

2.3.8 Validation of RNA-Seq results using qRT-PCR  

Seven candidate genes responsive to DTHT stress were selected from the 

RNA-Seq data for validation by performing qRT-PCR (Figure 2.7A and 2.7B). The 

expression pattern of the selected genes was consistent with the RNA-Seq results.  
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Figure 2.7: Validation of the relative expression levels of five selected genes 

responsive to combined DTHT stress from RNA-Seq analysis by 

quantitative real-time PCR (qPCR). The genes selected were 

differentially expressed, and the time point at which these genes showed 

high expression from the RNA-Seq data were selected with its control for 

qPCR validation. 7b. Validation of relative expression of DT-responsive 

gene UDP-glucosyl transferase 85A3. UDP-glucosyl transferase 85A3 

was up-regulated and down-regulated at different time points during DT 

stress from the RNA-Seq data. The expression pattern of the qPCR 

analysis is like results from the RNA-Seq analysis. The different 

alphabets in the Figure show that the samples collected from the different 

time point of DT are significantly different from the control at p-

value<0.05. qPCR results from two technical replicates and three 

biological replicates were analyzed using ANOVA from Minitab 18 

software. The x-axis shows the treatment imposed on switchgrass. The y-

axis shows the relative expression of the genes.   

2.4 Discussion 

DT or HT stress alone has been found to affect switchgrass physiology and 

cause a reduction in biomass yield [22,29]. Extensive reports on transcriptome 

changes in plants during DT stress have been reported in both plant models and crop 

species [40]. The transcriptional response of switchgrass when imposed with solely 

DT or HT stress has been reported in previous studies [22,29,30]. However, 

transcriptome data associated with switchgrass when imposed with the combination of 

DTHT are not available. Molecular mechanisms during DTHT in plants such as lentil, 

cereals, and Kentucky bluegrass [41–43] have been reported.  The primary objective 

of this study was to understand the transcriptional changes and molecular mechanisms 

in switchgrass in response to DT and the combined effects of DTHT.  

2.4.1 Genes differentially expressed due to solely DT stress 

In this study, water deficit in switchgrass triggered an up-regulation of more 

genes than down-regulated genes (Figure 2.2). One of the DT-responsive genes 
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identified from our analysis (Pavir.9KG421700.v4.1) and reported in the drought is 

galactinol synthase (Gols1). Gols1 catalyzes the biosynthesis of raffinose family 

oligosaccharides (RFOs). The RFO biosynthetic pathway is a major metabolic activity 

in plants and has been found to respond to various abiotic stresses. RFOs have 

emanated as essential molecules in plants during stress due to their antioxidant and 

membrane stabilizing properties. RFOs can be found in the chloroplast, which 

indicates its role in regulating genes in the photosystem II pathway [45,45]. Among 

DT-responsive genes that were shown to be induced in our analysis is OST1 

(Pavir.9KG103200.v4.1). OST1 is found in stomatal guard cells and is known to 

activate SLAC1 which is required for stomatal closure during DT in plants [46]. DT 

stress activates the production of the hormone ABA. Mustilli et al. (2002) reported 

ABA-induced stomatal closure, which is impaired in ost1[47].  

AREB1 (Pavir.J643700.v4.1) was also identified as a DT-responsive gene 

from our analysis and in the droughtDB (Table 2). It has also been found that the 

AREB subfamily of proteins and orthologues of AREB are found to be involved in 

ABA signaled transduction [48]. ABA plays an important role in plants and is 

involved in various physiological and developmental processes, including stomatal 

closure and response to a myriad of abiotic stresses such as cold, DT, and salinity [49]. 

Targets of ABA-dependent pathways recruit transcription factors such as AREB at the 

promoter sites to activate transcription. During DT stress, the level of ABA increases, 

causing ABA receptors PYR/PYL/RCAR to recruit phosphatase PP2C (identified in 

the KEGG pathway analysis in Tables 1 and 2) for downstream activation in the 

ABA-dependent signaling pathway [50]. ABA is known to regulate a large number of 

dehydration-responsive genes, which is associated with DT tolerance. These genes are 
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not limited to late embryogenesis abundant (LEA), Responsive to ABA 18 (RAB18), 

and RD22. Apart from the ABA-dependent genes, other DT-responsive genes are  also 

ABA-independent. An example of an ABA-independent gene belongs to the family of 

dehydration-responsive element-binding (DREB) protein. DREB2 was up-regulated in 

the switchgrass plants imposed with DT. In various studies, DREB is more involved in 

DT stress and has been identified in rice and maize [30]. As expected, LEA, RD22, 

and RAB18 were induced with DT stress from our study. There were 35 DT 

responsive genes and 27 DTHT responsive genes with 12 overlapping genes in the 

droughtDB. Some of the genes identified as DT-responsive from our study have been 

listed in the manually curated compilation of molecularly characterized genes that are 

involved in DT stress response (Tables 2 and 3). These genes include AREB/ABF 

and glutathione S-transferases (GSTs). Previous reports indicates that overexpression 

of ABF4/AREB2 lead to ABA-hypersensitive phenotypes in Arabidopsis. Similarly, 

transgenic Arabidopsis plants with enhanced AREB/ABF expression showed 

enhancement in DT tolerance, indicating the role of AREB/ABF in ABA response and 

stress tolerance [48,51]. GSTs have been reported to a significant role in oxidative 

stress metabolism. Glutathione S-transferase U17A (GSTU17) is among the genes 

identified in the switchgrass samples under DT stress. In another study, mutants of 

GSTU17 in Arabidopsis became more tolerant to DT stress and salt stress than wild-

type plants suggesting the role of GSTU17 in DT and salt stress tolerance [52].   

Photosynthesis is among the processes affected by plant dehydration. In 

response to the water deficit in the switchgrass plants, transcripts encoding Rubisco 

activase, Rubisco methyltransferase family protein, photosystem II subunit O-2 (PSII), 

phosphoenolpyruvate carboxylase family protein initiation of CO2 into oxaloacetate in 
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C4 plants [53] and phosphoenolpyruvate carboxylase: encoded by Ppc genes for initial 

fixation of CO2 were down-regulated. Two genes, carbonic anhydrase (associated 

with carbon-fixing and metabolism in C4 plants) and phosphoenolpyruvate 

carboxykinase 1 which was previously identified by Ayyappan et al. (2017) as a C4 

photosynthetic enzyme were downregulated in response to the DT stress [54]. These 

findings are consistent with a report on the down-regulation of genes associated with 

photosynthesis during abiotic stress. Interestingly, we saw in our analysis that another 

transcript, Pavir.4NG244100.v4.1annotated as photosystem II subunit P-1 was down-

regulated. Down-regulation of PSII affects electron transport, leading to the generation 

of harmful reactive oxygen species (ROS). A controlled amount of ROS protects the 

plant from DT as part of the signaling (ABA-dependent) pathways. However, an 

excessive amount of ROS which can be produced due to prolong DT could destroy 

critical cellular machinery of the plant while under DT stress [55]. From our analysis, 

Pavir.6NG292200.v4.1 annotated as Fe superoxide dismutase 3, and 

Pavir.3KG389500.v4.1, annotated as manganese superoxide dismutase 1 were up-

regulated as scavengers of ROS to enhance the antioxidant defense of the plants under 

DT stress. In a previous study, the expression of Mn-SOD in transgenic Medicago 

sativa (alfalfa) plants showed increased tolerance against DT injury. 

Similarly, alfalfa’s in cold conditions showed an increased expression of Mn-

SOD and Fe-SOD [56,57]. Understanding the antioxidant defense pathway will help to 

enhance switchgrass under DT stress. It is interesting to note that from our analysis 

Pavir.1KG123700.v4.1 annotated as 3-ketoacyl-CoA synthase 11 was up-regulated at 

four different time points of DT conditions. A recent study shows that 3-ketoacyl-CoA 

synthase (involved in lignin biosynthesis) could help to improve DT tolerance in tea 
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plants [58]. Similarly, Pavir.9NG554400.v4.1 annotated as basic helix-loop-helix 

(bHLH) DNA-binding superfamily protein was down-regulated at four different time 

points of DT. Waseem et al. (2019) showed that overexpression of bHLH enhanced 

abiotic stress tolerance in tomatoes [59]. These genes could provide insight in 

providing DT tolerance in switchgrass especially during prolonged exposure to DT. 

KEGG pathway enrichment results showed that twelve genes were enriched in 

the term glutaredoxins. Glutaredoxins have been shown to be involved in different 

stress responses and regulation of the Krebs cycle and signaling pathways. 

Overexpression of some members of the  glutaredoxin family modulated plant 

response to various stresses. For example, transgenic tomato plants with 

overexpression of SIGRX1 exhibited tolerance to hydrogen peroxide, DT, and salt 

stress [60]. One of the significant pathways enriched by the DT-responsive genes from 

this report was response to water. Another report by Bhardwaj et al. (2015) identified 

GO terms for DT Brassica juncea samples which include response to water 

deprivation (GO:0009414) [61].  

2.4.2 Genes differentially expressed due to DTHT stress 

From our analysis, most of the genes in response to combined DTHT were 

down-regulated (Figure 2.2). A combination of DTHT stress in Arabidopsis caused 

up-regulation of more transcripts compared to down-regulated transcripts, although 

this is in contrast to our findings [15]. In another report, several abiotic stress factors 

not limited to DT and HT stress led to down-regulation of multiple genes, indicating 

general transcriptional repression [62]. The transcriptome responses of the control 

switchgrass plant and those subjected to individual DT and combination of DTHT 

stress were different. However, there were common DEGs in response to DT stress 
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and a combination of DTHT stress. A significant overlap of transcripts expressed in 

DT or HT stress and combination of DTHT was found in plants in response to cold, 

DT, HT, and salt stress [11,15]. A similar finding was observed in tomato cultivars 

exposed to individual DT stress and combined DTHT. Single DT treatment on tomato 

cultivars had a considerable effect on HT stress [63]. This finding could explain why 

more genes responsive to DT were identified in combined DTHT stress plants. Jia et 

al. (2017) [64] identified an overlap of genes such as those involved in hormone 

metabolism (ABA) in Populus simonii when a single DT or HT was compared to 

combined DT and HT stress. The overlap suggests specific defense mechanisms by 

plants in response to abiotic stresses, which can be further explored. We identified 35 

DT and 27 DTHT responsive genes in switchgrass, of which 12 were common 

between the two conditions. The key genes that played an important role in 

switchgrass performance under DT and DTHT include RFO, OST1, AREB1, 

GSTU17. Open Stomata 1 (OST1) is involved in the ABA regulation of stomatal 

response ([65]. RFO is a biosynthetic pathway, and it’s involved in a major metabolic 

activity in plants and has been found to respond to various abiotic stresses [44] . 

AREB1 is a transcriptional activator, and it controls the ABA signaling to improve DT 

tolerance [66]. Documentation of the response of GSTs to a plethora of environmental 

stress responses has also been documented. GSTU17 in Arabidopsis was seen to 

provide DT and salt stress tolerance [67,68]. This finding suggests the possible 

expression of GSTU17 in both DT and DTHT samples. Most of the genes were 

revealed in the droughtDB (Table 2 and 3). 

In response to both DTHT, factors such as LEA and HT shock proteins (HSPs) 

were up-regulated in our analysis. LEA and HSPs have been reported as responsive to 
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DT and extreme temperatures, and they play an essential role in protecting the plant 

during stress. Wang et al. (2003) [69] reported the response of LEA and HSPs to DT, 

salinity, and HT stress. Interestingly, Pavir.5KG018400.v4.1 (LEA14) was 

significantly up-regulated at 168 h. The same transcript was up-regulated at time point 

168/96 h in both DT and HT-treated samples. LEA proteins accumulate primarily in 

plants during water deprivation. However, LEA proteins have been reported to 

respond to extreme temperatures as well. A previous report in Brassica juncea 

indicated that LEA showed a 40-fold increase during DT stress and a 10-fold increase 

in HT stress [61]. This finding suggests that LEA14 could be a candidate gene for 

breeding in areas with severe DT and extreme temperatures.  

We identified several HT shock proteins (HSPs) in the switchgrass samples 

imposed with DTHT stress. Pavir.9NG640000.v4.1 and Pavir.9KG490200.v4.1 

transcripts annotated as HT-shock protein 70T-2 and HT shock protein-70 respectively 

were significantly up-regulated at four different time points of the study. Other HSPs 

identified include Pavir.1NG519200.v4.1 (HSP20-like chaperones superfamily 

protein), Pavir.1KG194500.v4.1 (HT shock protein 17.6A), Pavir.9NG570500.v4.1 

(HT shock protein 21), Pavir.6KG320100.v4.1 (Chaperone protein htpG family 

protein), Pavir.9KG212600.v4.1 (HT shock protein 60). In a previous study, 

Grigorova et al. (2011) observed the induction of HSPs in wheat samples imposed 

with DTHT stress compared to single DT stress [16].  

Additionally, Pavir.9KG480900.v4.1 annotated as ascorbate peroxidase 1 

(APX) and Pavir.7KG159800.v4.1 (stromal ascorbate peroxidase) were also found to 

be up-regulated by our analysis. The role of the APX gene in response to abiotic stress 
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conditions such as temperature, high light, DT, salinity, and heavy metals has been 

reported [70]. 

The Pavir.9NG211300v4.1 transcript encoding the ABO1/ELO2 gene was 

identified in the DT database and only responsive to DTHT stress. ABO1/ELO2 is an 

ABA-induced gene, and mutants showed affected development of guard cells, causing 

a decrease in the number of stomatal cells. ABO1/ELO2 is a subunit of Elongator, a 

multifunctional complex with roles in transcription which provided an uncommon 

mechanism of DT tolerance in Arabidopsis [71]. From our analysis, ABO1/ELO2 was 

up-regulated and this could be in response to the combined effect of DTHT to induce 

ABA hormones to regulate the stomata cells. Interestingly, another transcript 

Pavir.2KG247300.v4.1 codes for poly(ADP-ribose) polymerase (PARP1) were 

responsive in only DT and HT-treated switchgrass samples. PARP regulates 

transcription, metabolism and is involved in organizing the chromatin structure. Also, 

PARP responds to both biotic and abiotic stresses. From our analysis, PARP was up-

regulated in response to DTHT stress. In a previous study, down-regulation of PARP1 

increased DT tolerance in Arabidopsis [72]. This suggests that up-regulation of 

PARP1 in response to DTHT in the switchgrass samples could reduce its DT 

tolerance. 

2.4.3 Genes deduced as HT responsive genes 

As our primary focus in this experiment was on DT and DTHT responsive 

genes, we did not include HT only treatment. However, when we analyzed DTHT vs 

DT data for probable HT responsive genes, we found some interesting results. The HT 

responsive genes, i.e., HSPs  that we detected are similar to HT genes found in wheat 

and switchgrass when exposed to only HT stress [16,22]. The HT responsive 



 

 

45 

genes identified in this experiment could serve as basis for future studies when 

imposing only HT stress.  

2.4.4 TFs responsive to individual DT and DTHT stress 

The differential expression pattern of DT-responsive genes was accompanied 

by different families of TFs, including bHLH (basic helix-loop-helix), WRKY, NAC 

(NAM, ATAF and CUC) and ERF (ETHYLENE RESPONSE FACTOR). 

Transcription factors known to be involved in DT stress response include WRKY, 

C2H2 and NAC, and these were more abundant in DT compared to DTHT samples (as 

shown in the TF statistics in Additional File 10). This finding may suggest that these 

TFs were induced early to initiate a transcriptional response to DT stress. 

Interestingly, the TFs mentioned above were identified in Populus species (Populus 

davidiana) under DT stress [73]. The bHLH TF was identified to be more highly 

expressed in response to DT stress alone, compared to DTHT stress in switchgrass. 

Mun et al. identified a strong expression pattern of bHLH in P. davidiana at 6 h and 

12 h time points of their study [73]. Also, PebHLH35 as one of the families of bHLH, 

has been recognized to play a significant role in DT tolerance by controlling stomatal 

development and photosynthesis in Arabidopsis [74]. TFs such as MYB, bHLH, and 

WRKY were also abundantly identified in Brassica juncea plants under DT stress 

[61]. A high number of MYB and CH3 TFs were identified in DTHT samples 

compared to DT samples. MYB TF is known to control various processes including 

development, metabolism, and responses to biotic and abiotic stresses. A previous 

report showed that AtMYB096 from Arabidopsis is associated with ABA and JA-

mediated pathway and provided DT tolerance in Arabidopsis. In another study, 

BcMYB1 TF from Boea crassifolia is reported to provide DT tolerance [75]. There 
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were relatively more NAC related TFs identified in response to DTHT stress 

(Additional file 10). However, some NAC TFs were either down-regulated or up-

regulated, a differential expression of the TFs have been indicated in Additional file 9 

For example, NAC domain-containing protein 47, NAC domain-containing protein 83, 

and NAC domain-containing protein 41 were down-regulated whereas NAC domain-

containing protein 102 and NAC domain-containing protein were up-regulated. 

Various NAC genes have been studied in switchgrass. An example is an identification 

and functional characterization of PvSWNs in switchgrass. These NAC genes have 

been reported to be associated with lignin and biosynthetic pathway [76]. Various ERF 

(ethylene-responsive factor family) TFs were responsive to single DT stress and 

DTHT stress from our analysis (Table 1). ERF TF family has been characterized in a 

previous study, and they have been found to respond to HT stress in Populus simonii 

[64]. Similarly, ERF isolated from soybean (GmERF7) was induced by DT and salt 

stress. However, GmERF7 was reported to be down-regulated during cold stress in the 

same study by Zhai et al. (2013) [77]. In both DT and DTHT responsive TFs, bHLH 

TFs had the highest number. In a previous study, bHLH TFs have been reported to be 

related to DT [74,78,79]. Other stress-responsive TF families such as WRKY, MYB, 

and NAC previously reported were identified [80]. After bHLH, the next highest TF 

family identified from the analysis is NAC (NAM, ATAF1,2, and CUC2). NAC is one 

of the largest TFs and has been shown as an important regulator of abiotic stresses 

[81,82]. Reports indicate that NAC regulates DT stress when overexpressed in plants. 

Similarly, NAC genes, when overexpressed in Arabidopsis (ANAC019, ANAC055, and 

ANAC072) and rice (OsNAC5, OsNAC6, OsNAC10) enhanced DT and salt tolerance 

[83–85]. We also identified a high amount of bZIP TF encoding genes in both DT and 
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DTHT samples. Similar to bHLH and NAC, bZIP TF family has been reported to 

respond to various abiotic stresses. In rice, bZIP has been related to DT with 

OsbZIP16 being listed as a key candidate gene for DT tolerance [86]. Interestingly, 

more C3H TF was induced during DTHT stress compared to only DT stress. Our 

study reveals C3H as a candidate TF for both DTHT tolerance studies in plants. 

Analysis of C3H TF family in Aegilops tauschii suggested that overexpression of 

AetTZF1 caused the plant to be more tolerant to DT stress [87]. 

2.4.5 Effect of DT and HT stress on phenylpropanoid metabolism 

Phenylpropanoid is associated with lignin or flavonoid biosynthesis and plays 

essential role in the production of quality feedstock. Although phenylpropanoid 

pathway was not identified from the KEGG pathway or GO analysis, genes that are 

involved in the phenylpropanoid pathway previously identified by Ayyappan et al. 

(2017) [88] such as cinnamate-4-hydroxylase (C4H) with gene ID Pavir.J661300.v4.1, 

hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) (gene 

ID Pavir.6KG280500.v4.1) were down-regulated with an extreme temperature at time 

point 168/96 h. Except for cinnamyl alcohol dehydrogenase 9 (CAD9) 

(Pavir.7NG065100.v4.1), which was up-regulated (Additional file 5). The role of 

CAD9 in lignin composition  have been reported by Kim et al. (2004) [89].   CAD9 

has been reported to catalyze the final step required to complete the production of 

lignin monomers such as coniferyl alcohol, sinapyl alcohol, and 4-coumaryl alcohol 

[90]. The presence of lignin limits the bioconversion of carbohydrates to ethanol from 

switchgrass. This limitation can lead to the high cost of cellulosic ethanol production; 

therefore, an effective approach previously reported was to cause downregulation of 

the genes involved in lignin biosynthesis to reduce lignin production [91,92]. From 
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our analysis, CAD9 was found to be up-regulated in the DT and HT-treated samples. 

This finding suggests that DT and HT stress could cause an increase in lignin 

synthesis. Lignin biosynthesis negatively correlates with biomass and bioenergy 

production in switchgrass because of the recalcitrant nature of the cell wall [93]. In 

another study, down-regulation of the CAD gene in switchgrass by RNA silencing led 

to a reduction in the amount of lignin and increased biomass production [76]. We 

observed down-regulation of phenylpropanoid genes, HCT, and C4H. Down-

regulation of HCT and C4H could be due to the general down-regulation of genes 

involved in metabolism in response to stresses. These genes can serve as a target for 

genetic manipulation to produce quality biomass in switchgrass.  

In addition to regulating development, differentiation, metabolism, biotic and 

abiotic processes, TFs belonging to MYB proteins have been found to play a 

significant role in phenylpropanoid metabolism [75]. From our analysis, several MYB 

TFs were responsive to DTHT compared to the individual DT stress. The transcript 

Pavir.6KG070500.v4.1 which is annotated as a MYB-related family protein, was 

significantly down-regulated at three different time points from the analysis. MYB 

proteins also serve to regulate other branches of phenylpropanoid metabolism. TF 

AmMYB305 from Antirrhinum majus, and MYB from Arabidopsis have been 

identified with a function in phenylpropanoid metabolism [94,95]. Switchgrass R2R3-

MYB (PvMYB4) TF has been identified and characterized. PvMYB4 is reported to 

bind to AC-I, AC-II and AC-III elements of the monolignol pathway causing down-

regulation of the genes in vivo. PvMYB4 is known to suppress phenylpropanoid 

metabolism and the quantity of lignin in switchgrass and tobacco. Overexpression of 

PvMYB4 caused a reduction in the lignin content and decreased recalcitrance in 
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transgenic switchgrass [96]. Hence, down-regulation of MYB related proteins from 

our analysis during DTHT stress may increase lignin production to affect biomass and 

biofuel production in switchgrass. This finding suggests that the MYB transcription 

factor should be considered in enhancing biomass under DT and extreme temperature 

conditions.  

2.4.6 Validation of differentially regulated genes 

We selected seven genes from the list of significantly regulated genes to 

validate experimentally by performing RT-PCR and qPCR. Five of the selected 

transcripts were either down or up-regulated in response to combined DT and HT 

stress. These transcripts include Pavir.3KG247300.v4.1, Pavir.9KG154500.v4.1, 

Pavir.9KG545000.v4.1, Pavir.4KG077400.v4.1, and Pavir.4KG264600.v4, which 

were annotated as a copper amine oxide, ATP dependent protease, UB-like protease 

1A, leucine-rich receptor-like protein, and phosphatidylethanolamine-binding protein 

respectively. Copper amine oxide and UB-like Protease 1A were up-regulated in 

response to DT and HT stress while ATP-dependent protease, the leucine-rich 

receptor-like protein, was down-regulated response to DTHT stress. Another transcript 

Pavir.6KG130600.v4.1 which is annotated as UDP-glucosyl transferase 85A3 was up-

regulated and down-regulated at different time points in response to single DT stress 

as indicated in Figure 2.7b. UDP-glucosyltransferase 85A3 from switchgrass was 

down-regulated with severe DT at DT-168 h. A UDP-glycosyltransferase 76C2 

(UGT76C2) belonging to the same family as UGT85A played a significant role in 

response to water deficit in a previous report Arabidopsis. Like our finding UGT76C2 

from Arabidopsis was down-regulated in response to DT stress [97].  
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Our analysis found that the transcript Pavir.9NG755000.v4.1 which is 

annotated as basic chitinase, was only identified in samples exposed to DT and HT 

switchgrass samples. This gene was down-regulated in all the time points but was 

significantly up-regulated at extreme DT and HT (Additional file 5). RT-PCR 

confirmed results from the RNA-Seq data, and which is consistent with the previous 

report on the function of chitinase genes (figure not shown). Chitinase enzymes are 

reported as defense proteins and their expression are usually influenced by 

environmental stress [98]. They provide resistance against pathogens and is tolerant to 

various environmental stresses. Chitinase genes have been recognized to respond to 

environmental stresses. In a previous study, the expression of one of the chitinase 

enzymes was enhanced in Arabidopsis samples with allosamidin and strong HT stress 

compared to control plants [99]. Similar to our findings, Pavir.9NG755000.v4.1 

annotated as chitinase may have been differentially expressed due to the HT stress. 

The up-regulation of the chitinase gene may help to improve DT and HT stress 

tolerance in switchgrass.  

 

2.5 Conclusion and future perspectives 

Several studies have been conducted in switchgrass in response to individual 

biotic or abiotic stress. However, scientific information on the transcriptional changes 

in switchgrass under combined DT and HT stress is underexplored.  We utilized RNA-

Seq approaches to elucidate transcriptomic changes in switchgrass when exposed to 

either DT or a combination of DT and HT. Many of the genes identified were in 

response to DTHT stress. Additionally, we identified TFs that were regulated by these 

stresses. We found an overlap of genes in response to a single DT and a combination 
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of DTHT stress. Interestingly, these transcripts were found in the droughtDB. Both 

single DT and DTHT had an effect on the photosynthetic machinery and produced 

genes involved in oxidative stress damage which can affect biomass production. 

Several HSPs and chaperones were produced in the combined DT and HT switchgrass 

samples compared to those with individual DT stress. The GO annotation and KEGG 

pathway analysis showed connections between the identified GO terms. Genes 

associated with the photosynthesis machinery and control carbon fixation were down-

regulated, suggesting the effect of DTHT on biomass production. A co-expression 

analysis revealed a unique expression pattern of the differentially expressed genes, 

which were classified into modules. Moreover, the significant pathways enriched in 

most of the DEG genes were involved in the metabolic and ABA signaling pathways. 

Further, the combined DT and HT stress resulted in a unique regulation of 

genes and TFs involved in the phenylpropanoid pathways such as CAD9, C4H and 

HCT. CAD9, C4H and HCT are associated with lignin biosynthesis, which negatively 

correlates with biomass and bioenergy production. The stress-responsive genes and 

TFs identified in this study will be helpful in developing switchgrass cultivars with 

improved tolerance to DT and HT stress. The transcriptome data generated in this 

study could be used as a reference to investigate further DT and HT stress tolerance in 

bioenergy crops and plants in general. 
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2.6 Materials and methods 

2.6.1 Growth and treatment of plants 

The experiments were conducted using a lowland ecotype Alamo, AP13 

genotype. The AP13 genotype was a selection from the publicly available switchgrass 

cultivar ‘Alamo’. Initial selection was made at the University of Georgia, but later the 

genotype was moved to the greenhouse at Noble Research Institute, LLC. Clonal 

copies of the genotypes have been maintained in Noble greenhouse. Ramets of AP13 

were transplanted into 3GP nursery pots (Growers Solution, Cookeville, TN) and 

grown for 40 days under optimum growing condition in the greenhouse and 

transferred to growth chambers at the Noble Research Institute, Ardmore, OK. The 

experiment was designed to mimic conditions in the natural environment where plants 

experience more than one type of stress.  The goal is to identify the unique response of 

switchgrass to combined DTHT stress. The experiment was started five days after 

transfer to the growth chamber. The experiment was laid out in a randomized 

complete block design with three biological replicates. Six pots were assigned to 

control, 9 pots to DT, and 9 pots to DT and HT treatments at random during the 

transfer. The pots assigned to the three treatments were divided into three groups and 

assigned to the three replicates at random. The control and DT treatments were 

transferred to a growth chamber and the DT imposed with HT treatment was arranged 

in another growth chamber at random (Figure 2.8). Leaf tissue samples were collected 

as indicated in Figure 2.8 at the same time (starting at 2:00 PM) of the day for all 

samples collected. Plant tissues were immediately frozen in liquid nitrogen and stored 

at -80 °C. The samples were then shipped to Delaware State University on dry ice 

overnight. Soil moisture at 10 cm depth of the pot was measured concomitant with 
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tissue sample collection using Field Scout TDR 100 Soil Moisture Meter (Spectrum 

Technologies, Aurora, IL). Leaf SPAD reading was also taken at the same time. A 

diagram to indicate how the growth chamber was separated for DT and HT treatments 

have been shown in Figure 2.8.  

 

Figure 2.8: Control chamber: Regular watering (80% FC) and optimum temperature 

(30°/23°C day/night temperature); DT chamber: withhold watering at 45 

days after transplanting the ramets and kept at optimum temperature 

(30°/23°C day/night temperature); DT + HT chamber: imposed HT after 

72h of DT (35°/25°C day/night temperature); Leaf tissue samples were 

collected at 0h-DT (dt), 72h-dt/0h-HT (ht), 96h-dt/24h-ht, 120h-dt, 48h-

ht, and 144h-dt/72h-ht impositions. 

2.6.2 RNA isolation and cDNA synthesis 

Total RNA was extracted from leaves of control, DT, HT, and combined DT 

and HT-treated switchgrass using RNeasy Plant mini kit (Qiagen Inc., CA) according 

to the manufacturer’s instruction. To eliminate contaminating genomic DNA, all RNA 
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samples were treated with amplification grade DNase I (Invitrogen) following 

manufacturer’s protocol. The concentration and purity of the RNA samples were 

determined using Nanodrop 2000 spectrophotometer (Thermo Scientific, Wilmington, 

DE). The A260/A280 nm ratios for a majority of the samples were 2.1. The quality of 

the RNA samples was determined by 1% agarose gel electrophoresis and Bioanalyzer 

2100 (Agilent Technologies, Santa Clara, CA) for 28S/18S rRNA band intensity (2:1) 

and RNA integrity number (RIN) >8. The RNA samples were stored at -80 oC for use 

in downstream experiments. 1 µg of DNase treated RNA was used for cDNA 

synthesis using Protoscript II First Strand cDNA Synthesis kit (New England Biolabs, 

Ipswich MA) following the manufacturer’s instructions. In synthesizing the 

complementary DNA, 1 µg of DNase treated RNA was denatured with Oligo dT at 65 

OC for 5 min; followed by adding Protscript II reaction mix and Protoscript II enzyme 

mix which were incubated at 42 OC for 60 mins. The Protoscript II enzyme was 

denatured at 80 OC for 5 mins and the cDNA was then stored at -20 OC. 

 

2.6.3 Library construction and sequencing 

A Fragment Analyzer (Advanced Analytical, Ames, IA) was used to check the 

quality and purity of all the RNA samples. RNA-Seq libraries were prepared using 

Illumina TruSeq Stranded mRNA Sample Preparation Kit (Illumina Inc., San Diego, 

CA) following the manufacturer’s instructions at the Delaware Biotechnology 

Institute, Newark, DE, USA. The libraries were sequenced on Illumina HiSeq 2500 

platform with 101 bp paired-end reads.  
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2.6.4 Processing of RNA-Seq data 

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/; v0.0.14) was used to 

perform quality control for RNA-Seq data requiring at least a 30-base quality score 

and at least 50 bps of read length. TopHat (v2.1.1) [100] was then used to align the 

reads to the switchgrass reference genome (Additonal file 1) . FPKM values were 

calculated using the Cufflinks (v2.2.1) suite of tools [101]. To get the read count for 

the genes, HTSeq  (v0.7.0) was used [102].  

2.6.5 Filtration of genes based on FPKM values 

Low-expressed features tend to reflect noise and correlations based on counts 

that are mostly zero and are not meaningful. Based on the annotation file released, 

there are 91,838 genes across the switchgrass genome. FPKM values for each gene in 

each sample were calculated using cuffnorm in the Cufflinks suite of tools [101]. A 

given gene is retained for further analysis if at least half of the 15 groups have average 

FPKM value >1 and the average FPKM value of all samples included is >1 [103]. In 

total, 32,190 genes were retained for downstream analysis.  

2.6.6 Identification of DT and HT responsive genes 

To identify DT responsive genes in the RNA-Seq samples, DESeq2 package 

was used [104]. First, genes that were differentially expressed between DT treatment 

group and control group at 0 h were excluded. Then the remaining genes that were 

differentially expressed between DT treatment group and control group in at least one 

of the following time points (72, 96, 120, 144 or 168 h) were defined as DT responsive 

genes. To identify responsive genes related to combination of DT and HT (DTHT), 

genes that were differentially expressed between group with combination of DT and 

HT treatment and control group at 0 h and 72 h were excluded. Then the remaining 
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genes that were differentially expressed between group with combination of DT and 

HT treatment and control group in at least one of the following time points (96, 120, 

144 or168 h) were defined as DTHT responsive genes. Although the switchgrass 

plants were not exposed to direct heat temperatures separately, an assumption was 

made that the DEGs in the combined DTHT vs DT samples could be due to the heat 

stress imposed. To identify responsive genes that may be related to HT  stress, genes 

that were differentially expressed between group with combination of DTHT 

treatment and DT group at 0 h and 72 h were excluded. Then the remaining genes that 

were differentially expressed between group with combination of DT and HT 

treatment and DT treatment group in at least one of the following time points (96, 120, 

144 or 168 h) were defined as HT responsive genes. 

2.6.7 Construction of co-expression network using WGCNA 

Log2 transformed FPKM matrix of the genes (32,190) was used as input to 

WGCNA (v1.51) (Additional file 4). The function “pickSoftThreshold” was used to 

pick an approximate power value. Then “blockwiseModules” (networkType = "signed 

hybrid") was used to construct co-expression network.  

2.6.8 Functional analysis of stress responsive genes 

2.6.8.1 GO enrichment analysis:  

For stress responsive genes or the genes in the co-expression networks, the 

corresponding GO terms of the genes were extracted. Singular Enrichment Analysis 

(SEA) from agriGO [105] was used to perform GO enrichment analysis.  
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2.6.8.2 KEGG enrichment analysis:  

For stress responsive genes, the corresponding KEGG orthology terms of the 

genes were also extracted. ClusterProfiler (v 3.0.5) [106] were then used to perform 

KEGG enrichment analysis.  

2.6.8.3 MapMan analysis: 

To further understand the biological functions of the DEGs and specific 

pathways or genes associated with single DT and combined DTHT samples, we 

conducted metabolic pathways analysis using the MapMan software 

(http://MapMan.gabipd.org). Default settings in MapMan software do not support 

mapping for the switchgrass genome. A customized input file was created using the 

Mercator [107] tool and protein sequences from switchgrass v4.1. The Mercator is a 

tool to batch classify protein or gene sequences into MapMan functional plant 

categories and create a draft metabolic network which can be directly used in MapMan 

software. Mercator output was used as mapping file for MapMan. 

2.6.8.4 Annotation of transcription factor: 

Genome-wide identification of TF were performed using PlantTFDB 4.0 [108]. 

Proteins of primary transcript for the genes were uploaded to the prediction server of 

PlantTFDB 4.0. The output of the prediction severs included TF types and best hits in 

Arabidopsis. 

2.6.9 Quantitative real-time (qRT-PCR) analysis 

QRT-PCR was performed using the synthesized cDNA. The primers were 

designed based on the differentially expressed transcripts of DT and combined DT and 

HT stresses (DTHT). These primers will be used to validate the quantitative 

http://mapman.gabipd.org/
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expression of the genes with highly expressed transcripts (log2FC > 2) from DTHT 

analysis. The selected DTHT and DT genes and the list of specific primer sequences 

are given in (Additional file 14) ). The primers were designed using the online tool 

for real-time PCR (TaqMan) primer design by GenScript Inc. (Piscataway, NJ). A 

conventional PCR was first performed to validate the primers before using them in 

qRT-PCR. 1 µl of 50 ng of cDNA was used a template for the conventional PCR 

reaction under these conditions (95 oC for 1 min, 55 oC for 30 s and 72 oC for 1 min) 

for 35 cycles. The PCR product was separated on a 1% agarose gel stained with 

ethidium bromide.  

qRT-PCR was performed using an ABI 7500 real-time PCR system and SYBR 

Green Kit (Applied Biosystems, Grand Island, USA). Twenty-five μLs of the PCR 

reactions containing1 μg of 1st-strand cDNA, 12.5 µL of Power SYBR Green Master 

Mix, and 3 μL of 10 nM specific primers (forward and reverse) and 9.5 µL of water. 

The reference gene Actin11 was used as an internal control primer to normalize the 

results in all the samples. The PCR conditions for the qRT-PCR were the following; 

95 oC for 10 min, followed by 40 cycles of 95 oC for 15 s and 65 oC for 1 min. The 

efficiency of the primers was tested, and the relative expression was determined from 

three biological and three technical replicates using ΔΔCT method (Schmittgen and 

Livak, 2010). Minitab-17 software (State College, PA) was used to analyze the 

normalized CT values from the qRT-PCR analysis. 

2.7 Abbreviation 

 

DT: Drought 

DTHT: Drought and heat stress  

HT: Heat 
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DEG: differentially expressed genes 

QRT-PCR: quantitative real-time PCR  

GO: Gene Ontology 

KEGG: Kyoto Encyclopedia of Genes and Genome 

ABA: Abscisic acid 

2.8 Availability of data and materials 

The datasets supporting the conclusions of this research article have been 

included in the article and as additional files. The sequencing database for switchgrass 

under DT and HT stress has been deposited at NCBI under GEO  accession number 

(GSE174278) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174278 and 

it can be downloaded. 

2.8.1 Supplementary information 

The supplementary information can be accessed using this link 

(https://drive.google.com/drive/folders/1NrOnRj1DwLGtmVsSCatwpXw13zEwGdUp

?usp=sharing) 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE174278
https://drive.google.com/drive/folders/1NrOnRj1DwLGtmVsSCatwpXw13zEwGdUp?usp=sharing
https://drive.google.com/drive/folders/1NrOnRj1DwLGtmVsSCatwpXw13zEwGdUp?usp=sharing
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BUILDING A TEXT MINING PIPELINE TO RETRIEVE LITERATURE TO 

STUDY STRESS RESPONSE IN ARABIDOPSIS 

Hayford R., Arighi C., and Wu C. [version 1; not peer 

reviewed]. F1000Research 2020, 9(ISCB Comm J):921 (poster) 

(https://doi.org/10.7490/f1000research.1118198.1) 
 

This chapter is a preliminary work to establish a pipeline to study stress 

response in plants (discussed in Chapter 4).  The Chapter describes an evaluation of 

available resources for the pipeline and review of related works on plant stress. The 

goal is to connect resources to study plant stress response. Arabidopsis thaliana has 

been the most widely  studied model for all biological processes  by the plant science 

community. Large scale experiments have been conducted using this model to analyze 

responses and adaptations of plants to environmental stresses. 

3.1 Abstract 

Environmental stress factors, such a drought and heat, severely affect crop 

yield. Plants produce a wide variety of responses to endure environmental stress, such 

as change in rate of photosynthesis. Given the importance of this topic in agriculture, 

the number of studies is increasing, and so are the publications. Automatically mining 

information on plant genes and stress could greatly assist biologists conducting 

research in plant tolerance to stress. Thus, we have established a pipeline to integrate 

text mining methods to efficiently retrieve information on stress genes and their 

relation to function and processes in Arabidopsis. For this pipeline, we used 
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Textpresso, EuroPMPC (ePMC) annotations for gene ontology and GenRIF, and 

annotations provided by PubTator and pGenN. Upon initial review of 428 abstracts 

related to Arabidopsis genes and stress, we were able to identify 215 genes and related 

GO term biological processes from 197 of these. This exercise revealed pain points in 

the pipeline that need to be improved. 

 

3.2 Background 

Text mining is the process of extracting  meaningful information from a text 

which is usually through automated processing of the text  [1]. To analyze data 

correctly and to find the hidden patterns in our data, we need to extract useful 

information from the data we have. Text mining helps to answer specific research 

questions, it filters a large amount of research and extracts the relevant information. It 

can identify and match patterns and trends across millions of articles. This can help to 

determine additional research that is needed to answer our research question. Text 

mining helps to draw inferences by combining information from multiple sources [2]. 

Bioinformatics databases use text mining tools to accurately identify new entries-an 

example is MirTarBase [3] for validating experimentally microRNA interactions. The 

applications of text mining are not limited to the manual curation of biological data [4]  

data integration,  gene network interaction and for annotation process [5]. The use of 

text mining tools for automatic extraction of structural information has heightened due 

to the rapid growth of biomedical literature and  life sciences literature. With the rapid 

growth of biomedical literature, text-mining tools have attracted more research 

interests as they can extract structural information from text automatically. 
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A major challenge in plant research is how plants adapt to climate change. 

They are frequently exposed to various environmental stresses affecting their growth 

and development. These environmental stresses have been classified into biotic (e.g. 

biotrophic and necrotrophic fungi, bacteria, phytoplasmas, oomycetes and nematodes, 

and non-cellular pathogens i.e. viruses and viroid, pest (phytophagous insects, acari, or 

nematodes),  insects) stress and abiotic stress such as drought, extreme temperatures 

(cold and heat),  extreme light levels, flooding, nutrient deficiency, salinity, chemical 

factors (heavy metals and pH) and ozone stress [6].  Both biotic and abiotic stresses 

are major causes of losses in crop yield. Plants, however, have developed complex 

mechanisms including transcriptomic changes combined with epigenetic regulation to 

adapt to the stresses, usually depending on the modulation of transcriptional activity of 

stress-related genes. Various studies have explored and identified stress-responsive 

genes regulated by stress factor [7,8] which keep increasing.  This can lead to relevant 

data hidden in the text which needs to be extracted automatically. Using text mining 

methods helps to complement the already known resources with additional 

information in the area of study. Similarly integrating  information available in the 

specific domain creates a bottleneck and using text mining will enable us to link the 

necessary information in the literature to specific databases and Ontologies [2] and 

Textpresso Central [9] 

Landeghem et al. (2013)  reported on  the evaluation  of extraction of complex 

events from literature  in plants especially using articles on Arabidopsis [1]. There 

have been some efforts on developing text mining systems for retrieval of literature 

relevant to plant research domains, such as PLAN2L system .(pGenN) specifically for 

plants has also been developed [10]. Text mining techniques have been used to extract 



 

 

77 

information on the health benefits of medicinal plants and for the extraction of 

information on disease curing phytochemical properties of medicinal plants [11]. A 

recent report on the corpus of plant-disease relations in the biomedical domain has 

been reported by Kim et al [12].  Our goal is to link stress-responsive genes from 

Arabidopsis to their function (biological processes). To the best of our knowledge, our 

proposed study will be the first to specifically report a pipeline to extract knowledge 

on stress genes and their relationship with biological processes in Arabidopsis. We 

propose to use a controlled vocabulary such as Gene Ontology terms to extract 

information linking plant genes and stress. The results from the full-scale text mining 

will be an important resource for researchers especially curators and plant biologists. 

The pipeline generated can be integrated with PgenN, plant gene normalization tool 

and other text mining tools. 

3.3 Materials and methods 

3.3.1 Text mining tools/resources used in the study 

We evaluated existing tools and related work for this study. In this section, we 

first identify the text mining tools that can be used to extract the relevant literature and 

to set up a pipeline that could support our work in plant stress response. The text 

mining tools identified for this study were Textpresso [9], PgenN [10], EuroPMC 

annotations API [14]   and PubTator [15]. 

3.3.1.1 Textpresso Central 

Textpresso Central is a text mining system that allows for literature search using 

keywords and by category (group of terms) using controlled vocabulary.  There are 

three ways to conduct a search on Textpresso:  i) Just like regular search engines, 
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combination of words or phrases; ii) by selecting one or more ontology-based 

categories from cascading menus; or iii) by combining keyword(s) and categories. 

Most importantly, Textpresso has tailored corpora, such as Arabidopsis corpus, which 

was utilized for our search 

3.3.1.2 PgenN 

PgenN (gene normalization tool): which automatically identifies plant gene 

names in abstracts and link them to a database entry. PgenN is a plant gene dictionary-

based tool which was created  based on plant proteins in  the UniProt database [10]text 

mining tool was used to retrieve plant genes which was compared to the output from 

pgenN [15].  

3.3.1.3 PubTator 

PubTator: Also, we used PubTator to retrieve bioconcept annotations and this 

text mining tool was used to retrieve plant genes which was compared to the output 

from pgenN [15]. 

3.3.1.4 EuroPMC 

EuroPMC: ePMC offer annotations based on text mining approaches to 

retrieve comprehensive annotations from publications [14] We used the services to 

retrieve functional annotation and  terms that matches to GO terms. 

3.3.2 Retrieval of publication 

We called the API of Textpresso from the terminal [34]  using the script below 

from the A. thaliana corpus.  

(curl -k -d "{\"token\":\"fcskR8ayJjJSGGsWdLQ2\", \"query\": {\"keywords\": 

\"abiotic AND stimulus\", \"type\": \"document\", \"corpora\": [\"PMCOA A. 
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thaliana\"]}}" 

https://textpressocentral.org:18080/v1/textpresso/api/search_documents.), date 

accessed-September 2020). Different keywords like “ “abiotic AND stimulus” and 

“biotic AND stimulus” were used to retrieve publications from the Arabidopsis corpus 

on Textpresso. This was done using the command line.  The output response which is 

a JSON format include information such as an accession (PMID) for the document, 

the title, the authors and a score of the document which defines the extent to which the 

document matches with the query. The PMIDs retrieved from Textpresso were used as 

an input to obtain gene mentions from the abstracts using PgenN and PubTator. The 

aim was to compare and incorporate the results from pgenN and PubTator.  HES-

SO/SIB Text Mining tool for Elixir through EuroPMC provided the annotation for the 

functional sentences (which are mappings of GenRIF sentences to their corresponding 

text). Similarly, the terms that matches to GO terms associated with the plant genes 

identified were annotated for each of the selected publications using ePMC.  The 

output of the functional sentences was evaluated to determine if there is a link or 

relation between the GO term and the gene. A procedure for retrieving publications, 

collecting plant stress-related genes, and annotation of functional sentences and GO 

terms  has been depicted in Figure 3.1.  

https://textpressocentral.org:18080/v1/textpresso/api/search_documents
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Figure 3.1: Workflow to retrieve genes and link them to their function in Arabidopsis 

3.4 Results and discussion 

3.4.1 Basic statistics from data collected 

In this section, the statistics of the data collected was presented. Using 

different keywords in both the “document and sentence” scope from the Arabidopsis 

corpus of Textpresso, we retrieved 815 unique PMIDs of publications related to biotic 

and abiotic stress on September 20, 2019. Although, there were about 5000 stress-

related publications that were recorded from PubMed for the 2000-2019 we only 

retrieved 815 PMIDs from Textpresso. This is because we only accessed the stress-
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related publications from the Arabidopsis corpus which excluded other plants. Out of 

the 815 publications, 428 and 758 publications with stress-related genes were retrieved 

from pgenN and PubTator, respectively. The data downloaded from PubTator 

captured any species with 396 PMIDs indicated for only Arabidopsis. A total of 727 

stress-related genes were mentioned in pgenN (sheet #5 of supplemental data). 

However, from PubTator using the same PMIDs, 1333 unique plant stress-related 

genes were identified (sheet #7 of the supplemental data). We collected annotations of 

110 genes out of the 727 genes from pgenN with functional sentences and GO terms. 

The PMIDs with no functional sentences were completed with GO terms (sheet #11 of 

supplemental data).  The 110 functional annotations were evaluated to determine if 

there is a relation between the gene mentioned and the GO term (those with the 

biological process domain were selected). We identified 51 annotations with the 

suggested relation between the gene mention and GO term and functional sentence . 

Also, 21 annotations with gene and related GO terms within the same functional 

sentence as shown in Fig. 3.3.  This group of classification (annotation) serve as high 

confidence group. A summary of the data collected has been summarized in Table 3.1 

and Figure 3.2.  A pre-computed table includes PMIDs, gene mentioned from pgenN, 

PubTator, UniProt accession, sentence annotation, functional annotation, provider for 

functional annotation, GO term annotation and GO term annotation ID. A section 

indicated in Figure 3.4 and Figure 3.5. 
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Table 3.1: Summary of the statistics of data collected on plant stress genes and GO 

terms 

 

 

 

 

 

 

Figure  

Figure 3.2: Unique abstracts and gene mention between PgenN and PubTator.  A) 

number of abstracts. B) number of gene mention. We used PgenN and 

PubTator complementing each other to retrieve gene mentions. 

Abstracts No.  of abstracts with 

genes detected 

No. Gene 

mentions 

No. abstracts with 

annotation of 

functional 

sentences 

No. abstracts with 

gene-GO term 

relation(out of the 

no. of PgenN 

abstracts) 

 PgenN 

(plant) 

PubTator 

(any 

species) 

PgenN PubTator EuroPMC EuroPMC 

815 428 758 725 945 110 197 

A B 
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Figure 3.3: Classification of abstracts based on gene biological process (GO term) 

relationship. The abstracts pulled from PgenN were used for the 

classification. Manual inspection of the data was conducted to classify 

the abstracts. The precomputed table is available via this link; 

(https://docs.google.com/spreadsheets/d/1F1joXBbIWPYEhKyiVNIYPIf

tsFKCUAWn/edit?usp=sharing&ouid=105671503806176794393&rtpof=

true&sd=true) 

 

 

Figure 3.4: Shows a section of the manual curated data with gene mention, functional 

annotation and related GO terms. High confidence of gene mention and 

GO term (BP) within the functional annotated sentence. 
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https://docs.google.com/spreadsheets/d/1F1joXBbIWPYEhKyiVNIYPIftsFKCUAWn/edit?usp=sharing&ouid=105671503806176794393&rtpof=true&sd=true
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Figure  3.5: Shows a section of the manual curated data with gene mention and related 

GO term. 

3.5 Challenges faced in the study 

At the time of the study, one of the limitations was how PubTator annotated 

stresses in plants in the scientific literature.  Since PubTator has high recall there was 

also the issue of redundancy in the data collected. Also, the task of associating an 

entity to an experimental evidence tend to be a challenge as elaborated or mentioned 

by Hirschman et al. [16].  One of the pitfalls was the fact that GeneRIF (ePMC) 

annotations were not extensive for Arabidopsis. Hence not all the functional 

annotations were retrieved for most of the normalized genes.  

3.6  Next steps 

For the next steps, the most important one was to extend the pipeline to 

retrieve information on all plants and make the pipeline systematic, run automatically 

and store the output in MongoDB. In addition, we explored other text mining methods 

that will enable us to enrich the bibliome content related to stress response in 

Arabidopsis and plants in general. The data collected was consolidated to the data 

obtained in chapter 4.  
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A PIPELINE TO AUTOMATICALY RETRIEVE INFORMATION ON PLANT 

STRESS TO SUPPORT ANNOTATION OF SWITCHGRASS (PANICUM 

VIRGATUM L.) 

(Hayford R.K, Arighi, C.N, Kalavacharla V.& Wu, C.H., (In Review 2022)) 

4.1 Abstract 

Environmental stresses such as drought, extreme temperatures, salinity, and 

pathogens threaten global crop productivity. Therefore, developing cultivars with 

improved tolerance to such stresses has emerged as the most sustainable solution and 

an area of active research. The literature contains a wealth of information about plant 

biology that can be harnessed to improve gene annotation, experimental design, and 

hypothesis generation for non-model organism species. This study used computational 

and experimental approaches to understand better plant stress response mechanisms in 

switchgrass, a critical bioenergy crop. Thus, we established a pipeline integrating data 

from databases and text mining methods to efficiently retrieve publications relevant to 

plant stress genes and link them to their function from the Scientific literature. This 

pipeline uses literature and annotations from several sources, including Medline, 

Textpresso, pGenN, UniProt, and ePMC, and co-occurrence of a stress gene and an 

annotation in the same abstract. The data is stored in a MongoDB database currently 

containing 2,766 abstracts, 3,716 unique plant stress-responsive genes, 861 GO terms, 

and 1,007 GenRIF sentences. We used the MongoDB collection to check against a list 

of stress-responsive genes from switchgrass RNA-Seq data to see if the stress gene is 
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over or under-expressed. Other GO biological processes of  the switchgrass stress 

genes were identified based on homology-based inference from the literature 

collected. One interesting candidate gene that encodes Phenylalanine ammonia-lyase 1 

(PAL1) was selected for experimental validation. PavirPAL1 showed PAL activity at 

a temperature of 30 oC and pH 8.5. Our results indicate that the database developed in 

this study could support gene-annotation enrichment tools to provide the function of 

plant stress genes from high-throughput gene expression data. Automatically mining 

information on plant genes and stress could greatly assist biologists in researching 

plant tolerance to stress. 

4.2 Introduction 

Plants are constantly exposed to various environmental stress factors (biotic 

and abiotic), which severely affect crop productivity worldwide, leading to their loss 

of up to 70% [1], [2]. Under natural conditions, multiple stresses occur: the effects of 

the biotic and abiotic stresses may occur singularly or in combination, inducing 

enumerable damages at different developmental stages of plants [3], [4].  As sessile 

organisms, plants cannot escape the environmental stress conditions; therefore, they 

adapt to these conditions by developing complex mechanisms, including signaling 

pathways transcriptome changes,  to tolerate these stresses [5], [6], [7]. Plants produce 

a wide variety of responses to enduring environmental stress, such as a change in the 

rate of photosynthesis.  Developments in the OMICs technology over the past decade 

have provided the platform to conduct complex studies to understand the molecular 

mechanisms underlying stress responses in plants. For example, transcriptome 

approaches have revealed several differentially regulated genes during normal and 

under stress conditions. In addition to the differentially expressed genes, the high-
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throughput experiments have shown information such as gene ontology terms 

(standard to describe gene function) and pathway analysis, reported in the scientific 

literature.  

There are a number of resources developed with data on stress response genes 

in plants. Borkotoky et al. (2013)[8] have reported on a collection of data on stress-

responsive genes in a database specific for Arabidopsis. The STIFDB2 database [3]is 

an updated version of the plant stress-responsive transcription factor database covering 

three species: Arabidopsis thaliana and Oryza sativa subsp. Japonica and Oryza sativa 

subsp. Indica.STIFDB2 integrates data mining of genomic data, biocuration, and 

prediction to collect TFs and stress-responsive genes. The web interface is active but 

was last updated in 2012.  Further, a plant stress gene database (PSGD) containing 

information on stress genes and their ortholog and paralog in plants has been reported 

[9]. The PSGD was created through literature and database search using keywords. 

PSGD integrates information from databases such as NCBI and EMBL. The web 

interface for PSGD is active but was last updated in 2011. Similarly, a database for 

plant proteome response to stress (PlantPRes) that contain manually curated articles on 

stress proteins in plants has been reported  [10]. The PlantPRes database interface is 

active and recently updated. In the same line, a database of rice transcription factors 

under stress conditions was created using data from the Plant TF database[11]. The 

web interface for the RiceSRTFDB is not accessible. A database with a primary focus 

on drought stress, the DroughtDB, has been reported to assist researchers working on 

drought stress in plants [12].  The droughtDB was developed based on a manual 

compilation of drought genes that are molecularly characterized, it was last updated in 

2014. 
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Given the importance of this topic in agriculture, the number of studies on plant stress 

keeps increasing (Fig. 1).  These studies, which can understand what is happening at a 

global, whole genome-scale in response to external stimuli such as stress, can also 

produce vast amounts of data that can be difficult to analyze to derive meaningful 

conclusions [13]. Using text mining approaches will help extract structural 

information from the text. Using text mining systems increases knowledge extraction 

to complement already known resources with additional information to our study area 

and assist hypothesis generations.  

Elucidating the basic biological knowledge behind the stress response 

mechanisms in plants is vital to devise strategies to improve plant tolerance against 

stresses [3]. Although databases on plant stress exist, some of these databases are 

defunct, while others use existing data, and are not literature-based. Here, we describe 

a method by integrating experimental studies, text mining methods, and computational 

methods to determine the function of stress-responsive genes.  To find relevant data 

published on plant stress, we developed a pipeline (Fig. 2) that integrates a text mining 

results from PgenN, a tool that identifies plant genes [14] and literature database [15], 

namely Europe PMC,  that highlights terms that match GO terms and gene to function 

(GenRIF) sentences.  We use the co-reference of terms in the text as a simple method 

to show a relationship between them. Identifying genes and their co-occurrences with 

relevant keywords from the literature have been widely used [16], [17],  [18]. In our 

case, we focus on the co-mention of a GO term, functional sentences, and stress gene 

in the same sentence and/ or paragraph. We want to increase the chance that the 

publication describes experiments about the gene's possible involvement in such a 

process if the GO term is for biological processes. We hypothesize that the literature 

can supplement homology-based inference of the processes of differentially expressed 

genes from an under annotated species, such as switchgrass, by providing data with 
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specific context on the experimental stress condition. A database on plant stress genes 

with related GO terms or functional annotation has been developed.  The information 

collected is used to predict the function of stress-responsive genes identified from 

RNA-Seq data on switchgrass (Panicum virgatum L) imposed with a single drought 

and combinations of drought and heat stress [19].   

Switchgrass is warm, C4 perennial grass, and a critical bioenergy crop. It 

grows on marginal lands and could help reduce the global energy shortage [20],[21]. 

Switchgrass is considered a forage crop for livestock, has a high biomass yield, and 

produces biofuel [22]. The US Department of Energy has named switchgrass a 

herbaceous biofuel feedstock model [23]. Despite the economic, agricultural, and 

environmental importance of switchgrass, drought and heat stresses have been limiting 

factors for switchgrass biomass and biofuel production [22],  [24].  Recent studies 

have been conducted on the assembly and annotation of switchgrass [23]  Reports on 

adequate knowledge of genes to support crop production and adaptation have 

primarily focused on a small number of well-studied model plants [23]. The function 

of switchgrass genes will be predicted using information collected from the scientific 

literature. Using information from the scientific literature helps to identify annotation ( 

e.g., processes) of the genes from orthologs that may not be captured in the existing 

databases.  In addition, this information usually has experimental evidence to support 

the annotation of the genes. To infer the role of the genes predicted in switchgrass, as 

a case study, we wanted to understand better the function of a Putative Phenylalanine 

Ammonia-Lyase 1  (PAL1) protein from switchgrass designed as PavirPAL1.  

Phenylalanine Ammonia-Lyase (PAL, EC 4.3.1.24) is the first enzyme in the 

phenylpropanoid pathway that catalyzes the deamination of L-phenylalanine to trans-
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cinnamic acid. It plays a crucial role in plant development and defense [25]. Genes 

involved in the phenylpropanoid pathway have been revealed to play a significant role 

in feedstock quality [20]. PAL is one of the most important secondary metabolic 

pathways in plants. As a result of its role in the phenylpropanoid pathway, it has been 

extensively studied in many plants, including Arabidopsis thaliana [26],  Oryza sativa 

[27], Zea mays [28], Solenostemon scutellarioides [29],  loblolly pine [30], salvia 

miltirrhiza [25], lycoris radiata [31], Bambusa oldhamii [32], Juglans regia [33], and  

Melissa officinalis [34]. 

Using information from the MongoDB collection, we identified additional 

annotations, including cold acclimation (GO:0009631), secondary metabolism 

(GO:0019748), anthocyanin synthesis (GO:0009718), and biosynthesis (GO:0009058), 

which are linked to PAL1 from Arabidopsis and Solenostemon scutellarioides 

(coleus). These annotations were not reported in UniProt, TAIR, or in the Gene 

Ontology Resource at the time of the data collection. In addition, we identified from 

our literature collection that PAL1 was induced by cold and light stress from 

Arabidopsis and coleus, respectively. We propose inferring these functions to their 

ortholog PAL1 gene (transcript name; Pavir.1KG386300.v4.1 referred here as 

PavirPAL1), responsive to switchgrass combined drought and heat stress. To confirm 

or validate this putative PAL gene, we isolated PAL1 from switchgrass. The 

recombinant PavirPAL1 was characterized by determining the protein activity by 

catalyzing  L-phenylalanine to trans-cinnamic acid. Our study provides a 

comprehensive approach to identify stress-responsive genes and validate their 

function.  To our best knowledge, the analysis here is the first detailed investigation of 
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the PAL enzyme of the phenylpropanoid biosynthesis in Panicum virgatum. This 

study will potentially help develop switchgrass cultivars with better tolerance to stress. 

 

Figure 4.1: Number of scientific publications on stress study in plants from PUBMED 

database from 2000 to 2019. PudMed database was queried using this 

script (pubmed - (("YYYY/MM/DD "[Date - Publication] : 

"YYYY/MM/DD"[Date - Publication])) AND stress) AND 

"Plants"[MeSH]). The dates for the beginning and end of each year were 

inserted to retrieve the literature for each year (data was retrieved from 

PudMed on April 2021) 

4.3 Materials and methods 

4.3.1 Resources used in the study 

This section first identified the resources that can extract the relevant literature 

and set up a pipeline that could work to retrieve plant stress genes and annotations. 
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The resources identified for this study are Textpresso [35], PgenN [14], Europe PMC 

[15,36], and UniProt [37] are other resources included in the pipeline. Textpresso 

Central is a text-mining tool that allows literature search using keywords and by 

category (group of terms). Textpresso has corpora such as Arabidopsis corpus, which 

was utilized for our search. PgenN (gene normalization tool) automatically connects 

plant gene names to a database. PgenN identifies normalized plant genes and links 

them to the UniProt database.  The UniProt Knowledgebase (UniProtKB) is a publicly 

available database offering sequence and functional annotation for proteins across all 

taxonomic groups. We used UniProt for ID mapping and Europe PMC to retrieve 

functional annotation and GO terms. Europe PMC offers annotations based on text 

mining approaches to retrieve comprehensive annotations from publications [36]. It is 

a literature database that highlights terms that match to GO terms. 

 

4.3.2 Description of the pipeline for data collection  

Figure 4.2. illustrates an overview of the pipeline to retrieve plant stress genes 

and link them to their function.  The pipeline integrates (PgenN)[14],  UniProt 

knowledgebase [37] (EuroPMC) [15]  and information from Textpresso [35]. We want 

to use the simplest method of co-occurrence of two concepts within the same 

document, using the abstract. The co-location of a GO term and stress gene provides a 

higher probability that the publication describes experiments about the gene's possible 

involvement in such a process if the GO term is for a biological process.  The PMIDs 

of the publications used in the study were retrieved from Textpresso and PudMed.  

The pipeline undergoes a serial process of parsing the processed abstracts to PgenN to 

retrieve normalized plant genes, then to UniProt for Id mapping.  The abstracts with 
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normalized plant genes are parsed to Europe PMC to retrieve GO terms and functional 

annotation sentences. Abstracts with normalized genes and annotations are stored in 

MongoDB.  To enrich our data, we used  GO term biological processes related to plant 

stress to collect genes with the linked publication from the Gene Ontology database.  

 

Figure 4.2: Workflow of our plant-stress-gene-annotation relationship extraction  

4.3.3 Retrieval of publications on plant stress 

We called the API of Textpresso from the terminal [34]  using the script below 

from the A. thaliana corpus.  

(curl -k -d "{\"token\":\"fcskR8ayJjJSGGsWdLQ2\", \"query\": {\"keywords\": 

\"abiotic AND stimulus\", \"type\": \"document\", \"corpora\": [\"PMCOA A. 
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thaliana\"]}}" 

https://textpressocentral.org:18080/v1/textpresso/api/search_documents.), date 

Faccessed-September 2020). Different keywords like “ “abiotic AND stimulus” and 

“biotic AND stimulus” were used to retrieve publications from the Arabidopsis corpus 

on Textpresso. This was done using the command line.  The output response which is 

a JSON format include information such as an accession (PMID) for the document, 

the title, the authors and a score of the document which defines the extent to which the 

document matches with the query. To expand our search of literature to include all 

plants we used selected keywords with the PubMed API from the E-Utilities 

documentation [38] using the following scripts; 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Abiotic+

AND+Stimulus+AND+Plant[Mesh]+&retstart=1&retmax=120&usehistory=y" 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Abiotic+

AND+Stress+(("2000/01/01 "[Date - Publication] : "2018/12/01"[Date - 

Publication]))+AND+Plant[Mesh]+&retstart=1&retmax=100000&usehistory=y" 

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=biotic+A

ND+Stress+(("2000/01/01 "[Date - Publication] : "2018/12/01"[Date - 

Publication]))+AND+Plant[Mesh]+&retstart=1&retmax=100000&usehistory=y"  

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=biotic+A

ND+Stimulus+(("2000/01/01 "[Date - Publication] : "2018/12/01"[Date - 

Publication]))+AND+Plant[Mesh]+&retstart=1&retmax=100000&usehistory=y"(The 

data was retrieved from PubMed on September 28, 2020). In addition, we collected 

GO terms (biological process) associated to abiotic and biotic stress [38,39], and used 

them as input in the Gene Ontology Resource to retrieve publications and stress genes  

linked to these terms. The abstracts retrieved from PudMed were   used as input text in 

the pipeline. 

https://textpressocentral.org:18080/v1/textpresso/api/search_documents
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4.3.4 Text preparation and data generation 

The abstracts (as input text in Medline abstract format ) for processing were 

first split into individual sentences using an in-house developed tool in JSON format. 

The input text is loaded and iterates through the split document. Each PMID entry is 

parsed through PgenN to retrieve normalized plant genes and UniProt for UniProt 

accession and Entrez ID mapping [41]. Next, terms that match GO terms and 

annotation for the functional sentences (which are mappings of GenRIF sentences to 

their corresponding text) were retrieved using HES-SO/SIB Text Mining tool for 

Elixir through Europe PMC.  If the parsed response has a gene mention and 

annotation, it saves directly in the MongoDB database in a JSON format. Duplicate 

genes were removed from the MongoDB using the unique UniProt accession of the 

plant stress genes.  

4.3.5 Evaluation of the pipeline 

We used the GO annotation resource as an evaluation corpus for our pipeline 

and a method to enrich the database.  GO annotations (biological process) selected 

from publications on abiotic and biotic stress response [39,40] were used to query GO 

by filtering the annotations using “Viridiplantae” as organism and annotations with 

experimental based evidence. This process ensured adequate coverage of literature on 

stress genes with annotations in our database. We confirmed some literature with plant 

normalized genes and annotations retrieved with our pipeline.  Using GO resources to 

enrich the database, we identified additional publications with stress genes and GO 

terms, this information was added manually to the MongoDB. 
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4.3.6 Validation of the MongoDB database on plant stress genes and 

annotation 

To validate usability of the MongoDB collection, we evaluated the possibility 

of using the collection of publications in this study to search for evidence  of the role 

of differentially expressed genes identified from switchgrass transcriptomes when 

imposed with single drought and combination of drought and heat stress [19]. The 

switchgrass RNA-Seq data was inspected to identify differentially expressed genes 

with annotation of orthologs not curated in the Gene Ontology Resource but has 

annotation linked to them from the publications in our collection. To infer the 

predicted annotations to the switchgrass stress-responsive genes,  we further used 

computational/bioinformatic analysis of PAL1 orthologs (Arabidopsis thaliana and 

Solenostemon scutellarioides (coleus)) to determine its similarity with switchgrass 

PAL1  PavirPAL1. 

 

4.3.7 Sequence and bioinformatic analysis 

The coding sequence of PavirPAL1 was obtained from Phytozome, a plant 

sequence database where the switchgrass genome is deposited [42]. To determine the 

percentage identity of PavirPAL1 with its orthologs, we obtained the protein 

sequences of the orthologs from the UniProt database (UniProt Consortium, 2017) and 

BLAST done against the switchgrass version 4 genome [43]. Multiple sequence 

alignment was made using the ClustalW algorithm of DNAMAN software-version 10 

(Lynnon BioSoft Coporation, Quebec, Canada) ( [44]. A detailed analysis of 

PavirPAL1 was conducted using computational tools and comparing the output with 

orthologs in Arabidopsis and coleus (publications on AtPAL1 and SsPAL1 contain 

annotations which will be inferred). DeepLoc-1.0 [45] prediction algorithm was used 
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to predict the subcellular localization using only the sequence information. The 

physiochemical properties like the molecular weight and isoelectric point (pI) were 

theoretically determined using the ProtPram tool in ExPASy [46]. The conserved 

domain, motifs and  family of PavirPAL1 were predicted using the Conserved Domain 

Database (CDD) [47], Conserved Domain Architecture Retrieval Tool (CDART) [48], 

ScanProsite [49],  motif finder [50], and InterProScan [51]. The transcriptional start 

site and putative cis-acting elements were predicted using Plant Cis-acting Regulatory 

DNA Elements (PLACE) [52] and Plant-Care database [53].  To predict the tertiary 

structure of PavirPAL1, the online tool SWISS-MODEL [54] was used to determine 

the 3-dimensional (3D) structure. A known homolog of PavirPAL1from Petroselium 

crispsum (PcPAL, Iw27.1.A) [29,55] from the protein data bank (PDB)  was used as a 

template to build the 3D structure of PavirPAL1. The secondary structure was 

predicted using the SOPMA program[56]. 

4.3.8 Molecular characterization of PavirPAL1 

4.3.8.1 Expression of PavirPAL1 in E.coli and purification of recombinant 

proteins 

Analyzing the in-house RNA-Seq data on switchgrass showed three drought, 

and heat-responsive genes encoded PAL1. However, the gene with transcript name 

Pavir.1KG386300.v4.1 (PavirPAL1) was selected due to its response to combined 

drought and heat stress at two different points (DTHT 96/24 h and DTHT 168/96 h). 

The other two transcripts Pavir.1NG356800.v4.1 and Pavir.7NG355800.v4.1, were 

differentially expressed at time point 168/96 h. The full-length coding sequence 

encoding of PavirPAL1 with transcript ID Pavir.1KG386300.v4.1 was codon-

optimized and synthesized by GenScript (Piscataway, NJ, USA). The codon-optimized 
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putative PavirPAL1 gene (Pavir.1KG386300.v4.1) was cloned into the pET30a.  The 

pET30a-PavirPAL1 was constructed by inserting PavirPAL1 into the Ndel-HindIII site 

of pET30a. A (His)6-tag was fused to the recombinant protein to facilitate protein 

purification.  The pET30a-PavirPAL1was transferred into  E.coli BL21 Star™ (DE3) 

competent cells for protein expression. A single colony was inoculated into LB 

medium containing kanamycin; cultures were incubated in 37 °C at 200 rpm. Once 

cell density reached OD=0.6-0.8 at 600 nm, 0.5 mM IPTG was introduced for 

induction. SDS-PAGE and Western blot were used to monitor the expression (Figure 

7). The protein was obtained from the cell lysate supernatant and purified using 

TALON Metal Affinity Resin+Superdex 200. 

4.3.8.2 Analytical methods/enzymatic assay test/ biochemical assay 

The enzymatic activity of PAL was assayed from the purified recombinant 

protein by modifying previous assay report [57,58].  The PAL activity was performed 

by measuring the formation of trans-cinnamic acid from L-phenylalanine. 

Phenylalanine Ammonia-Lyase, from Rhodotorula glutinis sigma, P1016, 1.2 U/mg 

(https://www.sigmaaldrich.com/NL/en/product/sigma/p1016?context=product) was 

used as a standard. The dilution buffer for the reaction contained 10 mM Tris, 200 mM 

NaCl, 10% glycerol at pH8.5 with a Tris solution at 360 mM Tris-HCl, pH 8.8 and L-

Phenylalanine solution, 72 mM L-Phenylalanine. The standard sample was diluted 200 

times to obtain a diluted concentration for activity test and three different serial 

dilutions for the test sample, recombinant Pavir.1KG386300.1 or  PavirPAL1 

(Supplemental table S4) . The reaction was incubated at a temperature of 30℃ and 

wavelength = 270 nm. The absorbance was read every minute for 10 minutes in total. 

A linear equation for the change in absorbance of samples of different concentrations 

https://www.sigmaaldrich.com/NL/en/product/sigma/p1016?context=product
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within the 10 minutes was calculated. The change in absorbance value for the standard 

sample was used to calculate the activity of the test sample. The enzyme assay was 

performed in  triplicate. 

 

4.3.9 Validation of RNA-Seq of PavirPAL1(Pavir.1KG386300.v.1) using 

traditional and qRT-PCR 

Primers were designed to conduct traditional PCR and quantitative real-time 

PCR to validate the expression of  PavirPAL1 (Pavir.1KG386300.v4.1) from the 

switchgrass RNA-Seq data. The primers (Table S2) were designed using the online 

tool for real-time PCR (TaqMan) primer design by GenScript (Piscataway, NJ USA). 

Total RNA was isolated from the same plant materials used for the switchgrass RNA-

Seq experiments [19] using RNeasy Plant Mini Kit (Qiagen, Inc., Germany) following 

the manufacturer's protocol. The concentration and purity of the RNA samples were 

determined using a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, DE, 

USA). The integrity of all RNA samples was evaluated by gel electrophoresis. First-

strand cDNA was synthesized using DNase treated RNA using Postscripts II cDNA 

synthesis kit (New England BioLabs, Ipswich MA). Conventional PCR was performed 

using 1 µl of 100 ng of cDNA as a template for the traditional PCR reaction under 

these conditions (94oC for 1 min, 60oC for 30 s, and 72oC for 1 min) for 30 cycles. The 

PCR product was separated on a 1% agarose gel stained with ethidium bromide.  

QRT-PCR was performed using the synthesized cDNA. Twenty-five μLs of 

the PCR reactions containing1 100ng of 1st-strand cDNA, 12.5 µL of Power SYBR 

Green Master Mix, and 3 μLs of 10 nM specific primers (forward and reverse) and 9.5 

µL of water. We used cons7, primer sequence is given (Table S2)a as a  reference 
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gene or internal control primer to normalize the results in all the samples [59]. The 

PCR conditions for the qRT-PCR were the following; 95oC for 10 min, followed by 

40 cycles of 95oC   for 15 s and 65oC  for 1 min. The qRT-PCR was performed using 

an ABI 7500 real-time PCR system and SYBR Green Kit (Applied Biosystems, Grand 

Island, USA). The relative expression was determined from three biological and two 

technical replicates using ΔΔCT method [60]. Minitab- software (State College, PA) 

was used to analyze the normalized CT values from the qRT-PCR analysis.  

4.4 Results and discussion 

4.4.1 Database generation 

We developed a pipeline to automatically mine information on plant genes and 

stress from the scientific literature. PubMed and Textpresso were used as a resource to 

collect publications. Using terms related to stress, as mentioned in the methods 

section, we were able to retrieve specific abstracts for processing. Gene ontology 

terms related to plant stress were used to query GO resources to retrieve publications 

and plant stress genes with experimental evidence. PgenN automatically identifies 

plant gene names in abstracts and link them to a database entry. Our collection 

contains information retrieved from abstracts since  PgenN tool for retrieving 

normalized gene cannot process full-text information [14]. Europe PMC offers text 

mining-based annotations to retrieve functional annotations and GO terms from 

publications [36]. A total of 13,913 Medline was processed using the pipeline 

developed. The documentation for running the pipeline and is stored in a GitHub 

repository https://github.com/udel-biotm-lab.  

https://github.com/udel-biotm-lab
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We implemented a database of plant stress genes and their function. The URL 

for the database hosted locally is mongodb://localhost:27017/database. A description 

of the dataset of the latest version of the MongoDB collection is indicated in Table 

4.1.  In addition to the statistics of the content of the database, the scientific literature 

in the database covers different types of biotic and abiotic stresses with experimental 

evidence.  The Medline resource contains enormous information that could help 

establish a relationship between biological concepts. For example, CoPub (a literature-

based tool) was developed to extract information on genes from humans, mice, and 

rats and link them to keywords that describe the function of the genes. CoPub was 

developed based on the assumption that the co-occurrence of a gene and a biomedical 

concept in the same abstract shows a link between the gene and the concept [17]. 

Similar to the information stored in our MongoDB collection, we hypothesized that 

the plant stress genes mentioned with keywords that match GO terms and functional 

sentences in the same Medline abstract are linked together. The  MongoDB collection 

will be used to complement existing tools to analyze gene expression data in plants 

during stress. The information from our database will be used to find the function of 

plant stress genes as they are described by orthologues or the same plant from the 

scientific articles stored in the MongoDB. 

4.4.2 MongoDB database/database content 

MongoDB is a non-structural database, and it stores the information in a 

document-oriented structure. Each document contains a doc field, a text field, objects, 

and a list of properties in an array .  Unlike the SQL database, MongoDB uses 

collections (collections have no constraint and the fields can contain different data 

types) instead of data-structured tables [61]. Each document in the MongoDB 
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collection includes a unique identifier as ID,  unique PudMed ID, gene name, the 

UniProt accession of the gene mention and Entrez ID (if applicable) and GO term) or 

functional annotation sentence. One issue is due to that GeneRIF (ePMC) annotations 

are not extensive for plants. Hence not all the functional annotation sentences were 

retrieved for most of the normalized gene due to the limitation of GeneRIF to the 

collection of functional annotation sentences.  

From the analysis of the dataset, we identified the significant GO terms and the 

number of publications that mention those GO terms. The GO terms with a frequent 

mention in the scientific literature collected include;  biosynthesis (GO:00009058), 

metabolism (GO:0008152), defense response (GO:0006952), and photosynthesis 

(GO:0015979). Similarly, most of the stress-responsive genes in our database mapped 

to these GO terms. This finding suggests that many stress-responsive genes are 

involved in biological processes of biosynthesis, metabolism, and defense response.  

GO, and KEGG enrichment analysis of selected transcriptome studies in plants during 

stress identified metabolic and biosynthetic processes among significantly enriched 

terms [21,62]. Using  MongoDB query operators, we can insert, update, read, and 

delete data from MongoDB. The stored documents in MongoDB can easily be 

retrieved for  analysis.  In the future, we would like to explore other methods to enable 

us to enrich the bibliome content related to stress response in plants.  

Table 4.1: Statistics of dataset stored in MongoDB 

Name (No. of)                                                                             (MongoDB) 

Total abstracts                                                                                       2,766 

Abstracts with functional annotation sentences                                    1,007 

Abstracts with stress genes and GO terms                                           1,759 

Unique plant stress genes                                                                     3,716 
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Unique GO terms                                                                                  861 

Plant species                                                                                          162 

 

4.4.3 Proof of concept 

We used information from the database created in this study to find additional 

processes  of stress-responsive genes in switchgrass.  These stress-responsive genes 

were identified in response to single drought stress and combination of drought and 

heat stress [19] We identified seven genes with annotation from orthologs that could 

be further explored and inferred in switchgrass (shown in table S1). The GO terms 

were retrieved using our pipeline and were not found in the GO database or TAIR.  

For example, a switchgrass transcript Pavir.1KG530100.v4.1 that encodes TTPS11 

gene was upregulated from the switchgrass data during single drought stress at time 

point DT 168 h. From our MongoDB collection, we found additional information from 

literature (PMID: 23430324)[63] of upregulation of TTPS11 during biotic stress of 

Pytophthora cinnamomic in Zea mays. The following GO term biological processes 

were retrieved from our pipeline and linked to TPS11 but not reported in GO database 

and TAIR at the time of collecting the data. They include;  defense response 

(GO:0006852), biosynthesis (GO:0052315), and ethylene biosynthesis (GO:0009693). 

Similarly, the switchgrass transcript  Pavir.5KG421100.v4.1 which encodes WRKY28 

gene was identified to be upregulated under single drought stress at time point DT 120 

h. From our collection, we found additional processes that WRKY28 could be 

involved in, which were not reported in TAIR and GO at the time of collecting the 

data. We found from our database that WRKY28 is involved in  oxidative burst 

(GO:0045730), hyphal growth GO:0030448), and seed germination (GO:0009845). 
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Interestingly, our database  contains information that show  an upregulation of 

WRKY28 under oxalic acid and Sclerotinia sclerotiorum stress in Arabidopsis. We 

may conclude that TPS11 and WRKY28 could be regulated during both biotic and 

abiotic stress based on the evidence outlined here. Another transcript from the 

switchgrass RNA-Seq data; Pavir.9NG725100.v4.1 which encode the 

phosphomannomutase (PMM) gene was upregulated during combined drought and 

heat stress [19] Our collection revealed that PMM (DoPMM) was also upregulated 

during cold and salt stress in Dendrobium officinale [64]. The same gene was 

identified in response to oxidative stress in Arabidopsis [65]. The following processes 

were found to link to PMM gene but were found in GO, TAIR or UniProt at the time 

of the data collection- biosynthesis (GO:0009058) and seed germination 

(GO:0009845). Other additional processes linked to the switchgrass drought and heat-

responsive genes have been highlighted in supplemental table S1.  

From the seven genes switchgrass stress-responsive genes , we selected 

Pavir.1KG386300.v4.1, which encodes PAL1 as a candidate gene to characterize 

further and validate.   PAL is an essential enzyme in plants due to its role in the 

phenylpropanoid pathway [29,66]].  Several secondary metabolites such as flavonoids, 

anthocyanins, and lignin have been derived from phenylpropanoid [32].  

Phenylpropanoids play an essential role in plant responses to biotic and abiotic 

stresses by providing stability against environmental damage [67]. Although PAL has 

been extensively studied in plants, it is yet to be characterized as an important 

bioenergy crop in switchgrass.  

Four genes encoding PAL were differentially expressed under a combination 

of drought and heat stress in the switchgrass RNA-Seq data used in this study [19] 
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These transcripts are Pavir.1KG386300.v4.1, Pavir.1NG356800.v4.1, 

Pavir.7NG355800.v4.1 and Pavir.1KG386500.v4.1. The transcript 

Pavir.1KG386300.v4.1 was selected since it showed differential expression at two 

different time points of imposing drought and heat: DTHT 96/24 h and DTHT 168/96 

h. Interestingly all the four  transcripts were identified in switchgrass with combined 

drought and heat but not in switchgrass that only received drought stress [19]. This 

gene maps to Arabidopsis AT2G37040.1 (AtPAL1).  The Arabidopsis Information 

Resource (TAIR) database  listed the following annotation to AtPAL1; Cinnamic acid 

biosynthetic process, defense response, drought recovery, lignin catabolic process, L-

phenylalanine catabolic process, pollen development, response to karrikin, response to 

oxidative stress, response to UV-B and salicylic catabolic process.  

Evidence of potential processes of the Pavir.1KG386300.v4.1 transcript that 

code for PAL1 gene (PavirPAL1) from the MongoDB collection: We found an 

additional role that PAL1 could play in  switchgrass and plants in general. These other 

annotations were not provided by TAIR or the GO resource Evidence of the part of 

PAL1 in, cold acclimation (GO:0009631), secondary metabolism (GO:0019748), 

anthocyanin synthesis (GO:0009718), and biosynthesis (GO:0009058) were retrieved 

using our pipeline from the literature PMID: 27439459 (Arabidopsis thaliana) [67] 

and PMID:26389875 (Solenostemon scutellarioides) [29]. We have described the 

steps to provide the basis to infer these functions (GO terms) to switchgrass PAL1.  

From the above publications, PAL1 was also found to be induced by cold [68]and 

light [29].  The above findings complement the role of PAL1 in response to abiotic 

stresses, which include drought, heat, cold and light stress.  



 

 

108 

4.4.4 Recombinant PavirPAL1 synthesis 

PavirPAL1 gene was synthesized by codon optimization. Codon optimization 

was necessary for efficient heterologous expression and recombinant protein 

production [69]. The construct of PavirPAL1 in Pet30a is shown in Fig.S3. 

Confirmation of the identity of the protein sequence was established by LC-MS 

analysis.  Extensive sequence coverage was  achieved at 99% (Fig. S4). The 

theoretical mass of PavirPAL1 reveal a size of 78.5kDa (Fig. S5). 

4.4.5 Sequence analysis 

The GenBank accession number of PavirPAL1 is OL420680. The full-length 

cDNA sequence (length 3,360 bp) of PavirPAL1 contains a 2,160 bp open reading 

frame (ORF) encoding 719 -amino acid proteins.  The Neural Network Promoter 

Prediction Analysis software revealed the putative transcription start site of 

PavirPAL1 at 191 bp upstream from the start codon (Fig.S6). We identified a possible 

TATA box located at -31 upstream of the putative transcription start site in 

PavirPAL1. The TATA-box is important and plays a role in the eukaryotic 

transcription initiation. PLACE and Plant-Care programs were used to predict the core 

promoter elements. Elements  such as TATA box and CAAT box were identified in 

the 5′-flanking regions of PavirPAL1.  In addition,  MYB binding sites previously 

identified in  other plant PALs were predicted in this region.  MYB transcription 

factors have been reported to play a role in phenylpropanoid biosynthesis [70]. This 

suggests the possibility of a MYB transcription factor in the regulation of PavirPAL1.  

Besides, cis-acting elements related to light-responsive elements (GATA-motif)  and 

hormone-responsive elements such as ABRE, MeJA and TGACG-motif were 

identified in the 5′-flanking regions of PavirPAL1.  
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A multiples sequence alignment showed that the deduced peptide sequence of 

PavirPAL1 has high similarity to other known plant PALs, sharing a similarity of 78% 

identity to DcPAL (JQ765748), 76% identity to SmPAL1 (ABR14606), 77.5% identity 

to SsPAL1 (JQ975419), 77% identity to PcPAL  (CAA57056), 76% identity to OsPAL 

(AK102817), 76% identity to AtPAL1 (AEC09341), and 72% identity to ZmPAL1 

(AAL40137) (Fig. 6).  The deduced peptide sequence contains the active site sequence 

of phenylalanine and histidine ammonia-lyses: GTVTASGDLVPLSYIAG (position 

201-217) (Fig. 4). The active site of all the PAL proteins contains the active site Ala-

Ser-Gly (205-207), forming a 3,5 dihydro-5-methylidene-4H-imidazole-4-one (MIO) 

group. 

4.4.6 Characterization of the full-length cDNA sequence of PavirPAL1 

The functional domain prediction using the Conserved Domain Database 

(CDD), Pfam, InterProScan, and SMART [71] predicted that PavirPAL1 matches to 

the signature of histidine and phenylalanine ammonia-lyase. It contains the 

Lyase_aromatic domain (67-583 aa) and belongs to the Lyase class I_family of 

enzymes that catalyzes beta-elimination reactions and active as homotetramers (Fig. 

S1). The SMART output also showed a compositionally biased region (18-30 aa).  

Unlike AtPAL1 and SsPAL1, the MotifFinder detected two motifs in the putative 

PavirPAL1 protein sequence, i.e., Ribosomal L30 domain (accession: PF0707) in the 

N-terminal region and the aromatic amino acid lyase (accession: PF00221). A 

ScanProsite of  

PavirPAL1 detected the Prosite signature of phenylalanine and histidine 

ammonia-lyases signature “GTITASGDLV PLSYIA”. The Prosite scan detected a 

predicted feature of modified residue of 2,3-didehydroalanine on S212. The secondary 
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and tertiary structures of PavirPAL1 were predicted to obtain insight into the structure 

and function of the gene.  The SOMPA program was used to predict the secondary 

structure of PavirPAL1. The secondary structure showed that α-helices (55.22%) were 

the main structural components (31.15%) of the random coil (Fig. 5a). The red, green, 

blue, and pink regions indicate the extended strand, beta-turn, alpha-helix, and random 

coil, respectively [56].  To better characterize the PavirPAL1 protein, comparative 

modeling of the three-dimensional (3D) structure of PavirPAL1 was predicted on 

sequence homology-based using SWISS-MODEL [72]. The 3D structure of PAL from  

Petroselinum crispum [54] have been reported using X-ray crystallography. Similar to 

the findings of the 3D structures of P. crispum and S. miltiorrhiza, analysis of 

PavirPAL1 revealed a “sea horse” shape (Fig.4.5b) as reported for other PALs. Also, 

SmPAL1 and SsPAL1 structure analysis predicted a similar structure [24]. The 

PavirPAL1 predicted tertiary structure composed an MIO domain, a core domain, and 

an inserted shielding domain. In addition, PavirPAL1 contained the highly conserved  

Ala-Ser-Gly triad, which served as the MIO prosthetic group site for non-oxidation 

deamination –([25,29,55]. These conserved sites were identified in SmPAL1, SsPAL1, 

and PcPAL1 which  indicates that PavirPAL1 might have the same catalytic activity as 

other PAL proteins. Our finding was consistent with the description of the X-ray 

crystallography structures of PcPAL, , and predicted systems of SmPAL1 and SsPAL1.  
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Figure 4.3: Multiple sequence alignment of PavirPAL1 with orthologs. The protein 

sequences shown here are from Arabidopsis thaliana (AtPAL1, P35510), 

Solenostemon scutellarioides (SsPAL1, L0BXX7), Oryza sativa 

(OsPAL1, P14717), Zea mays (ZmPAL1, Q8VXG7), Salvia miltiorrhiza 

(SmPAL1, A9X1W5), putative PavirPAL1 (Pavir.1KG386300.v4.1), 

other switchgrass PAL1 (Pavir.1NG356800.v4.1, 

Pavir.7NG355800.v4.1, Pavir.1KG386500.v4.1.) , PcPAL (P24481) 

Dendrobium candidum (DcPAL, L7SSS6). The highly-conserved active 

site motif (Ala-Ser-Gly) which can be converted into a MIO prosthetic 

group (Zhu et al. 2015, Song et al. 2009) is highlighted in a red  open 

box. The conserved PAL protein finger motif is underlined in yellow. 

 

Figure 4.4: Amino acid sequence of PavirPAL1; the phenylalanine and histidine 

ammonia-lyases signature(GTITASGDLVPLSYIA) are highlighted in 

bold. The deamination sites (L-209, V-210, L-259, A-260) are underlined 

and the catalytic active sites (N-263, G-264, NDN:385-387 aa, HNQDV: 

489-493 aa) are indicated with black dots.(a)     
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Figure 4.5: Structure analysis. a) Predicted secondary structure of PavirPAL1. The red, 

green, blue and pink regions represent the extended strand, beta turn, 

alpha helix and random coil respectively. b) Predicted tertiary structure 

of PavirPAL1 developed by homology-based modeling. The Ala-Ser-Gly 

MIO ring is marked in red. 

4.4.7 Transcription profile of PavirPAL1 

 Various studies have shown that the expression of PAL is induced by 

environmental factors such as pathogen infection, drought, wounding, UV irradiation, 

and cold temperatures [29,67]. To validate the expression of PavirPAL1 from 

switchgrass RNA-Seq data during drought and heat stress, RNA samples from the 

same plant material were used to synthesize cDNA and performed qPCR.  As 

indicated in Figure 9, qPCR results indicate that the expression of PavirPAL1 was 

A) 

B) 
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responsive to a combination of drought and heat stress compared to a single drought 

stress treatment [19].  The expression of PavirPAL1 was down-regulated with 

combined drought and heat stress at time point  DTHT 96/24 h  and increased at time 

points DTHT 120/48 h and DTHT 144/72 h. With prolonged exposure to extreme 

drought and heat stress, PavirPAL1 reduced markedly at DTHT 168/96 h. 

In contrast to our finding,  the expression of SmPAL1 was induced within a 

short time of drought stress and increased significantly within 30 minutes, followed by 

a reduction [25]. PAL genes have been induced by various stresses such as light, 

drought, mechanical wounding, low temperature, UV irradiation, and other stresses 

[25,29]. The transcription level of PAL from coleus was reduced by dark and under 

UV-B and wounding treatments.  The expression level of PAL has mostly depended 

on the type of stress imposed and the plant species. For example, the expression of 

AtPAL1 decreased significantly with ABA treatment; however, the expression of 

PAL1 from Salvia miltiorrhiza (SmPAL1) distinctly increased with 100 µM  ABA 

treatment [25,73]. 

 

 

A) 
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B) 

C) 
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Figure 4.6: .  Expression analysis of PAL1 using leaf tissues from switchgrass at 

different time points during combined drought and heat stress. (a) 

Traditional PCR was conducted using PAL1 primers from switchgrass. 

The primers were designed from the transcripts of PAL1 from 

switchgrass (Pavir.1KG386300.1). RNA was isolated from the same 

samples used for the RNA-Seq analysis and cDNA synthesized. Negative 

controls used in the PCR include NE (no reverse transcriptase enzyme) 

from the cDNA synthesis and water which is indicated as “-ve”. (b) 

validation of PavirPAL1by qPCR. Three biological replicates and two 

technical replicates were used for the analysis. Data was analyzed using 

ANOVA of Minitab statistical software. The different alphabets in the 

figure indicate statistically significant (p-values<0.05) difference in 

relative expression of PavirPAL1 between time points (c) The log2FC of 

Pavir.1KG386300.1 from the switchgrass RNA-Seq data during drought 

and combination of drought and heat stress. 

4.4.8 Expression and purification of recombinant PavirPAL1 in E.coli 

Until now, many PAL genes from plants have been cloned and expressed in 

vitro. For example, PAL from Zea mays [28], Arabidopsis thaliana [26],    

Solenostemon scutellarioides [29], Juglans regia [33], Bambusa oldhamii [32], and  

Petroselium crispum [73] have been successfully expressed invitro. To confirm the 

function of PavirPAL1, the recombinant PavirPAL1 was expressed in E.coli 

BL21(DE3) and purified using TALON Metal affinity Resin+Superdex 200.  SDS-

PAGE gel showed the various fractions from purification (Fig. 10). This finding 

indicates that PavirPAL1  was successfully expressed and purified in E. coli. 

PavirPAL1 expressed a recombinant protein whose molecular weight was about 

~78.50 kDa (lane 3 of Western blot image of Fig. 10), which agreed with the predicted 

mass of 77.68 kDa by the ProtParam online tool.  LC-MS confirmed the mass of 

PavirPAL1.   Also, the time course for the expression of the recombinant PavirPAL1 

was examined.  Our findings indicate that the maximal level of the protein expression 
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was achieved at 15° C for 16 h after IPTG induction and detected at a solubility of 40 

%.   

 

Figure 4.7: Expression and purification of recombinant PavirPAL1 protein in E. coli 

strain BL21. SDS-PAGE (right) and Western blot (left, using anti-His 

antibody (GenScript, Cat. No. A00186) analysis of Pavir.1KG386300.1 

in E.coli expression construct pET-30a(+). Lane M1: Protein marker 

Lane M2: Western blot marker Lane PC1: BSA (1 μg) Lane PC2: BSA 

(2 μg) Lane NC: Cell lysate without induction Lane 1: Cell lysate with 

induction for 16 h at 15 °C Lane 2: Cell lysate with induction for 4 h at 

37 °C Lane NC1: Supernatant of cell lysate without induction Lane 3: 

Supernatant of cell lysate with induction for 16 h at 15 °C Lane 4: 

Supernatant of cell lysate with induction for 4 h at 37 °C Lane NC2: 

Pellet of cell lysate without induction Lane 5: Pellet of cell lysate with 

induction for 16 h at 15 °C Lane 6: Pellet of cell lysate with induction for 

4 h at 37 ° C. 

4.4.9 Biochemical characterization of PavirPAL1 

The recombinant PavirPAL1 protein purified from switchgrass was analyzed 

for PAL activity with different concentrations of the test sample (PavirPAL1) and 

standard sample (Phenylalanine ammonia-lyase from Rhodotorula glutinis, Sigma Cat. 

No. P1016). The result showed that the activity of recombinant PavirPAL1 increased 
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steadily with increasing concentration and time at a temperature of 30 ° C and 

wavelength of 270 nm (Fig. 11). The activity of recombinant was higher than that of 

R. glutinis. A linear equation for the change in absorbance of samples of different 

concentrations within 10 minutes was calculated (calculation in table S3) to determine 

the absorbance value of the standard sample. The change in absorbance value of the 

standard sample within 10 minutes was used to calculate the activity of the test 

samples.  The analysis showed a correlation between the concentration of the samples 

and the absorbance (Fig. 11b).  The enzyme activity was determined for three different 

concentrations of the test samples by measuring the absorbance of the formation of 

cinnamic acid. The average enzyme activity of PavirPAL1  was calculated, which was 

about 2.62 U/mg.  
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Figure 4.8: Biochemical characterization of purified PavirPAL1. a) calculate change in 

absorbance value for different concentrations of samples, NC (negative 

control), S (standard sample-R. glutinis), A, B, C (0.025 mg/ml, 0.0125 

mg/ml, 0.00625 mg/ml of test concentrations respectively).  b) using 

concentration and change in absorbance value of samples to calculate the 

activity of PavirPAL1. 

A) 

B) 
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The enzyme activity of PAL proteins has been previously reported [28,29,32] Similar 

to our finding, the enzyme activity of PavirPAL1 (2.62 U/mg) was slightly higher than 

the activity of PAL1 from Bambusa oldhamii, BoPAL1 (2.26 U/mg). This confirms 

that PavirPAL1 is suitable to catalyze the deamination of L-phenylalanine to trans-

cinnamic acid.  Although the optimal temperatures for some recombinant PAL 

activities have been higher, the optimal temperature for PavirPAL1 activity falls 

within the ranges for AtPALs [26]. The results explain the metabolic network of 

phenylpropanoid metabolism in switchgrass.  

4.5 Conclusion 

This study developed a pipeline to retrieve plant stress genes and annotations 

from the scientific literature. The information was stored in MongoDB and used to 

predict the function of plant stress genes by homology. As a used case, information 

from the MongoDB collection was used to provide annotation to a gene that codes for 

Phenylalanine ammonia-lyase 1 in switchgrass; PavirPAL1. Bioinformatics analysis 

was performed to establish the similarity of PavirPAL1 to other plant PALs. Multiple 

sequence alignment and structure analysis revealed highly conserved regions and 

sequence and structural similarity with functional plant PAL proteins.  After codon 

optimization, the putative PavirPAL1 (OL420680) was successfully expressed in E. 

coli.  The recombinant PavirPAL1 showed PAL activity to convert L-phenylalanine to 

trans cinnamic acid. The expression of PavirPAL1 in response to a combination of 

drought and heat stress was validated by qPCR. Taken together, our results show that 

PavirPAL1 is a functional gene, and the annotations (cold acclimation, secondary 

metabolism, anthocyanin synthesis, and biosynthesis) identified using our pipeline can 

be inferred to PavirPAL1. In the future, we would like to extend this pipeline in 
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iTextMine to enable integration with relation extraction tools that may help highlight 

interesting aspects of the underlying biology. 

 

4.6 Abbreviation 

 

DT : Drought 

DTHT: Combined drought and heat stress 

PAL:    Phenylalanine ammonia-lyase 

qPCR:  Quantitative real-time PCR 

LC-MS: Liquid chromatography-mass spectrometry 

4.7 Supporting/ supplementary information 

Additonal supporting files for this chapter can be found using this link; 

(https://drive.google.com/drive/folders/1drk04OFPms9GzLis1eSOnKsxqjwrHLcu?us

p=sharing) 
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VISUALIZATION OF SWITCHGRASS TRANSCRIPTOME DATA DURING 

DROUGHT AND HEAT STRESS USING CYTOSCAPE 

5.1 Abstract 

Cytoscape is an open-source, cross-platform bioinformatics program written in 

Java. It is used to visualize interaction networks and integrate these with expression 

profiles and other high throughput data sets. ClueGo is a Cytoscape plug-in that 

visualizes the non-redundant biological terms for large clusters of genes in a 

functionally grouped network. The ClueGO network is created with kappa statistics, 

and it reflects the relationships between the terms which are shared based on the 

similarity of the associated genes. We used ClueGo to visualize the functionally 

grouped terms and pathways(KEGG/Reactome) to create a network-based analysis of 

the transcriptome data on switchgrass drought and heat-responsive genes. Unique and 

overlapping functional networks of GO terms and pathways of drought and combined 

drought and heat stress were identified. Furthermore, our analysis revealed a possible 

link between the enriched terms or pathways, thus providing the basis for conducting 

experiments to explore the detailed regulation of stress-responsive genes.  

5.2 Background 

Cytoscape is widely used for network-based data integration. Analysis of gene 

expression dataset is commonly performed to gain insight into the underlying 

biological processes. The network represents a relationship between aspects of data, 

Chapter 5 
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and therefore performing this activity help to discover functional gene interaction and 

provides the biologist with functional evidence. In addition, the network analysis 

enables an effective means of data comparison, data interpretation and generation of 

hypothesis  [1] . ClueGO plug-in is easy to use and strongly enhances the biological 

interpretation of a large data set  [2]. One of the functionalities of Cytoscape software 

is to link the network to databases of annotations [3]. We visualized the transcriptome 

data on switchgrass when imposed with a single drought and drought and heat stress 

combinations to explore biological networks. ClueGo integrates Gene Ontology (GO) 

terms and KEGG/Reactome pathways and creates a functionally organized 

GO/pathway term network. By clicking the update option of ClueGO automatically 

downloads the most recent files of GO, KEGG, and Reactome release at any time [2]. 

We uploaded all the drought and combinations of drought and heat-responsive genes 

into Cytoscape. We used the ClueGo plug-in to understand functionally grouped gene 

ontology terms and pathway annotation networks in the data. We identified common 

and specific transcriptional responses during a single drought and combinations of 

drought and heat stress. 

5.3  Method 

To calculate enrichment values for terms, pathways and groups using ClueGO, 

we used two-sided (enrichment/depletion) test based on the hypergeometric 

distribution to calculate doubling for two-sided tests to support the functional 

conservation effect [4,5]. To control the false positives, we used Bonferroni method to 

correct the p-values [6]. ClueGO creates first a binary gene-term matrix with the 

selected terms and their associated genes. Based on this matrix, a term–term similarity 

matrix is calculated using chance corrected kappa statistics to determine the 
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association strength between the terms. Since the term–term matrix is of categorical 

origin, kappa statistic was found to be the most suitable method. Finally, the created 

network represents the terms as nodes which are linked based on a predefined kappa 

score level. The kappa score level threshold can initially be adjusted on a positive 

scale from 0 to 1 to restrict the network connectivity in a customized way. For this 

analysis,  a kappaScore threshold of 0.3 was used. The size of the nodes reflects the 

enrichment significance of the term. The functional groups indicated by the most 

significant terms are visualized in the network, showing their relationships' details. In 

addition, we included the other ways of selecting the group-leading term such as  

showing the number of genes per term as shown in Figure 5.1a. 

5.4 Results and discussion 

5.4.1 GO enrichment analysis for combined drought and heat (DTHT) 

differentially expressed genes 

Advances in systems biology approaches for integrated functional analysis 

have contributed to identifying GO-enriched terms, pathways, and networks 

underlying stress-response mechanisms. This study conducted a network-based 

analysis of single drought and combined drought and heat differentially expressed 

genes in switchgrass. Comprehensive analysis of biological pathways in plants under 

multiple stress situations may be the key step for understanding molecular mechanism 

underling cross-talk among stress signaling. Visualization of the networks of pathway 

terms based on the DTHT specific responses reveals the enormous transcriptional 

responses evoked in switchgrass. ClueGO plug-in of Cytoscape helps  to visualize the 

theme of the pathway or term results in the network. 
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Figure 5.1: Network visualization of enriched terms among the differentially regulated 

genes during combined drought and heat stress. The network analysis 

was performed by ClueGo analysis. a) GO terms specific for combined 

drought and heat DEGs from switchgrass. The bars represent the number 

of genes assigned with the terms. The percentage of genes per term is 

shown as bar label. b) Overview chart with functional groups including 

specific terms for DTHT DEGs. c) Over-represented GO analysis in the 

DTHT differentially expressed genes. These are functionally grouped 

network with terms as nodes linked based on their kappa score level 

(≥0.3),  significant terms are shown. The node size represents the term 

enrichment significance. Functionally related groups partially overlap. 

The edges are related to the relationships between the selected terms 

defined based on the genes shared in a similar way. The label of the most 

significant term is used as the leading group term. d) Gene networks for 

GO biological process terms of  DTHT DEGs.  

D) 
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Similar to the enrichment analysis of DTHT DEGs by AgriGO (chapter 2), the 

ClueGo analysis showed significant enrichment (P-value<=0.05) in these biological 

processes, organonitrogen compound metabolic process, organic cyclic compound 

metabolic process, and small molecule biosynthesis process (Figure 5.1 (a,b,c)). The 

enrichment analysis also highlighted the terms "photosynthesis", "response to 

oxidative stress", and "response to light stimulus" in the DTHT DEGs. A network-

based analysis of the corresponding GO terms (biological processes) of DTHT in 

genes revealed specific terms enriched by the DTHT DEGs. As indicated in Figure 

5.1d. Some significant terms enriched by DTHT genes include 'photosynthesis, 'ion 

transport', 'stomatal closure', and 'response to radiation'. The genes associated with 

these terms are shown; for example, the term  ‘stomatal closure' reveals genes 

associated with this term, including FAB1B, and FAB1C. Another gene, ZIFL2 ( 

Zinc-Induced Facilitator 2) was identified with overlapping terms ‘stomatal closure' 

and 'ion transport' biological processes (highlighted in red in Figure 5.1d). The role of 

ZIFL2 in potassium and cesium homeostasis has recently been reported. An isoform of  

ZIFL1, ZIFL1.3, has been reported to play a key role in drought stress by regulating 

stomatal closure [7]. The presence of ZIFL2 with overlapping terms' ion transport' and 

'stomatal closure' reveals the possibility of its role in transport and drought stress by 

regulating stomatal closure. Visualization of the network of GO terms provides 

insights to the underlying mechanisms of the stress genes. 
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5.4.2 Pathway analysis (Reactome) of DTHT switchgrass genes 

 

 

 

A) 

B) 

C) 
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Figure 5.2: Network visualization  of enriched pathways (Reactome) in DTHT 

gene signature performed by ClueGO analysis. Pathway analysis 

(Reactome) of DTHT differentially expressed genes. a)The bars 

represent the number of DTHT genes assigned with the pathways. The 

percentage of genes per pathway is shown as bar label. . b) Overview 

chart with functional groups including specific pathways for DTHT 

DEGs. The label of the most significant term is used as the leading group 

term. c) Functionally grouped network with pathways as nodes linked 

based on their kappa score level (≥0.3),  significant pathways for DTHT 

genes are shown . The node size represents the pathway enriched 

significance. Functionally related groups partially overlap. The edges are 

related to the relationships between the selected pathways defined based 

on the genes shared in a similar way. d) Retrieved connection of the 

common genes of the major pathway enriched by DTHT differentially 

regulated genes which is "major pathway of rRNA processing in the 

nucleolus and cytosol" 

D) 
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5.4.3 KEGG Pathway analysis by ClueGO 

 

 

 

 

A) 
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Figure 5.3: Network visualization of enriched pathways (KEGG) in DTHT gene 

signature performed by ClueGO analysis. Pathway analysis (KEGG) 

of DTHT differentially expressed genes. a)The bars represent the number 

of DTHT genes assigned with the pathways. The percentage of genes per 

pathway is shown as bar label. b) Overview chart of specific pathways 

for DTHT DEGs. The label of the most significant term is used as the 

leading group term. c) Retrieved connection of the common genes of the 

significant pathway enriched by DTHT differentially regulated genes. 

Unique and shared genes between the pathways 

"glycolysis/gluconeogenesis" and "carbon fixation in photosynthetic 

organisms" have been circled in red.  

5.4.4 GO enrichment analysis for single drought differentially expressed 

genes  

(DEGs) 

The enrichment values for terms and groups from ClueGO results of single 

drought switchgrass genes are presented. The functional groups represented by their 

most significant (leading) term is visualized in the network providing an insightful 

view of their interrelationships. 
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Figure 5.4: Network visualization of enriched terms among the differentially regulated 

genes during single drought stress. The network analysis was performed 

by ClueGo analysis. a) GO terms specific for solely drought DEGs from 

switchgrass. The bars represent the number of genes assigned with the 

terms. The percentage of genes per term is shown as bar label. b) 

Overview chart with functional groups including specific terms for DT 

DEGs. c) Over-represented GO analysis in the DT differentially 

expressed genes. These are functionally grouped network with terms as 

nodes linked based on their kappa score level (≥0.3),  significant terms 

are shown. The node size represents the term enrichment significance. 

Functionally related groups partially overlap. The edges are related to the 

relationships between the selected terms defined based on the genes 

shared in a similar way. The label of the most significant term is used as 

the leading group term. d) Gene networks for GO biological process 

terms of  DT DEGs.  

D) 
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5.4.5 Pathway analysis (Reactome) of drought (DT) differentially expressed 

genes 
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B) 
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Figure 5.5: Network visualization of enriched pathways (Reactome) among the genes 

that were differentially regulated during single drought stress. The 

network analysis was performed by ClueGo analysis. a) pathway terms 

specific for only drought DEGs. The bars represent the number of genes 

assigned with the terms. The percentage of genes per term is shown as 

bar label. b) Overview chart with functional groups including specific 

pathways for DT DEGs. c) . Over-represented pathway analysis in the 

DT differentially expressed genes. These are functionally grouped 

network with terms as nodes linked based on their kappa score level 

(≥0.3),  significant pathways are shown. The node size represents the 

term enrichment significance. Functionally related pathways partially 

overlap. The edges are related to the relationships between the selected 

terms which are defined based on the genes that are shared in a similar 

way. The label of the most significant term or pathway is used as the 

leading group term. d) Retrieved connection of the common genes of the 

pathway enriched by DT genes which include "metabolism and synthesis 

of prostaglandins (PG) and thromboxane (TX) is  

D) 
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5.4.6 Pathway analysis (KEGG) of DT DEGs 
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Figure 5.6: Pathway analysis (KEGG) of DT differentially expressed genes. The bars 

represent the number of downregulated DT genes assigned with the 

terms. The percentage of genes per term is shown as bar label. b) 

Overview chart of significant pathways for DT DEGs. c) Retrieved 

connection of the common genes of the significant pathway enriched by 

DT differentially regulated genes. Unique and shared genes between the 

pathways "glycolysis/gluconeogenesis" and "carbon fixation in 

photosynthetic organisms" have been circled in red.  

The pathway enrichment analysis using Reactome database integration in 

ClueGO plug-in of Cytoscape software indicated "metabolism" as a common 

significant pathway enriched in the drought DEGs and combined drought and heat 

stress genes network analysis in Figure 5.2c and Figure 5.5c. However, the KEGG 

integrated pathway analysis in ClueGO indicated "carbon fixation and photosynthetic 

organisms" as the common enriched pathway for drought and combined drought and 

heat DEGs (Figure 5.3c and Figure 5.6c). The genes associated with each KEGG 

pathway identified are shown in the figures. These genes would be helpful for further 

analysis of stress tolerance study in plants. Carbon fixation and photosynthetic 

organisms and Glycolysis/gluconeogenesis pathways were identified from our KEGG 

analysis. These two major pathways have been previously reported in a drought-

related response in sorghum [8]. The overlapping genes of the enriched terms carbon 

fixation and photosynthetic organism and glycolysis/gluconeogenesis as highlighted in 

red in Figure 5.3C  are FBA2, FBP, PCK1, TP1, PGR1, PCK and HCEF1. These 

genes are potential candidate genes to be considered for  drought and heat tolerance in 

plants. Interestingly, evidence of potential role of the gene  “FBA2” in 

gluconeogenesis was confirmed from a literature collected in our MongoDB collection 

with PMID:22561114. Additional annotation of FBA2 from our collection indicate 
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that FBA2 could be located in the cytosol. Hence, these pathways could further be 

explored to understand stress mechanisms in plants. 

5.5 Conclusions 

The network analysis using Cytoscape provides additional enriched GO terms 

and pathways of stress-responsive genes in Chapter 2. In particular it provided the 

means to visualize the functional biological groups. Visualizing the network, with 

nodes representing GO terms or pathways and edges representing the relationship 

between these terms revealed the network's connectivity. Although the connections are 

computationally predicted, there is evidence to support the role of many of the genes 

that were highlighted to be enriched in the GO term or pathway. For example, ZIFL2 

with shared terms in ‘ion transport’ and ‘stomatal closure’ contributes to drought 

tolerance by regulating stomatal closure. Possible novel relationships among pathways 

and terms could further be investigated using the unique or overlapping genes of the 

enriched terms or pathways. 
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SUMMARY 

In summary, we generated gene expression data -> conducted data analysis -> 

provided annotation by homology -> and validated a candidate stress-responsive gene.  

In this dissertation, first, we used transcriptomic data to investigate gene 

expression in switchgrass under a single drought and combinations of drought and 

heat stress (Chapter 2). This study contains lots of analysis, sequencing data, 

bioinformatics analysis, and rich information which provides new insights into abiotic 

stress response in switchgrass. Previous reports have shown that the regulatory 

mechanisms governing combined drought and heat stress are complex.  The study’s 

main findings are crucial for the full understanding of the study regarding abiotic 

stress response and tolerance.  The different time points used in this study revealed 

genes and multiple phases of a stress response. Although heat stress alone was not 

imposed in the experiment, using bioinformatics analysis, heat-responsive genes were 

deduced using data from a single drought and combined drought and heat stress. This 

study's data on heat-responsive genes provide valuable information for validation in 

future heat tolerance studies in switchgrass and plants. Systems Biology involves co-

expression analysis to identify a regulatory hub of genes. Using WGCNA, we grouped 

genes into biologically related groups as modules. A network visualization analysis 

using Cytoscape (Chapter 5) identifies enriched terms and pathways to support the GO 

enrichment and pathway analysis performed in Chapter 2. The overlapping genes from 

the network analysis serve as candidate genes to be considered for  drought and heat 

Chapter 6 
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tolerance in switchgrass and plants in general.  With the advent of high-throughput 

technology and increased availability of multi-omics data, an integrated approach 

combining different omics data is essential for a better interpretation. Combining 

omics data sets can help to understand the underlying mechanisms of the plant stress 

response. In a collaboration  effort with the MGE lab at DSU, the same switchgrass 

tissues used for the RNA-Seq analysis in this study were used for epigenomic analysis 

by performing chromatin immunoprecipitation and sequencing (ChIP-Seq) analysis. 

We further studied how the DT- and DTHT-responsive peaks of the ChIP-Seq analysis 

correlate with the corresponding candidate genes identified in the RNA-Seq analyses. 

It is interesting to report that 155 DT responsive peaks overlapped with 118 DT 

responsive genes. Similarly, 121 DTHT responsive peaks overlapped with 110 DTHT 

responsive genes. The overlap of the epigenomic peaks and genes could be seen as 

plants' master regulators of the DT and HT genes. In the future, the biological function 

of genes identified in response to combined DT and HT stress could be confirmed by 

techniques such as single point mutation or RNAi. Genetic transformation using 

Agrobacterium strains has previously been reported in a lowland ecotype of 

switchgrass such as Alamo (same ecotype used in this study). Successful 

transformation enables gene function analysis and germplasm enhancement via gene 

editing biotechnology. This means that the putative PavirPAL1 which, has been 

cloned and functionally characterized, is ready for genetic transformation to improve 

switchgrass tolerance to stress.  The stress-responsive genes, transcription factors, 

enriched GO terms, and pathways could be a basis for enhancimg biomass and 

bioenergy production of switchgrass.  
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Additionally, we established a pipeline (Chapter 4) to automatically retrieve 

scientific literature to study stress response in plants.  The pipeline integrates 

databases (UniProt), text mining methods (PgenN, Textpresso), and literature 

resources (EuroPMC) to extract plant stress genes and link them to their function. We 

used the co-occurrence method of relation extraction of two concepts within the 

document, to indicate linkage. The data collected using the pipeline is used to find 

other processes of the differentially expressed genes in switchgrass (Chapter 2). The 

pipeline helped to extract new knowledge on plant stress response to complement 

existing knowledge in databases and other plant resources. Additional evidence to 

support the role of the stress-responsive genes  from the gene expression analysis was 

obtained using the pipeline. The pipeline developed serves as a framework to retrieve 

scientific literature to study other organisms not just plants by integrating relevant 

resources.  

This work generated multiple testable hypotheses. For example, a candidate 

gene, Phenylalanine ammonia-lyase 1, the first enzyme in the phenylpropanoid 

pathway that catalyzes the deamination of L-phenylalanine to trans-cinnamic acid, was 

validated in switchgrass.  PAL-genes are predominantly found in plants and have been 

identified and characterized in a number of plants species but underexplored in 

switchgrass.  For example, Arabidopsis has four PAL-genes (: AT2G37040 (PAL1), 

AT3G53260, (PAL2), AT5G04230 (PAL3) and AT3G10340 (PAL4). A section of 

this study provides the first report of characterizing a PAL gene in switchgrass. 

Switchgrass has eleven PAL genes. Four out of the eleven genes were downregulated 

in the RNA-Seq of the switchgrass transcriptome under DT and HT stress.  This study 

serves as a platform to further understand the function of each of the PAL-genes in 
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switchgrass. The co-occurrence method  achieves a relatively high recall. A 

shortcoming of this extraction method is that the approach can ignore the context of 

each co-occurrence, leading to low precision. In the future, a complex relation 

extraction method such as Natural Language Processing can be used to retrieve 

information on the relation between stress genes and their function. Furthermore, we 

can integrate the pipeline described in the iTextMine framework in the future. 

iTextMine integrates text mining tools to extract comprehensive knowledge from the 

scientific literature. 

 

Figure 6.1: Captured in iTextMine MYB2 which is one of the stress genes collected. 

The figure shows MYB2 regulation of microRNA involved in abscisic 

acid response. Through an experiment MYB2 is upregulated in stress and 

by using iTextMine we could identify the underlying mechanisms. 
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Data curation: An additional outcome or application of the pipeline is a set of 

publications for UniProt entries with annotations that can be submitted to the UniProt 

Knowledgebase via the community submission system. UniProt is a publicly available 

database offering sequence and functional annotation for proteins across all taxonomic 

groups (https:///www.uniprot.org). UniProtKB consists of two sections: the reviewed 

(Swiss-Prot) section consisting of expert-curated entries; and the unreviewed 

(Tremblor) section that provides automatic annotations and represents approximately 

99 % of the entries. Expert curation is time-consuming, and UniProt has annotation 

priorities and a limited biocuration task force. Thus, additional mechanisms to increase 

the entry information content are key to keep the resource up-to-date. The community 

submission system allows UniProt users to add publications and annotations to 

proteins of their interest. An example of submitting a publication and annotation of a 

protein of interest; Phenylalanine ammonia lyase 1 is shown below. 

 

Figure 6.2: Submission of annotation of PAL1 to the UniProt database. 

https://www.uniprot.org
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PAL1 was differentially expressed under stress and the pipeline allowed to 

bring data from other species from literature that supports its involvement in stress.  

PAL1 from Solenostemon scutellarioides (SsPAL1) gene expression is enhanced by 

light and located in the cytosol. We then pursued the functional validation of PAL1 in 

switchgrass. Additional annotation and publication of over 20 proteins involved in 

stress have been added to the UniProt database. The MongoDB collection can be 

reviewed further to add new annotation of stress genes and publications that are not 

already in UniProt. 
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PERMISSIONS 

Chapter 2 is published in 2022 BMC Plant Biology and is an  open access 

articles distributed under the terms of the Creative Commons Attribution License 4.0 

International License which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons License, 

and indicate if changes were made. The images or other third-party material in this 

article are included in the article’s Creative Commons license, unless indicated 

otherwise in a credit line to the material. If material is not included in the article’s 

Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly 

form the copyright holder. 
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