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ABSTRACT 

This thesis proposes the use of block turbo codes for transmitting non-

uniform binary memoryless sources over AWGN channels. As opposed to standard 

convolutional turbo codes, block turbo codes are known to achieve good performance 

for high code rates, up to 98% of the channel capacity for uniform sources. The 

objective of this thesis is to investigate if such a performance is also achievable for 

non-uniform sources. The idea is to use a joint source-channel (or source controlled) 

coding scheme to exploit the statistics of the binary source at the decoder.  

  Block turbo codes are a class of product codes, which can be decoded by 

iteratively decoding the component codes. Each component code is decoded using the 

Chase algorithm, which is a low-complexity suboptimum algorithm [8] for near 

Maximum-Likelihood decoding of linear block codes.  In this thesis, we propose 

decoding modifications to take into account the non-uniform nature of the source in 

the decoding of block turbo codes. 
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Chapter 1 

INTRODUCTION TO TURBO CODES 

In the first part of this Chapter we will introduce the concept of 

concatenated coding. We then present the Convolutional Turbo decoding scheme in 

section 1.2, and finally we conclude the Chapter by presenting Block Turbo codes in 

section 1.3.  

1.1 Concatenated Coding 

 
The theory of error correcting codes presents a large number of code 

constructions with their corresponding decoding algorithms. However, for applications 

where very strong error correcting capabilities are required, many of these 

constructions result in far too complex decoding solutions. One way to reduce 

complexity is to use concatenated coding, where two (or more) constituent codes are 

used after each other or in parallel - usually with some kind of interleaving. The 

constituent codes are decoded with their respective decoders, which exchange 

information in an iterative process to obtain the final result. This final result is usually 

sub-optimal. However, optimal schemes are not feasible, and concatenated coding 

offers a nice trade off between error correcting capabilities and decoding complexity.  
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An example of concatenated coding is illustrated in Figure 1.1 Here we 

represent the information bits as a square, and we generate horizontal parities by 

encoding each row with a block code, while vertical parities result from the encoding 

of each column. It is also possible to encode the horizontal and vertical parities to 

produce “parities of parities”. 

 

 

Figure 1.1: Example of Concatenated Coding. 
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1.2 Convolutional Turbo Codes 

 
To provide a clear description of Convolutional Turbo Codes proposed in 

[5], we first start by explaining how the encoder functions. We then describe the turbo 

decoder and how iterative turbo decoding works. We conclude this section by 

discussing turbo codes performance. 

1.2.1 Encoding 

 
 The general structure used in turbo encoders is shown in Figure 1.2. Two 

component codes are used to encode the same input bits, but an interleaver is placed 

between the encoders. For the case of Convolutional Turbo Codes, Recursive 

Systematic Convolutional (RSC) codes are used as the component codes. In this 

section we concentrate entirely on the standard turbo encoder structure using two RSC 

codes. Turbo codes using block codes as component codes are described in section 

1.3. Figure 1.3 shows the RSC code we have used as component codes in most of our 

simulations. 

 The dramatic improvement in performance observed in turbo codes arises 

because of the interleaver used between the encoders, and because recursive codes are 

used as component codes. At moderate or high signal to noise ratios, turbo codes 

present  a performance gain directly related to the interleaver length [2], [3]. 
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Figure 1.2: Turbo Encoder. 

 

 

 

Figure 1.3: Recursive Systematic Convolutional (RSC) Encoder. 

 

 
On the other hand the decoding complexity per bit does not depend on the interleaver 

length. Hence extremely good performance can be achieved with reasonable 

complexity by using very long interleavers. 
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1.2.2 Turbo Decoder 

 The general structure of an iterative turbo decoder is shown in Figure 1.4. 

There are two component decoders which are linked by interleavers in a structure 

similar to that of the encoder. As seen in the Figure, each decoder takes three inputs – 

the systematically encoded channel output bits, the parity bits transmitted from the 

associated component encoder, and the information from the other component decoder 

about the likelihood of the information bits. This information from the other decoder is 

referred to as extrinsic information. The component decoders have to utilize both, the 

input from the channel and this extrinsic information to perform decoding. They must 

also provide the so-called soft outputs for the decoded bits, which will be used as 

extrinsic information in the other decoder. This means that in addition to the decoded 

output bit sequence, the component decoders must also provide the associated 

probabilities for each bit. The soft outputs are typically represented in terms of the so-

called Log Likelihood Ratios (LLRs), the magnitude of which gives the sign of the bit, 

and the amplitude the probability of a correct decision.  

 The decoder of Figure 1.4 functions iteratively. In the first iteration the 

first component decoder takes channel output values only, and produces a soft output 

as its estimate of the data bits. The soft output from the first encoder is then used as 

additional information for the second decoder, which uses this information along with 
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Figure 1.4: Turbo Decoder (Figure taken from [15]). 
 

 

the channel outputs to calculate its estimate of the data bits. In the second iteration, the 

first decoder decodes the channel outputs again, but now with additional information 

about the value of the input bits provided by the output of the second decoder in the 

first iteration. This additional information allows the first decoder to obtain a more 

accurate set of soft outputs, which are then used by the second decoder as a priori 

information. This cycle is repeated, and with every iteration the Bit Error Rate (BER) 

of the decoded bits decreases. On the other hand, the enhancement in performance 

decreases as the number of iterations increases. Therefore, for complexity reasons, we 

usually perform only about eight iterations. 

 

 



 7 

1.2.3 BCJR Algorithm 

 
 The BCJR algorithm proposed in [1] obtains, for a convolutional code, 

the maximum a posteriori (MAP) for each input bit, therefore minimizing the bit error 

probability. This is critical for the iterative decoding of turbo codes. The BCJR 

algorithm provides, for each decoded bit ku , the probability that this bit was +1 or -1, 

given the received symbol sequence y . We define the conditional Log Likelihood 

Ratio of ( )kL u y as:   

 ( ) ( )
( )

1
ln

1

k

k

k

P u y
L u y

P u y

� �= +
� �=
� �= −
� �

.        (1.1) 

The sign of the Log Likelihood Ratio (LLR), defines the bit decision, while its 

magnitude provides the decision reliability. Using Bayes’rule (1.1) can be rewritten as:

            ( ) ( )
( )

1,
ln

1,
k

k
k

P u y
L u y

P u y

� �= +
� �=
� �= −� �

.                              (1.2) 

 Let us now consider the RSC code shown in Figure 1.3. For this code 

3K =  (where K  is the number of stages for the shift register)  there are four states, 

and, as it is a binary code, for each state two transitions are possible, one associated 

with input bit -1, and the other to +1. If the previous state 1kS −  and the present state kS
 

are known, then the value of the input bit ku , which caused the transition between 

these two states, will be known. Hence, the probability of 1ku = +  is equal to the 
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probability that the transition from the previous state to the present state is associated 

with input bit +1. Therefore, we can rewrite Equation (1.2) as:  

       ( )
( )

( )

( )
( )

1
', 1

1
', 1

', ,

ln
', ,

k

k

k k
s s u

k

k k
s s u

P S s S s y

L u y
P S s S s y

−
� =+

−
� =−

� �= =� �
� �=
� �= =� �
� �

�

�
,                             (1.3) 

where ( )', 1ks s u� = +  is the set of transitions from the previous state 1 'kS s− =  to the 

present state kS s= , associated to input bit +1. 

 We can split up the received sequence into three sections: the received 

codeword associated with the present transmission 
k

y , the received sequence prior to    

the present transmission 
j k

y
< , and the received sequence after the present 

transmission
j k

y
>

. Obviously, 

       ( ) ( )', , ', , , ,
j k k j k

P s s y P s s y y y
< >

= .                         (1.4) 

Using Bayes’ rule and the Markov property, we can rewrite (1.4) as: 

 

   

           ( ) { }( ) ( )', , '
j k k j k

P s y P y s s P y s
< >

= ⋅ ⋅  

           ( ) ( ) ( )1 ' ',k k ks s s sα γ β−= ⋅ ⋅ ,              (1.5) 

where: 

                 1 1 )( ) ( ,k k j k
ys P S sα − − <

′ ′= =                                     (1.6) 

( ) ( ) ( )', , ', , ,
j k k j k

P s s y P s s y y P y s
< >

= ⋅
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is the probability that the trellis is in state 's  at time 1k −  and the received channel 

sequence up to this point is
j k

y
<

.  

    ( ) ( )k kj k
s P y S sβ

>
= =                                              (1.7) 

is the probability that, given that the trellis is in state s  at time k , the received channel 

sequence from this point on is 
j k

y
>

. 

       ( ) { }( )1, ' , 'k k kk
s s P y S s S sγ −= = =                                   (1.8) 

is the probability that if the trellis was in state 's at time 1k − , it moves to state s  and 

the received channel sequence at time k  is 
k

y .  

 The idea of defining parameters α  and β  is that they can be easily 

calculated through recursion, which leads to a simple decoding algorithm. 

Forward recursive calculation of ( )k sα values: 

 1
)( ) ( ,k k j k

ys P S sα
< +

= =
 

     ( )
all '

, ', ,
j k k

s

P s s y y
<

=�  

     { }( ) ( )
all '

, ' ',
k j k

s

P s y s P s y
<

= ⋅�   

     ( ) ( )1
all '

', 'k
s

s s sγ α −= ⋅� .                        (1.9) 

    

Thus, by knowing the ( )',s sγ values, ( )k sα  can be calculated recursively. The initial 

condition for the recursion is (assuming initial 0 0S = ) 

    ( )0 0 0 1Sα = =  

    ( )0 0 0 for all 0S s sα = = ≠ . 
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Backward recursive calculation of ( )k sβ values: 

    ( ) ( )1 1
' 'k j k

s P y sβ − − > −
=  

     { }( )
all 

, , '
k j k

s

P y y s s
>

=�  

     ( ) { }( )
all 

, '
j k k

s

P y s P y s s
>

= ⋅�  

     ( ) ( )
all 

',k
s

s s sβ γ= ⋅� .                                    (1.10) 

Thus, by knowing the ( )',s sγ  values, 1( )k sβ −  can be calculated from the values 

of ( )k sβ . 

Calculation of ( ', )k s sγ values: 

     

    ( ) { }( )', , '
k

s s P y s sγ =  

                { }( ) ( )', kk
P y s s P u= ⋅ ,                               (1.11) 

where ku  is the input bit that is needed for transition from state 1 'kS s− =  to 

state kS s= . From Equations (1.3) and (1.5) we can write the conditional LLR of ku , 

given the received sequence 
k

y   

                   ( )
( ) ( )

( ) ( )
1

1

1
( ', )

1
( ', )

' ( ', )
ln

' ( ', )

k

k

k k k
s s u

k

k k k
s s u

s s s s
L u y

s s s s

α γ β

α γ β
=+

=−

−
�

−
�

� �⋅ ⋅� �
� �=
� �⋅ ⋅� �
� �

�

�
.                       (1.12) 

It is this conditional LLR ( )kL u y  that the MAP decoder delivers. 
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  The MAP decoding of a received sequence y  given the a-posteriori LLR 

( | )kL u y  can be calculated as we explain in this section. As the channel values ky  are 

received, they and the a priori LLRs ( )kL u (which are provided in an iterative turbo 

decoder by the other component decoder) are used to calculate ( , )k s sγ ′ . Thus, the 

forward recursion can be used to calculate ( ')k sα  and the backward recursion can be 

used to calculate ( )k sβ . Finally all the calculated values of ( ')k sα , ( )k sβ , and 

( , )k s sγ ′  are used to calculate the values of ( | )kL u y .  

 

 

Figure 1.5:  Trellis for the K=3 RSC code shown in Figure 1.3. 
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Figure 1.5 shows the trellis for the RSC represented in Figure 1.3. All the operations 

are summarized in the flowchart of Figure 1.6, and Figure 1.7 shows the recursive 

calculation of ( )k sα  and ( )k sβ . Care must be taken to avoid numerical underflow 

problems in the recursive calculation of ( )k sα  and ( )k sβ  but such problems can be 

avoided by using a logarithmic representation of these values. 

 

 

                    

   Figure 1.6: Summary of the MAP algorithm 
           (Figure taken from [15]).  
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                  Figure 1.7: Recursive calculation of (0)kα and (0)kβ  
         (Figure taken from [15]). 

 

In the form described in this section, the MAP algorithm presents 

numerical problems due to the multiplications required in the equations for the 

recursive calculation of ( )k sα and ( )k sβ . However, these numerical problems can be 

eliminated by using the Log-MAP algorithm, which gives the same performance as the 

MAP algorithm [26]. 

In order to define the Log-MAP algorithm, we first define max*  as: 

 

   ( ) lnmax* ix
i

i i

x e
� �= � �
� �
� , 

where max*  is calculated as: 

 
              { } { } ( )2 1

1 2 1 2max* , max , ln 1 k kk k k k e− −= + + . 
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Then, by defining    

   ( ) ( )( )lnk ks sαΑ =  

   ( ) ( )( )lnk ks sβΒ =  

and 

   ( ) ( )( )', ln ',k ks s s sγΓ = , 

we can write Equation (1.9) as: 

 

   ( ) ( )( )  = lnk kA s sα       

        
( )

[ ]

1
all '

1
all '

ln ( ') ',

ln exp ( ') ( ', )

k k
s

k k
s

s s s

s s s

α γ−

−

� �= � �
� �

� �= Α + Γ� �
� �

�

�
    

    ( )( )1'
max* ( ') ',k ks

s s s−= Α + Γ .              (1.13)                       

The value of ( )kA s  should give the natural logarithm of the probability that the trellis 

is in state kS s=  at stage k and that the received channel sequence up to this point has 

been 
j k

y
<

. 

Similar to Equation (1.12) we can rewrite Equation (1.10) as   

  

           ( ) ( )( )1 1' ln 'k kB s sβ− −=  

           
( )

[ ]
all 

1
all 

ln ( ) ',

ln exp ( ) ( ', )

k k
s

k k
s

s s s

s s s

β γ

−

� �= � �
� �

� �= Β + Γ� �
� �

�

�
 

 ( )( )max* ( ) ',k ks
s s s= Β + Γ .                       (1.14) 
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Equation (1.11) can be rewritten as  

 

   ( ) ( )( )', ln ',k ks s s sγΓ =  

                                                  ( )
1

n

k k c kl kl
l

K u L u L y x
=

= + + �                           (1.15)

Finally, from Equation (1.12), we can write the a-posteriori LLRs ( )kL u y  as: 

 

( )
( ) ( )

( ) ( )
1

1

1
( ', )

1
( ', )

' ( ', )
ln

' ( ', )

k

k

k k k
s s u

k

k k k
s s u

s s s s
L u y

s s s s

α γ β

α γ β
=+

=−

−
�

−
�

� �⋅ ⋅� �
� �=
� �⋅ ⋅� �
� �

�

�
 

 

                
( ) ( )( )

( ) ( )( )
1

1

1
( ', )

1
( ', )

exp ' ( ', )
ln

exp ' ( ', )

k

k

k k k
s s u

k k k
s s u

s s s s

s s s s

=+

=−

−
�

−
�

� �Α + Γ + Β� �
� �=
� �Α + Γ + Β� �
� �

�

�
 

    

              
( )

( ) ( )( )

( )
( ) ( )( )

1', 1

1', 1

max* ' ( ', )

max* ' ( ', ) .
k

k

k k ks s u

k k ks s u

s s s s

s s s s

−
� =+

−
� =−

= Α + Γ + Β

− Α + Γ + Β
                           (1.16) 

 

1.2.4 Iterative Turbo Decoding 

 
We now describe in detail how the iterative decoding of turbo codes is carried 

out. In Figure 1.4, we showed the structure of an iterative turbo decoder. Consider 

initially the first component decoder in the first iteration. This decoder receives the 

channel sequence (1)
cL y containing the received versions of the transmitted systematic 
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bits, c ksL y  and the parity bits, c klL y , from the first encoder. Usually, to obtain a half-

rate code, half of these parity bits are punctured at the transmitter, and therefore the 

turbo decoder must insert zeros in the soft channel output c klL y for these punctured 

bits.  

The first component decoder can then process the soft channel inputs and 

produce its estimate 11( | )kL u y  of the conditional LLRs of the data bits ku , k = 1, 2 … 

N. In this notation the subscript ij in ( | )ij kL u y  indicates that this is the a posteriori 

LLR in the i iteration from the j component decoder. Note that (for uniform sources) in 

this first iteration the first component decoder will have no a priori information about 

the bits, and hence ( )kL u =0. Next, the second component decoder comes into 

operation. It receives the channel sequence (2)
cL y  containing the parity bits from the 

second encoder. However, in addition to the received channel sequence (2)
cL y , the 

decoder can use the conditional LLR 11( | )kL u y  provided by the first component 

decoder to generate a priori LLRs ( )kL u to be used by the second component decoder. 

Ideally these a priori LLRs ( )kL u would be completely independent from all the other 

information used by the second component decoder. As shown in Figure 1.4, in 

iterative turbo decoders the extrinsic information ( )c kL u
 
from the other component 

decoder is used as the a priori LLRs, after being interleaved to arrange the decoded 

data bits u in the same order as they were encoded by the second encoder. The reason 

for the subtraction paths shown in Figure 1.4 is that the a posteriori LLRs from one 
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decoder have the systematic soft channel inputs c ksL y  and the a priori LLRs ( )kL u , 

subtracted to yield the extrinsic LLRs ( )c kL u  which are then used as a priori LLRs for 

the other component decoder. The second component decoder thus uses the received 

channel sequence (2)
cL y  and the a priori LLRs ( )kL u (derived by interleaving the 

extrinsic LLRs ( )c kL u  of the first component decoder) to produce its a-posteriori 

LLRs 12 ( | )kL u y . This completes the first iteration. 

For the second iteration the first component encoder again processes its 

received channel sequence (1)
cL y , but now it also has a priori LLRs ( )kL u  provided by 

the extrinsic portion ( )c kL u of the a posteriori LLRs 12 ( | )kL u y  calculated by the 

second component encoder, and hence it can produce an improved a posteriori LLR 

21( | )kL u y . The second iteration then continues with the second component decoder 

using the improved extrinsic LLRs ( )c kL u  from the first encoder as a priori LLRs 

( )kL u  which is used in conjunction with its received channel sequence (2)
cL y to 

calculate 22 ( | )kL u y  [15]. 

 This iterative process continues, and with each iteration the BER of the 

decoded bits will decrease. However, as we will show in the next section, the 

improvement in performance for each additional iteration slows down as the number 

of iterations increases. Hence, for complexity reasons usually only about eight 

iterations are carried out, as no significant improvement in performance is obtained 
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with a higher number of iterations. It is also possible to use a variable number of 

iterations up to a maximum, with some termination condition used to decide when it is 

believed that further iterations will produce marginal gain. This allows the average 

number of iterations, and the average complexity of the decoder, to be severely 

reduced [14] with only a small performance degradation. 

1.2.5 Simulation of Turbo codes 

 
The graph below shows the simulation of Turbo Codes for uniform 

sources over AWGN channels using BPSK modulation. The RCS parameters were 

n=2, k=1, K=3 and an interleaver of length 1000 was used.  

This graph presents the results when different number of iterations are 

utilized. As the number of iteration increases, the bit error rate will decrease. This 

graph also presents the results for an uncoded system, which clearly show how 

effective Turbo Codes are in decreasing the bit error rate. 
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Figure 1.8: Simulation of Turbo codes. This simulation was performed over an 
AWGN (Additive White Gaussian Noise) channel using BPSK (Binary 
Phase Shift Keying) modulation. The RSC parameters were n=2,k=1,K=3 
and an interleaver of length 1000 was used. (Graph taken from [15]). 
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1.3 Block Turbo Codes 

 To give a clear and complete description of Block Turbo Codes (BTC), we 

first describe the basic idea behind them. We start by briefly explaining product codes. 

Then, we describe the Chase algorithm which will be used to perform soft input 

decoding of the component codes, and BCH codes, which will be used as component 

codes. Afterwards, we discuss how to perform soft output decoding of block turbo 

codes. We conclude this section by presenting the results on the performance of block 

turbo codes for uniform sources. 

1.3.1 Product Codes or Concatenation of Two Block Codes  

 
Product codes were first introduced by Elias in 1954 [11].  Let us assume 

two systematic linear block codes 1C  with parameters 1 1 1( , , )n k δ  and 2C  with 

parameters 2 2 2( , , )n k δ  where in , ik
 
and iδ  (i=1,2) stand for codeword length, number 

of information bits and minimum Hamming distance, respectively. The concatenation 

of two block codes (or product code) 1 2P C C= ×  is obtained (see Figure 1.9) by first 

placing 1 2( , )k k  information bits in an array of 1k  rows and 2k  columns, and then 

coding each one of the 1k  rows using code 2C , and each one of the 2k  columns using 

code 1C . 
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The parameters of the product code P [18] are 1 2n n n= × , 1 2k k k= × , 

1 2δ δ δ= ×  and the code rate R is given by 1 2R R× where iR  is the code rate of code 

iC . Thus, we can build very long block codes with large minimum Hamming distance 

by joining short codes with small minimum Hamming distance. Given the defined 

procedure, it is clear that the 2 2( )n k−  last columns of the matrix are codewords of 1C . 

By using the generator matrix, we can show [18] that the first 1k  rows of matrix P are 

codewords of 2C . Hence all the columns of matrix P are codewords of 1C
 
and the first 

1k   rows of matrix P are codewords of 2C  [22]. 

 

 
  Figure 1.9   Example of a product code 1 2P C C= × . 
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1.3.2 Soft decoding of Block Codes 

Let us assume transmission of binary elements { }0,1 coded by a linear block 

code C with parameters ( , , )n k δ  on a Gaussian channel using BPSK { }1, 1− + . The 

observation ( )1 2, ,..., nR r r r=  at the output of the Gaussian channel for a transmitted 

codeword ( )1 2, ,..., nE e e e=  is given by     

                R E N= + ,         

where components in  of ( )1 2, ,..., nN n n n=  are AWGN samples with zero mean and 

standard deviation σ . We know, by using Maximum Likelihood decoding, that the 

optimum decision will be 

      ( ) ( ) if  P | P |i j iD C E C R E C R= = < = .           (1.17)  

Assuming equal probability for binary elements, decision D can be calculated [10] as: 

   

( )( )2 2
   if  2  ln P   2 ln(P( ))i i i j jD C R C E C R C E Cσ σ= − − = < − − = ,           (1.18) 

where 

    

   ( )2 2

1

n

i l il
l

R C r c
=

− = −�                                             (1.19) 

 
is the Euclidean distance between R and iC . Obviously searching for the optimum 

codeword D using an exhaustive search increases the complexity exponentially as we 

increase k.  
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Chase Algorithm 

Chase proposed a suboptimum algorithm of low complexity [8] for near ML 

decoding of linear block codes. We can say that for high SNR, ML decoding of 

codeword D is located, with a very high probability, in the sphere of radius of ( 1)δ −  

centered on ( )1 2, ,..., nY y y y= , where 
1 1

sgn( )
2 2l ly r= +  (note that { }0,1ly ∈ ). Using 

this technique, we can limit the reviewed codewords in (1.17) to those in the sphere of 

radius ( 1)δ −  centered on Y so that the complexity decreases. The procedure for 

selecting these most probable codewords is specified in the following steps: 

1. Find the position of the [ ]/ 2p δ=
 
least reliable binary elements of Y using R. 

The reliability of Y will be defined later. 

2. Generate test patterns iT  defined as all the n-dimensional binary vectors 

generated by all possible combinations of “1”s and “0”s in the p  positions and 

“0”s in the other positions. 

3. Generate test sequence i iZ Y T= ⊕  for all test pattern iT and then decode iZ   

using a standard hard decoder (extended BCH decoding, see next section), adding 

the  decoded codeword to subset Ω .  

4.    To find the final decision D, we apply decision rule (1.18) only to the codewords         

contained in subset Ω  defined in step 3. Obviously, the components of the 

codewords are mapped from { }0,1  to { }1, 1− +  before computing the Euclidean 

distance. 
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The reliability of jy  in step 1, is defined using the log-likelihood ratio of decision 

jy , 

( )
( )j

P 1|
R(y )=ln

P 1|
j j

j j

e r

e r

� �= +
� �
� �= −� �

,                     (1.20) 

or 

 j 2

2
R(y )= jr

σ
� �
� �
� �

. 

 

Considering a stationary channel, we can normalize the log-likelihood ratio with 

respect to constant 22 σ , so that the relative reliability of jy  is then given by jr  [22].  

 The turbo decoding algorithm presented in this paper can be applied to any 

product code based on linear block codes. The results here concern to Bose-

Chaudhuri-Hocqenghem (BCH) product codes.  

BCH codes  

 
BCH codes were proposed by Bose and Ray-Chaudhuri [16] and 

Hocquenghem [17].  A BCH code is a multilevel, cyclic, error-correcting code that is 

commonly used in communication systems. BCH codes are not limited to binary 

codes, but may be used with multilevel phase-shift keying whenever the number of 

levels is a prime number or a power of a prime number, such as 2, 3, 4, 5, 7, 8, 11, and 

13.  BCH codes are the most powerful linear block codes for short to moderate block 

lengths. 
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Before defining BCH codes we start by briefly discussing cyclic codes, 

since BCH codes are cyclic ones. Cyclic codes are linear block codes with the 

additional property that a cyclic shift of any codeword is also a codeword. This also 

means that the codewords constitute a group under the cyclic shift operation. 

Assume 0 1 1( , ,..., )nx x x x −=  represents a codeword with elements in 

( )GF q . We can associate it with a polynomial over ( )GF q  of degree at most 

1n − defined as:  

  ( ) 1 2 1
0 1 2 1... n

nx D x x D x D x D −
−= + + + +  . 

If we consider a one-position right cyclic shift of x , 

producing ( ) ( )1
1 0 1 2, , ,...,n nx x x x x− −= , the associated polynomial for this codeword will 

be: 

             ( ) ( )1 1 2 1
1 0 1 2... n

n nx D x x D x D x D −
− −= + + + + , 

which is another polynomial of degree at most 1n − .  

 We can see that the two polynomial ( )x D  and ( ) ( )1x D are related by 

   ( ) ( ) ( ) ( )1 mod 1nx D Dx D D= − . 

It can be shown that in general ( ) ( )mod 1j nD x D D −  is the code polynomial 

corresponding to the right-cyclic shift of codeword ( )x D  by j positions. 

  Given a particular ( , )n k  cyclic code over ( )GF q , we define the 

generator polynomial ( )g D of the cyclic code as the monic polynomial (a polynomial 
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with a leading coefficient of 1) of minimum degree among the set of non-zero 

codeword polynomials. We assume that the degree of this polynomial is 1r n≤ − , and 

represent it as: 

     1
0 1( ) ... r

rg D g g D g D= + + + , 

where the coefficients belong to ( )GF q . It is easy to show that there is a unique 

choice for the generator polynomial. 

BCH codes are defined over a ( )GF q  field to obtain a simplified 

decoding algorithm. Given a field ( )GF q , a block length 3n ≥ , which is a divisor of 

1mq −  for some m , and 3 nδ≤ ≤ , an ( ),n k BCH code over ( )GF q  is a cyclic code 

generated by [29] 

( ) ( ) ( ) ( ) ( )1 2 2LCM , , ,..., .j j j jg D m D m D m D m Dδβ β β β+ + + −
	 
= � �              (1.21) 

The ( )jm D
β

 are minimal polynomials of a primitive element β  (with 

1δ −  succesive powers) whose order is n  in extension field ( )GF mq  . A minimal 

polynomial is defined as follows: assuming α  is defined in a given field ( )GF q . We 

say that α  is algebraic if, for some r, the vector ( )21, , ,..., rα α α  has an integer relation 

(i.e. 
1

0
r

i
i

i

α α
=

=�  for some iα ∈ Ζ ). The integer coefficient polynomial of lowest 

degree, having α  as a root, is determined uniquely up to a constant multiple and is 

called the minimal polynomial for α . LCM refers to the latest common multiple 
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polynomial or smallest degree monic polynomial, for which all the indicated minimal 

polynomials are divisors. Since minimal polynomials are irreducible, finding the LCM 

polynomial will be equivalent to form the product of the distinct polynomials in (1.21). 

 It is important to understand that a BCH code is the largest set of 

codewords x  whose corresponding polynomials ( )x D  have as roots 1δ −  successive 

powers of an element β  of order n  in an extension filed of ( )GF q  [29].    

 In Equation (1.21), ( )g D  is a divisor of 1nD −  since each minimal 

polynomial is a divisor of 1nD − which is sufficient enough to generate a cyclic code 

of length 1mn q= − .  The code’s dimension, deg ( )k n g D= − , will depend on the 

degree of the polynomial in (1.21). The degree of ( )g D  is less than or equal to 

( 1)m δ − , since there are at most 1δ −  distinct minimal polynomials (with at most 

degree of m) involved in the construction of ( )g D . Thus, we define the following 

relations for BCH codes over any field: 

    1mn q= −                         (1.22) 

   ( )deg  ( ) 1n k g D m δ− = ≤ −                        (1.23) 

δ  is also called the design distance of the code and ( )1 2t δ= −	 
� �  is the designed 

error correction capability of the code [29]. Hard decoding algorithms with relatively 

low complexity can be easily designed for these codes [29]. 
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1.3.3 Calculating the Soft Output  

 
 The Chase algorithm yields for each row (or column) the decision D 

corresponding to the component block code. To decode concatenated block codes by 

iterating between both component codes, we must compute the reliability of decision 

D. 

 To calculate the reliability of decision jd  at the output of the soft decoder, 

we require two codewords [20]. Hard decision D is one of these two codewords, and 

additionally, we need to calculate a “competing” codeword of D. The competing 

codeword of D, denoted as C, is obtained by applying (1.18) to the set Ω , excluding 

the hard decision D. Then, the soft output (reliability of decision jd ) can be obtained 

as [22] :  

                     
2 2

4j j

R C R D
R d

� �− − −
= � �
� �
� �

                        (1.24) 

To find the competing codeword of D, codeword C, we must increase the size of the 

space scanned by the Chase algorithm. For this purpose, we increase the number of 

least reliable bits, p, used in the Chase decoder and also the number of test patterns. 

Unfortunately, the complexity of the decoder increases exponentially with p and we 

must find a trade-off between complexity and performance. To reduce complexity we 

utilize another method for computing the soft output [22], which is the following: 
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             ( )  with  0 ( )j jr m d mβ β= × ≤                                         (1.25)

  
This formula gives a simplified and effective solution for calculating the soft output. 

The value of ( )mβ  was initially optimized by trial and error and depends on the 

iteration number [24]. 

1.3.4 Iterative decoding of product codes  

 
Let us consider the decoding of the rows and columns of a product code P 

transmitted on a Gaussian channel using QPSK signaling. On receiving matrix [R] 

corresponding to a transmitted codeword [E], the first decoder performs the soft 

decoding of the rows or columns of P using [R] as input matrix. Soft Input / Soft 

Output decoding is performed using the algorithm described in the previous section. 

By subtracting matrix [R] from the soft output (computed using (1.24) or (1.25)) [25], 

we obtain the extrinsic information ( )W m	 
� �, where index m specifies that we are 

looking at the extrinsic information for the mth iteration in the decoding of P. The soft 

input for the decoding of the columns or rows in the subsequent iteration of P is given 

by:  

                                    ( ) [ ] ( ) ( )R m R m W mα= +	 
 	 
� � � �            (1.26) 

 

Where ( )mα  is a scaling factor, which takes into account the fact that the standard 

deviation of samples in matrix [ ]R  and in matrix [ ]W  are different [5, 4]. In the first 
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decoding steps, the standard deviation of the extrinsic information is very high, but it 

decreases with the iteration number. This scaling factor is also used to reduce the 

weight of the extrinsic information in the first decoding steps when the BER is 

relatively high. Therefore, it takes a small value in the first decoding steps and 

increases with the iteration number (i.e., as the BER tends to 0). A summary of the 

decoding procedure is presented in Figure 1.10.  

 

 

 

 

Figure 1.10   Block diagram of a iteration in the decoding of block turbo codes. 

 

1.3.5 Simulation of Block Turbo Codes 

 
The graph below shows the simulation of Block Turbo codes for uniform 

sources and AWGN channels using QPSK modulation. This graph shows 8 

simulations for different code rates with 4 iterations of the decoding process. Notice 
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that, as the rate increases, the bit error rate also increases. The simulation was done 

using BCH product codes, with component codes as indicated in the Figure.  

It is interesting to notice that the slope of the BER curves increases as the 

rate of the code goes to 1 (see [22] and [21]).  This graph also shows the uncoded 

simulation, which clearly shows how effective Turbo Block Codes are in decreasing 

the bit error rate. 
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Fig 1.11 Performance of block Turbo codes for different component BCH codes. This 
simulation was done over an AWGN (Additive White Gaussian Noise) 
channel using QPSK modulation. The number of iterations is 4. (Figure 
taken from [22]). 
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Chapter 2 

ASYMMETRIC SOURCES 

 
   In this Chapter we first introduce the concept of asymmetric sources. We 

then move on to defining and calculating the Shannon theoretical limits in this case. 

Finally, we conclude this Chapter by explaining the rationale for the proposed coding 

scheme in the case of non-uniform sources. 

2.1 Definition         

The output of an asymmetric source does not have the same distribution 

for zeros and ones. This means that the probability of the information bits, produced 

by the source, are not equal. Therefore, the entropy of a binary asymmetric source is 

less than one. Specifically, we will denote by 0p  the probability that the source 

generates bit 0. The source entropy is defined by:    

   0 0 1 1log logH p p p p= − − . 

2.2 Theoretical limits                     

 In 1998, Shannon proved that it is possible to transmit information with 

arbitrarily low error probability through a noisy channel as long as the information rate 

is less than the channel capacity [27, 28]. The Shannon limit or Shannon capacity of 
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a communications channel refers to the maximum rate of error-free data that can 

theoretically be transferred over the link.   

Specifically for a channel subject to additive white Gaussian noise, the 

best possible achievable information rate R is given by: 

2
0

21
1

2
bE

R C Log R
N

� �
< = +� �

� �
, 

where 
                   C = channel capacity (in bits per channel use),  

                   R = Information rate (bits per channel use),  

bE = Energy per information bit, 

0 2N = Power spectral density of the noise. 

In the case of binary uniform sources cR R= , where cR  is the code rate. However, for 

the case of non-uniform sources cR R H= , where H is the entropy of the source [9]. 

Therefore, for an asymmetric source with entropy H transmitted through an AWGN 

channel using a code of rate cR , the minimum signal to noise required for reliable 

communication is given by: 

     

    ( )
0

1
2 1

2
cR Hb

c

E
N R H

> − . 
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2.3 Joint Source -Channel Coding versus separated Source and Channel Coding    
  

 Although Shannon's information separation theorem points out that in a 

communications system we can optimize the source coder and the channel coder 

separately without sacrificing overall performance, this principle is only valid upon the 

assumption of infinitely long codewords (infinitely long delay). In other words, the 

Shannon separation principle only works in the limit, meaning that we need arbitrary 

large data set and no bound on coding delay. Joint source-channel coding can in fact 

improve coding efficiency in more realistic scenarios [7].  

In our proposed scheme, instead of performing separated source and 

channel coding, we directly encode the source at the desired rate. The difference 

between this method and performing separated source and channel coding is that the 

source statistics have to be considered in the decoding.  As an advantage with respect 

to the separate approach, no error propagation appears here. In addition, the 

complexity of the encoder is very low, and all the complexity moves to the decoding 

site. The decoder makes use of the a priori probabilities of the source to recover the 

transmitted input sequence. Furthermore, in many occasions the source and channel 

statistics do not need to be known at the decoder site, since they can be estimated 

jointly with the decoding process. 
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Chapter 3 

CONVOLUTIONAL TURBO CODING FOR JOINT SOURCE-CHANNEL 
CODING OF NON-UNIFORM MEMORYLESS SORCES 

 
In this Chapter, we review a joint source-channel coding approach for 

non-uniform memoryless sources using convolutional turbo codes. This scheme will 

be taken as a point of reference for the proposed block turbo coding system. The 

combination of source and channel coding is performed by a turbo code using an 

energy allocation scheme, properly designed to achieve good performance [7].  

The rest of the Chapter is organized as follows: We first introduce the 

encoder modifications necessary to achieve performance close to the theoretical limit 

in the case of non-uniform sources, and show how to achieve the desired code rate for 

turbo codes. Finally we present simulation results. 

3.1 Encoder for Non-Uniform Sources 

 
The joint source-channel coding scheme considered here is based on the 

idea that symbols that are more likely to appear in the input sequence should be 

represented by less coded bits, and therefore, allocated less energy [6]. This 

asymmetric energy allocation scheme takes into account the a priori probability of the 

source to generate the sequence that will be transmitted over the noisy channel.  
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3.1.1 Energy allocation for systematic bits 

 If we represent 0 with 0E  and 1 with 1E− , the MAP decision criterion 

for an uncoded system is given by [7]  

( ) ( )2 2
1 02 2

1 1

2 2
1 00 if  

x E x E

P e P eσ σ
� � � �− − − +� � � �
� � � �⋅ < ⋅  

 

 
( ) ( )2 2

0 12 2
1 1

2 2
0 11 if  

x E x E

P e P eσ σ
� � � �− + − −� � � �
� � � �⋅ < ⋅ . 

 
The optimum energy allocation to minimize the probability of symbol-by-symbol 

errors, given the constraint 0 0 1 1 1P E PE+ =  is  1 0 1E P P=  and 0 1 0E P P=  [7]. 

3.1.2 Energy allocation for coded bits 

  
 To allocate energy for the coded bits, we need to take into account the 

trellis structure of the convolutional encoders. We denote by 0
cE  and 1

cE  the energy to 

be assigned for the coded bits of the convolutional code with inputs 0 and 1 

respectively. The average energy per symbol should stay constant (i.e. 

0 0 1 1 1c cP E PE+ = ). We assign the energy for the coded symbols as: 

      0 0
cE Pθ=  and 1 1(1 )cE Pθ= − ,                      (3.1) 

where θ  is a parameter which will be used to optimize the energy allocation. 
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3.2 Code Rate  

In our simulation, we punctured the transmitted information bits to 

achieve the desired code rate. Puncturing the information bits is a standard process and 

could cause the code to become catastrophic if the proper measures are not taken.  

 Depending on the desired rate, different puncturing methods will be used 

to achieve the best results. In our case we are interested in code rates close to one. 

Since the rate of the mother code for turbo codes is usually 1/3, to achieve a code rate 

close to one, on average we need to puncture more than 2 out of 3 bits. The 

arrangement that is often favored, and the one we have used in our work, is to transmit 

most of the systematic bits from the first RSC encoder, and least of the parity bits from 

each encoder. Note that systematic bits are rarely punctured, since this degrades the 

performance of the code more dramatically. In our case, we achieved the best 

performance when we punctured one systematic bit after puncturing six parity bits.  

More specific details and resulting performance of joint-source-channel coding of 

memoryless sources using turbo codes can be found in [30], [31],[32],[13].[19] and 

[12].   

3.3 Decoding Method 

 
The idea of decoding modifications for non-uniform sources was first 

proposed in [13]. Specifically, we need to take into account the a priori probability of 

the input bits ( 0 1 0, 1p p p= − ) in the decoding process.  Assuming ( )kL u  is the 
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extrinsic information produced by decoder D, then the modified extrinsic 

information, ( )m kL u , can be calculated by: 

   ( ) ( ) 1

0

logm k k

p
L u L u

p
= + . 

In this decoding method we assume that 1p is known at the decoder site. If this is not 

the case, it is possible to estimate this probability jointly with the decoding process. 

3.4 Simulation Results 

The Figure below shows the simulation of Turbo Codes for non-uniform 

memoryless sources over an AWGN channel. The simulation was done using the 

decoding scheme explained in this Chapter for rate R=0.93 and source probabilities 

p=0.1 and p=0.01. We achieved the best performance when we punctured one 

systematic bit after puncturing six parity bits.  The gap between capacity and 

theoretical limit is 3.3 dB for probability p=0.1 and 3.1 dB for probability p=0.01. 
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Figure 3.1: Turbo Codes Simulation for code rate R=0.93. This simulation was 
performed over an AWGN channel. The interleaver has length 16384 and 
spread 23. The code rate is R=0.93.  
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Chapter 4 

BLOCK TURBO CODING FOR JOINT SOURCE-CHANNEL CODING OF 
NON-UNIFORM MEMORYLESS SOURCES 

 
In this Chapter, we present different decoding methods to perform joint source-

channel coding for block turbo codes with non-uniform memoryless sources. In order 

to do so, we will show how to modify the decoding algorithm when the a priori 

information is known.  Since the decoder of standard block turbo codes makes use of 

different approximations, the decoding process can be modified in different ways by 

using the a priori information, which results in different decoding schemes for non-

uniform sources. 

As defined in Chapter 1, we will consider the transmission of a code using a 

linear block code on a Gaussian channel so that the received observation R is given by: 

    R E N= + ,         

where E is the transmitted codeword and N the Gaussian noise.  

4.1 Method 1 

 
 In this method we modify the calculation of the extrinsic information 

using a priori information. As explained in section 1.3, to consider the a priori 
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probability in the decoding process of convolutional turbo codes, we modified the 

extrinsic information ( )kL U . The modified extrinsic information is obtained as: 

                           ( ) ( ) 1

0

lnm k k

p
L U L U

p
� �

= + � �
� �

.              (4.1) 

In block turbo codes, the extrinsic information ( )W m  is calculated by subtracting the 

soft input from the soft output, 

   ( ) [ ] ( ) ( )R m R m W mα= +	 
 	 
� � � �             (4.2)   

 
Index m in R(m) and W(m) indicates that we are considering extrinsic information for 

the mth  decoding iteration. The parameter ( )mα  is a scaling factor which takes into 

account the fact that the standard deviations of [R] and [W] are not the same. 

The basic idea for the case of non-uniform sources is that a priori 

probability of the input bits 0 1 0(  and 1 )p p p= −  needs be considered in the decoding 

process. Specifically, ( )'W m , the modified extrinsic information for the case of non-

uniform sources can be calculated as:                 

           ( )
( )

( )

1

0

'
ln

'
'

p
R m R

p
W m

mα

� �� �
− +� �� �

� �� �= .                                    (4.3)

  
The probability of zeros, 0 'p , and ones, 1 'p , in the non-systematic bits and systematic 

bits will be different. For systematic bits 1 'p = 1p , and 0 0'p p= . For non-systematic 

bits, 1 'p  and 0 'p  are equal to the ratio of ones and zeros in the coded bits. 
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 Figure 4.1 shows the performance of the turbo block codes with 

constituent encoders BCH (256,247,4) using method 1. The code rate is 0.931 and 

BPSK is utilized over an AWGN channel. The number of iterations in this simulation 

is 4. The theoretical limits in this case are 0bE N = 3.2,-3.4 and -11.9 dB for 1p =0.5, 

0.1 and 0.01. Therefore, the gap between the performance obtained with this method 

and the theoretical limit is considerable, especially in the case of non-uniform sources.  
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Figure 4.1: Performance of block turbo codes with constituent encoders BCH 
(256,247,4)  when method 1 is applied. The code rate is 0.931 and BPSK 
is utilized over an AWGN channel. The number of iterations in this 
simulation is 4.  
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4.2 Method 2 

 
In this method, we modify the way in which the soft output is calculated 

(section 1.3.3) by making use of the a priori source information. As discussed in 

Chapter 1, by using Maximum Likelihood decoding, the optimum decision, assuming 

equal probability for binary elements, can be calculated as [10]: 

       ( )( )2 2
   if  2  ln P   2 ln(P( )).i i i j jD C R C E C R C E Cσ σ= − − = < − − =       (4.4) 

To compute the reliability of decision jd , where jd  is a component of decision 

{ }1 2, ,... nD d d d= , required two codewords. It is obvious that soft decision D is one of 

these two codewords, so we must find the competing codeword of D (see [22]). 

Assuming C is the competing codeword of D, the soft output in the case of uniform 

sources is calculated as: 

              ( )2 2
4.j jR R C R D d= − − −                                      (4.5) 

In the case of non-uniform sources, the soft output in the case of non-uniform sources 

can be calculated as: 

                    ( ) ( ) ( )( )2 2 2
r r4 ln P Pj jR R C R D d C Dσ= − − − − ,                         (4.6) 

where ( )rP C  and ( )rP D   are the calculated probabilities of codewords C and D using 

the  a priori information. 

  Figure 4.2 shows the performance of turbo block codes with constituent 

encoders BCH (256,247,4) using method 2. The code rate is 0.931 and BPSK is 
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utilized over an AWGN channel. The number of iterations in this simulation is 4. The 

theoretical limits in this case are 0/bE N = 3.2,-2.9 and -11.9 dB for 1p =0.5, 0.1 and 

0.01. Although there is a minor improvement (about 0.5 dB) compared to method 1, 

the gap between the performance obtained with this method and the theoretical limit is 

still considerable, especially for non-uniform sources.  
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Figure 4.2: Performance of block turbo codes with constituent encoders BCH 
(256,247,4) when method 2 is applied. The code rate is 0.931 and BPSK 
is utilized over an AWGN channel. The number of iteration in this 
simulation is 4.  
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4.3 Method 3 

 
In this method, we keep all the changes in method 2 and we also modify 

the Chase algorithm (section 1.3.2) by making use of the a priori source information. 

As we discussed in Chapter 1, we know that by using Maximum Likelihood decoding 

the optimum decision will be: 

       ( )( )2 2
   if  2  ln P   2 ln(P( )).i i i j jD C R C E C R C E Cσ σ= − − = < − − =  

 
Considering the Chase algorithm, at very high SNR, ML codeword D is located in the 

sphere of radius ( 1)δ − centered on ( )1 2, ,..., nY y y y=
 

where ( )( )0.5 1 sgnj jy r= +  

with a very high probability.  The reliability of component jy  (which is used in the 

first step of the Chase algorithm see section 1.3.2) is defined using the log-likelihood 

ratio (LLR) of decision jy  [22]: 

         ( ) ( )=ln P( 1| ) P( 1| )j j j j jy e r e rℜ = = −                            (4.7) 

or  

 

        ( ) 2
j= 2rjy σℜ .               (4.8) 

 
Since the source is non-uniform, the a priori probability of the input bits 

0 1 0(  and 1 )p p p= −  needs be considered in the decoding process. Then, we can 

calculate the relative reliability using:  
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                     ( ) 2 1
j

0

p
= 2r +log

pjy σ
� �

ℜ � �
� �

                                                (4.9) 

 In other words, for the case of non-uniform sources, the reliability of component jy is 

calculated by considering a priori probability of the input bits. The basic idea is that 

the input bit that has higher probability will result in higher reliability. 

 Figure 4.3 shows the performance of turbo block codes with constituent 

encoders BCH (256,247,4) using method 3. The code rate is 0.931 and BPSK is 

utilized over an AWGN channel. The number of iterations in this simulation is 4. 

There are some improvements with respect to the previous methods, but there is still a 

huge gap between capacity and theoretical limit. For example for 1p =0.01 the gap 

between capacity and theoretical limit is greater than 14 dB. Compared to the two 

previous methods 1 and 2, method 3 results in 1 dB to 2 dB improvement.   
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Figure 4.3: Performance of block turbo codes with constituent encoders BCH 
(256,247,4) when method 3 is applied. The code rate is 0.931 and BPSK 
is utilized over an AWGN channel. The number of iteration in this 
simulation is 4.  
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4.4 Method 4 

 
In this approach, we propose a source controlled channel coding scheme 

based on the idea that symbols that are more likely to appear in the input sequence 

should be represented by less coded bits and therefore allocated less energy [6].   

 As we explained in Chapter 3, the decision criterion for systematic bits is 

given by:  

( ) ( )2 2
1 02 2

1 1

2 2
1 00 if  

x E x E

P e P eσ σ
� � � �− − − +� � � �
� � � �⋅ < ⋅  

 

 
( ) ( )2 2

0 12 2
1 1

2 2
0 11 if  

x E x E

P e P eσ σ
� � � �− + − −� � � �
� � � �⋅ < ⋅ . 

To minimize the probability of symbol-by-symbol errors, given the constraint 

0 0 1 1 1P E PE+ =  we use energy allocation  0
1

1

P
E

P
=  and 1

0
0

P
E

P
= . 

Energy allocation for non-systematic bits can be done as follows.  Before 

allocating energy to non-systematic bits the probability of ones and zeros for non-

systematic bits needs to be calculated. The probability of zeros and ones will be almost 

0.5 for codes with higher rates. In any case, after calculating the probability of zeros 

and ones for non-systematic bits, we can use the same MAP criterion detection as 

systematic bits to allocate energy for non-systematic bits (changing parameter θ  in 

Equation (3.1) does not change performance in a significant manner). 

Figure 4.4 shows the performance of turbo block codes with constituent 

encoders BCH (256,247,4) using method 4. The code rate is 0.931 and BPSK is 
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utilized over an AWGN channel. The number of iterations in this simulation is 4.  This 

Figure shows simulation for 1p =0.5, 1p =0.1 and 1p =0.01. There is still a big gap 

between capacity and theoretical limit (see table 4.1) but compared to previous 

methods, for the case 1p =0.01 the gap has decreased considerably.   
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Figure 4.4: Performance of block turbo codes with constituent encoders BCH 
(256,247,4) when method 4 is applied. The code rate is 0.931 and BPSK 
is utilized over an AWGN channel. The number of iteration in this 
simulation is 4.  
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4.5 Method 5 

 
  This method combines the two previous methods, method 3 and method 

4. In other words, we use an unequal energy strategy, modifying the way in which the 

soft output is calculated, and we also use the a priori information in the Chase 

algorithm. 

  Figure 4.5 shows the performance of turbo block codes with constituent 

encoders BCH (256,247,4) using method 5. The code rate is 0.931 and BPSK is 

utilized over an AWGN channel. The number of iterations in this simulation is 4. This 

Figure shows simulation for 1p =0.5, 1p =0.1, 1p =0.01, and 1p =0.005. Compared to 

method 4, the gap between capacity and theoretical limit has decreased in almost 2 dB.  
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Figure 4.5: Performance of block turbo codes with constituent encoders BCH  
(256,247,4) when method 5 is applied. The code rate is 0.931 and BPSK 
is utilized over an AWGN channel. The number of iteration in this 
simulation is 4. 

 



 56 

 

4.6 Performance Comparison 

 As we have seen throughout this Chapter, the performance of block turbo 

codes for non-uniform sources improves dramatically by going from decoding method 

1 to decoding method 5 (over 10 dB improvement in method 5 compared to method 1, 

for the case of 1 0.01p = ). Table 4.1 shows the gap between capacity and theoretical 

limit for the five different decoding methods explained in this Chapter, as well as 

convolutional turbo codes defined in Chapter 3.  As we can see in the table, for the 

case of non-uniform sources, convolutional turbo codes perform slightly better than 

proposed method 5, which is the best approach for block turbo codes (1.1 dB for the 

case of 1 0.01p =  and 0.7 dB for 1 0.1p = ). 

Table 4.1: Gap to Theoretical Limit (dB) for rate R=0.93 codes applied on non 
uniform sources and AWGN channels. Convolutional turbo codes are 
compared with the 5 decoding methods for block turbo codes. 

   

1p  Method 1 Method 2 Method 3 Method 4 Method 5 CTC 

0.5    1.3    1.3    1.3  1.3  1.3  3.9 

0.1    7.4    6.9    6.3  6.1  4.0  3.3 

0.01   14.9     14.6    14.2  6.1  4.2  3.1 
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Chapter 5 

 FINAL REMARKS 

 

Our goal in this research was to improve the performance of block turbo 

codes as we increased the non-uniformity of the source. As we discussed in the thesis, 

since block turbo codes perform very well for rates close to one in the case of uniform 

sources, we wanted to corroborate if this was also the case for non-uniform sources. 

The idea was to investigate if block turbo codes could outperform convolutional turbo 

codes in this context.   
 
 The results of this research show that block turbo codes are not able to 

outperform convolutional turbo codes for any rate in the case of non-uniform sources. 

However, it is important to remark that the decoding algorithm in block turbo codes is 

suboptimal in many aspects, with several details defined in an ad-hoc manner. Future 

research investigating how to choose the weight and the reliability features in the case 

of non-uniform sources could lead to improved performance gains.  
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