

SOURCE-CONTROLLED BLOCK TURBO CODING

By

Shervin Pirestani

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Electrical Engineering

Summer 2005

Copyright 2005 Shervin Pirestani
All Rights Reserved

UMI Number: 1428190

1428190
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

SOURCE-CONTROLLED BLOCK TURBO CODING

By

Shervin Pirestani

Approved: __
 Javier Garcia-Frias, Ph.D.
 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __
 Gonzalo R. Arce, Ph.D.
 Chairperson of the Department of Electrical and Computer Engineering

Approved: __
 Eric William Kaler, Ph.D.
 Dean of the College of Engineering

Approved: __
 Conrado M. Gempesaw II, Ph.D.
 Vice Provost for Academic and International Programs

 iii

ACKNOWLEDGMENTS

 Javier Garcia-Frias, Ph.D. for his continuous advice, guidance, and

academic support during the past several years.

My professional friend, Richard Demo Souza, who has supported and

helped me throughout my graduate education.

 iv

TABLE OF CONTENTS

LIST OF TABLES... vi
LIST OF FIGURES..vii
ABSTRACT ... ix

Chapter

 1 Introduction to Turbo Codes... 1

1.1 Concatenated Coding... 1
1.2 Convolutional Turbo Codes .. 3

 1.2.1 Encoding... 3
 1.2.2 Turbo Decoder.. 5
 1.2.3 BCJR Algorithm... 7
 1.2.4 Iterative Turbo Decoding.. 15
 1.2.5 Simulation of Turbo Codes .. 18

1.3 Block Turbo Codes.. 20

 1.3.1 Product Codes... 20
 1.3.2 Soft Decoding of Block Codes ... 22
 1.3.3 Calculating the Soft Output .. 28
 1.3.4 Iterative Decoding of Product Codes.. 29
 1.3.5 Simulation of Block Turbo Codes.. 30

 2 Asymmetric Sources ... 33

 2.1 Definition.. 33
 2.2 Theoretical Limits... 33

2.3 Joint Source - Channel Coding versus Separated Source and
Channel Coding…………………………... 35

 v

 3 Convolutional Turbo Codes for Joint Source-Channel Coding of

Non-Uniform Memoryless Sources ... 36

 3.1 Encoder for Non-Uniform Sources... 36

3.1.1 Energy Allocation for Systematic Bits ... 37
3.1.2 Energy Allocation for Coded Bits .. 37

 3.2 Code Rate .. 38
 3.3 Decoding Method .. 39
 3.4 Simulation Results... 39

 4 Block Turbo Coding for Joint Source-Channel Coding of Non-

Uniform Memoryless Sources.. 41

 4.1 Method 1... 41
 4.2 Method 2.. ……….…...…............45
 4.3 Method 3... ………….…………..…..48
 4.4 Method 4... 51
 4.5 Method 5... 54
 4.6 Performace Comparison ... 56

 5 Final Remarks... 57

REFERENCES ... 58

 vi

LIST OF TABLES

4.1 Gap to Theoretical Limit for Rate R=0.93 Codes Applied on Non-Uniform
Sources ... 56

 vii

LIST OF FIGURES

Figure 1.1 Example of Concatenated Coding.. 2

Figure 1.2 Turbo Encoder.. 4

Figure 1.3 Recursive Systematic Convolutional (RSC) Encoder 4

Figure 1.4 Turbo Decoder.. 6

Figure 1.5 Trellis for K=3 RSC using MAP Decoder ... 11

Figure 1.6 Summary of the MAP Algorithm... 12

Figure 1.7 Recursive Calculation of (0)kα and (0)kβ .. 13

Figure 1.8 Simulation of Turbo Codes .. 19

Figure 1.9 Example of a Product Code 1 2P C C= × .. 21

Figure 1.10 Block Diagram of a Block Turbo Decoder Iteration 30

Figure 1.11 Simulation of Block Turbo Codes (Uniform Sources)........................... 32

Figure 3.1 Simulation of Turbo Codes (R=0.93 Non-Uniform Sources) 40

Figure 4.1 Simulation of Method 1 for Block Turbo Codes (R=0.93 Non-
Uniform Sources) ... 44

Figure 4.2 Simulation of Method 2 for Block Turbo Codes (R=0.93 Non-
Uniform Sources) ... 47

Figure 4.3 Simulation of Method 3 for Block Turbo Codes (R=0.93 Non-
Uniform Sources) ... 50

Figure 4.4 Simulation of Method 4 for Block Turbo Codes (R=0.93 Non-
Uniform Sources) ... 53

 viii

Figure 4.5 Simulation of Method 5 for Block Turbo Codes (R=0.93 Non-
Uniform Sources) ... 55

 ix

ABSTRACT

This thesis proposes the use of block turbo codes for transmitting non-

uniform binary memoryless sources over AWGN channels. As opposed to standard

convolutional turbo codes, block turbo codes are known to achieve good performance

for high code rates, up to 98% of the channel capacity for uniform sources. The

objective of this thesis is to investigate if such a performance is also achievable for

non-uniform sources. The idea is to use a joint source-channel (or source controlled)

coding scheme to exploit the statistics of the binary source at the decoder.

 Block turbo codes are a class of product codes, which can be decoded by

iteratively decoding the component codes. Each component code is decoded using the

Chase algorithm, which is a low-complexity suboptimum algorithm [8] for near

Maximum-Likelihood decoding of linear block codes. In this thesis, we propose

decoding modifications to take into account the non-uniform nature of the source in

the decoding of block turbo codes.

 1

Chapter 1

INTRODUCTION TO TURBO CODES

In the first part of this Chapter we will introduce the concept of

concatenated coding. We then present the Convolutional Turbo decoding scheme in

section 1.2, and finally we conclude the Chapter by presenting Block Turbo codes in

section 1.3.

1.1 Concatenated Coding

The theory of error correcting codes presents a large number of code

constructions with their corresponding decoding algorithms. However, for applications

where very strong error correcting capabilities are required, many of these

constructions result in far too complex decoding solutions. One way to reduce

complexity is to use concatenated coding, where two (or more) constituent codes are

used after each other or in parallel - usually with some kind of interleaving. The

constituent codes are decoded with their respective decoders, which exchange

information in an iterative process to obtain the final result. This final result is usually

sub-optimal. However, optimal schemes are not feasible, and concatenated coding

offers a nice trade off between error correcting capabilities and decoding complexity.

 2

An example of concatenated coding is illustrated in Figure 1.1 Here we

represent the information bits as a square, and we generate horizontal parities by

encoding each row with a block code, while vertical parities result from the encoding

of each column. It is also possible to encode the horizontal and vertical parities to

produce “parities of parities”.

Figure 1.1: Example of Concatenated Coding.

 3

1.2 Convolutional Turbo Codes

To provide a clear description of Convolutional Turbo Codes proposed in

[5], we first start by explaining how the encoder functions. We then describe the turbo

decoder and how iterative turbo decoding works. We conclude this section by

discussing turbo codes performance.

1.2.1 Encoding

 The general structure used in turbo encoders is shown in Figure 1.2. Two

component codes are used to encode the same input bits, but an interleaver is placed

between the encoders. For the case of Convolutional Turbo Codes, Recursive

Systematic Convolutional (RSC) codes are used as the component codes. In this

section we concentrate entirely on the standard turbo encoder structure using two RSC

codes. Turbo codes using block codes as component codes are described in section

1.3. Figure 1.3 shows the RSC code we have used as component codes in most of our

simulations.

 The dramatic improvement in performance observed in turbo codes arises

because of the interleaver used between the encoders, and because recursive codes are

used as component codes. At moderate or high signal to noise ratios, turbo codes

present a performance gain directly related to the interleaver length [2], [3].

 4

Figure 1.2: Turbo Encoder.

Figure 1.3: Recursive Systematic Convolutional (RSC) Encoder.

On the other hand the decoding complexity per bit does not depend on the interleaver

length. Hence extremely good performance can be achieved with reasonable

complexity by using very long interleavers.

 5

1.2.2 Turbo Decoder

 The general structure of an iterative turbo decoder is shown in Figure 1.4.

There are two component decoders which are linked by interleavers in a structure

similar to that of the encoder. As seen in the Figure, each decoder takes three inputs –

the systematically encoded channel output bits, the parity bits transmitted from the

associated component encoder, and the information from the other component decoder

about the likelihood of the information bits. This information from the other decoder is

referred to as extrinsic information. The component decoders have to utilize both, the

input from the channel and this extrinsic information to perform decoding. They must

also provide the so-called soft outputs for the decoded bits, which will be used as

extrinsic information in the other decoder. This means that in addition to the decoded

output bit sequence, the component decoders must also provide the associated

probabilities for each bit. The soft outputs are typically represented in terms of the so-

called Log Likelihood Ratios (LLRs), the magnitude of which gives the sign of the bit,

and the amplitude the probability of a correct decision.

 The decoder of Figure 1.4 functions iteratively. In the first iteration the

first component decoder takes channel output values only, and produces a soft output

as its estimate of the data bits. The soft output from the first encoder is then used as

additional information for the second decoder, which uses this information along with

 6

Figure 1.4: Turbo Decoder (Figure taken from [15]).

the channel outputs to calculate its estimate of the data bits. In the second iteration, the

first decoder decodes the channel outputs again, but now with additional information

about the value of the input bits provided by the output of the second decoder in the

first iteration. This additional information allows the first decoder to obtain a more

accurate set of soft outputs, which are then used by the second decoder as a priori

information. This cycle is repeated, and with every iteration the Bit Error Rate (BER)

of the decoded bits decreases. On the other hand, the enhancement in performance

decreases as the number of iterations increases. Therefore, for complexity reasons, we

usually perform only about eight iterations.

 7

1.2.3 BCJR Algorithm

 The BCJR algorithm proposed in [1] obtains, for a convolutional code,

the maximum a posteriori (MAP) for each input bit, therefore minimizing the bit error

probability. This is critical for the iterative decoding of turbo codes. The BCJR

algorithm provides, for each decoded bit ku , the probability that this bit was +1 or -1,

given the received symbol sequence y . We define the conditional Log Likelihood

Ratio of ()kL u y as:

 () ()
()

1
ln

1

k

k

k

P u y
L u y

P u y

� �= +
� �=
� �= −
� �

. (1.1)

The sign of the Log Likelihood Ratio (LLR), defines the bit decision, while its

magnitude provides the decision reliability. Using Bayes’rule (1.1) can be rewritten as:

 () ()
()

1,
ln

1,
k

k
k

P u y
L u y

P u y

� �= +
� �=
� �= −� �

. (1.2)

 Let us now consider the RSC code shown in Figure 1.3. For this code

3K = (where K is the number of stages for the shift register) there are four states,

and, as it is a binary code, for each state two transitions are possible, one associated

with input bit -1, and the other to +1. If the previous state 1kS − and the present state kS

are known, then the value of the input bit ku , which caused the transition between

these two states, will be known. Hence, the probability of 1ku = + is equal to the

 8

probability that the transition from the previous state to the present state is associated

with input bit +1. Therefore, we can rewrite Equation (1.2) as:

 ()
()

()

()
()

1
', 1

1
', 1

', ,

ln
', ,

k

k

k k
s s u

k

k k
s s u

P S s S s y

L u y
P S s S s y

−
� =+

−
� =−

� �= =� �
� �=
� �= =� �
� �

�

�
, (1.3)

where ()', 1ks s u� = + is the set of transitions from the previous state 1 'kS s− = to the

present state kS s= , associated to input bit +1.

 We can split up the received sequence into three sections: the received

codeword associated with the present transmission
k

y , the received sequence prior to

the present transmission
j k

y
< , and the received sequence after the present

transmission
j k

y
>

. Obviously,

 () ()', , ', , , ,
j k k j k

P s s y P s s y y y
< >

= . (1.4)

Using Bayes’ rule and the Markov property, we can rewrite (1.4) as:

 () { }() ()', , '
j k k j k

P s y P y s s P y s
< >

= ⋅ ⋅

 () () ()1 ' ',k k ks s s sα γ β−= ⋅ ⋅ , (1.5)

where:

 1 1)() (,k k j k
ys P S sα − − <

′ ′= = (1.6)

() () ()', , ', , ,
j k k j k

P s s y P s s y y P y s
< >

= ⋅

 9

is the probability that the trellis is in state 's at time 1k − and the received channel

sequence up to this point is
j k

y
<

.

 () ()k kj k
s P y S sβ

>
= = (1.7)

is the probability that, given that the trellis is in state s at time k , the received channel

sequence from this point on is
j k

y
>

.

 () { }()1, ' , 'k k kk
s s P y S s S sγ −= = = (1.8)

is the probability that if the trellis was in state 's at time 1k − , it moves to state s and

the received channel sequence at time k is
k

y .

 The idea of defining parameters α and β is that they can be easily

calculated through recursion, which leads to a simple decoding algorithm.

Forward recursive calculation of ()k sα values:

 1
)() (,k k j k

ys P S sα
< +

= =

 ()
all '

, ', ,
j k k

s

P s s y y
<

=�

 { }() ()
all '

, ' ',
k j k

s

P s y s P s y
<

= ⋅�

 () ()1
all '

', 'k
s

s s sγ α −= ⋅� . (1.9)

Thus, by knowing the ()',s sγ values, ()k sα can be calculated recursively. The initial

condition for the recursion is (assuming initial 0 0S =)

 ()0 0 0 1Sα = =

 ()0 0 0 for all 0S s sα = = ≠ .

 10

Backward recursive calculation of ()k sβ values:

 () ()1 1
' 'k j k

s P y sβ − − > −
=

 { }()
all

, , '
k j k

s

P y y s s
>

=�

 () { }()
all

, '
j k k

s

P y s P y s s
>

= ⋅�

 () ()
all

',k
s

s s sβ γ= ⋅� . (1.10)

Thus, by knowing the ()',s sγ values, 1()k sβ − can be calculated from the values

of ()k sβ .

Calculation of (',)k s sγ values:

 () { }()', , '
k

s s P y s sγ =

 { }() ()', kk
P y s s P u= ⋅ , (1.11)

where ku is the input bit that is needed for transition from state 1 'kS s− = to

state kS s= . From Equations (1.3) and (1.5) we can write the conditional LLR of ku ,

given the received sequence
k

y

 ()
() ()

() ()
1

1

1
(',)

1
(',)

' (',)
ln

' (',)

k

k

k k k
s s u

k

k k k
s s u

s s s s
L u y

s s s s

α γ β

α γ β
=+

=−

−
�

−
�

� �⋅ ⋅� �
� �=
� �⋅ ⋅� �
� �

�

�
. (1.12)

It is this conditional LLR ()kL u y that the MAP decoder delivers.

 11

 The MAP decoding of a received sequence y given the a-posteriori LLR

(|)kL u y can be calculated as we explain in this section. As the channel values ky are

received, they and the a priori LLRs ()kL u (which are provided in an iterative turbo

decoder by the other component decoder) are used to calculate (,)k s sγ ′ . Thus, the

forward recursion can be used to calculate (')k sα and the backward recursion can be

used to calculate ()k sβ . Finally all the calculated values of (')k sα , ()k sβ , and

(,)k s sγ ′ are used to calculate the values of (|)kL u y .

Figure 1.5: Trellis for the K=3 RSC code shown in Figure 1.3.

 12

Figure 1.5 shows the trellis for the RSC represented in Figure 1.3. All the operations

are summarized in the flowchart of Figure 1.6, and Figure 1.7 shows the recursive

calculation of ()k sα and ()k sβ . Care must be taken to avoid numerical underflow

problems in the recursive calculation of ()k sα and ()k sβ but such problems can be

avoided by using a logarithmic representation of these values.

 Figure 1.6: Summary of the MAP algorithm
 (Figure taken from [15]).

 13

 Figure 1.7: Recursive calculation of (0)kα and (0)kβ
 (Figure taken from [15]).

In the form described in this section, the MAP algorithm presents

numerical problems due to the multiplications required in the equations for the

recursive calculation of ()k sα and ()k sβ . However, these numerical problems can be

eliminated by using the Log-MAP algorithm, which gives the same performance as the

MAP algorithm [26].

In order to define the Log-MAP algorithm, we first define max* as:

 () lnmax* ix
i

i i

x e
� �= � �
� �
� ,

where max* is calculated as:

 { } { } ()2 1

1 2 1 2max* , max , ln 1 k kk k k k e− −= + + .

 14

Then, by defining

 () ()()lnk ks sαΑ =

 () ()()lnk ks sβΒ =

and

 () ()()', ln ',k ks s s sγΓ = ,

we can write Equation (1.9) as:

 () ()() = lnk kA s sα

()

[]

1
all '

1
all '

ln (') ',

ln exp (') (',)

k k
s

k k
s

s s s

s s s

α γ−

−

� �= � �
� �

� �= Α + Γ� �
� �

�

�

 ()()1'
max* (') ',k ks

s s s−= Α + Γ . (1.13)

The value of ()kA s should give the natural logarithm of the probability that the trellis

is in state kS s= at stage k and that the received channel sequence up to this point has

been
j k

y
<

.

Similar to Equation (1.12) we can rewrite Equation (1.10) as

 () ()()1 1' ln 'k kB s sβ− −=

()

[]
all

1
all

ln () ',

ln exp () (',)

k k
s

k k
s

s s s

s s s

β γ

−

� �= � �
� �

� �= Β + Γ� �
� �

�

�

 ()()max* () ',k ks
s s s= Β + Γ . (1.14)

 15

Equation (1.11) can be rewritten as

 () ()()', ln ',k ks s s sγΓ =

 ()
1

n

k k c kl kl
l

K u L u L y x
=

= + + � (1.15)

Finally, from Equation (1.12), we can write the a-posteriori LLRs ()kL u y as:

()
() ()

() ()
1

1

1
(',)

1
(',)

' (',)
ln

' (',)

k

k

k k k
s s u

k

k k k
s s u

s s s s
L u y

s s s s

α γ β

α γ β
=+

=−

−
�

−
�

� �⋅ ⋅� �
� �=
� �⋅ ⋅� �
� �

�

�

() ()()

() ()()
1

1

1
(',)

1
(',)

exp ' (',)
ln

exp ' (',)

k

k

k k k
s s u

k k k
s s u

s s s s

s s s s

=+

=−

−
�

−
�

� �Α + Γ + Β� �
� �=
� �Α + Γ + Β� �
� �

�

�

()

() ()()

()
() ()()

1', 1

1', 1

max* ' (',)

max* ' (',) .
k

k

k k ks s u

k k ks s u

s s s s

s s s s

−
� =+

−
� =−

= Α + Γ + Β

− Α + Γ + Β
 (1.16)

1.2.4 Iterative Turbo Decoding

We now describe in detail how the iterative decoding of turbo codes is carried

out. In Figure 1.4, we showed the structure of an iterative turbo decoder. Consider

initially the first component decoder in the first iteration. This decoder receives the

channel sequence (1)
cL y containing the received versions of the transmitted systematic

 16

bits, c ksL y and the parity bits, c klL y , from the first encoder. Usually, to obtain a half-

rate code, half of these parity bits are punctured at the transmitter, and therefore the

turbo decoder must insert zeros in the soft channel output c klL y for these punctured

bits.

The first component decoder can then process the soft channel inputs and

produce its estimate 11(|)kL u y of the conditional LLRs of the data bits ku , k = 1, 2 …

N. In this notation the subscript ij in (|)ij kL u y indicates that this is the a posteriori

LLR in the i iteration from the j component decoder. Note that (for uniform sources) in

this first iteration the first component decoder will have no a priori information about

the bits, and hence ()kL u =0. Next, the second component decoder comes into

operation. It receives the channel sequence (2)
cL y containing the parity bits from the

second encoder. However, in addition to the received channel sequence (2)
cL y , the

decoder can use the conditional LLR 11(|)kL u y provided by the first component

decoder to generate a priori LLRs ()kL u to be used by the second component decoder.

Ideally these a priori LLRs ()kL u would be completely independent from all the other

information used by the second component decoder. As shown in Figure 1.4, in

iterative turbo decoders the extrinsic information ()c kL u

from the other component

decoder is used as the a priori LLRs, after being interleaved to arrange the decoded

data bits u in the same order as they were encoded by the second encoder. The reason

for the subtraction paths shown in Figure 1.4 is that the a posteriori LLRs from one

 17

decoder have the systematic soft channel inputs c ksL y and the a priori LLRs ()kL u ,

subtracted to yield the extrinsic LLRs ()c kL u which are then used as a priori LLRs for

the other component decoder. The second component decoder thus uses the received

channel sequence (2)
cL y and the a priori LLRs ()kL u (derived by interleaving the

extrinsic LLRs ()c kL u of the first component decoder) to produce its a-posteriori

LLRs 12 (|)kL u y . This completes the first iteration.

For the second iteration the first component encoder again processes its

received channel sequence (1)
cL y , but now it also has a priori LLRs ()kL u provided by

the extrinsic portion ()c kL u of the a posteriori LLRs 12 (|)kL u y calculated by the

second component encoder, and hence it can produce an improved a posteriori LLR

21(|)kL u y . The second iteration then continues with the second component decoder

using the improved extrinsic LLRs ()c kL u from the first encoder as a priori LLRs

()kL u which is used in conjunction with its received channel sequence (2)
cL y to

calculate 22 (|)kL u y [15].

 This iterative process continues, and with each iteration the BER of the

decoded bits will decrease. However, as we will show in the next section, the

improvement in performance for each additional iteration slows down as the number

of iterations increases. Hence, for complexity reasons usually only about eight

iterations are carried out, as no significant improvement in performance is obtained

 18

with a higher number of iterations. It is also possible to use a variable number of

iterations up to a maximum, with some termination condition used to decide when it is

believed that further iterations will produce marginal gain. This allows the average

number of iterations, and the average complexity of the decoder, to be severely

reduced [14] with only a small performance degradation.

1.2.5 Simulation of Turbo codes

The graph below shows the simulation of Turbo Codes for uniform

sources over AWGN channels using BPSK modulation. The RCS parameters were

n=2, k=1, K=3 and an interleaver of length 1000 was used.

This graph presents the results when different number of iterations are

utilized. As the number of iteration increases, the bit error rate will decrease. This

graph also presents the results for an uncoded system, which clearly show how

effective Turbo Codes are in decreasing the bit error rate.

 19

Figure 1.8: Simulation of Turbo codes. This simulation was performed over an
AWGN (Additive White Gaussian Noise) channel using BPSK (Binary
Phase Shift Keying) modulation. The RSC parameters were n=2,k=1,K=3
and an interleaver of length 1000 was used. (Graph taken from [15]).

 20

1.3 Block Turbo Codes

 To give a clear and complete description of Block Turbo Codes (BTC), we

first describe the basic idea behind them. We start by briefly explaining product codes.

Then, we describe the Chase algorithm which will be used to perform soft input

decoding of the component codes, and BCH codes, which will be used as component

codes. Afterwards, we discuss how to perform soft output decoding of block turbo

codes. We conclude this section by presenting the results on the performance of block

turbo codes for uniform sources.

1.3.1 Product Codes or Concatenation of Two Block Codes

Product codes were first introduced by Elias in 1954 [11]. Let us assume

two systematic linear block codes 1C with parameters 1 1 1(, ,)n k δ and 2C with

parameters 2 2 2(, ,)n k δ where in , ik

and iδ (i=1,2) stand for codeword length, number

of information bits and minimum Hamming distance, respectively. The concatenation

of two block codes (or product code) 1 2P C C= × is obtained (see Figure 1.9) by first

placing 1 2(,)k k information bits in an array of 1k rows and 2k columns, and then

coding each one of the 1k rows using code 2C , and each one of the 2k columns using

code 1C .

 21

The parameters of the product code P [18] are 1 2n n n= × , 1 2k k k= × ,

1 2δ δ δ= × and the code rate R is given by 1 2R R× where iR is the code rate of code

iC . Thus, we can build very long block codes with large minimum Hamming distance

by joining short codes with small minimum Hamming distance. Given the defined

procedure, it is clear that the 2 2()n k− last columns of the matrix are codewords of 1C .

By using the generator matrix, we can show [18] that the first 1k rows of matrix P are

codewords of 2C . Hence all the columns of matrix P are codewords of 1C

and the first

1k rows of matrix P are codewords of 2C [22].

 Figure 1.9 Example of a product code 1 2P C C= × .

 22

1.3.2 Soft decoding of Block Codes

Let us assume transmission of binary elements { }0,1 coded by a linear block

code C with parameters (, ,)n k δ on a Gaussian channel using BPSK { }1, 1− + . The

observation ()1 2, ,..., nR r r r= at the output of the Gaussian channel for a transmitted

codeword ()1 2, ,..., nE e e e= is given by

 R E N= + ,

where components in of ()1 2, ,..., nN n n n= are AWGN samples with zero mean and

standard deviation σ . We know, by using Maximum Likelihood decoding, that the

optimum decision will be

 () () if P | P |i j iD C E C R E C R= = < = . (1.17)

Assuming equal probability for binary elements, decision D can be calculated [10] as:

()()2 2
 if 2 ln P 2 ln(P())i i i j jD C R C E C R C E Cσ σ= − − = < − − = , (1.18)

where

 ()2 2

1

n

i l il
l

R C r c
=

− = −� (1.19)

is the Euclidean distance between R and iC . Obviously searching for the optimum

codeword D using an exhaustive search increases the complexity exponentially as we

increase k.

 23

Chase Algorithm

Chase proposed a suboptimum algorithm of low complexity [8] for near ML

decoding of linear block codes. We can say that for high SNR, ML decoding of

codeword D is located, with a very high probability, in the sphere of radius of (1)δ −

centered on ()1 2, ,..., nY y y y= , where
1 1

sgn()
2 2l ly r= + (note that { }0,1ly ∈). Using

this technique, we can limit the reviewed codewords in (1.17) to those in the sphere of

radius (1)δ − centered on Y so that the complexity decreases. The procedure for

selecting these most probable codewords is specified in the following steps:

1. Find the position of the []/ 2p δ=

least reliable binary elements of Y using R.

The reliability of Y will be defined later.

2. Generate test patterns iT defined as all the n-dimensional binary vectors

generated by all possible combinations of “1”s and “0”s in the p positions and

“0”s in the other positions.

3. Generate test sequence i iZ Y T= ⊕ for all test pattern iT and then decode iZ

using a standard hard decoder (extended BCH decoding, see next section), adding

the decoded codeword to subset Ω .

4. To find the final decision D, we apply decision rule (1.18) only to the codewords

contained in subset Ω defined in step 3. Obviously, the components of the

codewords are mapped from { }0,1 to { }1, 1− + before computing the Euclidean

distance.

 24

The reliability of jy in step 1, is defined using the log-likelihood ratio of decision

jy ,

()
()j

P 1|
R(y)=ln

P 1|
j j

j j

e r

e r

� �= +
� �
� �= −� �

, (1.20)

or

 j 2

2
R(y)= jr

σ
� �
� �
� �

.

Considering a stationary channel, we can normalize the log-likelihood ratio with

respect to constant 22 σ , so that the relative reliability of jy is then given by jr [22].

 The turbo decoding algorithm presented in this paper can be applied to any

product code based on linear block codes. The results here concern to Bose-

Chaudhuri-Hocqenghem (BCH) product codes.

BCH codes

BCH codes were proposed by Bose and Ray-Chaudhuri [16] and

Hocquenghem [17]. A BCH code is a multilevel, cyclic, error-correcting code that is

commonly used in communication systems. BCH codes are not limited to binary

codes, but may be used with multilevel phase-shift keying whenever the number of

levels is a prime number or a power of a prime number, such as 2, 3, 4, 5, 7, 8, 11, and

13. BCH codes are the most powerful linear block codes for short to moderate block

lengths.

 25

Before defining BCH codes we start by briefly discussing cyclic codes,

since BCH codes are cyclic ones. Cyclic codes are linear block codes with the

additional property that a cyclic shift of any codeword is also a codeword. This also

means that the codewords constitute a group under the cyclic shift operation.

Assume 0 1 1(, ,...,)nx x x x −= represents a codeword with elements in

()GF q . We can associate it with a polynomial over ()GF q of degree at most

1n − defined as:

 () 1 2 1
0 1 2 1... n

nx D x x D x D x D −
−= + + + + .

If we consider a one-position right cyclic shift of x ,

producing () ()1
1 0 1 2, , ,...,n nx x x x x− −= , the associated polynomial for this codeword will

be:

 () ()1 1 2 1
1 0 1 2... n

n nx D x x D x D x D −
− −= + + + + ,

which is another polynomial of degree at most 1n − .

 We can see that the two polynomial ()x D and () ()1x D are related by

 () () () ()1 mod 1nx D Dx D D= − .

It can be shown that in general () ()mod 1j nD x D D − is the code polynomial

corresponding to the right-cyclic shift of codeword ()x D by j positions.

 Given a particular (,)n k cyclic code over ()GF q , we define the

generator polynomial ()g D of the cyclic code as the monic polynomial (a polynomial

 26

with a leading coefficient of 1) of minimum degree among the set of non-zero

codeword polynomials. We assume that the degree of this polynomial is 1r n≤ − , and

represent it as:

 1
0 1() ... r

rg D g g D g D= + + + ,

where the coefficients belong to ()GF q . It is easy to show that there is a unique

choice for the generator polynomial.

BCH codes are defined over a ()GF q field to obtain a simplified

decoding algorithm. Given a field ()GF q , a block length 3n ≥ , which is a divisor of

1mq − for some m , and 3 nδ≤ ≤ , an (),n k BCH code over ()GF q is a cyclic code

generated by [29]

() () () () ()1 2 2LCM , , ,..., .j j j jg D m D m D m D m Dδβ β β β+ + + −
	
= � � (1.21)

The ()jm D
β

 are minimal polynomials of a primitive element β (with

1δ − succesive powers) whose order is n in extension field ()GF mq . A minimal

polynomial is defined as follows: assuming α is defined in a given field ()GF q . We

say that α is algebraic if, for some r, the vector ()21, , ,..., rα α α has an integer relation

(i.e.
1

0
r

i
i

i

α α
=

=� for some iα ∈ Ζ). The integer coefficient polynomial of lowest

degree, having α as a root, is determined uniquely up to a constant multiple and is

called the minimal polynomial for α . LCM refers to the latest common multiple

 27

polynomial or smallest degree monic polynomial, for which all the indicated minimal

polynomials are divisors. Since minimal polynomials are irreducible, finding the LCM

polynomial will be equivalent to form the product of the distinct polynomials in (1.21).

 It is important to understand that a BCH code is the largest set of

codewords x whose corresponding polynomials ()x D have as roots 1δ − successive

powers of an element β of order n in an extension filed of ()GF q [29].

 In Equation (1.21), ()g D is a divisor of 1nD − since each minimal

polynomial is a divisor of 1nD − which is sufficient enough to generate a cyclic code

of length 1mn q= − . The code’s dimension, deg ()k n g D= − , will depend on the

degree of the polynomial in (1.21). The degree of ()g D is less than or equal to

(1)m δ − , since there are at most 1δ − distinct minimal polynomials (with at most

degree of m) involved in the construction of ()g D . Thus, we define the following

relations for BCH codes over any field:

 1mn q= − (1.22)

 ()deg () 1n k g D m δ− = ≤ − (1.23)

δ is also called the design distance of the code and ()1 2t δ= −	
� � is the designed

error correction capability of the code [29]. Hard decoding algorithms with relatively

low complexity can be easily designed for these codes [29].

 28

1.3.3 Calculating the Soft Output

 The Chase algorithm yields for each row (or column) the decision D

corresponding to the component block code. To decode concatenated block codes by

iterating between both component codes, we must compute the reliability of decision

D.

 To calculate the reliability of decision jd at the output of the soft decoder,

we require two codewords [20]. Hard decision D is one of these two codewords, and

additionally, we need to calculate a “competing” codeword of D. The competing

codeword of D, denoted as C, is obtained by applying (1.18) to the set Ω , excluding

the hard decision D. Then, the soft output (reliability of decision jd) can be obtained

as [22] :

2 2

4j j

R C R D
R d

� �− − −
= � �
� �
� �

 (1.24)

To find the competing codeword of D, codeword C, we must increase the size of the

space scanned by the Chase algorithm. For this purpose, we increase the number of

least reliable bits, p, used in the Chase decoder and also the number of test patterns.

Unfortunately, the complexity of the decoder increases exponentially with p and we

must find a trade-off between complexity and performance. To reduce complexity we

utilize another method for computing the soft output [22], which is the following:

 29

 () with 0 ()j jr m d mβ β= × ≤ (1.25)

This formula gives a simplified and effective solution for calculating the soft output.

The value of ()mβ was initially optimized by trial and error and depends on the

iteration number [24].

1.3.4 Iterative decoding of product codes

Let us consider the decoding of the rows and columns of a product code P

transmitted on a Gaussian channel using QPSK signaling. On receiving matrix [R]

corresponding to a transmitted codeword [E], the first decoder performs the soft

decoding of the rows or columns of P using [R] as input matrix. Soft Input / Soft

Output decoding is performed using the algorithm described in the previous section.

By subtracting matrix [R] from the soft output (computed using (1.24) or (1.25)) [25],

we obtain the extrinsic information ()W m	
� �, where index m specifies that we are

looking at the extrinsic information for the mth iteration in the decoding of P. The soft

input for the decoding of the columns or rows in the subsequent iteration of P is given

by:

 () [] () ()R m R m W mα= +	
 	
� � � � (1.26)

Where ()mα is a scaling factor, which takes into account the fact that the standard

deviation of samples in matrix []R and in matrix []W are different [5, 4]. In the first

 30

decoding steps, the standard deviation of the extrinsic information is very high, but it

decreases with the iteration number. This scaling factor is also used to reduce the

weight of the extrinsic information in the first decoding steps when the BER is

relatively high. Therefore, it takes a small value in the first decoding steps and

increases with the iteration number (i.e., as the BER tends to 0). A summary of the

decoding procedure is presented in Figure 1.10.

Figure 1.10 Block diagram of a iteration in the decoding of block turbo codes.

1.3.5 Simulation of Block Turbo Codes

The graph below shows the simulation of Block Turbo codes for uniform

sources and AWGN channels using QPSK modulation. This graph shows 8

simulations for different code rates with 4 iterations of the decoding process. Notice

 31

that, as the rate increases, the bit error rate also increases. The simulation was done

using BCH product codes, with component codes as indicated in the Figure.

It is interesting to notice that the slope of the BER curves increases as the

rate of the code goes to 1 (see [22] and [21]). This graph also shows the uncoded

simulation, which clearly shows how effective Turbo Block Codes are in decreasing

the bit error rate.

 32

Fig 1.11 Performance of block Turbo codes for different component BCH codes. This
simulation was done over an AWGN (Additive White Gaussian Noise)
channel using QPSK modulation. The number of iterations is 4. (Figure
taken from [22]).

 33

Chapter 2

ASYMMETRIC SOURCES

 In this Chapter we first introduce the concept of asymmetric sources. We

then move on to defining and calculating the Shannon theoretical limits in this case.

Finally, we conclude this Chapter by explaining the rationale for the proposed coding

scheme in the case of non-uniform sources.

2.1 Definition

The output of an asymmetric source does not have the same distribution

for zeros and ones. This means that the probability of the information bits, produced

by the source, are not equal. Therefore, the entropy of a binary asymmetric source is

less than one. Specifically, we will denote by 0p the probability that the source

generates bit 0. The source entropy is defined by:

 0 0 1 1log logH p p p p= − − .

2.2 Theoretical limits

 In 1998, Shannon proved that it is possible to transmit information with

arbitrarily low error probability through a noisy channel as long as the information rate

is less than the channel capacity [27, 28]. The Shannon limit or Shannon capacity of

 34

a communications channel refers to the maximum rate of error-free data that can

theoretically be transferred over the link.

Specifically for a channel subject to additive white Gaussian noise, the

best possible achievable information rate R is given by:

2
0

21
1

2
bE

R C Log R
N

� �
< = +� �

� �
,

where
 C = channel capacity (in bits per channel use),

 R = Information rate (bits per channel use),

bE = Energy per information bit,

0 2N = Power spectral density of the noise.

In the case of binary uniform sources cR R= , where cR is the code rate. However, for

the case of non-uniform sources cR R H= , where H is the entropy of the source [9].

Therefore, for an asymmetric source with entropy H transmitted through an AWGN

channel using a code of rate cR , the minimum signal to noise required for reliable

communication is given by:

 ()
0

1
2 1

2
cR Hb

c

E
N R H

> − .

 35

2.3 Joint Source -Channel Coding versus separated Source and Channel Coding

 Although Shannon's information separation theorem points out that in a

communications system we can optimize the source coder and the channel coder

separately without sacrificing overall performance, this principle is only valid upon the

assumption of infinitely long codewords (infinitely long delay). In other words, the

Shannon separation principle only works in the limit, meaning that we need arbitrary

large data set and no bound on coding delay. Joint source-channel coding can in fact

improve coding efficiency in more realistic scenarios [7].

In our proposed scheme, instead of performing separated source and

channel coding, we directly encode the source at the desired rate. The difference

between this method and performing separated source and channel coding is that the

source statistics have to be considered in the decoding. As an advantage with respect

to the separate approach, no error propagation appears here. In addition, the

complexity of the encoder is very low, and all the complexity moves to the decoding

site. The decoder makes use of the a priori probabilities of the source to recover the

transmitted input sequence. Furthermore, in many occasions the source and channel

statistics do not need to be known at the decoder site, since they can be estimated

jointly with the decoding process.

 36

Chapter 3

CONVOLUTIONAL TURBO CODING FOR JOINT SOURCE-CHANNEL
CODING OF NON-UNIFORM MEMORYLESS SORCES

In this Chapter, we review a joint source-channel coding approach for

non-uniform memoryless sources using convolutional turbo codes. This scheme will

be taken as a point of reference for the proposed block turbo coding system. The

combination of source and channel coding is performed by a turbo code using an

energy allocation scheme, properly designed to achieve good performance [7].

The rest of the Chapter is organized as follows: We first introduce the

encoder modifications necessary to achieve performance close to the theoretical limit

in the case of non-uniform sources, and show how to achieve the desired code rate for

turbo codes. Finally we present simulation results.

3.1 Encoder for Non-Uniform Sources

The joint source-channel coding scheme considered here is based on the

idea that symbols that are more likely to appear in the input sequence should be

represented by less coded bits, and therefore, allocated less energy [6]. This

asymmetric energy allocation scheme takes into account the a priori probability of the

source to generate the sequence that will be transmitted over the noisy channel.

 37

3.1.1 Energy allocation for systematic bits

 If we represent 0 with 0E and 1 with 1E− , the MAP decision criterion

for an uncoded system is given by [7]

() ()2 2
1 02 2

1 1

2 2
1 00 if

x E x E

P e P eσ σ
� � � �− − − +� � � �
� � � �⋅ < ⋅

() ()2 2

0 12 2
1 1

2 2
0 11 if

x E x E

P e P eσ σ
� � � �− + − −� � � �
� � � �⋅ < ⋅ .

The optimum energy allocation to minimize the probability of symbol-by-symbol

errors, given the constraint 0 0 1 1 1P E PE+ = is 1 0 1E P P= and 0 1 0E P P= [7].

3.1.2 Energy allocation for coded bits

 To allocate energy for the coded bits, we need to take into account the

trellis structure of the convolutional encoders. We denote by 0
cE and 1

cE the energy to

be assigned for the coded bits of the convolutional code with inputs 0 and 1

respectively. The average energy per symbol should stay constant (i.e.

0 0 1 1 1c cP E PE+ =). We assign the energy for the coded symbols as:

 0 0
cE Pθ= and 1 1(1)cE Pθ= − , (3.1)

where θ is a parameter which will be used to optimize the energy allocation.

 38

3.2 Code Rate

In our simulation, we punctured the transmitted information bits to

achieve the desired code rate. Puncturing the information bits is a standard process and

could cause the code to become catastrophic if the proper measures are not taken.

 Depending on the desired rate, different puncturing methods will be used

to achieve the best results. In our case we are interested in code rates close to one.

Since the rate of the mother code for turbo codes is usually 1/3, to achieve a code rate

close to one, on average we need to puncture more than 2 out of 3 bits. The

arrangement that is often favored, and the one we have used in our work, is to transmit

most of the systematic bits from the first RSC encoder, and least of the parity bits from

each encoder. Note that systematic bits are rarely punctured, since this degrades the

performance of the code more dramatically. In our case, we achieved the best

performance when we punctured one systematic bit after puncturing six parity bits.

More specific details and resulting performance of joint-source-channel coding of

memoryless sources using turbo codes can be found in [30], [31],[32],[13].[19] and

[12].

3.3 Decoding Method

The idea of decoding modifications for non-uniform sources was first

proposed in [13]. Specifically, we need to take into account the a priori probability of

the input bits (0 1 0, 1p p p= −) in the decoding process. Assuming ()kL u is the

 39

extrinsic information produced by decoder D, then the modified extrinsic

information, ()m kL u , can be calculated by:

 () () 1

0

logm k k

p
L u L u

p
= + .

In this decoding method we assume that 1p is known at the decoder site. If this is not

the case, it is possible to estimate this probability jointly with the decoding process.

3.4 Simulation Results

The Figure below shows the simulation of Turbo Codes for non-uniform

memoryless sources over an AWGN channel. The simulation was done using the

decoding scheme explained in this Chapter for rate R=0.93 and source probabilities

p=0.1 and p=0.01. We achieved the best performance when we punctured one

systematic bit after puncturing six parity bits. The gap between capacity and

theoretical limit is 3.3 dB for probability p=0.1 and 3.1 dB for probability p=0.01.

 40

Figure 3.1: Turbo Codes Simulation for code rate R=0.93. This simulation was
performed over an AWGN channel. The interleaver has length 16384 and
spread 23. The code rate is R=0.93.

 41

Chapter 4

BLOCK TURBO CODING FOR JOINT SOURCE-CHANNEL CODING OF
NON-UNIFORM MEMORYLESS SOURCES

In this Chapter, we present different decoding methods to perform joint source-

channel coding for block turbo codes with non-uniform memoryless sources. In order

to do so, we will show how to modify the decoding algorithm when the a priori

information is known. Since the decoder of standard block turbo codes makes use of

different approximations, the decoding process can be modified in different ways by

using the a priori information, which results in different decoding schemes for non-

uniform sources.

As defined in Chapter 1, we will consider the transmission of a code using a

linear block code on a Gaussian channel so that the received observation R is given by:

 R E N= + ,

where E is the transmitted codeword and N the Gaussian noise.

4.1 Method 1

 In this method we modify the calculation of the extrinsic information

using a priori information. As explained in section 1.3, to consider the a priori

 42

probability in the decoding process of convolutional turbo codes, we modified the

extrinsic information ()kL U . The modified extrinsic information is obtained as:

 () () 1

0

lnm k k

p
L U L U

p
� �

= + � �
� �

. (4.1)

In block turbo codes, the extrinsic information ()W m is calculated by subtracting the

soft input from the soft output,

 () [] () ()R m R m W mα= +	
 	
� � � � (4.2)

Index m in R(m) and W(m) indicates that we are considering extrinsic information for

the mth decoding iteration. The parameter ()mα is a scaling factor which takes into

account the fact that the standard deviations of [R] and [W] are not the same.

The basic idea for the case of non-uniform sources is that a priori

probability of the input bits 0 1 0(and 1)p p p= − needs be considered in the decoding

process. Specifically, ()'W m , the modified extrinsic information for the case of non-

uniform sources can be calculated as:

 ()
()

()

1

0

'
ln

'
'

p
R m R

p
W m

mα

� �� �
− +� �� �

� �� �= . (4.3)

The probability of zeros, 0 'p , and ones, 1 'p , in the non-systematic bits and systematic

bits will be different. For systematic bits 1 'p = 1p , and 0 0'p p= . For non-systematic

bits, 1 'p and 0 'p are equal to the ratio of ones and zeros in the coded bits.

 43

 Figure 4.1 shows the performance of the turbo block codes with

constituent encoders BCH (256,247,4) using method 1. The code rate is 0.931 and

BPSK is utilized over an AWGN channel. The number of iterations in this simulation

is 4. The theoretical limits in this case are 0bE N = 3.2,-3.4 and -11.9 dB for 1p =0.5,

0.1 and 0.01. Therefore, the gap between the performance obtained with this method

and the theoretical limit is considerable, especially in the case of non-uniform sources.

 44

Figure 4.1: Performance of block turbo codes with constituent encoders BCH
(256,247,4) when method 1 is applied. The code rate is 0.931 and BPSK
is utilized over an AWGN channel. The number of iterations in this
simulation is 4.

 45

4.2 Method 2

In this method, we modify the way in which the soft output is calculated

(section 1.3.3) by making use of the a priori source information. As discussed in

Chapter 1, by using Maximum Likelihood decoding, the optimum decision, assuming

equal probability for binary elements, can be calculated as [10]:

 ()()2 2
 if 2 ln P 2 ln(P()).i i i j jD C R C E C R C E Cσ σ= − − = < − − = (4.4)

To compute the reliability of decision jd , where jd is a component of decision

{ }1 2, ,... nD d d d= , required two codewords. It is obvious that soft decision D is one of

these two codewords, so we must find the competing codeword of D (see [22]).

Assuming C is the competing codeword of D, the soft output in the case of uniform

sources is calculated as:

 ()2 2
4.j jR R C R D d= − − − (4.5)

In the case of non-uniform sources, the soft output in the case of non-uniform sources

can be calculated as:

 () () ()()2 2 2
r r4 ln P Pj jR R C R D d C Dσ= − − − − , (4.6)

where ()rP C and ()rP D are the calculated probabilities of codewords C and D using

the a priori information.

 Figure 4.2 shows the performance of turbo block codes with constituent

encoders BCH (256,247,4) using method 2. The code rate is 0.931 and BPSK is

 46

utilized over an AWGN channel. The number of iterations in this simulation is 4. The

theoretical limits in this case are 0/bE N = 3.2,-2.9 and -11.9 dB for 1p =0.5, 0.1 and

0.01. Although there is a minor improvement (about 0.5 dB) compared to method 1,

the gap between the performance obtained with this method and the theoretical limit is

still considerable, especially for non-uniform sources.

 47

Figure 4.2: Performance of block turbo codes with constituent encoders BCH
(256,247,4) when method 2 is applied. The code rate is 0.931 and BPSK
is utilized over an AWGN channel. The number of iteration in this
simulation is 4.

 48

4.3 Method 3

In this method, we keep all the changes in method 2 and we also modify

the Chase algorithm (section 1.3.2) by making use of the a priori source information.

As we discussed in Chapter 1, we know that by using Maximum Likelihood decoding

the optimum decision will be:

 ()()2 2
 if 2 ln P 2 ln(P()).i i i j jD C R C E C R C E Cσ σ= − − = < − − =

Considering the Chase algorithm, at very high SNR, ML codeword D is located in the

sphere of radius (1)δ − centered on ()1 2, ,..., nY y y y=

where ()()0.5 1 sgnj jy r= +

with a very high probability. The reliability of component jy (which is used in the

first step of the Chase algorithm see section 1.3.2) is defined using the log-likelihood

ratio (LLR) of decision jy [22]:

 () ()=ln P(1|) P(1|)j j j j jy e r e rℜ = = − (4.7)

or

 () 2
j= 2rjy σℜ . (4.8)

Since the source is non-uniform, the a priori probability of the input bits

0 1 0(and 1)p p p= − needs be considered in the decoding process. Then, we can

calculate the relative reliability using:

 49

 () 2 1
j

0

p
= 2r +log

pjy σ
� �

ℜ � �
� �

 (4.9)

 In other words, for the case of non-uniform sources, the reliability of component jy is

calculated by considering a priori probability of the input bits. The basic idea is that

the input bit that has higher probability will result in higher reliability.

 Figure 4.3 shows the performance of turbo block codes with constituent

encoders BCH (256,247,4) using method 3. The code rate is 0.931 and BPSK is

utilized over an AWGN channel. The number of iterations in this simulation is 4.

There are some improvements with respect to the previous methods, but there is still a

huge gap between capacity and theoretical limit. For example for 1p =0.01 the gap

between capacity and theoretical limit is greater than 14 dB. Compared to the two

previous methods 1 and 2, method 3 results in 1 dB to 2 dB improvement.

 50

Figure 4.3: Performance of block turbo codes with constituent encoders BCH
(256,247,4) when method 3 is applied. The code rate is 0.931 and BPSK
is utilized over an AWGN channel. The number of iteration in this
simulation is 4.

 51

4.4 Method 4

In this approach, we propose a source controlled channel coding scheme

based on the idea that symbols that are more likely to appear in the input sequence

should be represented by less coded bits and therefore allocated less energy [6].

 As we explained in Chapter 3, the decision criterion for systematic bits is

given by:

() ()2 2
1 02 2

1 1

2 2
1 00 if

x E x E

P e P eσ σ
� � � �− − − +� � � �
� � � �⋅ < ⋅

() ()2 2

0 12 2
1 1

2 2
0 11 if

x E x E

P e P eσ σ
� � � �− + − −� � � �
� � � �⋅ < ⋅ .

To minimize the probability of symbol-by-symbol errors, given the constraint

0 0 1 1 1P E PE+ = we use energy allocation 0
1

1

P
E

P
= and 1

0
0

P
E

P
= .

Energy allocation for non-systematic bits can be done as follows. Before

allocating energy to non-systematic bits the probability of ones and zeros for non-

systematic bits needs to be calculated. The probability of zeros and ones will be almost

0.5 for codes with higher rates. In any case, after calculating the probability of zeros

and ones for non-systematic bits, we can use the same MAP criterion detection as

systematic bits to allocate energy for non-systematic bits (changing parameter θ in

Equation (3.1) does not change performance in a significant manner).

Figure 4.4 shows the performance of turbo block codes with constituent

encoders BCH (256,247,4) using method 4. The code rate is 0.931 and BPSK is

 52

utilized over an AWGN channel. The number of iterations in this simulation is 4. This

Figure shows simulation for 1p =0.5, 1p =0.1 and 1p =0.01. There is still a big gap

between capacity and theoretical limit (see table 4.1) but compared to previous

methods, for the case 1p =0.01 the gap has decreased considerably.

 53

Figure 4.4: Performance of block turbo codes with constituent encoders BCH
(256,247,4) when method 4 is applied. The code rate is 0.931 and BPSK
is utilized over an AWGN channel. The number of iteration in this
simulation is 4.

 54

4.5 Method 5

 This method combines the two previous methods, method 3 and method

4. In other words, we use an unequal energy strategy, modifying the way in which the

soft output is calculated, and we also use the a priori information in the Chase

algorithm.

 Figure 4.5 shows the performance of turbo block codes with constituent

encoders BCH (256,247,4) using method 5. The code rate is 0.931 and BPSK is

utilized over an AWGN channel. The number of iterations in this simulation is 4. This

Figure shows simulation for 1p =0.5, 1p =0.1, 1p =0.01, and 1p =0.005. Compared to

method 4, the gap between capacity and theoretical limit has decreased in almost 2 dB.

 55

Figure 4.5: Performance of block turbo codes with constituent encoders BCH
(256,247,4) when method 5 is applied. The code rate is 0.931 and BPSK
is utilized over an AWGN channel. The number of iteration in this
simulation is 4.

 56

4.6 Performance Comparison

 As we have seen throughout this Chapter, the performance of block turbo

codes for non-uniform sources improves dramatically by going from decoding method

1 to decoding method 5 (over 10 dB improvement in method 5 compared to method 1,

for the case of 1 0.01p =). Table 4.1 shows the gap between capacity and theoretical

limit for the five different decoding methods explained in this Chapter, as well as

convolutional turbo codes defined in Chapter 3. As we can see in the table, for the

case of non-uniform sources, convolutional turbo codes perform slightly better than

proposed method 5, which is the best approach for block turbo codes (1.1 dB for the

case of 1 0.01p = and 0.7 dB for 1 0.1p =).

Table 4.1: Gap to Theoretical Limit (dB) for rate R=0.93 codes applied on non
uniform sources and AWGN channels. Convolutional turbo codes are
compared with the 5 decoding methods for block turbo codes.

1p Method 1 Method 2 Method 3 Method 4 Method 5 CTC

0.5 1.3 1.3 1.3 1.3 1.3 3.9

0.1 7.4 6.9 6.3 6.1 4.0 3.3

0.01 14.9 14.6 14.2 6.1 4.2 3.1

 57

Chapter 5

 FINAL REMARKS

Our goal in this research was to improve the performance of block turbo

codes as we increased the non-uniformity of the source. As we discussed in the thesis,

since block turbo codes perform very well for rates close to one in the case of uniform

sources, we wanted to corroborate if this was also the case for non-uniform sources.

The idea was to investigate if block turbo codes could outperform convolutional turbo

codes in this context.

 The results of this research show that block turbo codes are not able to

outperform convolutional turbo codes for any rate in the case of non-uniform sources.

However, it is important to remark that the decoding algorithm in block turbo codes is

suboptimal in many aspects, with several details defined in an ad-hoc manner. Future

research investigating how to choose the weight and the reliability features in the case

of non-uniform sources could lead to improved performance gains.

 58

REFERENCES

[1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate,” IEEE Trans. on Inform. Theory, pp. 284-
287, March 1974.

[2] S. Benedetto and G. Montorsi, “Design of Parallel Concatenated Convolutional
Codes,” IEEE Trans. Commun., pp. 591–600, May 1996.

[3] S. Benedetto and G. Montorsi, “Unveiling Turbo Codes: Some Results on Parallel
Concatenated Coding Schemes,” IEEE Trans. on Inform. Theory, pp. 409–428,
March 1996.

[4] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding and
Decoding: Turbo –Codes,” IEEE Trans. Commun., pp. 1261-1271, October
1996.

[5] C. Berrou and A. Glavieux and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes,” Proc. IEEE ICC’93, pp.
1064–1070, May 1993.

[6] F. Cabarcas, R. D. Souza, and J. García-Frías, “Source-Controlled Turbo Coding
of Non-Uniform Memoryless Sources Based on Unequal Energy Allocation,”
IEEE Proc. ISIT’04, June 2004.

[7] F. Cabarcas, “Turbo Coding/Decoding Modifications for Improved Performance in
Non-Standard Environments,” M.S. Thesis, ECE Dept., University of
Delaware.

[8] D. Chase, “A Class of Algorithms for Decoding Block Codes with Channel
Measurement Information,” IEEE Trans. on Inform. Theory, pp. 170- 182,
January 1972.

[9] T. M. Cover, ”Elements of Information Theory,” Wiley Series in Telecomm, 1991.

[10] A. Elbaz, R. Pyndiah, B. Solaiman, and O. A. Sab, “Iterative Decoding of Product
Codes with A Priori Information over a Gussian Channel for Still Image
Transmission,” Proc. IEEE Globecom’99, pp. 2602-2606, 1999.

 59

[11] P. Elias, “Error-Free Coding,” IRE Trans. Inform. Theory, pp. 29-37, September
1954.

[12] J. García-Frías and J. D. Villasenor, “Combining Hidden Markov Source Models
and Parallel Concatenated Codes,” IEEE Commun. Letters, pp. 111-113, July
1997.

[13] J. Hagenauer, “Source-Controlled Channel Decoding,” IEEE Trans. Commun.,
pp. 2449–2457, September 1995.

[14] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Trans. on Info. Theory, pp. 429–445, March
1996.

[15] L. Hanzo, T.H. Liew, and B.L. Yeap, “Turbo Coding, Turbo Equalisation and
Space-Time Coding,” John Wiley, August 2002.

[16] R. Johannesson, “Some Rate 1/3 and 1/4 Binary Convolutional Codes with an
Optimum Distance Profile,” IEEE Trans. on Inform. Theory, pp. 281-283,
1977.

[17] R. Johannesson, ”Some Long Rate One-Half Binary Convolutional Codes with an
Optimum Distance Profile,” IEEE Trans. on Inform. Theory, pp. 629-631,
September 1976.

[18] F. J. Macwilliams and N. J. A. Sloane, “The Theory of Error Correcting Codes,”
North-Holland, 1978.

[19] P. Mitran and J.Bajcsy, “Turbo Source Coding: A Nosie-Robust Approach to
Data Compression,” Proc. IEEE DCC’02, p.465, April 2002.

[20] A. Morello, G. Montorosi, and M. Visintin, “Convolutional and Trellis Coded
Modulations Concatenated with Block Codes for Digital HDTV,” Int.
Workshop Digital Commun., pp. 237-250, September 1993.

[21] H. Nickl, J. Hagenauer, and F. Burkert, “Approching Shannon’s Capacity Limit
by 0.27 dB Using Simple Hamming Codes,” IEEE Trans. Commun. pp. 130-
132, September 1997.

[22] R. M. Pyndiah, “Near-Optimum Decoding of Product Codes: Block Turbo
Codes,” IEEE Trans. Commun., pp.1003-1010, August 1998.

[23] R. Pyndiah, “Iterative Decoding of Product Codes: Block Turbo Codes,” Proc.
IEEE Int. Symp. Turbo Codes & Related Topics, pp. 71-79, September 1997.

 60

[24] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near Optimum Decoding of
Product Codes,” Proc. IEEE GLOBECOM’94, pp. 339-343, November-
December 1994.

[25] S. M. Reddy, “On Decoding Iterated Codes,” IEEE on Trans. Inform. Theory, pp.
624-627, Sept 1970.

[26] P. Robertson and E. Villebrun and P. Hoher, “A Comparison of Optimal and
Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain,” Proc.
IEEE ICC’95, pp. 1009–1013, June 1995.

[27] C. E. Shannon, “A Mathematical Theory of Communication (part 1),” Bell Syst.
Tech.J., pp. 379–423, 1948.

[28] C. E. Shannon, “A Mathematical Theory of Communication (part 2). Bell Syst.
Tech.J., pp. 623–656, 1948.

[29] S.G. Wilson, “Digital Modulation and Coding,” Prentice-Hall, Englewood Cliffs,
1996.

[30] G.-C. Zhu and F. Alajaji, “Design of Turbo Codes for Non-Equiprobable
Memoryless Sources,” Proc. Allerton’01, pp. 1253-1262, October 2001.

[31] G.-C. Zhu and F. Alajaji, “Turbo Codes for Non-Uniform Memoryless Sources
over Noisy Channels,” IEEE Commun. Letters, pp. 64–66, February 2002.

[32] G.-C. Zhu, F. Alajaji, J. Bajcsy, and P. Mitran, “Non-Systematic Turbo Codes for
Non-Uniform i.i.d. Sources over AWGN Channels,” Proc. CISS, pp. 1-5,
March 2002.

