College of Engineering

\author{

- Materials Science Program
 - Chemical Engineering
 - Civil and Environmental Engineering
 - Electrical and Computer Engineering
 - Mechanical Engineering
 - Department of Air Force ROTC
}

The College of Engineering offers baccalaureate degrees in chemical, civil, environmental, electrical, computer, and mechanical engineering. The College of Engineering and the College of Arts and Science also offer a joint five-year program which leads to a bachelor's degree is one of the engineering majors as well as a bachelor's degree from the college of Arts and Science (see page 145). Additionally, the College of Engineering and the College of Business and Economics offer a joint five-year program which leads to a baccalaureate degree in an engineering major and a Master of Business Administration degree from the College of Business and Economics. Inquiry should be made to the Assistant Dean for Undergraduate Affairs (135 du Pont Hall, 302-831-8659) by March 1 of the sophomore year of engineering study. The University's Air Force ROTC program is also administered through the College of Engineering.

In additional to academic programs, the College of Engineering also maintains the Resources to Insure Successful Engineers (RISE) Program RISE provides financial assistance, counceling, and social support to students from minority groups which are underrepresented in Engineering. The program begins with a pre-freshman Summer Academy and continues to graduation. Interested individuals should contact the Assistant Dean and Director of the RISE Program at 302-831-6315

ADVISEMENT

A dvisement begins during New Student Orientation and continues through graduation. All engineering students are assigned fäculty advisors, and students are required to consult with their advisors during the advanced registration periods. Students must also obtain approval from their advisor for courses taken during the Winter or Summer Sessions and when adding or dropping courses. Students are also encouraged to meet with their engineering faculty advisors at other times to learn more about undergraduate academic options, the engineering profession, and graduate school opportunities.

The College Undergraduate Affairs Office also provides advisement to students who experience academic difficulties or who require additional help to solve a problem. The Assistant Dean for Undergraduate Affairs conducts a preliminary degree checkout with each engineering student early in his or her senior year to help identify any impediments to graduation.

CURRICULUM ORGANIZATION

The curriculum in each engineering major consists of a core of required courses, a group of elective technical classes, and a group of elective general education courses. The core group includes courses in mathematics, chemistry, physics, computer science, and engineering. The technical electives courses allow students to investigate the sciences in more depth and to develop a concentration within their engineering discipline. The general education electives are chosen from the humanities and social sciences to provide a well-rounded education The College's general education requirements are described in the following section. Additional requirements specified by individual engineering departments are given in the appropriate departmental sections

GENERAL EDUCATION PROGRAM

The College of Engineering requires that six courses (minimum of 18 credits) be chosen from the humanities and social sciences subject to the constraints listed below and the approval of the student's advisor. The courses selected must provide both breadth and depth and not be limited to a selection of unrelated introductory courses. The University's multicultural course requirement may be included in this set of six courses (see p. 20). Detailed guidelines, which include a list of courses which may be used to satisfy the program's requirements, may be obtained from the Office of the Dean of Engineering

- At least two courses (minimum of six credits) must be in the humanities. Humanities include courses in areas such as Art History, English Literature, Foreign Languages other than the student's native language, History, and Philosophy
- At least two courses (minimum of six credits) must be in the social sciences. The social sciences include courses in areas such as Economics, Political Science, Psychology, and Sociology
- At least two courses (minimum of six credits) must be above the introductory level. These courses must build upon the content of a previous course, as approved by the faculty advisor Courses which fulfill this requirement are normally at the 300 level or above.
- At least two of the six courses (minimum of six credits) must be thematically related Courses which fulfill this requirement are typically in the same department or program
Courses in mathematics, science, or engineering may not be used to satisfy any General Education Program requirement Students must consult their faculty advisors and the guidelines published by the College of Engineering for the proper classification of general education courses

ACADEMIC STANDARDS

The engineeting departments have established minimum standards for certain courses and for progression to the sophomore or junior level for each of their majors. These standards are given in the appropriate departmental sections.

In order to graduate, engineering students must satisfy the general University requirements for a baccaulareate degree (see page 20) as well as all the requirements of their engineering major Additionally, engineering students must have at least a 20 average in all engineering, mathematics, and science courses used to fulfill graduation requirements. If a course is repeated, only the last grade will be used to compute the engineering grade-point average; however, all grades are used to compute the University's cumulative grade-point index.

TRANSFER STUDENTS

The engineering curricula are very demanding, and transfer applicants must have a good record in mathematics and science. Thus, all students who wish to transfer into the College of Engineering should. contact the Assistant Dean for Undergraduate Affairs (135 du Pont Hall, 302-831-8659) to discuss curriculum requirements and transfer policies before beginning the application process.

Students at the University of Delaware who wish to transfer into a major within the College of Engineering must make a formal request to the appropriate engineering department by May 1 for entrance in the Fall semester or by December 1 for entrance in the Spring semester. The student should contact the department office well in advance of these deadlines to determine the specific information which must be included in the application.

Students from outside the University of Delaware who wish to transfer into the College of Engineering must make a formal application through the University Admissions Office by March 1 for entrance in the Fall semester or by November 15 for entrance in the Spring Semester:

MATERIALS SCIENCE PROGRAM

Although the Materials Science Program offers no degrees at the undergraduate level, undergraduate students study the basic concepts associated with the engineering properties of materials in courses taught by the Materials Science Program faculty. In addition, the College offers a minor in materials science, and all engineering departments offer senior projects concemed with the properties of materials.

These technical elective courses are strongly recommended for students intending later to pursue Master's or Doctoral degrees in Materials Science and Engineering.

REQUIREMENTS FOR A MINOR IN MATERIAL SCIENCE

Aminor in material science requires the completion of 15 credits with a minimum grade of C - in all courses MASC 302 is a required course, and the remaining may be drawn from a wide variety of materials science, engineering, physics, and chemistry courses up to the 600 -level. All courses used to fulfill the requirements of the minor must be approved by a materials science advisor. A listing of commonly offered courses is maintained by the chair of the Material Science Program. Other materials courses may be approved as appropriate For further information, contact the Materials Science Program Office at 302-831-2062

CHEMICAL ENGINEERING

Chemical Engineering is the combination of the sciences biology, chemistry, mathematics and physics with the art and creativity of engineering The department has much more inclusive descriptions of the profession for those interested

The curriculum for chemical engineering provides an early start in the discipline. In the first year, the course CHEG 112 applies the student's background in science and mathematics to the solution of several engineering problems. Physical chemistry is introduced earlier than at many other schools, enabling much of the chemical engineering science component to be completed by the end of the third undergraduate year. As a result, the fourth year provides opportunities for in-depth pursuit of technical topics of special interest A student can choose the three technical electives and the three chemical engineering technical electives to concentrate or minor in a special area. Examples of these concentrations are given below.

The early introduction to the discipline enables the student who has made an inappropriate choice to transfer out of the chemical engineering without loss of status. However, it also makes it difficult for students to transfer into the program during the sophomore or junior years unless the science requirements, especially in chemistry, have been met. Students may enter Chemical Engineering after completing the eight credit freshman Chemistry sequence CHEM 103/104 may not be adequate preparation for CHEM $443 / 444$ MATH 242 is the first mathematics course in the regular program It is the incoming student's responsibility to assess his/her own Mathematics background and proficiency (using materials provided by the MATH department.) If you are not ready to start with MATH 242, you must take MATH 241 (and possibly other earlier mathematics courses). If you have had some calculus but are uncertain that you ate ready for MATH 242, you should start with MATH 242 . In this case, it is easier to drop back to MATH 241 during the first two weeks of MATH 242 if that is where you belong. If you need additional mathematics, at least one Winter and/or Summer session will be required to complete the four year program on schedule. To remain on schedule with the CHEG courses, you must be on schedule in mathematics by the start of your sophomore year Students should also note that the program is highly sequential and that these required courses are taught but once per year:

DEGREE: BACHELOR OF CHEMICAL ENGINEERING MAJOR: CHEMICAL ENGINEERING

CURRICULUM

CREDITS
Superior figures indicate semester (fall or spring) and/or year or years in which the course should be taken, ie 1 ffall of freshman year,
$25_{\text {spring }}$ of sophomore year, etc

UNIVERSITY REQUIREMENTS

ENGL 110 Critical Reading and Writing (minimum grade C.) $3^{1 \mathrm{~F}}$
Three credits in an approved course or courses stressing $3^{1.4}$
multicultural, ethnic, and/or gender-related content (see p 20)

COLLEGE REQUIREMENTS

General Education Program
See pp. 133-134: College General Education Program

MAJOR REQULREMENTS

External to the College

Chemistry

CHEM 112 General Chemistry
HEM 443 Physical Chemi
CHEM 444. Physical Chemistry
CHEM 445 Physical Chemistry Laboratory I...
CHEM 331 Organic Chemistry $\quad 3^{3 \mathrm{~F}}$
CHEM 333 Organic Chemistry Laboratory I (lecture only) $1_{35}^{3 F}$
CHEM 332 Organic Chemistry

Mathematics

MATH 242 Analytic Geometry and Calculus B
$4^{1 F}$
MATH 243 Analytic Geometry and Calculus C
MATH 302 Ordinary Differential Equations 1
MATH 303 Ordinary Differential Equations Lab
MATH 305 Applied Math for Chemical Engineering

Physics

PHYS 207 Fundamentals of Physics ! .. $4^{1 \mathrm{~S}}$
PHYS 208 Fundamentals of Physics II

General Education Program

An additional three-credit general education course must be taken in the humanities or social sciences. Furthermore, three of the general education courses (minimum of nine credits) must be in the same department or program, and at least one of these three courses must be above the introductory level Courses classified as "Group D" by the College of Arts and Science may not be used to fulfill this requirement.
Within the College
MASC 302 Materials Science for Engineers
Within the Department
CHEG 009 Chemical Engineering Freshman Seminar $0_{15}^{1 \mathrm{~F}}$
CHEG 112 Introduction to Chemical Engineering
CHEG 231 Chemical Engineering Thermodynamics
CHEG 325 Chemical Engineering Thermodynamics.
CHEG 332 Chemical Engineering Kinetics
CHEG 341 Fluid Mechanics.
CHEG 320 Engineering Economics and Risk Assessment
CHEG 345 Chemical Engineering Laboratory I
CHEG 342 Heat and Mass Transfer
$4^{3 S}$
CHEG 445 Mass Transfer Operations
or
CHEG 473 Chemical Engineering Projects (requires advisor's approval) $\ldots 3^{4 \mathrm{~F}}$
CHEG 473 Chemical Engineering Projects can be substituted for CHEG
445 with advisor's approval This option is only available for students
who received a minimum grade of B in CHEG 345 . Note that UNIV
401-402 is equivalent to CHEG 473-474
CHEG 401 Chemical Process Dynamics and Control
CHEG 432 Chemical Process Analysis.

Technical Electives

General Technical Electives

$9^{2 S, 4 F-S}$
The purpose of the technical electives is to advance the scientific or engineering background of the chemical engineers The technical electives program. consists of a minimum of nine credits taken from courses in the following list, normally three courses. At least two of these courses (six credits) must be at the intermediate level (generally 300-600) Students should select their technical electives in the spring of sophomore year to avoid scheduling conflicts. Students should formulate an academic plan for their technical and chemical engineering electives with the assistance of their academic advisor
Note: The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisors before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of their Technical Elective courses. Students should select their technical electives during the spring of the sophomore dents should select their technical electives during the sping of the sophomore
year to avoid scheduling conflicts. The Technical Electives may be coupled with the year to avoid scheduling conficits. The fechnical Electives may be coupled with

Biology

BISC 207. Introductory Biology I 4
BISC 208 introductory Biology II
BISC 301/311 Moleculor Biology of the Cell
BISC 303 Genetic and Evolutionary Biology
BISC. 305 Cell Physiology

BISC 306
BISC 371
General Physiology
.4
BISC 4xx
introduction to Microbiology.
Biology course chosen with the approval of the advisor 3-4

Chemistry

Any three-credit combination of CHEM 333 (1 credit when the 2 credit option is chosen) $334,438,446$, and 458 may be used as an upper level technical elective.
CHEM 334 Organic Chemistry Lab II ... 2
CHEM 437 Instrumentation Methods .. 3
CHEM 457 Inorganic Chemistry .. 3
CHEM 527 Introductory Biochemistry
CHEM 6xx Chemistry course chosen with the approval of the advisor $\quad 3$
CHEM 8xx Chemistry course chosen with the approval of the advisor..... 3

Computer Science

CISC 181 Introduction to Computer Science 3

CISC 260 Machine Organization and Microcomputers 3
CISC 310 Logic and Programming .. 3
CISC 360 Computer Architecture ... 3
CISC 361 Operating Systems

Mathematics

MATH 349 Elements of Linear Systems .. 3
MATH 389 Graph Theory ... 3
MATH 426 Introduction to Numerical Analysis and
MATH 428 Algorithmic and Numerical Solution of Differential Equations 3
MATH 5xx - Mathematics course chosen with the approval of the advisor
MATH 6xx Mathemafics course chosen with the approval of the advisor

Mechanical Engineering Applied Mathematics

MEEG 361 Applied Engineering Analysis.. 3
MEEG 863 Engineering Analysis I ... 3
MEEG 864 Engineering Analysis II
Physics
PHYS 209 Fundamentals of Physics III .. 3
PHYS 313 Physical Optics
PHYS 419 Classical Mechanics I
PHYS 6xx Physics course chosen with the approval of the advisor........... 3
Statistics
STAT 450 Statistics for the Engineering and Physical Sciences 3
$\begin{array}{lll}\text { STAT } 450 & \text { Statistics for the Engineering and Physical Sciences } & 3 \\ \text { STAT } 6 \times x & \text { Statistics course chosen with the opproval of the advisor } & 3\end{array}$

Electronic Materials

(please note prerequisites)
ELEG 205 Linear Circuit Theory ... 4
CPEG 210 Introduction to Combinatorial Logic
CPEG 211 Introduction to Sequential Circuits

ELEG 340 Solid State Electronics .. 3
ELEG 623 Electrical Properties of Matter I ... 3
ELEG 626 Integrated Circuits .. 3

Materials Science/Engineering

MASC 406 Corrosion and Protection .. 3
MASC 6xx (except for courses that are cross-listed with CHEG … 3
MASC 8xx With approval of advisor ... 3
MEEG 316 Materials Engineering....
MEEG 410 Experimental Mechanics for Composite Materials
MEEG 617 Composite Materials .. 3

Mechanics

CIEG 301 Analysis of Structures ... 3
CIEG 311 Dynamics ... 3
MEEG 213 Principles of Mechanics I
MEEG 214 Principles of Mechanics II :..................................... 3
MEEG 313 Strength of Materials ... 4
MEEG 413 Advanced Mechanics of Materials
MEEG 415 Finite Element Analysis.. 3
Environmenfal Engineering
CIEG 432 Wastewater Engineering
CIEG 433 Hazardous Waste Management .. 3
CIEG 435 Industrial Wastes Management ...

Chemical Engineering Technical Electives
The curriculum provides three chemical engineering fechnical electives in the senior year. These courses are intended to provide some flexibility in selecting a chemical engineering program at the advanced level. Students should decide with the assistance of their advisor if they should conduct a program of independent research and then choose their course elective(s)

Chemical engineering technical electives are defined as follows:
Any Chemical Engineering course numbered 466 and above; UNIV
401-UNIV 402 Senior Thesis directed by a Chemical Engineering
Faculty; any 600 - or 800 -level course in Chemical Engineering
Courses at the 600 and 800 -level are graduate courses open, with
the consent of the instructor, to students in senior standing

Concentrations

The technical electives and the chemical engineering electives can be coupled to provide a more intense concentration in an area of interest
The groupings below are some examples of this approach

Biology

BISC 301
CHEM 527
CHEG 620
CHEG 650
Molecular Biology of the Cell
Introductory Biochemistry
Biochemical Engineering
Inorganic Chemistry
3^{35}
introduction to Catalysis
Industrial and Engineering Chemistry
Applied Chemical Kinetics

Chemistry
CHEM 457
CHEM 527
CHEG 606
CHEG 610
CHEG 836
CREDITS TO TOTAL A MINIMUM OF

HONORS BACHELOR OF CHEMICAL ENGINEERING

A recipient of the Honors Bachelor of Chemical Engineering must satisfy the following:

1. All requirements for the Bachelor of Chemical Engineering degree
2. All generic University requirements for the Honors Degree (see p. 30) Graduate courses approved for this purpose by the department may be counted as Honors courses

DEPARTMENTAL STANDARDS

The department has rigorous standards for admission into the courses in the department. These standards have evolved over time and are intended to promote success in the sequential development of the material. In general students must have a minimum grade of C - in all chemical engineering prerequisite courses to qualify for admission to the next course

Admission to CHEG 231:

1) A minimum grade of C - in CHEG 112
2) A minimum grade of C- in MATH 243

Admission to CHEG 320:

1) A minimum grade of C - in MATH 302

Admission to CHEG 325:

1) A minimum grade of C- in CHEG 231

Admission to CHEG 332:

1) A minimum grade of C-in CHEG 325
2) A minimum grade of C - in MATH 302

Admission to CHEG 341:

1) A minimum grade of C - in CHEG 231.
2) A minimum grade of C - in MATH 302

Admission to CHEG 342:

1) A minimum grade of C- in CHEG 341

Admission to CHEG 345:

1) A minimum grade of C - in CHEG 325
2) Admission to CHEG 342 .

Admission to CHEG 443:

1) A minimum grade of C - in CHEG 342.

Admission to CHEG 445:

1) A minimum grade of C - in CHEG 345
2) A minimum grade of C - in CHEG 332
3) Admission to CHEG 443

Admission to CHEG 401:

1) A minimum grade of C - in CHEG 443

Admission to CHEG 432:

1) A minimum grade of C- in CHEG 320
2) A minimum grade of C - in CHEG 332.
3) A minimum grade of C- in CHEG 443.

Graduation Requirements:

1) A "P" (pass) in CHEG 009
2) A minimum grade of C - in all other Chemical Engineering courses counted towards graduation

CHEMICAL ENGINEERING CURRICULUM-MASTER'S-BACHELOR'S PROGRAM

$\mathbf{U}_{\text {nder }}$ unusual circumstances, a highly qualified student may earn a Bachelor of Chemical Engineering and a Master of Chemical Engineering in four years. This program assumes that the student enters with advanced sophomore standing and is able to cope with at least one term of a substantial overload. Interested students should contact the department for further information and a sample schedule. It should be noted that, in order to ensure a broad educational experience, the Department does not admit Delaware undergraduates to its Ph.D program unless they have at least three years of industrial experience or have earned a master's degree at another institution

CIVIL AND ENVIRONMENTAL ENGINEERING

Traditionally, civil engineering has been identified with the planning and design of constructed facilities such as dams, bridges, buildings, roads, waterways, and tunnels. Modern civil engineering now addresses larger segments of societal infrastructure such as mass transportation systems, water resource exploration and management, environmental protection, coastal management protection, and offshore structures. Areas concerned with pollution control, water supply, and water resource management are now considered to comprise the distinct discipline of Environmental Engineering

The Civil and Environmental Engineering Department offers programs which lead to the degrees of Bachelor of Civil Engineering and Bachelor of Environmental Engineering. The Civil Engineering curriculum includes specialization options in structural engineering, geotechnical engineering, environmental engineering, hydraulic and ocean engineering, and transportation engineering as shown by the listed Technical Electives. The Environmental Engineering curriculum is focused on causes, control, and prevention of environmental contamination, environmental facilities design and construction, and pollution transport and control processes. Each of these degrees is described separately below.

DEPARTMENTAL POLICIES

To be enrolled in 300 or 400 -level civil engineering or mechanics courses, civil and environmental engineering majors must have attained at least a C- grade in MATH 241, MATH 242, and PHYS 207. Furthermore, civil engineering majors must attain at least a Cin CHEM 103 and CHEM 104, and environmental engineering majors must earn at least a C- in CHEM 111 and CHEM 112

In general, 300- and 400 -level courses in civil engineering are open only to students majoring in civil or environmental engineering. Students who have declared a civil engineering minor and students enrolled in other departments of the College of Engineering can be enrolled in 300 and 400 -level civil engineering courses with the approval of their home department advisor In some instances, other students may be permitted to enroll in selected 300 and 400 -level courses, but they must have the permission of both the course instructor and the chair of the Civil and Environmental Engineering Department

DEGREE: BACHELOR OF CIVIL ENGINEERING MAJOR: CIVIL ENGINEERING

curriculum
CREDITS
Superior figures indicate semester (fall or spring) and/or year or years
in which the course should be taken, i.e. IF fall of freshman year,
$2 S_{\text {spring }}$ of sophemore $y e a r$ etc
$2 S_{\text {spring }}$ of sophomore year, etc.
UNIVERSITY REQUIREMENTS
ENGL 110 Critical Reading and Writing (minimum grade C. $\quad 3_{1}^{15}$
Three credits in an approved course or courses stressing multicultural, ethnic, and/or gender-related content (see p. 20)
COLLEGE REQUIREMENTS
General Education Program
See pp 133-134: College General Education Program.
MAJOR REQUIREMENTS

One of:
CIEG 431 Water Supply Engineering .. 3^{45}
CIEG 432 Wastewater Engineering ... 3
One of:
CIEG 441 Hydrology
or CIEG 442 Hydraulic Engineering ...

Technical Electives

Four courses giving a total of at least four additional design points must be satisfied; see current department technical elective listing This technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisors before selecting courses and should be aware that a formal mechonism exists to provide additional flexibility in the selection of their technical elective courses

TECHNICAL ELECTIVES

The required course curriculum gives students a broad introduction to all the major areas of civil engineering offered by the program: Structural and Geotechnical Engineering, Environmental Engineering and Water Resources, Hydraulics and Ocean Engineering, and Transportation Engineering

In addition, four technical elective courses in the Civil Engineering curriculum give students the opportunity to complete their education by concentrating in an area of special interest The technical electives can also be chosen to provide a more general civil engineering education.

The following is a list of departmental technical electives approved for a concentration in one of the above mentioned areas or in general civil engineering Some of these courses may not be offered a particular year. A current list is available in the department office Some courses offered in other departments may also be approved as technical electives. Students should check with their advisors before selecting courses.General Civil Engineering
CIEG 223 Surveying 3
CIEG 401 Computer Methods of Structural Engineering 3
CIEG 402 Steel DesignSteel Design
Concrete Design
CIEG 403
CIEG 421 Foundations and SubstructurFoundations and Substructures3
Warer Supply Engineering$\begin{array}{r}3 \\ \hline\end{array}$
CIEG 432 Wastewater EngineeringCIEG 441 Hydrology.Hydrology.
Hydraulic EngineeringHydraulic EngineeringCIEG 442 Hydraulic Engineering
CIEG 452 Transportation Facilities Design3
CIEG 471 Introduction to Coastal Engineering 3
3
EGGG 432 Principles of Computer-Aided Drawing 3
Environmental Engineering
CIEG 403 Concrete Design 3
CIEG 421 Foundations and Substructures 3
Water Supply Engineering 3
CIEG 432 Wastewater EngineeringCIEG 433 Hazardous Waste Management
CIEG 435 Industrial Wastes Management
Water and Wastewater QualityCIEG 441 Hydrology$\begin{array}{r}3 \\ \hline\end{array}$
3Hydraulic EngineeringHydraulic Engineering
Land Application of WastesAGEG 628 Land Application of Wastes
BISC 371 Introduction to Microbiology...BISC 472 Principles of Infectious DiseasesBISC 641 Microbial EcologyMicrobial Ecology ChemistryCHEM 213 Elementary Organic ChemistryCHEM 214 Elementary Biochemistry- 3CHEM 220 Quantitative AnalysisCHEM 418 Introduction to Physical ChemistryELEG 681 Remote Sensing in Environment.GEOL 413 Fundamentals of Well LoggingGEOL 421 Environmental and Applied GeologyOE. 421 Environmenial and Applied Ceology
Hydrogeology
Thermodynamics I 3
GEOL 428 3
Hydraulic and Ocean Engineering
CIEG 441 Hydrology 3
CIEG 421 Foundations and Substructures 3
CIEG 422 Earth Structures Engineering3
CIEG 431 Water Supply Engineering 3
CIEG 401 Computer Methods of Structural Engineering 3
CIEG 403 Concrete Design
CIEG 471 Introduction to Coastal Engineering3
3
CIEG 442 . Hydraulic Engineering3
$-\quad 3$
3
MEEG 361 Applied Engineering Analysis 3
Structures and Geotechnical Engineering
CIEG 223 Surveying 3
CIEG 401 Computer Methods of Structural Analysis 3
CIEG 402 Sreel Design- 3
CIEG 403 Concrete Design
Prestressed Concrete Design 3Matrix Structural Analysis3
CIEG 406 Structural Materials3
CIEG 411 Structural Dynamics DesignReliability Design3
CIEG 416 Random Vibration 3

CIEG 417	Advanced Structural Analysis	3
CIEG 418	Continuously Supported Structures	3
CIEG 421	Foundations and Substructures.	3
CIEG 422	Earth Structures Engineering	3
CIEG 459	Railroad Engineering	3
CIEG 467	Introduction to Bridge Design	3
Transportation Engineering		
CIEG 223	Surveying	3
CIEG 452	Transportation Facilities Design	3
CIEG 454	Urban Transportation Planning	3
CIEG 459	Railroad Engineering	3
CIEG 486	Engineering Management	3
GEOG 328	Transportation Geography	3
STAT 420	Data Analysis and Nonparametric Statistics	3

HONORS BACHELOR OF CIVIL ENGINEERING

A recipient of the Honors Bachelor of Civil Engineering must satisfy the following:
1 All requirements for the Bachelor of Civil Engineering degree.
2. All generic University requirements for the Honors Degree (see p
30). Graduate courses approved for this purpose by the department may be counted as Honors courses
3. The Honors Thesis must be within the disciplines of Civil and Environmental Engineering. It must be supervised by a faculty member from the Department of Civil and Environmental Engineering and successfully presented orally in front of a committee approved by the department Undergraduate Committee

MINOR IN CIVIL ENGINEERING

A minor in civil engineering may be earned by a student in any University bachelor's degree program through successful completion of a minimum of 21 credits in civil engineering and engineering mechanics Before beginning the civil engineering courses, the student must meet the required mathematics and physics prerequisites, and before being admitted to the minor, the student must have successfully completed CHEM103, 104, MATH 242, 243, 302, PHYS 207 and 208. A grade point average of at least 2.0 is required in the 21 credits of engineering courses of the minor and in the mathematics and science courses listed above.
The required civil engineering and engineering mechanics courses are the following:

CIEG 211	Statics,	
CIEG 212	Srength of Materials, (Lab optional)	\cdots
CIEG 311	Dynamics,	
MECH 305	Fluid Mechanics, (lab optionall	

MECH 305 Fluid Mechanics, (Lab optional)
Further, an additional 9 credits (3 courses) in civil engineering must be taken of which at least 6 credits must be at the 300 or higher level. Those courses shall be selected with the specific advice of an advisor in the Civil and Environmental Engineering Department to meet each student's objectives. For students oriented toward earth sciences these might include CIEG 420 and CIEG 421; for those interested in the environment, CIEG 331 and 431; for those interested in urban topics, CIEG 331 and 351; for those with interests in construction and structures, CIEG 301, 303 and 402 or 403; for those interested in the oceans, CIEG 442, and CIEG 471.

Accomplishment of a minor in civil engineering has many advantages for students who are earning degrees in other sciences such as geology or in other professional areas such as business administration, but it must be understood that meeting the requirements for a minor in civil engineering without fulfilling the remaining requirements for an accredited engineering degree does not provide the breadth and depth of knowledge required to be a civil engineer.

DEGREE: BACHELOR OF ENVIRONMENTAL ENGINEERING

 MAJOR: ENVIRONMENTAL ENGINEERING

Technical Electives
Six courses chosen from the current list of approved technical electives.
The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisors before selecting courses and should be aware that a
formal mechanism exists to provide additional flexibility in the selection of their technical elective courses

CREDITS TO TOTAL A MINIMUM OF .131

TECHNICAL ELECTIVES

Six courses, totaling eighteen credit hours, are provided to allow the student flexibility at the intermediate and advanced levels of the program. An area of concentration is first determined, defined by a set of three specific core technical electives as given below. The remaining
three technical electives can then be chosen to further pursue this direction of study, or to provide a more diversified environmental engineering education. All technical electives must be upper level courses in engineering, the sciences, computer science, or mathematics. Students should select their area of concentration and desired technical electives with the assistance of their academic advisor It is advisable to select these courses in the spring of the sophomore year to avoid scheduling conflicts and to insure that prerequisite courses are taken.

The core technical electives and additional technical electives for the environmental engineering concentrations are shown below

Environmental Facilities Design and Construction

Core Technical Electives

Pollution Transport and Control Processes

Core Technical Electives
CHEG 332 Chemical Engineering Kinetics 3
CHEG 342 Heat and Mass Transfer ... 4
CHEM 443 Physical Chemistry
Additional Related Technical Electives
CIEG 433 Hazardous Waste Management 3
CIEG 435 Industrial Waste Management 3

Additional Recommended Technical Electives
AGEG 628 Land Application of Wastes ... 3

CHEM 331 Organic Chemistry .. 3
CHEM 444 Physical Chemistry .. 3
CIEG 482 Systems Design and Operation ... 3
GEOL 421 Environmental and Applied Geology
GEOL 446 General Geochemistry .. 3
PLSC 608 Soil Chemistry … .. 3
Note: This list is not exhaustive. Consult your advisor

HONORS BACHELOR OF ENVIRONMENTAL ENGINEERING

A recipient of the Honors Bachelor of Environmental Engineering must satisfy the following:

1. All requirements for the Bachelor of Environmental Engineering degree.
2. All generic University requirements for the Honors Degree (see p. 30). Graduate courses approved for this purpose by the department may be counted as Honors courses
3 The Honors Thesis must be within the disciplines of Civil and Environmental Engineering and successfully presented orally in front of a committe approved by the department Undergraduate Committee

ELECTRICAL AND COMPUTER ENGINEERING

The Department of Electrical Engineering offers programs which lead to the degrees of Bachelor of Electrical Engineering and Bachelor of Computer Engineering The Electrical Engineering curriculum prepares graduates to enter the broad profession of modern electrical engineering The Computer Engineering curriculum is more focused on the application of electrical engineering principles to the design of computers, networks of computers, or sometimes systems that include computers.

Coursework in electrical and computer engineering starts with the first term of the freshman year, with successive years building on prerequisite courses and including an unusually high number of courses with laboratories.

There are three basic parts to the Delaware curriculum in engineering: (1) a core group of courses; (2) an elective group of technical courses in an area of concentration; and (3) a "general education" component that includes six courses in the humanities and social sciences and two in written communications

The core group includes four courses in mathematics, two in physics, one in chemistry, two in computer science, and sixteen in electrical engineering. MATH 242 is the first mathematics course in the regular program. It is the incoming student's responsibility to assess his/her own mathematics background and proficiency (using materials supplied by our Math Department). If you are not ready to start with MATH 242 , you must take MATH 241 (and possibly other earlier mathematics courses). If you have had some calculus, but are not certain that you are ready for MATH 242, start with MATH 242. In this case it is easier to drop back to MATH 241 during the first two weeks of MATH 242 if this is where you belong. If you need additional mathematics, at least one Winter and/or Summer sessions course will be required to complete the four year electrical engineering program on schedule. To remain on schedule with your program, you must be on schedule in mathematics by the start of the sophomore year.

The technical electives must be chosen to form an area of concentration Four examples of acceptable concentrations (emphasizing computer engineering, systems and signals, devices and materials, and power systems) are shown on the following pages. In planning their technical elective programs, students must also consider the requirement for a design course in the senior year in which one design project is at least 50% of the course work

The general education program must include courses from the humanities and from the social sciences, including courses at an advanced level. Electrical engineering students must include a course in microeconomics, two writing courses (ENGL 110 and ENGL 301), and a one-credit course in ethics (PHIL 341)

DEPARTMENTAL REQUIREMENTS

To qualify for sophomore standing, students must have satisfactorily completed MATH 242-243, CISC 181, PHYS 207, and CPEG 210211 by the end of the summer session of their freshman year.

DEGREE: BACHELOR OF ELECTRICAL ENGINEERING MAJOR: ELECTRICAL ENGINEERING

CURRICULUM

CREDITS
Superior figures indicate semester (fall or spring) and/or year or years in which the course should be taken, i.e. II fall of freshman year,
$2 S_{\text {spring }}$ of sophomore year, etc

UNIVERSITY REQUIREMENTS

ENGL 110 Critiçal Reading and Writing (minimum grade C _........ $3^{\text {is }}$
Three credits in an approved course or courses stressing
multicultural, ethnic, and/or gender-related content (see p. 20)

COLLEGE REQUIREMENTS

General Education Program
See pp 133-134: College General Education Program.
MAJOR REQUIREMENTS
External to the College
ENGL 301 Expository Writing
PHIL 341 Ethics of Engineering Profession $1^{\text {AF }}$

Mathematics

MATH 242 Analytic Geometry and Calculus B 4^{1}
MATH 243 Analytic Geometry and Calculus C 4^{15}

Chemistry

CHEM 10
Physics

PHYS 207

General Chemistry
$4^{i f}$
$\begin{array}{ll}\text { PHYS } 207 & \text { Fundamentals of Physics } \\ \text { PHYS } 208 & \text { Fundamentals of Physics }\end{array}$

Computer Science

CISC course to be approved by advisor
CISC 181 Introduction to Computer Science

Within the Department

CPEG 210 Introduction to Combinational Logic
CPEG 211 Introduction to Sequential Circuits
CPEG 220 Microprocessor Based Systems I
CPEG 221 Microprocessor Based Systems II
ELEG 205 Linear Circuit Theory
ELEG 309 Electronic Circuit Analysis
ELEG 302 Electrical Properties of Materials
ELEG 305 Signal Processing 1
ELEG 312 Electronic Circuit Analysis il
ELEG 320 Field Theory
ELEG 306 Signal Processing II
ELEG 310 Random Signals and Noise
ELEG 340 . Solid State Electronics
ELEG 417 Feedback Control Systems
ELEG 413 Field Theory II.
ELEG 433 Energy Systems
Note: ELEG 310 may be taken in the senior year(s) and ELEG 413 and/or ELEG 433 in the junior year(s) when appropriate to a plan for a technical concentration.

Design Requirement

In addition to the design content of the normal program, every student must take at least one course in the senior year in which one design pro ject is at least 50% of the coursework. Regularly offered courses that presently meet this requirement are ELEG 420, 422, 650 and 664 Other special courses are offered that will meet this requirement. The design requirement may also be met with special projects carried out in conjunction with faculty research with the prior approval of the Departmental Undergraduate Representative. Students must consult with their advisors for the proper selection of design courses

Technical Electives

Technical Electives

Each student must select a concentration to structure his/her technical elective program. Four concentrations are defined (computer engineering, systems and signals engineering, electronic devices and materials engineering and power systems engineering). Students with a special interest may define their own concentrations in conjunction with their advisor With some exceptions, upper-level engineering, computer science, physics, science and mathematics courses are acceptable technical electives. However, students planning their own programs of concentration should realize that there must be a theme holding together at least most of the courses chosen. Any special concentrations must be approved by the Departmental Undergraduate Representative prior to the start of the senior year Each of the four regular concentrations specifies 15, or more, of the 21 technical elective credits in the core program. Students should note that the requirement for a senior design project will, in some cases, further constrain the choice of technical electives.
The technical electives must be chosen from an area of concentration The technical elective program is under constant review by the faculty. An updated list is available in the department office Students should check with their advisors before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in the selection of their technical elective courses The four concentrations follow:

Technical Electives-Computer Engineering		
CISC 220	Data Structures	3
CISC 360	Computer Architecture	
CPEG 323	Digital System Design 1	3 35
CPEG 422	Digital System Design II	3
$\text { ELEG } 618$ or	Modern Control Engineering	3
ELEG 631	Digital Signal Processing	$3{ }^{4}$
Technical electives chosen with the approval of an advisor		
Technical Electives-Systems and Signals Concentration		
CISC 220	Data Structures	3^{25}
MATH 426	Introduction to Numerical Analysis and	$3^{3 F}$
	Algorithmic Computation	
ELEG 403	Communication Systems Engineering	3^{45}

ELEG 618 Modern Control Engineering 3^{45}
EIEG 631 Digita Signal Proces
Technical electives chosen with the approval of an advisor
3^{45}
$3^{4 \mathrm{~F}}$
6^{4}

Technical Electives-Devices and Materia/s Concentration
Students whose primary interest is in the Devices and Materials Engineering concentration should take:
PHYS 209 Fundamentals of Physics III..
PHYS 313 Physical Optics... 4^{35}
ELEG 623 Electronic Properties of Matter ... 3^{47}
Students whose primary interest is in optoelectronics and electro-optics should take:
ELEG 640 Optoelectronics .. 4 F
and SeG 642 Special Topics in Electrooptics $3^{4 S}$
Courses must be taken as a sequence
Students whose primary interest is in electronic devices should take:
ELEG 626 Integrated Circuits ...
and 650 Semiconductor Device Design and Fabrication 3^{45}
Courses must be taken as a sequence .
Technical electives chosen with the approval of an advisor............ 6^{4}
Technical Electives-Power Systems Concentration
MEEG 307 Thermodynamics 1...........................

ELEG 414 Electrical Machines, Motors and Generators 4^{45}

or 1 .

ELEG 323 Digital Systems Design
Technical electives chosen with the approval of an advisor 6^{4}
CREDITS TO TOTAL A MINIMUM OF.................................. 128

HONORS BACHELOR OF ELECTRICAL ENGINEERING

A recipient of the Honors Bachelor of Electrical Engineering must satisfy the following:

1. All requirements for the Bachelor of Electrical Engineering degree.
2. All generic University requirements for the Honors Degree (see p. 30). Graduate courses approved for this purpose by the department may be counted as Honors courses.

DEGREE: BACHELOR OF COMPUTER ENGINEERING MAJOR: COMPUTER ENGINEERING

Superior figures indicate semester (fall or spring) and/or year or years in which the course should be taken, i.e. Iffall of freshman year,
$2 S_{\text {spring }}$ of sophomore year, etc.
CURRICULUM
UNIVERSITY REQUIREMENTS
ENGL 110 Critical Reading and Writing (minimum grade C.)
Three credits in an approved course or courses stressing
multicultural, ethnic, and/or gender-related content (see p 20).

COLLEGE REQUIREMENTS

General Education Program
See pp 133-134: College General Education Program

MAJOR REQUIREMENTS

External to the College

General Education

ECON 151 Introduction to Microeconomics $\quad 3^{2 F}$

PHIL 341 Ethics in the Engineering Profession 14F

Mathematics

MATH 210 Discrete Mathematics .. $3^{1 F}$
MATH 242 Analytical Geometry and Calculus B $\quad 41 \mathrm{~F}$
MATH 243 Analytical Geometry and Calculus C
MATH 341 Differential Equations \& Linear Alg I......................... 2 F
MATH 342 Differential Equations \& Linear Alg II .. 2 S
Students not prepared to start with MATH 242 should start in MATH 241 and use the winter and/or summer terms to get caught up before the
sophomore year.

Physics

PHYS 207 General Physics....... .. 4 1S
PHYS 208 General Physics42 F

External to the College

Computer Science
CISC 105 General Computer Science .. 1 IF
CISC 181 Introduction to Computer Science II .. $3^{1 F}$
CISC 220 Data Structures ... 3 2S
CISC 361 Operating Systems .. 35
Students with adequate programming experience may substitute the
CISC 181, CISC 220 and CISC 280 sequence for the CISC 105, CISC
181 and CISC 220 sequence. Students taking CISC 105 must take the C language section

Within the Department
CPEG 210 Introduction to Combinational Logic...................................... 2 is
CPEG 211 Introduction to Sequential Circuits 2 is
ELEG 205 Linear Circuif Theory .. $4^{2 \mathrm{~F}}$

ELEG 309 Electronic Circuit Analysis I .. 425
CPEG 221 Micropiocessor Based Systems II .. 225
ELEG 305 Signal Processing... $3^{3 F}$
ELEG 312 Electronic Circuit Analysis :.. 43 F
ELEG 320 Field Theory .. 3 F
CPEG 323 Introd ction to Computer System Engineering … 33 F
ELEG 306 Signal Processing II ... 4^{35}
ELEG 315 Random Signiels and Noise ..

ELEG 413 Field Theory II ... 45
CPEG 422 Computer Systems Design II ... 4^{45}

Design Requirement

In addition to the design content of the normal program, every student must take at least one course in their senior year in which one design project is at least 50% of the coursework. Regularly offered courses that presently meet this requirement are CPEG 422, ELEG 450 and CPEG 464 . Other special courses are offered which will meet this requirement. The design requirement may also be met with special projects carried out in conjunction with faculty research with the prior approval of the Department Undergraduate Representative Students must consult with the advisors for the proper selection of design courses.

Technical Electives

The choice of technical program electives must have the approval of the
student's advisor and must include at least three of the following courses:
CPEG 464 VLSI Systems
CPEG 419 Computer Communications Systems
CPEG 421 Compiler Design
CPEG 418 Modern Control Engineering
The technical elective program is under constant review by the faculty An updated list is available in the department office Students should check with their advisors before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of their Technical Elective courses.

CREDITS TO TOTAL A MINIMUM OF

127

HONORS BACHELOR OF COMPUTER ENGINEERING

A recipient of the Honors Bachelor of Computer Engineering must satisfy the following:

1. All requirements for the Bachelor of Computer Engineering degree
2. All generic University requirements for the Honors Degree (see p. 30). Graduate courses approved for this purpose by the department may be counted as Honors courses.

MECHANICAL ENGINEERING

Mechanical engineers receive one of the broadest educations of any of the modern engineering disciplines and consequently are well prepared to apply basic engineering principles to a wide variety of society's needs.

The educational program is structured around a basic core program that will enable the Bachelor of Mechanical Engineering graduate to follow many career paths, including research, development, design, production, maintenance, management, patent law, or education. The curriculum nevertheless also allows a student to select engineering fields of particular interest for study, such as aerospace, materials, biomechanics, controls, design and systems, tobotics, energy, and fluids.

The degree course is designed to serve not only those students who go into industry or government directly after the B M. E degree, but also those who go on to a graduate program in engineering or continue their education in other professions such as medicine, law or business administration Undergraduates are encouraged to participate in research projects with faculty and graduate students involving the use of state-of-the-art instrumentation, electronics and networked computers.

TECHNICAL ELECTIVE PROGRAM

Technical electives in the senior year of the Bachelor of Mechanical Engineering curriculum provide the student with an opportunity to pursue areas of particular interest. The technical electives are taken after much of the basic engineering science has been mastered and comprise four coordinated courses (a minimum of 12 credits). Although the majority of the available electives are drawn from the Mechanical Engineering department, courses at the 400 -level and above from other departments and colleges can be selected with the advisor's approval.

There are four suggested major areas of concentration, Aerospace Engineering, Fluids and Thermal Engineering, Solid Mechanics and Materials, and Design, Dynamics and Manufacturing However, technical elective programs can be structured to meet individual interests and students are encouraged to discuss their educational objectives with their advisor early in the junior year and to develop an agreed selection of technical electives.

DEGREE: BACHELOR OF MECHANICAL ENGINEERING MAJOR: MECHANICAL ENGINEERING

CURRICULUM CREDITS

Superior figures indicate semester (fall or spring) and/or year or years
in which the course should be taken, ie. iffall of freshman year,
$2 S_{\text {spring of sophomore year, etc. }}$

UNIVERSITY REQUIREMENTS

ENGL 110 Critical Reading and Writing (minimum grade C-1............... $3^{\text {1s }}$
Three credits in an approved course or courses stressing
multicultural, ethnic, and/or gender-related content (see p. 20)

COLLEGE REQUIREMENTS

General Education Program .. 18^{1-4}
See pp 133-134: College General Education Program
MAJOR REQUIREMENTS

External to the College

An additional course (minimum of three credits) that can $3^{1.4}$
be either Air Force ROTC or a course outside the College of Engineering
(not including mathematics or science or courses in the "Group D" classification of the College of Arts and Science).

Chemistry		
CHEM 103	General Chemistry	
CHEM 104	General Chemistry	$4^{\text {IS }}$
Computer and Information Sciences		
CISC 106	General Computer Science for Engineers	$3^{2 F}$
Mathemotics		
MATH 241	Analytic Geometry and Calculus A	4^{17}
MATH 242	Analytic Geometry and Calculus B	4^{15}
MATH 243	Analytic Geometry and Calculus C	$4{ }_{2}^{2 F}$
MATH 302	Ordinary Differential Equations.	3^{25}
Physics		
PHYS 207	Fundamentals of Physics I	
PHYS 208	Fundamentals of Physics II	$4^{2 F}$

Within the College
EGGG 132 Engineering Graphics/Analysis N
MASC 302 Materials Science for Engineers
MECH 305 Fluid Mechanics $33 F$
$3 F$
MECH 306 Fluid Mechanics Laboratory $4^{4 F}$
Within the Department
MEEG 125 Introduction to Mechanical Engineering $0^{1 F}$
MEEG 213 Principles of Mechanics 1 $3^{2 F}$
3MEEG 214 Principles of Mechanics 11
MEEG 307 Thermodynamics I $3^{3 F}$
MEEG 308 Thermodynamics 11 3^{35}
MEEG 313 Strength of MaterialsMEEG 316 Materials Engineering43 FMEEG 347 Mechanical Design 1$3^{3 F}$MEEG 348 Mechanical Design II335
Applied Engineering Analysis 335
MEEG 391 Engineering Science Laboratory 1$4_{35}^{35}$
3
MEEG 336 Fluid Mechanics II35
MEEG 302 Heal Transfer
MEEG 427 System Dynamics
MEEG 447 Design and Systems Synthesis :MEEG 448Technical Electives
Technical Electives12^{4}
400 -level or above courses in engineering, science or mathematics selected by the student with the approval of their advisor
CREDITS TOTAL A MINIMUM OF 131

TECHNICAL ELECTIVES

There are four suggested areas of concentration in the technical elective offerings. Students should select a minimum of 12 credits from the following courses or substitute other courses in consultation with their advisor. All technical elective selections must be approved by an advisor,

1. Aerospace Engineering

MEEG 411 Structural Mechanics for Mechanical and 3
MEEG 413 Advanced Mechanics of Materials
3
3
MEEG 415 Finife Element Analysis 3
MEEG 432 Aerodynamics 3
MEEG 436 Fluid Machinery 3
MEEG 445 Senior Research 3.6
MEEG 614 Fracture of Materials 3
-3
MEEG 615 Mechanical Properties of Materials 3
II. Fluids and Thermal Engineering
MEEG 408 Power Generation System Design 3
MEEG 432 Aerodynamics 3
MEEG 434/634 Air Pollution Processes 3
3
MEEG 436 Fluid Machinery 3
MEEG 445 Senior Research 3-6
MEEG 636 Fluid Mechanics Measurements 3
MEEG 652 Flow of Viscous Materials 3
sses
3
MEEG 411 Structural Mechanics for Mechanical and
3
MEEG 413 Advanced Mechanics of Materials3
MEEG 415 Finite Element Analysis
3.6
MEEG 445 Senior Research
3
3
3
3
MEEG 613 Biomechanics3
MEEG 614 Fracture of Materials3
3
MEEG 615 Mechanical Properties of Materials 3
MEEG 616 Composite Materials Structures 3
MEEG 617 Composite Materials -
MEEG 623 Nonlinear Dynamics and Chaos 3
MEEG 652 Flow of Viscous Materials 3
IV. Design, Dynamics and Manufacturing
MEEG 408 Power Generation System Design 3
MEEG 415 Finite Element Analysis.$\begin{array}{r}1 \\ + \\ \hline\end{array}$
MEEG 423 Vibrations
3
MEEG 445 Senior Research 3.6
MEEG 623 Nonlinear Dynamics and Chaos 3MEEG 425MEEG 626MEEG 653MEEG 663MEEG 6xxMEEG $6 \times x$MEEG $6 x x$MEEG $6 x x$MEEG $6 \times x$MEEG $6 \times x$
Vehicle Dynamics 3
Random Vibration. Manufacturing Processes 3
3
Computer Aided Design. 3
Computer Aided Design.
Multidisciplinary Design 3
High Temp Composites 3
Robotics. 3
Automatic Control of Mechanical Systems 3
Designs and Manufacture of Flexible Composite Structures$\begin{array}{r}3 \\ \quad . \\ \hline\end{array}$

HONORS BACHELOR OF MECHANICAL ENGINEERING

A recipient of Honors Bachelor of Mechanical Engineering must satisfy the following:

1. All requirements for the Bachelor of Mechanical Engineering degree.
2. All generic University requirements for the Honors Degree (see p. 30) Graduate courses approved for this purpose by the department may be counted as Honors courses

DEPARTMENT OF AIR FORCE ROTC

The Air Force Reserve Officer Training Corps (AFROTC) provides a program for qualified college men and women to earn commissions as Second Lieutenants in the United States Air Force while completing their University course requirements. Commissioning follows the award of a University bachelor's degree Questions concerning applicant qualifications should be directed to the unit's admission counselor

PROGRAMS OFFERED

Four-Year Program. The four-year program is composed of a General Military Course (GMC) and a Professional Officer Course (POC). The first two years, the GMC, provide a general introduction to the Air Force and the various career fields. Students enrolled in the GMC who are not receiving an Air Force Scholarship incur no reserve or active duty service obligation to the Air Force and may elect to discontinue the program at any time The final two years, the POC, concentrate on developing leadership and management skills and on a study of American defense policy. Students must compete for entry into the POC. If accepted, they must attend four weeks of field training at a designated Air Force base during the summer following their sophomore year of college. When they return to the University in the Fall, they are placed under contract with the Air Force to complete the program and serve a minimum of four years on active duty. Pilot and navigator candidates incur an additional obligation because of specialized training following commissioning All students under contract receive approximately $\$ 1,500$ tax free annually

Two-Year Program. The two-year program is normally offered to prospective juniors and graduate students. The academic requitements for this program are identical to the final two years of the fouryear program. During the summer preceding entry into the two-year program, all candidates must complete a six-week field training session at a designated Air Force base

General Requirements for POC Acceptance. Students competing for acceptance as POC cadets must complete the four-year or two-year program prerequisites, pass the Air Force Officer Qualifying Test, be physically qualified, meet certain age requirements, be in good academic standing, and be able to meet all Air Force enlistment standards.

THE CURRICULUM

General Military Course (GMC)

Freshman year: The Development of Air Power I/II-AFSC 100 (fall) and AFSC 101 (spring). Each of these one-credit courses consists of approximately one hour of academic class each week. These two GMC courses survey the history of air power from the 18th century to the present

Sophomore year: The Air Force Today I/II-AFSC 200 (fall) and AFSC 201 (spring). Each of these one-credit courses consists of approximately one hour of academic class each week. In combination, these two courses survey the roles of the Department of Defense and the U.S Air Force in our society.

GMC courses are open to all freshman and sophomore students Leadership activities are open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the Professor of Aerospace Studies Leadership activities are scheduled for one-and-a-half hours each week

Professional Officer Course (POC)

Junior year: Leadership and Management I/II—AFSC 310 (fall) and AFSC 311 (spring). Each of these three-credit courses consists of two-and-a-half hours of academic classes each week Here the student is introduced to leadership and management concepts. The courses are designed to provide a foundation for basic leadership and management skills, with emphasis on communications.

Senior year: National Security Forces in U.S. Society I/II—AFSC 410 (fall) and AFSC 411 (spring). Each of these threecredit courses consists of two-and-a-half hours of academic classes each week. These courses focus on our national security policy-its evolution, actors, processes, and current issues Emphasis is also
given to military professionalism, military justice, and communication skills.

POC courses are open to all juniors and seniors Leadership activities are open to students who are members of the Reserve Officer Training Corps or are eligible to pursue a commission as determined by the Professor of Aerospace Studies. Leadership activities are scheduled for one-and-a-half hours each week.

Scholarships Available. The AFROTC College Scholarship Program provides four- to eight-semester scholarships to students on a competitive basis. Scholarships are available in technical and nontechnical fields and are based on the whole-person concept and certain age restrictions. Any University of Delaware student may apply for these scholarships. Opportunity for scholarship selection is enhanced by enrolling in AFROTC. Those selected may receive full tuition, lab expenses, incidental and textbook fees, plus a $\$ 150$ monthly, nontaxable allowance during the school year Students who accept a scholarship enter the AFROTC program as a contract cadet.

Professional Officer Course Incentive (POCI) Scholarships are available for all students who meet certain age and academic requirements and are under contract as a POC cadet. These students receive $\$ 850$ per semester towards tuition, plus $\$ 150$ per semester for books All majors are eligible to receive the POCI scholarship.

Air Force ROTC Nurse Program. Air Force ROTC makes it possible for qualified nursing school applicants to enroll in its programs and, upon completion of all academic requirements, receive a commission as a Second Lieutenant in the United States Air Force Medical Corps Four- to eight-semester scholarships are available to highly qualified applicants.

