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ABSTRACT 

A continuous challenge in drug delivery is to achieve tissue and organ-specific 

targeting, in particular to places like the lymph node and brain, where many difficult-

to-treat diseases reside. This challenge is due to organ-specific endothelial barriers that 

possess unique cell membrane proteins and serve as restrictive barriers to molecules, 

particles, and cells moving from the systemic circulation into the tissue parenchyma. 

However, immune cells navigate these barriers regularly, particularly when patrolling 

lymph nodes and responding to brain cancer. As such, we sought to uncover unique 

interactions between local endothelial cells and immune counterparts to enable an 

analysis pipeline of tissue-specific receptor binding pairs that may ultimately advance 

the development of therapeutics finely tuned for precise tissue-specific targeting. This 

pipeline has generated preliminary data that uncovers distinct cell-cell interactions 

between local endothelium and T-lymphocytes across two key endothelial barriers i.e., 

lymph node and the blood-brain barrier, from publicly available single-cell RNA 

sequencing datasets through computational analyses. The differential expression 

analysis of HEV vs brain endothelial cells and naïve vs activated T lymphocytes led to 

the identification of various cell-type specific markers. The co-expression analysis 

revealed expression patterns of cell surface markers and identification of modules of co-

expressing genes. The cell-cell communication analysis helped in identifying binding 

partners of markers expressed on HEV with that of naïve T lymphocytes and markers 

expressed on brain endothelial cells with that of activated T lymphocytes. This approach 

offers the opportunity to shed light on the signaling mechanisms involved in these 

interactions. 
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Chapter 1 

INTRODUCTION 

1.1 Immune system 

The immune system is a complex network of cells and proteins that defend the body 

against a wide variety of pathogens. The immune response to a foreign body can be 

categorized into two primary types: innate and adaptive immunity.  

Innate immunity is the first line of defense in the body. It acts by generating rapid, non-

specific immune response to pathogens. Within this system, various types of white 

blood cells, known as leukocytes, play a crucial role. They either directly combat 

invaders or produce cytokines and collaborate with other leukocytes to neutralize threats 

before active infection takes hold. When necessary, innate immunity serves as the 

trigger for the adaptive immune response1. 

Adaptive immune response is a specialized mechanism involving recognition of specific 

antigens and producing antibodies or immune cells tailored for to target those antigens. 

It functions by producing memory cells after its first encounter with an antigen thereby 

enhancing the specificity and robustness of the immune response2. It can in turn be 

categorized into humoral and cellular immunity.  

Humoral response primarily involves B cells or B lymphocytes that are produced in 

bone marrow. These cells produce antibodies to neutralize pathogens or label them for 

destruction by other immune cells. 

Cellular immune response is mediated by T cells or T lymphocytes that are produced in 

thymus. T cells in thymus undergo positive selection to recognize major 

histocompatibility complex (MHC) molecules and are assigned to either CD4+ T helper 

cells or CD8+ T cytotoxic cells. Helper T cells assist other immune cells by releasing 



 2 

signaling molecules called cytokines that activate B cells and cytotoxic T cells. 

Cytotoxic T cells are responsible for eliminating infected cells and tumor cells. T cells 

that exit the thymus form a pool of naïve cells that circulate in the peripheral lymphoid 

tissues3. Upon encountering an antigen, they become activated, undergo clonal 

expansion, and acquire effector functions to eliminate the pathogen. These activated 

cells are referred to as effector cells, with most of them having a short lifespan, typically 

lasting only a few weeks. A small population of these cells survive as memory cells in 

the body4. 

T cells that are autoreactive i.e., they react to the self are eliminated by negative 

selection. This mechanism, called central tolerance, ensures that the immune system 

does not attack self-peptides. 

1.2 Endothelial barriers 

Understanding endothelium, which forms the inner lining of blood and lymphatic 

vessels throughout the body, is essential for gaining insights into the immune response. 

One of its crucial functions is to act as a selective barrier between the blood/lymph and 

the surrounding tissues5,6,7,8. It accomplishes this by regulating the passage of small 

molecules, nutrients, and immune cells across the vasculature, thus maintaining tissue 

homeostasis. Endothelium also plays a significant role in immune surveillance and 

response by facilitating the trafficking of immune cells to sites of infection and 

inflammation. The structure, function, and gene expression of the endothelium exhibit 

remarkable diversity based on its tissue origin. Notably, the endothelial barriers found 

at lymph nodes and the blood-brain barrier (BBB) are of particular interest. 

1.2.1 Lymph Node 

Lymph nodes are small bean-shaped secondary lymphoid organs that are distributed 

throughout the body and serve as critical sites of lymphocyte activation. The structure 

of a lymph node (Fig.1-1) can be broadly divided into five distinct zones9: 
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a) Capsule: Each lymph node is surrounded by a dense fibrous capsule which 

provides shape and structural support to the node. 

b) Subcapsular sinus: This region is present beneath the capsule and facilitates the 

transportation of incoming lymphatic fluid from afferent vessels. 

c) Cortex: This region is present beneath the subcapsular sinus and mainly consists 

of B-cells arranged into follicles that are a site for proliferation of naïve B cells 

after encountering antigens10. 

d) Paracortex: This layer is also called T-cell layer as it is a homing region for 

naïve T-lymphocytes. Naïve T cells are presented with antigens in this zone 

where they get activated and subsequently undergo differentiation into effector 

cells11. 

e) Medulla: This is the innermost layer of the lymph node and is composed of large 

blood vessels, sinuses, and medullary cords. It drains the lymph out of the lymph 

node into efferent lymphatic vessels. 

Blood vessels enter and exit the node through the hilum, a region on the concave side 

of the lymph node. 

 

Figure 1-1: Structure of a lymph node 

(Created with BioRender.com) 

 



 4 

Lymph nodes contain specialized structures known as High Endothelial Venules 

(HEVs), which are crucial for effective immune surveillance against pathogens. HEVs 

create an interconnected network of post-capillary venules that seamlessly integrate into 

the regular bloodstream circulation in lymph nodes12. HEVs are lined with plump 

cuboidal endothelial cells that are surrounded by a basal lamina and fibroblast reticular 

cells (Fig.1-2). HEVs are responsible for recruiting naïve T cells from bloodstream into 

the lymph node13. Naïve T-cells enter HEVs through a multistep adhesion cascade 

which involves rolling, adhesion, crawling and transmigration.  

 
Figure 1-2: Anatomical structure of High Endothelial Venules (HEV) 

(Created with BioRender.com) 

1.2.2 Blood Brain Barrier 

The endothelial cells of the brain are flattened, lack fenestration, and are closely linked 

to each other by tight junctions. They are supported by pericytes and astrocytes creating 

a highly selective physical barrier called the blood-brain barrier (BBB) as shown in 

Fig.1-3. The tight junctions effectively restrict the movement of pathogens, large 

molecules, and diffusion of solutes. Pericytes, which envelop the endothelial cells in 

venules, arterioles, and capillaries, not only provide structural support to the vessels but 

also play a crucial role in angiogenesis and the formation of tight junctions14. 
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Meanwhile, astrocytes are indispensable for the maturation and maintenance of the 

BBB15.  

The BBB exhibits high efflux transporter activity. Efflux transporters like P-

glycoprotein plays a pivotal role in restricting the entry of certain drugs and toxins into 

the brain by pumping them back into bloodstream contributing to the low permeability 

of the barrier16. Interestingly, it has been observed that during episodes of inflammation, 

activated lymphocytes can breach the BBB17. The mechanism of transmigration of 

activated T-cells mirrors that of naïve T-cell migration across high endothelial venules 

(HEVs). 

 

Figure 1-3: Structure of blood brain barrier showing endothelial cells held by tight junctions 

supported by astrocytes and pericytes 

(Created with BioRender.com) 

1.3 Extravasation of lymphocytes from lumen to tissue 

Whereas there are multiple in vitro approaches to generate vascular models18,19,20,21,22, 

unfortunately, due to the complexity of the lymph node HEV barrier and the endothelial 

blood-brain barrier there are no sufficient in vitro models that have been developed that 

sufficiently recapitulates in vivo function. Thus, our main understanding of lymphocyte 
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extravasation arises from some in vitro models and a large number of in vivo studies. 

Lymphocyte extravasation from the lumens of blood or lymphatic vessels consists of a 

multistep adhesion cascade encompassing the following stages: 

Rolling and Tethering: The initial step in the extravasation process relies on the weak 

binding interactions between selectins expressed on lymphocytes and glycoproteins 

present on endothelial cells. In the context of HEVs during homeostasis, the rolling step 

commences with the binding of L-selectin expressed on naïve T cells with Peripheral 

Node Addressins (PNAds) expressed on HEVs. In case of inflamed BBB, the tethering 

and rolling of T cells are initiated by the interaction of P-selectin expressed on activated 

T cells with P-selectin glycoprotein-1 (Psgl-1) of endothelial cells23,24. 

Adhesion/Sticking: Following the initial weak interactions induced by the rolling of 

lymphocytes, chemokine receptors such as Ccr7 and Cxcr4 on naive T cells become 

activated. They subsequently bind to their respective ligands, including Ccl21, Ccl19, 

and Cxcl12, which are present on the surface of HEVs11,25. Notably, the chemokines 

Ccl19 and Ccl21, typically expressed in HEVs during homeostasis, have also been 

identified in the context of inflamed BBB26. The presence of Ccr7 is indicative of the 

recruitment of activated lymphocytes to the BBB. Moreover, another study mentions 

the binding of the Cxcr4 receptor on leukocytes to the chemokine Cxcl12 within the 

brain23. Firm adhesion is subsequently mediated by the activation of integrin receptors 

on the lymphocytes like Leukocyte Function-associated Antigen-1 (LFA-1), 

macrophage 1-antigen (Mac-1) and Very Late Antigen-4 (VLA-4). These integrins bind 

to ligands such as Icam-1 or Vcam-1, resulting in the firm attachment of T cells to the 

endothelial cell wall. 

Crawling: After firm adhesion to the endothelial cells, lymphocytes exhibit a crawling 

behavior on the endothelial surface to find a suitable site for transmigration. This step 

is mediated by cell adhesion molecules like Icam-1 and Icam-2 in BBB. It has been 

observed that Icam-2 is constitutively expressed in both inflamed and non-inflamed 

BBB27. However, an interesting observation from a separate study indicates that an 

elevated expression of Icam-1 reduces the crawling distances of leukocytes28. 
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Additionally, in lymph nodes, it has been noted that the downregulation of LFA-1 is a 

prerequisite for T cell crawling, while conversely, an upregulation in LFA-1 expression 

is essential for the firm arrest of lymphocytes29. 

Transmigration: Crawling leukocytes have been observed to exit into tissues through 

a process called diapedesis, utilizing two distinct routes:  

1. Paracellular diapedesis: This route involves the migration of leukocytes through 

the junctions between the endothelial cells. It relies on the engagement of various 

adhesion molecules including Icam-1, Vcam-1, junctional adhesion molecules 

(Jam), Pecam-1, Cd99L, VE-cadherin, and the endothelial lateral border recycling 

compartment (LBRC)25,31. Paracellular route appears to be more prevalent in 

HEV30, although transcellular migration has also been observed. 

2. Transcellular diapedesis: This mechanism is still an area of active research. It 

commences with leukocytes scanning the endothelial surface to identify areas of 

least resistance, leading to the development of podosome-like protrusions31. These 

protrusions gradually become invasive and contribute to the formation of cup-like 

structures called caveolae. This process is mediated by caveolin 1 (Cav1) and 

occurs away from endothelial junctions. Most of the studies on this mechanism 

have been conducted on neutrophils. The molecular interactions involved share 

similarities with the paracellular route involving molecules like Icam, Jam, Cd99 

and Pecam1 among other GTPases32. Several factors seem to favor this route like 

high expression of Cav133, level of leukocyte activation31 and a high expression of 

Icam-1 on endothelium28. This mechanism is also more common in BBB34 where 

the endothelial junctions are tight and when Pecam-1 levels are low35 or when cells 

are unable to reach a junction36. Interestingly, some studies have indicated that 

cells may adopt this passage even when tight junctions in the BBB are 

compromised30. 
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Figure 1-4: Diagram showing the paracellular and transcellular diapedesis 

Figure adapted from Schmidt et.al37 

 

 

1.4 Project objective 

The lymphocyte extravasation process is being explored to fill the knowledge gaps in 

this field. For example, in the context of neutrophils adhesion, Cd2ap, an endothelial 

actin-binding protein, was reported to negatively regulate Icam-1 clustering. Its absence 

resulted in increased Icam-1 clustering dynamics, leading to enhanced neutrophil 

adhesion but reduced crawling behavior38. This suggests that a similar molecule might 

be involved in lymphocyte adhesion. 

Additionally, Plvap, a cell-type specific marker for HEV is reported to participate in 

transcellular extravasation along with other proteins39. This protein is a key structural 

element for the formation of diaphragms that cover the openings of fenestrae, stomata. 

Plvap protein is not expressed in BBB which suggests that there are different proteins 

involved in transcellular diapedesis in these endothelial barriers. Furthermore, the role 

of the basement membrane in diapedesis, particularly in lymphocyte transmigration, 
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remains incompletely understood, with reported involvement of laminins and collagen 

in neutrophil transmigration but limited understanding in the case of lymphocytes.  

The objective of this study is to employ computational analyses to elucidate the complex 

unique interactions between ligands and receptors of naïve T-cells with HEVs and 

activated T-cells with BBB, striving for a deep comprehension of their intricate 

dynamics. Unraveling the specific pairs of cell-cell binding can yield valuable insights 

into distinctive receptors that facilitate precise cell localization within these sites. 

Consequently, the investigation of critical barriers like HEV and BBB, along with the 

identification of unique receptor partners, holds the potential to inform the development 

of proteins or peptide therapeutics capable of efficiently traversing these barriers. 
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Chapter 2 

LEVERAGING PUBLIC DATASETS FOR INITIAL COMPUTATIONAL 

ANALYSES 

This emergence of single cell RNA sequencing (scRNA seq) has revolutionized 

transcriptomics enabling us to investigate the gene expression of a single cell providing 

deeper insights into the transcriptional variations between cells within a sample40 

making it ideal for characterizing cell-surface receptors and ligands across cell states 

and cell types and in disease41,42. This technology has led to discovery of novel cell 

types43,44, identification of novel targets for drug delivery45 and enabled profound 

understanding of variations within a cell population such as gene interaction, allelic 

expression, and gene co-expression patterns46.  

 

 

Figure 2-1: Single-cell RNA sequencing workflow 

(Created with BioRender.com) 
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The scRNA-seq workflow involves isolating single cells using techniques like 

fluorescence-activated cell sorting (FACS), converting RNA to cDNA, amplifying the 

cDNA library, followed by high-throughput sequencing. This is followed by mapping 

the reads to the reference genome and generating a count matrix for analyses47 (Fig.2-

1). The key step that distinguishes scRNA seq from bulk RNA seq is the barcoding of 

transcriptome of each cell. One of the main drawbacks of this technology is the low 

gene retrieval yield i.e., only 1-5% transcripts per cell can be attributed to highly 

expressed genes leading to uncertainty in the observed results. The dropout 

phenomenon introduces notable variability between cells and results in a reduced signal-

to-noise ratio (SNR)48. Various microfluidic based techniques are being developed and 

optimized to enhance the efficiency of capturing viable cells49. It is also important to 

note that this method is expensive and is a labor and time intensive process. 

Concurrently, advancements in sequencing technology have spurred the development 

of a wide range of computational tools for the analysis of extensive single cell 

transcriptomic data to address its unique challenges like drop out effects and high 

technical noise. New methodologies have emerged to distinguish and quantify technical 

noise in transcriptional data50,51. Thus far, the field has seen the development of over 

1600 tools for single-cell RNA sequencing data analysis, with R and Python being the 

primary programming languages of choice, representing approximately 55% and 43% 

of these tools, respectively52. 

This has led to an increasing number of scRNA seq datasets available on public 

repositories like NCBI GEO, allows for the integration of diverse datasets spanning cell 

types and experimental conditions and downstream analysis prior to performing in vivo 

or in vitro experiments. This approach not only proves to be cost and time-effective but 

also facilitates hypothesis validation, experimental condition optimization, and fosters 

collaborative opportunities among researchers. Considering these advantages, for our 

initial assessments, we opted to leverage the extensive pool of publicly available 

datasets.  
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Chapter 3 

DATA EXTRACTION 

The datasets utilized for our analyses were procured from the NCBI Gene Expression 

Omnibus (GEO) public data repository. GEO serves as an extensive repository for 

various forms of high-throughput functional genomics data, encompassing microarray, 

next-generation sequencing, and more, all contributed by the global research 

community. While we also explored databases such as DDBJ53, a bioinformatic data 

repository in Japan, and the Chan Zuckerberg Initiative's Cell X Gene database for 

single cells54, it's noteworthy that all resulting datasets retrieved during our search 

process possessed a GEO accession number. Consequently, we decided to primarily 

search and draw data from the GEO repository. 

3.1 Method 

In February 2023, we systematically searched the GEO repository using various 

keyword combinations. The datasets for the analyses originated from in vivo 

experiments conducted on mice. The search criteria provided below represent the 

specific terms we employed within the NCBI portal to retrieve results when used in 

different combinations. 

Search details for extracting HEV datasets 

• ((high[All Fields] AND ("endothelium"[MeSH Terms] OR endothelial[All 

Fields])) AND (("single person"[MeSH Terms] OR single[All Fields]) AND 

("cells"[MeSH Terms] OR cell[All Fields]))) AND "Mus musculus"[porgn]  

• ((high[All Fields] AND ("endothelium"[MeSH Terms] OR endothelial[All 

Fields])) AND scRNA seq[All Fields]) AND "Mus musculus"[porgn]  

• ((high[All Fields] AND ("endothelium"[MeSH Terms] OR endothelial[All 

Fields]) AND ("venules"[MeSH Terms] OR venules[All Fields])) AND scRNA 

seq[All Fields]) AND "Mus musculus"[porgn]  

• (hev[All Fields] AND scRNA seq[All Fields]) AND "Mus musculus"[porgn]  
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• (hev[All Fields] AND (("single person"[MeSH Terms] OR single[All Fields]) 

AND ("cells"[MeSH Terms] OR cell[All Fields]))) AND "Mus 

musculus"[porgn]  

• ("lymph nodes"[MeSH Terms] OR lymph node[All Fields]) AND hev[All 

Fields] AND ("rna, small cytoplasmic"[MeSH Terms] OR scRNA[All Fields]) 

Search details for extracting BBB datasets 

• (("blood-brain barrier"[MeSH Terms] OR blood brain barrier[All Fields]) AND 

scRNA seq[All Fields]) AND "Mus musculus"[porgn]  

• (("blood-brain barrier"[MeSH Terms] OR blood brain barrier[All Fields]) AND 

(("single person"[MeSH Terms] OR single[All Fields]) AND ("cells"[MeSH 

Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] OR RNA[All Fields]))) 

AND "Mus musculus"[porgn]  

• ((("brain"[MeSH Terms] OR brain[All Fields]) AND ("endothelium"[MeSH 

Terms] OR endothelial[All Fields])) AND (("single person"[MeSH Terms] OR 

single[All Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND 

("rna"[MeSH Terms] OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

Search details for extracting Naïve T cell datasets 

• (naive[All Fields] AND ("t-lymphocytes"[MeSH Terms] OR T cell[All Fields]) 

AND scRNA seq[All Fields]) AND "Mus musculus"[porgn] 

• ((naive[All Fields] AND ("t-lymphocytes"[MeSH Terms] OR T cell[All 

Fields])) AND (("single person"[MeSH Terms] OR single[All Fields]) AND 

("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] OR 

RNA[All Fields]))) AND "Mus musculus"[porgn] 

• (("cd8-positive t-lymphocytes"[MeSH Terms] OR CD8 t cell[All Fields]) AND 

naive[All Fields] AND (("single person"[MeSH Terms] OR single[All Fields]) 

AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] 

OR RNA[All Fields]))) AND "Mus musculus"[porgn] 
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• (("cd4-positive t-lymphocytes"[MeSH Terms] OR CD4 t cell[All Fields]) AND 

naive[All Fields] AND (("single person"[MeSH Terms] OR single[All Fields]) 

AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] 

OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

Search details for extracting Activated T cell datasets 

• ((activated[All Fields] AND ("t-lymphocytes"[MeSH Terms] OR t cell[All 

Fields])) AND scRNA seq[All Fields]) AND "Mus musculus"[porgn] 

• (("cd4-positive t-lymphocytes"[MeSH Terms] OR CD4 t cell[All Fields]) AND 

scRNA seq[All Fields]) AND "Mus musculus"[porgn] 

• ((activated[All Fields] AND ("t-lymphocytes"[MeSH Terms] OR t cell[All 

Fields])) AND (("single person"[MeSH Terms] OR single[All Fields]) AND 

("cells"[MeSH Terms] OR cell[All Fields]) AND ("base sequence"[MeSH 

Terms] OR sequence[All Fields]))) AND "Mus musculus"[porgn] 

• (("cd8-positive t-lymphocytes"[MeSH Terms] OR CD8 t cell[All Fields]) AND 

activated[All Fields] AND (("single person"[MeSH Terms] OR single[All 

Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH 

Terms] OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

• (("cd4-positive t-lymphocytes"[MeSH Terms] OR CD4 t cell[All Fields]) AND 

activated[All Fields] AND (("single person"[MeSH Terms] OR single[All 

Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH 

Terms] OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

We diligently curated the results through a thorough examination of the experimental 

designs. We prioritized minimally treated cells from the control group in our selection 

criteria, aiming to gain insights into the expression of marker genes under conditions of 

homeostasis. 

Initially, we chose three HEV datasets for analysis; however, we had to exclude one of 

them from consideration due to an insufficient number of cells. From the remaining two 

datasets representing the control group, we included a total of 445 cells. To balance the 
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dataset sizes and mitigate potential bias resulting from variations in cell-type 

populations, we included 450 cells from each of the remaining three cell types. 

Since the cell-type populations were relatively small, and datasets for naive T cells, 

activated T cells, and brain endothelial cells had a higher number of control group cells, 

we chose to limit the datasets from these three cell types to one each, thereby minimizing 

undesired variations. 

3.2 Results 

The details of the datasets are included in the table below: 

Cell-Type GEO ID 

Brain Endothelial Cells GSE134058 

CD8+ T-Naïve Cells GSE217656 

CD8+ T-Activated Cells GSE211602 

Lymph node HEVs GSE140348 and GSE198069 

Table 3-1: Datasets used for analyses 

Brain Endothelial Cells (GSE134058): This dataset contains expression profiling of 

brain endothelial cells in young (3 mon) healthy C57BL/6 mice. The experimental 

design included the study of transport of blood plasma proteins across BBB in young 

and aged mice55.  

CD8+ T- Naïve Cells (GSE217656): This dataset contains Naïve CD8+ T cells purified 

from spleen of Kmt2d WT and KO mice. Kmt2d mice were generated specifically for 

this experiment which studied the role of Lysine specific methyltransferase 2D (Kmt2d) 

gene in the naïve CD8+ T cell generation and survival56. Kmt2d WT mice expression 

profile was used for analysis. 

CD8+ T-Activated Cells (GSE211602): This dataset contains in-vitro activated naïve 

CD8+ T cells isolated from the spleens of 8–13-week-old male OT-I transgenic mice. 

The cells were activated and differentiated using anti-mouse CD3, anti-mouse CD28 
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and recombinant murine IL-2 and cultured in physiological media57 to study T-cell 

metabolism during immune response. Only activated T-cells were used for the analysis. 

HEV-1 (GSE140348): This dataset contains transcriptomic profile of blood vascular 

endothelial cells from resting peripheral lymph nodes of Balb/c mice58. The expression 

values belonged to different cell-types. For this analysis only high endothelial cells were 

subset from the total population. 

HEV-2 (GSE198069): This dataset contains the expression profile of peripheral lymph 

node HEV (homeostatic) and tumor HEV from C57BL/6, FVB/N mice. The effect of 

immunotherapies in endothelial fate mapping and differentiation of HEV59. 

Homeostatic LN-HEV cells were used for analysis.  
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Chapter 4 

PIPELINE DEVELOPMENT 

The increasing volume of datasets and the continual development of new analysis 

methods for single-cell data have resulted in a lack of standardization, primarily due to 

the evolving nature of this field60. One of the major challenges involves the necessity 

of identifying a shared analytical approach that can be applied across a wide array of 

biological data types, including cell lines, cancer cells, stem cells, and more. This has 

resulted in the formulation of general guidelines and best practices for data analysis48,60. 

Following the established principles, we developed a robust single cell RNA sequencing 

(scRNA seq) data analysis pipeline for identifying cell-type markers and unraveling 

cellular interactions across various cell-types and experimental conditions. One of the 

primary challenges we addressed in this endeavor was integrating heterogenous datasets 

from different sources before proceeding with downstream analyses. We additionally 

assessed the results of data integration for our datasets using six benchmarked 

algorithms, employing essential evaluation metrics. Importantly, this pipeline is 

compatible with different batches of expression matrices generated from sequencing 

experiments as well as from datasets sourced from public databases.  

The data integration and evaluation are described in the next section and each of the 

downstream analyses is discussed separately in the subsequent chapters. We also tested 

the pipeline on a new dataset, the details of which are discussed in chapter 9. 
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Figure 4-1: Single cell RNA sequencing data analysis pipeline 
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Chapter 5 

DATA INTEGRATION AND EVALUATION 

The capacity to investigate cellular diversity represents a significant benefit of scRNA-

seq analyses, driving substantial progress in research and applications. However, this 

technique presents a significant challenge in the form of batch effects. Batch effects are 

alterations in expression level measurements resulting from variations in the handling 

conditions of cells across different batches. These variations can stem from factors such 

as distinct sampling times, library preparation methods, sequencing platforms, and 

experimental protocols61. Eliminating batch effects is a pivotal step to enable the 

integrated analysis of data. Striking the right balance between preserving intrinsic 

biological variation while effectively mitigating batch effects remains a central 

challenge in most scRNA-seq analyses. 

Many models have been developed to address this issue. Batch effect removal strategies 

employ three steps of dimensionality reduction, modelling and eliminating batch effects 

and projection back into higher dimension space. While most approaches prioritize 

batch removal as the first step, some algorithms prefer to do it in reduced dimension 

space to improve signal to noise ratio65. A recent article on the best practices for single-

cell analysis classifies the integration models into four categories62: 

1) Global models: Global models, stemming from bulk transcriptomics, characterize 

the batch effect as a uniform influence (either additive and/or multiplicative) 

affecting all cells consistently. One of the popular choices using this approach is 

ComBat63. 

2) Linear embedding models: These techniques are specifically designed for batch 

correction in single-cell data. They frequently employ a modified form of singular 

value decomposition (SVD) to project the data, subsequently identifying clusters of 

similar cells across different batches in the projection. These clusters are then 

utilized to rectify the batch effect in a locally adaptive (non-linear) fashion. Most 
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prominent examples include Seurat integration72, Harmony73, MNN64 and 

Scanorama77. 

3) Graph-based models: These methods employ a nearest-neighbor graph to depict 

the data within each batch. To mitigate batch effects, they establish connections 

between cells from distinct batches and subsequently adjust for variations in cell 

type compositions by selectively removing the newly introduced connections. 

BBKNN is a popular algorithm using this approach65. 

Deep learning based models: Deep learning (DL) techniques are the latest and most 

intricate strategies for addressing batch effects, usually demanding substantial data 

volumes for optimal results. These DL integration methods frequently rely on 

autoencoder networks. They either incorporate dimensionality reduction with 

consideration of the batch covariate using a conditional variational autoencoder 

(CVAE) or fit a locally linear adjustment within the embedded space. Popular 

approaches using this method include scVI76, scANVI66 and scGen67. 

The process of addressing batch effects is typically divided into two main tasks: batch 

effect correction and data integration60. Batch correction methods are used to mitigate 

batch effects within samples from the same experiment whereas data integration 

methods address intricate batch effects among datasets generated using different 

protocols, where cell identities may not overlap. Considering the complexity of this 

challenge and the variety of available tools, 19 methods have been benchmarked to 

identify optimal solutions for these tasks72. 

These benchmark studies focused on evaluation of the integration outcomes. Earlier 

studies prioritized batch effect removal and employes fewer metrics to assess the 

outcomes68,70, the most popular being kBET. A recent study on benchmarking72 used 

14 evaluation metrics to measure batch effect removal and conservation of biological 

variance. Given the diversity of cell types in our datasets and the abundance of available 

tools, we opted to consolidate our data using six out of the 68 benchmarked algorithms 

and evaluate the results using four widely recognized evaluation metrics. 



 21 

5.1 Materials & Methods 

We performed all workflow steps using R version 4.2.2. For our analyses, we selected 

Seurat platform (v4.3.0), a widely acclaimed R package tailored for single-cell data 

exploration and downstream analysis, chosen for its seamless compatibility with a 

variety of other single-cell analysis tools. While two integration algorithms were 

Python-based, we utilized a Python interface called 'reticulate' throughout the analysis 

process. A comprehensive list of the libraries/packages employed in our analysis can be 

found in the table below: 

1. Seurat – 4.3.0 9. Scvi – 0.14.6 

2. Matrix – 1.5-4 10. Scanorama – 1.7.3 

3. Harmony – 0.1.1 11. Sceasy – 0.0.7 

4. Patchwork – 1.1.2 12. Anndata – 0.7.5.6 

5. Cluster – 2.1.4 13. kBET – 0.99.6 

6. Liger – 2.0.1 14. SeuratWrappers – 0.3.1 

7. Reticulate – 1.28 15. Lisi – 1.0 

8. Scanpy – 1.9.3 16. Cowplot – 1.1.1 

Table 5-1:List of packages used for data integration 

Our primary aim was to create a harmoniously integrated dataset that could support 

advanced analyses. To achieve this, we meticulously followed the steps outlined in the 

pipeline, which are elaborated upon below.  

1) Create object: All single cell analysis tools require the creation of an object which 

serves as a container holding all necessary data associated with the scRNA seq 

experiment. This data includes gene expression values, metadata, and the results of 

various analyses. 

For the brain (GSE134058) and HEV-2 (GSE198069) datasets, the expression 

matrices were provided in .csv format and included gene expression values, cell 

annotations, and gene names. We processed these matrices by reading and ensuring 

the uniqueness of all values. Any duplicate values were removed, genes were 
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designated as row names, and Seurat objects were created using the 

'CreateSeuratObject' function. Additionally, for the HEV-2 object, cell identities 

were manually matched to the provided cell annotations. Subsequently, we selected 

a subset of homeostatic LN-HEV cells from the HEV-2 object. 

The remaining datasets, HEV-1 (GSE140348), CD8+ T-Naïve cells (GSE217656), 

and CD8+ Activated T cells (GSE211602), consisted of count matrices, separate 

barcode, and features files. We processed these datasets by associating features 

(genes) as row names and barcodes (cell identities) as column names. Seurat objects 

were then created using the 'CreateSeuratObject' function. Subsequently, we 

selected a subset of "High Endothelial Cells" from the HEV-1 object and "Act," 

representing activated T-cells, from the CD8+ Activated T cells object. 

2) Quality Control: The general guidelines on best practices recommend considering 

lowest count depth and gene per barcode peak as non-viable cells for heterogenous 

datasets if no previous quality control have been performed60. All the studies from 

which the datasets were obtained confirmed the implementation of their own quality 

control procedures on the cells. However, there was no unanimous consensus 

regarding the filtering of mitochondrial transcripts. Elevated mitochondrial genes in 

a data is indicative of cellular stress and contributes to biological variability60. A 

thresholding value of 5% mitochondrial genes is accepted in the scientific 

community69. We performed this quality assessment using ‘PercentageFeatureSet’ 

function in Seurat. 

3) Normalization: To address the unwanted bias arising out of differences in sample 

handling, library construction and sequencing we conducted normalization of the 

data. The widely adopted method for rendering gene expression values comparable 

is the use of Transcripts Per Million (TPM)60. This method is the default in Seurat, 

also called ‘LogNormalize’, where feature counts for each cell are divided by the 

total counts for that cell and then multiplied by a scale factor (default value: 10,000). 

Subsequently, the resulting expression values are subjected to log-transformation to 
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improve their fit to a normal distribution. For each dataset, we employed the 

'NormalizeData' function in Seurat to perform this normalization. 

4) Feature Selection: This step aims to identify genes that contribute strongly towards 

the cell-to-cell variations; in other words, genes that have the highest variance in 

expression across all the cells in the dataset. These genes are also called Highly 

Variable Genes (HVG). The uninformative genes i.e., genes with low basal 

expression levels or similar levels across all cells are filtered out to de-noise the 

data. This step has been reported to enhance data integration performance70,71. 

Typically, it is recommended to select a range of 1000 to 5000 HVGs. For our 

analysis, we opted for 5000 HVGs in each dataset. 

5) Scaling: We scaled and centered the data by using ‘ScaleData’ function. This step 

is indicated to improve batch effect removal after integration64. Some algorithms 

like Harmony, LIGER and RPCA recommend scaling the data before integration 

and some like Seurat, Scanorama and scVI recommend the scaling step after 

integration. 

6) Principal Component Analysis (PCA): It's a statistical method widely utilized in 

machine learning for dimensionality reduction, aiming to retain most of the original 

data's variance. Some tools like Harmony and RPCA require dimension-reduced 

embeddings for data integration, while other algorithms recommend performing 

PCA after integration. In our case, we consistently reduced the data to 50 principal 

components. 

7) Data Integration: We integrated the individual datasets using six different 

algorithms: 

a) Seurat: This algorithm leverages Canonical Correlation Analysis (CCA) to 

establish connections between individual cells across heterogeneous datasets 

that share a common set of genes. In essence, CCA identifies anchor points for 

integration by identifying common sources of variation between the datasets. It 

treats the datasets as multiple instances of a gene-to-gene covariance structure, 

with the goal of pinpointing shared patterns among them72.  
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b) Harmony: Harmony takes principal component (PC) embeddings as input and 

employs soft k-means clustering to assign cells to multiple clusters. Clusters 

disproportionately containing cells from a small subset of datasets are penalized. 

It computes both global and dataset-specific centroids for each cluster and 

calculates correction factors for each dataset within clusters. Cells are corrected 

using cell-specific factors—a linear combination of dataset correction factors 

weighted by soft cluster assignments. These steps are iterated until 

convergence73. 

c) LIGER: Linked Inference of Genomic Experimental Relationships (LIGER) 

employs integrative non-negative matrix factorization (iNMF) to create a low-

dimensional space where each cell is represented by dataset-specific factors 

(metagenes) and shared metagenes. Following iNMF it enhances joint clustering 

by assigning labels to cells based on maximum factor loadings and constructing 

a shared factor neighborhood graph that connects cells with similar factor 

loading patterns74. 

d) RPCA: Reciprocal PCA (RPCA) method is developed by Satija lad, developers 

of Seurat. They claim that this is a more conservative approach as compared to 

CCA and is suited for cells in different biological states or when a significant 

amount of cells in one dataset has no matching type in the other75. In this method 

when identifying anchors between two datasets with RPCA, each dataset is 

projected into the PCA space of the other and the anchors are constrained by the 

same mutual neighborhood requirement. 

e) scVI: single cell Variational Interference (scVI) is a novel approach designed 

for the normalization and analysis of scRNA-seq data. It leverages a hierarchical 

Bayesian model with conditional distributions defined by deep neural networks. 

This model can efficiently handle even large datasets. Each cell's transcriptome 

is encoded into a low-dimensional latent vector of normal random variables 

using a nonlinear transformation. This latent representation is then decoded to 

estimate the distributional parameters of each gene in each cell, assuming a zero-
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inflated negative binomial distribution to account for overdispersion and limited 

sensitivity in the data76. 

f) Scanorama: This approach extends the concept of mutual nearest neighbors 

matching to discover similar elements across multiple datasets. It reduces the 

dimensionality of gene expression profiles for each cell using a fast, randomized 

singular value decomposition (SVD), which improves the method's noise 

resistance. Additionally, it employs an approximate nearest neighbor search 

technique based on hyperplane locality-sensitive hashing and random projection 

trees which speeds up the query process77. 

8) Uniform Manifold Approximation and Projection (UMAP): UMAP is a 

nonlinear dimensionality reduction method often utilized for visualization purposes. 

In our analysis pipeline, we employed UMAP in tandem with PCA or other 

dedicated dimension reduction techniques tailored to each specific tool. For 

instance, when working with LIGER, which incorporates its proprietary dimension 

reduction algorithm known as iNMF, we adapted our approach accordingly. 

9) Evaluation: After integrating the data, it is important to evaluate the performance 

as some methods might overcorrect during batch effect removal62,77. We used four 

key metrics to assess how well the data had been integrated: 

a) Silhouette coefficient: This parameter quantifies the clustering quality of 

similar cell types and serves as a common metric for evaluating single-cell data 

integration methods70,71,78. Its value ranges from -1 to 1 where a score of 1 

indicates well-defined and distinct clusters. A score of 0 indicates unclear or 

overlapping cluster boundaries while -1 indicates misassignments of cells to 

clusters. 

b) Mixing Metric: The "mixing metric" is a measure used to assess how effectively 

different datasets are combined in single-cell RNA sequencing (scRNA-seq) 

analysis. It evaluates the degree to which similar cells from various datasets are 

mixed together after integration. It quantifies the mixing by analyzing the 

distribution of nearest neighbors for each cell, aiming for a well-mixed 



 26 

neighborhood with representation from multiple datasets. The value ranges from 

0 to 300 and higher scores indicate better mixing79. 

c) Local Inverse Simpson’s Index (LISI): LISI is a diversity score assessing data 

integration accuracy, focusing on local cell diversity. It combines perplexity for 

local structure preservation and Inverse Simpson's Index for batch/cell type 

diversity. When applied to cell types, cLISI should ideally yield a score of 1, 

indicating well-mixed similar cell types while maintaining unique identities73. 

d) Local structure preservation: It is a metric to assess how effectively the 

original dataset structure is preserved post-integration. It compares the 

neighborhoods of cells based on the uncorrected data with those from the 

integrated dataset. By calculating the overlap fraction for each cell and averaging 

across all cells, an overall score is obtained indicating the degree of preservation. 

Higher score indicates better preservation79. 

5.2 Results 

The median scores obtained using different integration algorithms are summarized in 

the table below: 

 Silhouette Score 

(-1 to 1) 

Mixing Metric 

(0 to 300) 

cLISI 

(1 to 4) 

Local structure 

preservation 

score (0 to 1) 

Seurat -0.05 23.5 1.88 0.32 

LIGER 0.16 58 1.001 0.38 

Harmony 0.66 300 1.09 0.50 

RPCA 0.169 27 1.13 0.48 

scVI -0.19 29.5 1.55 0.37 

Scanorama 0.88 300 1.00 0.26 

Table 5-2: Evaluation scores of different algorithms 
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Below table shows the UMAP visualization of the integration algorithms: 

Seurat 

 

LIGER 

 

Harmony 

 

RPCA 
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scVI 

 

Scanorama 

 

Figure 5-1: UMAP embeddings of integration of different algorithms 

The table shows that both Seurat and scVI have the lowest scores for all integration 

metrics. This is consistent with the UMAP plot, where cells are highly mixed with no 

distinct clusters. Additionally, the silhouette coefficient for scVI is -0.19, and for Seurat, 

it's -0.05, indicating poor cluster separation. Both algorithms also exhibit a lower mixing 

metric, high cLISI, and low local structure preservation scores. Specifically, Seurat has 

scores of 23.5, 1.88, and 0.32 for mixing metric, cLISI, and local structure preservation, 

respectively, while scVI has scores of 29.5, 1.55, and 0.37 for the same metrics. 

RPCA performs better in local structure preservation with a score of 0.48 but lags in all 

other metrics. It achieves scores of 0.169 for the silhouette coefficient, 27 for the mixing 

metric, and 1.13 for cLISI. While its UMAP plot displays improved cLISI scores 

compared to Seurat and scVI, cluster separation remains suboptimal. 

LIGER performs slightly better than Seurat, scVI, and RPCA in the mixing metric with 

a score of 58 and boasts one of the best overall cLISI scores at 1.001. However, it 

records a lower silhouette coefficient of 0.16. The UMAP plot reveals distinct brain and 
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HEV clusters but indicates a slight overlap between naïve and activated T cell clusters. 

Unfortunately, LIGER also has a poor local structure preservation score. 

Harmony stands out with a strong silhouette score of 0.66, reflecting its excellent 

performance. The UMAP plot further confirms this by revealing well-defined clusters. 

Harmony shares the top spot for the mixing metric, achieving the highest score of 300. 

It also excels in cLISI with a score of 1.06. It has the best structure preservation score 

at 0.50. The UMAP plot displays clear separation between clusters, particularly 

distinguishing brain and HEV clusters. However, it does show an overlap between 

activated and naïve T cells within one cluster. 

Scanorama emerges as the top performer among all algorithms. It achieves the highest 

silhouette coefficient score of 0.88, a perfect score of 300 for the mixing metric, and a 

flawless cLISI score of 1.00. The UMAP plot showcases distinct clusters for brain, 

HEV, activated, and naïve T cells. However, Scanorama lags in local structure 

preservation, recording a score of 0.26. 

5.3 Discussion 

A wide range of performance variations is observed among different integration 

algorithms, each employing unique methodologies. A substantial study, encompassing 

68 methods and over a million cells across 13 atlas-level integration tasks, was 

conducted to provide guidance in selecting an integration method71. This study revealed 

that Seurat and Harmony excelled in simpler integration tasks, while Scanorama and 

scVI demonstrated proficiency in handling more complex tasks. 

In the context of our dataset, we noticed that the integration performance of Seurat and 

scVI, as evidenced by UMAP plots, fell short of expectations, suggesting a potential 

overcorrection of expression values during integration. To gain a broader perspective, 

the figures below (Fig.5-2, 5-3) display the performance of various algorithms across 

key metrics for tasks of varying complexities from the aforementioned study. 
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Figure 5-2: Comparison of data integration performances based on methodology, usability and 

scalability (Figure adapted from Leuken D et.al71) 

 

scVI exhibited strong performance when dealing with large datasets in the benchmark 

study, as seen in Fig.5-2 and 5-3. However, our dataset is relatively small, with fewer 

than 2000 cells and of moderate complexity due to sequencing on different platforms 

and originating from different tissues. It's worth noting that scVI, being a deep learning-

based model, may underperform when dealing with limited data, as there might not be 

enough data for proper model training. 

Seurat, on the other hand, did not meet the criteria for integration metrics, speed, and 

task details (Fig.5-3). The RPCA and original CCA methods of Seurat were ranked at 8 

and 13, respectively, as shown in Fig.5-2, placing them lower than all the other 

algorithms assessed in our analysis, with the exception of LIGER. Our accuracy scores 

align with those of the study, with RPCA outperforming Seurat CCA, a trend evident in 

UMAP plots as well. 
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Figure 5-3: Table of criteria to consider when choosing an integration method, and which 

methods fulfill each criterion. Ticks show which methods fulfill each criterion and gray dashes 

indicate partial fulfillment. 

(Figure adapted from Leuken D et.al71) 

Despite displaying relatively well-defined clusters in its UMAP plot, LIGER's 

performance metrics contradicted these visual results. In the benchmarked study, 

LIGER's performance was subpar, as indicated in Fig. 5-2, which corroborates our 

results. 

Scanorama demonstrated remarkable performance in three crucial metrics within our 

dataset, aligning with its status as a top performer in the benchmarked study (Fig.5-2). 

However, it's important to note that its differential expression analysis resulted in the 
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identification of fewer than 10 markers, even when using a relaxed p-value threshold of 

0.1. An examination of the integration output revealed that the integrated object 

contained embeddings of 100 Principal Components. These factors might explain the 

limited number of markers identified in the differential expression analysis. It's worth 

considering that having corrected counts in the integration object, rather than PC 

embeddings, might yield better results in the differential expression analysis. 

Harmony showcased remarkable and consistent performance across all assessed 

metrics, which is also evident when examining the UMAP plots. Furthermore, Harmony 

stood out as the leading method for managing smaller and less complex integration 

tasks, as indicated in Fig. 5-3. In our performance ranking based on the criteria shown 

in Fig. 5-2, Harmony secured an impressive third position among the evaluated 

algorithms. Consequently, all subsequent analyses were carried out using the Harmony-

integrated data.  
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Chapter 6 

 DECIPHERING CELL-TYPE DIVERSITY WITH DIFFERENTIAL 

EXPRESSION ANALYSIS OF SURFACE MARKERS 

Differential gene expression analysis represents a fundamental use of transcriptomic 

data, frequently employed to identify genes that exhibit significant expression 

differences between two distinct biological conditions or cell types. This analysis offers 

valuable insights into the underlying pathways and mechanisms driving variations in 

phenotype within a population. Our objective is to identify specific surface markers 

associated with distinct cell types through differential gene expression analysis and gene 

set enrichment analysis. These markers may have significant implications in immune 

surveillance and immune responses, particularly concerning the endothelial barriers 

under investigation. 

Statistical methods used for identifying differentially expressed (DE) genes for bulk 

RNA seq data include Fisher’s exact test, DESeq2, Likelihood Ratio and edgeR. These 

methods often assume specific underlying distributions, such as Poisson or Negative 

Binomial80. However, single-cell transcriptomic data introduces unique challenges due 

to high drop-out rates, zero-inflation, and bimodal distribution. This renders the 

traditional bulk RNA-seq approaches ill-suited for the task. 

To tackle these challenges, various methods have emerged, some adapted from bulk 

RNA-seq techniques, referred to as pseudo-bulk methods. These adapted methods 

encompass Negative Binomial models (e.g., DESeq2, edgeR, NBPseq), Poisson-based 

approaches (TSPM, DEGseq), Linear models (Limma), and Non-parametric methods 

(SAMSeq, NOIseq). Additionally, specialized methods tailored for single-cell RNA-seq 

data have been developed, such as Zero-Inflated Negative Binomial models (e.g., ZINB-

Wave, DECENT), hurdle models (MAST), Linear models (Monocle, ZIAQ), and Non-

parametric models based (Wilcoxon, Sincera)81.  

Model-based Analysis of Single-cell Transcriptomics (MAST) is one of the most 

popular tools used for DE analysis for single cell RNA seq data. It’s a generalized linear 
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model that encompasses two essential components. First, it simultaneously models the 

rate of gene expression, accounting for both technical and biological factors that 

contribute to its variability. Second, it focuses on modeling the mean gene expression 

levels when genes are positively expressed. A recent study reported that MAST has the 

best performance for single-cell data among four other tools evaluated82. Another 

comparative study reported that it performed the best at extracting biologically relevant 

gene sets from the data83. Considering these advantages, we decided to conduct the 

differential gene expression analysis using MAST. 

Following the differential expression analysis, we conducted Gene Set Enrichment 

Analysis (GSEA). This analysis identifies sets of genes or proteins that might exhibit an 

over-representation within the gene ontologies, thereby contributing to distinct 

phenotypic characteristics. Gene ontology is a standardized system of defining and 

categorizing genes and proteins based on their functions. It is categorized into three 

aspects84: 

Biological Process (BP): This term describes gene products involved in large biological 

processes like cellular respiration. 

Cellular Component (CC): This term defines gene products active in different cellular 

compartments, for example, cytoplasm. 

Molecular function (MF): This term specifies biochemical activities or functions of gene 

products. 

As our goal is unraveling cell-cell interactions we focused our analysis on the cellular 

component. 

6.1 Materials & Methods 

We conducted the analysis using R 4.2.2 version. Seurat (4.3.0) platform was used for 

differential gene expression analysis as it offers compatibility with MAST statistical 

test. The packages used for the analysis are listed in the table below: 
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1. Seurat – 4.3.0 7. MAST – 1.24.1 

2. Matrix – 1.5-4 8. Metap – 1.8 

3. Harmony – 0.1.1 9. Enrichplot – 1.18.4 

4. Patchwork – 1.1.2 10. ggnewscle – 0.4.9 

5. Clusterprofiler – 4.6.2 11. Org.Mm.eg.db – 3.16 

6. Multtest– 2.54.0 12. dplyr – 1.1.2 

Table 6-1: List of packages used for differential gene expression and enrichment analysis 

We conducted differential gene expression analysis between HEV and brain endothelial 

cells using Seurat's 'FindMarkers()' function. The log-fold change threshold (logfc) 

parameter was set to the default value of 0.25 to include a broad range of differentially 

expressed genes. Additionally, we adjusted the 'min.diff.pct' parameter to 0.20 to ensure 

a higher confidence level in the identified markers. This analysis was performed twice, 

once with 'brain endothelial cells' as the reference and then with 'HEV' as the reference, 

with the 'only.pos' feature set to 'True' to identify upregulated genes in both cases. The 

results were saved to a file for further analysis. 

We then conducted an enrichment analysis using the 'enrichGO()' function from the 

clusterprofiler package. We specified the use of the mouse database and selected 

'SYMBOL' as the key type for the analysis. Although we performed enrichment analysis 

for all three ontologies, our primary focus was on the cellular component aspect. 

Consequently, we recorded the results of this specific analysis in a file for further 

examination. 

We followed the same protocol to conduct differential expression analysis between 

Naïve and Activated T cells. 

We then manually selected the gene sets active in the sub-cellular location of plasma 

membrane from the description column of the enrichment results. The terms selected 

for identifying unique markers from the enrichment results are shown in the table below: 
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GO Terms selected to filter genes active on plasma membrane 

apical plasma membrane cell-substrate junction 

basal plasma membrane cell projection membrane 

basolateral plasma membrane bicellular tight junction 

membrane raft cell cortex 

membrane microdomain cell-cell contact zone 

apicolateral plasma membrane intercellular bridge 

plasma membrane raft T cell receptor complex 

cell projection membrane filopodium membrane 

basement membrane filopodium 

lateral plasma membrane podosome 

anchored component of membrane lamellipodium 

plasma membrane signaling receptor complex pseudopodium 

extrinsic component of plasma membrane adherens junction 

extrinsic component of membrane apical junction complex 

outer membrane tight junction 

anchored component of plasma membrane neuromuscular junction 

anchored component of external side of plasma 

membrane 
gap junction 

membrane coat caveola 

cell body membrane lumenal side of membrane 

intrinsic component of external side of plasma 

membrane 
uropod 

coated membrane filopodium tip 

cell cortex region 
 

Table 6-2: List of terms used to identify unique cell-surface markers 
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Each GO term had many genes associated with it. We isolated the genes using the 

TEXTSPLIT() function in Excel and removed duplicates to identify unique markers. 

Subsequently, we manually evaluated the markers for cell-type specificity based on 

their expression levels and existing literature. 

6.2 Results 

The table below summarizes the number of upregulated genes obtained after differential 

expression analysis, number of GO terms associated with the cellular component and 

number of unique markers identified for each cell-type. 

 

 Endothelial cells T-cells 

 HEV Brain 
Naïve T-

cells 

Activated T-

cells 

Upregulated 

genes 
743 320 

285 934 

GO: Cellular 

component 
508 378 

346 566 

No. of unique 

cell-surface 

markers 

109 85 

54 73 

Table 6-3: Summary of the differential expression and enrichment analysis results 
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Bar plot of top 20 terms of enrichment analysis for Cellular Component 

 

Figure 6-1: Barplot of top 20 enriched terms for CC in brain 

 

 
Figure 6-2: Barplot of top 20 enriched terms for CC in HEV 
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Figure 6-3: Barplot of top 20 enriched terms for CC in Naïve T cells 

 

 
Figure 6-4: Barplot of top 20 enriched terms for CC in Activated T cells 
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Heatmap of cell-type specific markers 

 

Figure 6-5: Heatmap of Cell-Type markers 

We identified markers exhibiting cell-type specificity, associated with the cellular 

extravasation process. The violin plots indicating their expression levels are shown in 

Fig.6-6. The functions of these markers are described below according to cell-type: 

Brain endothelial cell-type markers 

• Cxcl12: It is a homeostatic chemokine that promotes cellular adhesion and 

migration. It is reported to play an important role in the T-cell recruitment across 

the BBB in CNS inflammation85.  

• Fn1: Fibronectin 1 is a crucial component of the extracellular matrix, playing a 

significant role in cell adhesion processes. It is reported to play anti-inflammatory 

role in the brain contributing to its neuroprotective effects86.  

• Jup: Junctional plaque proteins are expressed on cell junctions. They play a 

crucial role in stimulating VE-Cadherin which mediates cell adhesion87. 
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HEV cell-type markers 

• Plvap: Plasmalemma vesicle–associated protein, also known as MECA-32, plays 

crucial roles in regulating endothelial permeability and cellular extravasation. This 

protein is involved in controlling the passage of molecules and cells through the 

endothelial barrier, influencing processes such as immune cell migration and tissue 

homeostasis88. 

• Cavin1: Caveolae-associated protein 1, an integral part of caveolae, plays a pivotal 

role in stabilizing caveolin-1, the primary structural membrane protein of 

caveolae89. Caveolae play a crucial role in facilitating transcellular diapedesis on 

T cells. 

• Icam1: Intercellular Adhesion Molecule-1 regulates T-cell rolling and adhesion 

on the endothelial wall during the extravasation process11. Its expression is known 

to be upregulated in inflamed blood brain barrier90.  

 

 

 

Figure 6-6: Violin plots showing expression levels of cell-type specific markers 
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Activated T-cell type marker 

• Cd44: It is a cell surface receptor involved in cell-cell and cell-matrix adhesion, 

cell migration and signaling on the nervous system91. It is responsible for VLA-

4 activation which is important for cell adhesion92. 

Naïve T-cell type marker 

• Cd2: This is a transmembrane glycoprotein present on the surface of T-cells. It 

plays an important role in cell-cell adhesion and acts as co-stimulatory molecule 

to Cd58 (LFA-3) which is necessary for the generation of Th1 cells following T 

cell activation93. 

6.1 Discussion 

In the enrichment bar plot of brain endothelial cells (Fig.6-1) one of the prominently 

enriched terms is 'caveola,' signifying that endothelial-mediated transcellular diapedesis 

is more pronounced in the blood-brain barrier (BBB) compared to HEV. 

Previous research has elucidated the role of Major Facilitator Superfamily Domain 

containing 2a (Mfsd2a), a lipid transporter with high expression in brain endothelial 

cells, in suppressing caveolae formation in capillary endothelial cells, thus preserving 

barrier characteristics94,95. Conversely, arterial endothelial cells express lower levels of 

Mfsd2a, which contributes to increased caveolae formation96.  

 

Figure 6-7: High expression of Mfsd2a in brain EC 
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Our findings corroborate the existing knowledge, showing that Mfsd2a is highly 

expressed in the brain but absent in HEV. The presence of 'caveola' as a significant GO 

term may seem contradictory, but it's important to note that our dataset comprises a mix 

of arterial, capillary, and venous endothelial cells, potentially explaining this 

observation. 

Furthermore, an intriguing observation is that Mfsd2a, reported as a cell-surface protein 

and included among the highly expressed brain markers, did not exhibit enrichment for 

any terms within the cellular component ontology. This suggests that its cellular 

component associations may be complex and context-dependent, warranting further 

investigation. 

Glycam1 (Glycosylation dependent cell adhesion molecule 1) and Ccl21a are well-

established markers for high endothelial venules (HEV) and have been recognized for 

their crucial involvement in cell adhesion during the extravasation process, as 

documented in previous studies97,11. Our findings align with the established literature, 

demonstrating their robust expression in HEV, as evident in Fig. 6-8. It's noteworthy 

that despite their presence on the plasma membranes of cells, these markers did not 

exhibit enrichment within the Cellular Component ontology. This suggests that their 

cellular localization might be context dependent and further exploration is required. 

 

Figure 6-8: High expression of Glycam1 and Ccl21a in HEV 

 

Consequently, we investigated the results of the Biological Process and Molecular 

Function ontology enrichment analyses. Within these analyses, Glycam1 displayed 
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enrichment in terms related to 'sulfur compound binding' and 'cell adhesion molecule 

binding,' while Ccl21a exhibited enrichment in terms associated with 'cytokine receptor 

binding' and 'cytokine activity' within the Molecular Function category.   
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Chapter 7 

 IDENTIFYING CO-EXPRESSION NETWORK PATTERNS USING CO-

EXPRESSION ANALYSIS 

Genes often collaborate closely to carry out specific functions, such as molecular 

transport or receptor binding, which can be indicative of tissue-specific expressions or 

biological conditions. For instance, a group of genes plays a vital role in wound healing, 

and these genes display co-expression patterns, meaning they are strongly correlated 

with one another. Examining these co-expression patterns in-depth can unveil the 

underlying dynamics of various functional pathways and might lead to the identification 

of unknown genes that might cluster together with known ones98. While differential 

gene expression analysis is instrumental in identifying markers for specific phenotypes, 

co-expression networks provide valuable insights into genes that exhibit coordinated 

expression patterns, shedding light on their collective functional significance. 

A popular approach to identify co-expressing genes is through Weighted Gene Co-

expression Analysis (WGCNA)99. It is based on differential network (or co-expression) 

analysis where the aim is to identify the changes in co-expression patterns of genes 

when their mean gene expression levels remain unaltered100. For example, a previous 

study reported that differential co-expression analysis was conducted on two bull 

varieties, one with a myostatin mutation and the other without. Despite no significant 

difference in average myostatin gene expression, it ranked highest among 920 

transcriptional regulators in terms of a differential co-expression measure101. This has 

been reported in other studies as well102,103. This has been widely used for bulk RNA 

seq data in identifying networks in specific processes104 and diseases105. 

hdWGCNA (high dimensional WGCNA), an extension of WGCNA, is an algorithm 

specifically tailored to identify co-expression networks in single cell and spatial 

transcriptomics data to address the sparsity and inherent noise in such data106. This 

approach first constructs 'metacells' to reduce dimensionality. Metacells are small 

groups of transcriptomically similar cells representing distinctive cell states. Then it 
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constructs a co-expression network representing relationships between genes based on 

their expression patterns across samples. Genes are assigned weights based on their 

contributions to the network.  Genes that show similar expression patterns are grouped 

into modules, representing functional units within the cell. The process is optimized for 

efficiency and accuracy. 

7.1 Materials & Methods 

We conducted the analysis using R 4.2.2 version. Seurat (4.3.0) platform was used for 

co-expression analysis as hdWGCNA uses Seurat data structures. The packages used 

for the analysis are listed in the table below: 

1. Seurat – 4.3.0 6. GeneOverlap – 1.34.0 

2. WGCNA – 1.72-1 7. tidyverse – 2.0.0 

3. hdWGCNA – 0.2.18 8. cowplot – 1.1.1 

4. igraph – 1.4.2 9. patchwork – 1.1.2 

5. enrichR – 3.2   

Table 7-1: List of packages used for co-expression analysis 

We conducted the co-expression network analysis on the integrated data object. 

hdWGCNA includes a function MetacellsByGroups to construct metacell expression 

matrices given a single-cell dataset. This function constructs a new Seurat object for the 

metacell dataset which is stored internally in the hdWGCNA experiment. We specified 

the Metacells to be constructed based on gene expression levels of ‘groups’. ‘groups’ 

metadata was created in Seurat where cell identities belonging to each cell-type was 

assigned to the following groups: ‘Naïve’, ‘Activated’, ‘BrainEC’ and ‘HEV’.  

The initial step in network construction involves establishing a soft power threshold, 

which is a pivotal aspect of creating the gene-gene correlation adjacency matrix for 

deducing co-expression associations among genes. By exponentiating the correlations 

to a certain power, this procedure serves to diminish the impact of noise in the 

correlation matrix, preserving robust connections while filtering out weaker ones. 
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Consequently, selecting an appropriate value for the soft power threshold is of 

paramount importance in this process107. One of the hyperparameters requires to be 

specified is the type of co-expression network to be built. We chose ‘signed’ co-

expression network for the analysis characterized by correlation values ranging from 0 

to 1. In this setup, values below 0.5 signify negative correlations, while values 

exceeding 0.5 denote positive correlations. This approach is preferred because it 

generates networks that more effectively distinguish biologically meaningful modules, 

enhancing the interpretability of the results108.  

In the subsequent stage, Module Eigengenes are calculated to provide a concise 

representation of the gene expression patterns within individual co-expression modules. 

This is accomplished by applying principal component analysis (PCA) to a subset of the 

gene expression matrix specific to each module. The primary principal component 

(PC1) extracted from these PCA matrices serves as the Module Eigengene (ME). The 

next step involves computing pairwise correlations between genes and module 

eigengenes. 

Following the establishment of module connectivity, we conducted module enrichment 

analysis using the enrichR package. Additionally, we performed marker gene overlap 

analysis, comparing the hdWGCNA modules with cluster or cell-type marker genes. 

This involved two steps: first, identifying marker genes in each cell type using Seurat's 

FindAllMarkers function, and subsequently employing the hdWGCNA function 

OverlapModulesDEGs to assess the overlap between the modules and the differentially 

expressed genes (DEGs). 
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7.2 Results 

The algorithm classified our data into 7 modules of co-expression networks as shown 

in Fig.7-1. 

 

Figure 7-1: Assignment of co-expressing genes to modules 

The mapping of modules to different cell-types and overlap of marker genes is shown 

in Fig.7-2. 

 

Figure 7-2: Cell-type classification of modules and their overlap 
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The below plot shows the correlation between different modules (Fig.7-3). 

 

Figure 7-3: Module Correlogram of different modules and their corresponding cell-types 

The top 10 enriched terms from the enrichment results did not yield much information. 

Hence functional annotation clustering was performed in DAVID, an online 

bioinformatics tool, for all the modules to examine the GO terms associated with all the 

ontologies. 

The correlation plot shows that module 4 has overlapping genes between modules 2 and 

5. Further investigation into this module yielded genes mainly responsible for ribosome 

formation, genes involved in mitochondria etc. These were not relevant to our study 

hence they were not pursued. 

The functional annotation clustering results were searched for any terms associated with 

the extravasation process. The table below details the GO term, the associated module 

and the genes involved in the subcellular location or process. 

 

 

 

BrainEC 

Activated 

HEV 

Naive 

Overlapping 

Overlapping 

Overlapping 
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GO Term Module Genes 

Cell adhesion HEV 

Cd24a, Col15a1, Dsg2, Glycam1, Itga2, Icam1, 

Jam3, Mfge8, Nectin2, Pxdn, Pcdh12, Pcdh17, 

Pcdh7, Sulf1, Tgfbi 

Cell-cell 
adhesion 

HEV Dsg2, Icam1, Jam3, Itga2, Tmem47 

Regulation of 
extravasation 

HEV Icam1, Jam3, Plvap 

Inflammatory 
response 

HEV 

Anxa1, Ackr1, Chst1, Chst4, Ccl21a, Cxcl1, F2r, 

Fut7, Ly96, Nrros, Nfkbiz, Pf4, Ptgs1, Serpinb1a, 

Sphk1 

Caveola HEV Aqp1, Cavin1, Cavin3, F2r, Plvap, Tfpi 

Caveola Brain 

Atp1a2, Atp1b3, Ehd2, Jak2, Tsc2, Adrb2, Bmpr2, 

Cdh13, Ctsb, Cav1, Cav2, Dlc, Flot1, Gnaq, Insr, 

Igf1r, Lipe, Ldlr, Lrp6, Lrp8, Mapk1, Mapk3, Myof, 

Nos3, Ptch1, Pld2, Plpp1, Pacsin2, Scarb1, Slc2a1, 

Slc27a1, Smpd2, S1pr1, Tgfbr2 

Integrin binding HEV Itga2, Icam1, Jam3, Mmp14, Mfge8, Timp2, Tgfbi 

Integrin binding Brain 

Cd151, Cd81, Cd9, F11r, Lyn, Ptk2, Vwf, Adam15, 

Adam17, App, Anxa7, Cxcl12, Cx3cl1, Dab2, Dst, 

Emp2, Fermt2, Fn1, Gsk3b, Itga1, Itga3, Itga6, 

Itgb1, Icam2, Jam2, Kdr, Lama5, Lamb2, Lgals8, 

Nf2, Nisch, Pxn, Ptn, P4hb, Pdia4, Sema7a, Tln1, 

Tln2, Tspan4, Utrn 

Podosome Brain 
Asap1, Arhgef5, Sh3gl1, Wdr1, Afap1l1, Actb, Cttn, 

Hnrnpk, Ptpn12, Arhgef2, Svil, Tpm3, Tpm4, Vcl 

Cell-cell junction 
Overlapping 
module - 6 

Cdh5, Ctnnd1, Gja1, Nck1, Pecam1 

Cell surface 
Overlapping 
module - 6 

Cdh5, Ctnnd1, Pecam1, Hyal2, Pam, Ifitm3, Tgfbr3, 

Tnfrsf1a 

Table 7-2: Cellular extravasation associated GO terms and respective modules 

 

7.3 Discussion 

The co-expression network analysis reveals plenty of insights about gene networks in 

different cell-types. 

The markers involved in cell-cell adhesion (Fig.7-4), in regulation of extravasation 

(Fig.7-5) and in inflammatory response (Fig.7-6) exhibit HEV cell-type specificity. 
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Figure 7-4: Genes involved in cell-cell adhesion 

 

 

Figure 7-5: Genes involved in the regulation of extravasation 

 

 

Figure 7-6: Genes involved in inflammatory response 
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Among the genes associated with the inflammatory response, it's worth noting that Fut7, 

Chst4, and Ccl21a are recognized for their roles in lymphocyte trafficking within 

HEV97. Interestingly, Ackr1, although traditionally not expressed in the brain, has 

recently been shown to exhibit increased expression of its protein in an in-vitro model 

involving primary mouse brain microvascular endothelial cells (pMBMECs). This 

upregulation of Ackr1 appears to promote transcellular diapedesis, highlighting its 

potential significance in certain brain-related processes109. 

The genes that play a crucial role in the transcellular diapedesis within the 'Caveola' 

structure are entirely distinct in HEV compared to the brain. Figure 7-7 illustrates the 

genes active within the Caveola in HEV, and notably, they display cell-type specificity. 

However, it's interesting to observe that the fundamental genes responsible for forming 

the Caveola, namely Cav1 and Cav2, are part of the brain module and exhibit similar 

expression patterns in both HEV and the brain, depicted in figure 7-8. 

 

 
Figure 7-7: Genes active in caveola in HEV 
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Figure 7-8: Caveola genes expressed similarly in HEV and Brain 

 

Cavin1 and CAV1 have been identified as essential components that must work together 

to create a fundamental core system responsible for forming caveolae on the cell's outer 

membrane89. The Cavin protein family is known to assemble into tissue-specific 

caveolar complexes110. However, what makes the brain particularly intriguing is that 

none of the Cavin proteins appear to play a crucial role in caveola formation there. 

Remarkably, the cellular compartment in the brain hosts over 30 different genes, in 

contrast to the limited presence of just six genes in the context of HEV. This diversity 

in gene content within these cellular compartments adds to the complexity of their 

functional roles. 

A parallel pattern is discernible concerning integrin binding function, wherein the brain 

demonstrates a more intricate landscape with the involvement of 40 genes, in stark 

contrast to the relatively simpler scenario in HEV, where only seven genes play a role 

in this capacity. This discrepancy underscores the heightened complexity and diversity 

of integrin-related processes within the brain's cellular environment. 

Module 6, distinguished by its shared genes from both BrainEC and HEV modules and 

a strong correlation with them, encompasses Gene Ontology (GO) terms relevant to 

cellular extravasation. One notable example is the presence of genes expressed at cell-

cell junctions, as demonstrated in Figure 7-9, where their similar expression patterns in 

both cell types are evident. Among these genes, the inclusion of Pecam1 within cell-

junctions is noteworthy, as it plays a well-established role in paracellular diapedesis. 

Additionally, the Nck family of adaptor proteins is known to be recruited to cell-cell 
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junctions by Pecam1, particularly in response to oxidative stress111. Moreover, Cdh5 

and Gja1, identified as VE-Cadherin and Gap junction alpha protein-1, respectively, are 

recognized components of junctions and hold pivotal roles in facilitating paracellular 

diapedesis and cellular transport processes112. 

Gene expression levels for cell-surface markers exhibit a similar pattern or consistency 

(Fig.7-10). 

 

 

Figure 7-9: Genes expressed at cell-cell junctions similarly expressed in BrainEC and HEV 

 

 

Figure 7-10: Genes expressed on cell-surface in BrainEC and HEV  
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Chapter 8 

 UNRAVELING CELL-CELL INTERACTIONS USING PREDICTIVE 

ALGORITHM 

Understanding cell surface proteins offers valuable insights into intercellular 

communication among diverse cell types. This communication can manifest through 

direct ligand-receptor interactions, involving cell-to-cell contact, interactions with the 

extracellular matrix, or the secretion of proteins that bind to receptors on target cells. 

Previously, deciphering these interactions necessitated biochemical assays like 

proximity labeling, co-immunoprecipitation, and yeast two-hybrid screening113. 

However, the emergence of single-cell transcriptomics has led to the development of 

various tools for predicting ligand-receptor interactions. 

Tools built to predict intercellular communication are based on existing literature 

knowledge as well as other databases including UniProt, KEGG, IntAct, STRING and 

Reactome114. This domain faces an additional challenge due to the absence of a 

definitive reference dataset115,113 which can adequately represent the intricate and ever-

changing interactions among numerous cells and molecules. Nevertheless, independent 

assessments have demonstrated that Cell-Cell Communication (CCC) approaches 

exhibit a notable resilience to noise introduction116,117. For our analyses we used three 

tools designed for CCC that contained curated database for mouse ligand receptor 

interactions: CellChat, Cellinker and CellTalkDB. 

CellChat, one of the popular tools used for predicting CCC is developed to infer 

visualize and analyze intercellular communications from scRNA-seq data118. CellChat 

begins by creating a comprehensive database of known signaling molecule interactions, 

considering various structural aspects like ligand-receptor complexes and soluble 

molecules. It then uses this database to model the probability of CCC in the scRNA-seq 

data. This inference is based on mass action models, differential expression analysis, 

and statistical tests for different cell groups, which can be discrete or continuous states 

along a pseudotime cell trajectory. It quantitatively characterizes and compares these 
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inferred intercellular communications using social network analysis, pattern recognition 

methods, and manifold learning approaches. The majority of ligand–receptor 

interactions in CellChatDB were manually curated based on KEGG (Kyoto 

Encyclopedia of Genes and Genomes) signaling pathway database and contains 2021 

curated ligand-receptor interactions in mouse and human. 

Cellinker is a platform designed for the analysis of intercellular communication 

facilitated by ligand-receptor (L-R) interactions. It offers a manually curated database 

of L-R interactions, with over 3700 in humans and 3200 in mice, along with 400 

endogenous small molecule-related L-R interactions. Additionally, Cellinker provides 

a webserver for conducting intercellular communication analysis using single-cell RNA 

sequencing (scRNA-seq) data119. 

CellTalkDB is a curated database housing 3,398 human and 2,033 mouse ligand-

receptor (LR) pairs. These LR pairs were initially sourced from the STRING database 

and subsequently subjected to manual verification through extensive database searches 

and literature review120. 

8.1 Materials & Methods 

CCC analysis using CellChat was conducted in R version 4.2.2. The packages used for 

the analysis are listed below: 

1. Seurat – 4.3.0 

2. CellChat – 1.6.1 

3. ggplot2 – 3.4.2 

4. igraph – 1.4.2 

5. patchwork – 1.1.2 

Table 8-1: List of packages used for CCC analysis 

 

For this analysis, we configured the ligand-receptor database to 'mouse.' We initiated 

the process by identifying overexpressed genes and their interactions through the 

'identifyOverExpressedGenes()' and 'identifyOverExpressedInteractions()' functions 
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within the CellChat package. Subsequently, we inferred the cell-cell communication 

network utilizing the 'computeCommunProb()' function. Finally, we quantified the 

aggregated cell-cell communication network by either tallying the number of links or 

summarizing the communication probabilities.  

Furthermore, we leveraged Cellinker's online portal to estimate communication 

probabilities for the cell-type markers identified during the differential expression 

analysis. Additionally, we downloaded CellTalkDB's database for mouse ligand-

receptor interactions and meticulously verified interactions between distinct cell types. 

8.2 Results 

The communication probability was computed for all the cell-types. The pathway level 

interactions from endothelial cells to T-cells were classified as shown in Table 10 and 

the interactions from T-cells to endothelial cells are shown in Table 11 with the 

communication probability. 

 source target pathway_name probability 

1 Activated BrainEC LT 0.000392 

2 Activated BrainEC MIF 0.0156 

3 Activated BrainEC VISFATIN 0.00086 

4 Activated HEV CCL 0.009591 

5 Activated HEV LT 0.007531 

6 Activated HEV SEMA4 0.000899 

7 Activated HEV TGFb 0.002933 

8 Activated HEV VISFATIN 0.002698 

9 Naive BrainEC ITGAL-ITGB2 0.009924 

10 Naive BrainEC MIF 0.007578 

11 Naive BrainEC SELL 0.124645 

12 Naive HEV CD226 0.004877 

13 Naive HEV ITGAL-ITGB2 0.021233 

14 Naive HEV SELL 0.203917 

15 Naive HEV SEMA4 0.001792 

16 Naive HEV TGFb 0.001184 

17 Naive HEV VCAM 0.006098 

Table 8-2: Pathways mapped to cell interactions from T cells to endothelial cells 
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 source target pathway_name probability 

1 BrainEC Activated COLLAGEN 0.004079 

2 BrainEC Activated FN1 0.004655 

3 BrainEC Activated GALECTIN 0.053638 

4 BrainEC Activated LAMININ 0.001173 

5 BrainEC Activated MHC-I 0.347784 

6 BrainEC Activated PTN 0.132747 

7 BrainEC Naive CXCL 0.009496 

8 BrainEC Naive FN1 0.03287 

9 BrainEC Naive GALECTIN 0.104349 

10 BrainEC Naive ICAM 0.009924 

11 BrainEC Naive JAM 0.010805 

12 BrainEC Naive MHC-I 0.731166 

13 BrainEC Naive PTN 0.084995 

14 HEV Activated CCL 0.092637 

15 HEV Activated COLLAGEN 0.004543 

16 HEV Activated GALECTIN 0.02811 

17 HEV Activated ICAM 0.014793 

18 HEV Activated LAMININ 0.001468 

19 HEV Activated MHC-I 0.6841 

20 HEV Naive CCL 0.299084 

21 HEV Naive CXCL 0.000273 

22 HEV Naive GALECTIN 0.054958 

23 HEV Naive ICAM 0.04603 

24 HEV Naive JAM 0.006629 

25 HEV Naive MHC-I 1.441405 

26 HEV Naive NECTIN 0.004877 

Table 8-3: Pathways mapped to cell interactions from endothelial cells to T cells 
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The interactions between different proteins can be visualized in the plots shown from 

the below plots. 

 

Figure 8-1: CCC from T-cells to endothelial cells 

 

 
Figure 8-2: CCC from endothelial cells to T-cells 
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Figure 8-3: CCC from HEV to Naïve T cells 

 

 
 

Figure 8-4: CCC from Naïve T cells to HEV 
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Figure 8-5: CCC from BrainEC to Activated T cells 

 

 

Figure 8-6: CCC from Activated T cells to BrainEC 
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The unique interactions were manually curated and are summarized in Fig 8-7. The 

figure also shows the type of signaling between the proteins. 

 

Figure 8-7: Mapping of genes (proteins) with their binding partners 

8.3 Discussion 

This analysis has shed light on intercellular interactions and their various modes 

involving numerous molecules. We now have a deep insight into many proteins 

involved in the cellular extravasation process. Fig 8-7 shows the endothelial cells on the 

left and their binding partners on the right.  

While the binding of Glycam-1 with Sell (L-selectin) is well-established, our prediction 

of interactions between integrins Icam1 and Vcam1 and the genes Ezr and Msn 

prompted us to further investigate these genes. During our differential expression 

analysis, we observed significant upregulation of Ezr and Msn in naïve T cells. 

Additionally, these genes were enriched in Gene Ontology terms related to cellular 

components such as 'uropod,' 'cell-substrate junction,' 'cell-trailing edge,' and 'focal 

adhesion.' They are part of the ezrin, radixin, and moesin (ERM) family of closely 

related proteins. Specifically, Ezr (Ezrin) is known to be involved in protein binding 
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and cell-adhesion molecule binding and plays a role in leukocyte trans-endothelial 

migration121. These genes are also known to co-localize with Cd44122, which was 

significantly upregulated in activated T cells, suggesting their potential involvement in 

immune responses in the brain. The violin plot (Fig.8-8) shows their expression levels 

in different cell-types. 

 

Figure 8-8: Expression levels of Ezr, Msn and Cd44 

Ackr1 belongs to a family of Atypical Chemokine Receptors typically located in 

endothelial cell junctions, where they exert regulatory roles in immune and 

inflammatory responses123. Our co-expression analysis indicated its involvement in the 

inflammatory response in HEV, which aligns with existing literature. Ackr1 is known 

to bind chemokines from the CXC and CC groups124, consistent with CCC analysis 

predictions regarding its interaction with Ccl5. Interestingly, Ackr1 is reported to 

promote transcellular diapedesis across the blood-brain barrier (BBB) during 

neuroinflammation in brain in vitro models109. Notably, Ackr1 exhibits predominant 

expression in HEV and is entirely absent in the brain (Fig. 8-9). This intriguing finding 

warrants further exploration. 
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Figure 8-9: Expression levels of Ackr1 and Ccl5 

Lama5 and Lamb2 are members of the Laminin family, integral components of the 

extracellular matrix. Alterations in their expression have been associated with 

inflammatory processes, and they play pivotal roles in modulating leukocyte activation 

and migration125. A recent study has has proposed that laminins may serve as reliable 

indicators of blood-brain barrier (BBB) structural integrity. This is because during 

neuroinflammation, the structural integrity of laminins may be compromised, 

consequently leading to increased BBB permeability126. The expression levels of 

laminins and its binding partner Cd44 are shown in Fig.8-10. Their interaction with 

Cd44 indicates that they play an active role in inflammatory response. 

 

Figure 8-10: Expression levels of laminins and CD44  
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Chapter 9 

PIPELINE APPLICATION: IN-DEPTH ANALYSIS OF INTERACTIONS 

BETWEEN ACTIVATED ENDOTHELIUM IN BBB AND ACTIVATED T 

CELLS 

In our previous analysis, we used cells from the control group as we were conducting a 

comparative study with HEV. We wanted to understand the distinct interactions under 

homeostasis. After successfully identifying unique interactions between HEV and 

Naïve T cells and between BBB and Activated T cells, we wanted to further confirm 

our analysis in the BBB. It has been established that activated T cells are able to breach 

inflamed BBB. Therefore, for this analysis, we focused on analyzing the interactions 

between the inflamed BBB and activated T cells. 

9.1 Method 

In September 2023, we conducted a systematic search of the GEO repository using 

various keyword combinations. The datasets used for the analyses originated from in 

vivo experiments conducted on mice. The search criteria provided below represent the 

specific terms we employed within the NCBI portal to retrieve results when used in 

different combinations. 

Search details for extracting injured brain endothelial cells: 

• (("brain"[MeSH Terms] OR brain[All Fields]) AND ("endothelium"[MeSH 

Terms] OR endothelial[All Fields]) AND ("single person"[MeSH Terms] OR 

single[All Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND 

("mice"[MeSH Terms] OR "Mus musculus"[Organism] OR mus musculus[All 

Fields])) AND "Mus musculus"[porgn] 

• scRNA seq[All Fields] AND ("brain"[MeSH Terms] OR brain[All Fields]) 

AND ("endothelium"[MeSH Terms] OR endothelial[All Fields]) 

• (("blood-brain barrier"[MeSH Terms] OR blood brain barrier[All Fields]) AND 

(("single person"[MeSH Terms] OR single[All Fields]) AND ("cells"[MeSH 
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Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] OR RNA[All Fields]))) 

AND "Mus musculus"[porgn] 

• ("blood-brain barrier"[MeSH Terms] OR blood brain barrier[All Fields]) AND 

scRNA seq[All Fields] 

Search details for extracting Activated T cells 

• (("cd4-positive t-lymphocytes"[MeSH Terms] OR CD4 t cell[All Fields]) AND 

activated[All Fields] AND (("single person"[MeSH Terms] OR single[All 

Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH 

Terms] OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

• (("cd8-positive t-lymphocytes"[MeSH Terms] OR CD8 t cell[All Fields]) AND 

activated[All Fields] AND (("single person"[MeSH Terms] OR single[All 

Fields]) AND ("cells"[MeSH Terms] OR cell[All Fields]) AND ("rna"[MeSH 

Terms] OR RNA[All Fields]))) AND "Mus musculus"[porgn] 

• (("cd8-positive t-lymphocytes"[MeSH Terms] OR CD8 t cell[All Fields]) AND 

(("single person"[MeSH Terms] OR single[All Fields]) AND ("cells"[MeSH 

Terms] OR cell[All Fields]) AND ("rna"[MeSH Terms] OR RNA[All Fields]))) 

AND "Mus musculus"[porgn] 

The results underwent meticulous curation, with a focus on scrutinizing the 

experimental designs. Our selection criteria prioritized datasets related to injured or 

inflamed BBB, allowing us to delve into the expression patterns of marker genes under 

inflammatory conditions and explore their interactions with activated T cells. 

Initially, we assessed a total of 18 datasets, comprising 10 datasets derived from 

experiments involving brain endothelial cells and 7 from activated T cells. Notably, one 

dataset (GSE199460) encompassed both endothelial and activated T cells. This dataset 

was sourced from a single-cell transcriptomic analysis of the brain in an Experimental 

Autoimmune Encephalomyelitis (EAE) model, which serves as an animal model for 

Multiple Sclerosis. The study aimed to identify inflammatory networks within the 

endothelium. Brain tissue was collected from mice at the peak of the disease and from 
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control (CTRL) mice. Single cells were isolated using an optimized protocol based on 

the Miltenyi Brain Dissociation Kit and then subjected to single-cell RNA sequencing 

analysis127. The dataset included samples from 3 replicates of control and EAE mice, 

encompassing a total of 15 cell types. 

The control population was characterized by a limited presence of T cells, with a total 

of 35 T cells across all replicates. In contrast, the experimental group exhibited a 

substantial increase, featuring more than 2500 T cells and over 1100 endothelial cells. 

This stark contrast presented an exceptional opportunity to investigate the interactions 

between these two distinct cell types. 

After identifying the dataset for analysis, our initial step involved a thorough data 

quality check. Subsequently, we carefully selected a subset of endothelial cells from 

both the control and experimental groups. We also subsetted the activated T cells from 

the experimental group. Due to the limited number of T cells in the control population, 

we made the decision to utilize the naïve T cell dataset that had been employed in our 

previous analysis. We employed our pipeline to integrate all the cell-types.  

After integration, we performed a differential expression analysis to identify markers in 

the inflamed and activated cell types, employing the MAST method. Initially, we 

executed this test using the same parameters as in the previous analysis, which led to 

just 2 positive control markers in the analysis between the control and inflamed BBB. 

As a result, we decided to adjust our parameters for this analysis. We set the log-fold 

change threshold (logfc) parameter to the default value of 0.25, allowing for a broader 

range of differentially expressed genes to be included. Furthermore, we modified the 

'min.diff.pct' parameter to 0.10 to increase the number of identified markers. The 

‘only.pos’ feature was set to ‘True’, leading to each analysis being conducted twice. 

Due to the limited number of differentially expressed genes observed between the 

control and EAE BBB, we performed the enrichment analysis online using DAVID. 
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Lastly, we conducted a comprehensive cell-cell communication analysis between 

inflamed endothelial cells and activated T cells. This analysis aimed to unveil novel 

insights while reinforcing our earlier findings in the context of intercellular interactions. 

9.2 Results 

Data Integration 

We evaluated the integration of 1058 cells in each cell-type (a total 4232 cells) across 

six algorithms. The median scores obtained using the algorithms are summarized in the 

table below: 

 Silhouette 

Score 

(-1 to 1) 

Mixing 

Metric 

(0 to 300) 

cLISI 

(1 to 4) 

Local structure 

preservation score (0 to 

1) 

Seurat 0.05 21 1.93 0.29 

LIGER 0.05 60.5 1.66 0.33 

Harmony 0.14 171.5 1.007 0.49 

RPCA 0.041 25 1.46 0.58 

scVI -0.09 21 1.80 0.50 

Scanorama 0.18 159.5 1.37 0.26 

Table 9-1: Evaluation scores of different algorithms 

 

The UMAP visualization of integration algorithms are shown in the figure below: 

Seurat Integration 

 

Liger Integration 
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Harmony Integration 

 

rPCA Integration 

 

scVI Integration 

 

Scanorama Integration 

 

Figure 9-1: UMAP embeddings of integration of different algorithms 

The table illustrates consistently low silhouette scores across all algorithms, indicating 

a suboptimal ability to form well-defined clusters, which aligns with the observations 

from the UMAP plot. 

Harmony stands out as the highest performer in the mixing metric, achieving a score of 

171.5, followed by Scanorama with a score of 159.5. In contrast, the performance of 

other tools is notably subpar. In terms of cLISI, Harmony once again excels as the top 

scorer with a score of 1.007. However, for local structure preservation, RPCA emerges 

as the leader with a score of 0.58, closely followed by scVI (0.50) and Harmony (0.49). 
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Summarily, Harmony demonstrates superior performance in integrating the data, 

making it the choice for downstream analyses. From the plot above, we can see that the 

control and inflamed BBB have formed one cluster indicating that they have similar 

gene expressions. 

Differential Expression Analysis 

The table below summarizes the number of upregulated genes obtained after differential 

expression analysis, number of GO terms associated with the cellular component and 

number of unique markers identified for each cell-type. 

 Endothelial cells T-cells 

 
Control 

BBB 

Inflamed 

BBB 

Naïve T-

cells 

Activated T-

cells 

Upregulated 

genes 
69 201 

472 1409 

GO: Cellular 

component 
19 54 55 192 

No. of unique 

cell-surface 

markers 

13 111 67 620 

Table 9-2: Summary of the differential expression and enrichment analysis results 

The following violin plots display the upregulated markers within the inflamed BBB, 

shedding light on key findings. Notably, both Icam1 and Vcam1, pivotal in cell 

adhesion, exhibit significant upregulation in the inflamed BBB, thus affirming earlier 

research findings19.  

Moreover, a noteworthy observation relates to the heightened expression of Vwf, also 

known as von Willebrand factor. This glycoprotein is recognized for its role in reducing 

endothelium permeability, facilitating leukocyte recruitment128, and weakening tight 

junctions129 within the blood brain barrier during injury or inflammation.  
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Cd74, a regulator of macrophage inflammation and dendritic cell motility, and an active 

participant in the inflammatory response, displays upregulation in the context of 

activated T cells and the inflamed BBB, aligning with established scientific 

knowledge130. 

Ackr1, as mentioned in the co-expression analysis network section, is reported to be 

upregulated during inflammation in BBB, which is also reported in the study from where 

this dataset has been sourced127. 

 

Figure 9-2: Upregulated markers in inflamed BBB 

 

Nectin2, a cell-cell adhesion molecule residing in the adherens junction membrane, has 

been implicated in Alzheimer's disease and various cancer types131,132. It collaborates 

with or acts independently of cadherins and is known to participate in cellular signaling 

pathways133. A noteworthy aspect of Nectin2 is its binding to Cd226 on T-cells, a 

prediction that our cell-cell communication analysis has confirmed. Notably, our 

analysis reinforces the distinctive expression pattern of Nectin2, which exhibits high 

expression in HEV but minimal presence in the brain. This disparity is further 

underscored by examining the control BBB, which reveals a low expression level of this 

gene, validating our findings in depth. Furthermore, its expression levels exhibit an 

increase under inflammatory conditions, suggesting its potential utility as a valuable 

biomarker for future analyses. 
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Figure 9-3: Expression of Nectin2 & Cd226 from previous comparative analysis 

 

Figure 9-4: Expression of Nectin2 & Cd226 from the in-depth analysis 

The below violin plot shows genes that are upregulated in activated T cells. These genes 

play an important role in immune regulation. 

 

Figure 9-5: Expression of genes involved in immune response in activated T cells 
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Gene Co-expression Analysis 

We performed a gene co-expression analysis to determine if the gene expressions in 

inflamed and control endothelial cells would be segregated into distinct modules. 

However, the algorithm assigned the gene expressions to just two modules, as depicted 

in the plots below. The modules were mapped to T cells and BBB cell-types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-6: Co-expression modules and cell-type mapping of the modules 

Interestingly, Icam1 was assigned to grey module in this analysis probably due to its 

varying expression levels between control and inflamed BBB. 

Cell-Cell Communication Analysis 

We performed the inter-cellular communication analyses between Inflamed BBB and 

Activated T cells to explore interactions that might not have been detected in our 

comparative study. 
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Figure 9-7: CCC from activated T cells to inflamed BBB 

 

 
Figure 9-8: CCC from inflamed BBB to activated T cells 

 



 75 

The unique interactions between inflamed BBB and activated T cells are summarized 

in the table below: 

 
Table 9-3: Mapping genes (proteins) with their binding partners 

The algorithm has anticipated a higher number of interactions between inflamed BBB 

and activated T cells compared to the control BBB, as observed in our comparative 

study. Notably, the prediction of Icam1's interaction with Itgal, a connection previously 

observed only in HEV, is not unexpected, given its increased expression levels under 

inflammatory conditions. Additionally, we identified new interactions involving Fn1 

with various proteins, such as Itga4_Itgb7, Itga4_Itgb1, and Itgav_Itgb1 in addition to 

Cd44, that was predicted earlier. Furthermore, we observed the activation of Jam2, 

Icam2, and App on the inflamed BBB.  

Similarly, the elevated expression of Vcam1 results in interactions with Itga4_Itgb7 and 

Itga4_Itgb1. We also observed heightened expression levels of Fas ligand (Fasl), which 

is known to play a crucial role in activation-induced cell death (AICD) of T cells and 

cytotoxic T lymphocyte-induced cell death. 

Semaphorins constitute a protein family known for their significant roles in both 

neuronal development and immune responses. They serve as crucial cues for guiding 

cell migration in immune processes134. Sema4a has gained recognition as a therapeutic 

target for the treatment of multiple myeloma, underscoring its clinical relevance135. 

Plxna2 has been reported to bind Sema3a136. Although existing evidence does not 

confirm a direct interaction between Plxna2 and Sema4a, this presents an intriguing 

opportunity to validate the potential interplay between these two proteins. 
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9.3 Discussion 

There were some interesting observations during the in-depth analysis. The Cavin genes 

that are known to play a crucial supporting role in the caveola formation were 

completely absent in the brain in the comparative study as shown in fig. 9-9. However, 

the control population in the in-depth analysis dataset shows the contrary (fig 9-10). The 

brain dataset in the comparative study was from an experiment using mice that were 3 

months old whereas the dataset from in-depth analysis does not mention the mice cell-

line or age. This leads us to ponder if age plays a role in this gene expression. 

 

Figure 9-9: Cavin gene expression in the comparative study 

 

 

 

Figure 9-10: Cavin gene expression in the in-depth analysis 

 

Similarly, the markers upregulated in the activated T-cells in this analysis (Fig.9-5), do 

not show similar expression levels in the activated dataset of the comparative study 

(Fig.9-11). In the dataset used in the comparative study, the T-cells were activated in-

vitro as compared to the in-vivo activation of T-cells due to disease in the in-depth 

analysis. This discrepancy in the observed expression of the same genes could be 

attributed to different experimental conditions. 
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Figure 9-11: Gene expression levels of markers in activated T-cells in comparative study  
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Chapter 10 

SUMMARY AND FUTURE DIRECTIONS 

Our study was driven by the goal of unraveling the intricate molecular interactions that 

underlie lymphocyte trafficking during immune surveillance and immune responses 

across the endothelial barriers of HEV and BBB. It is well appreciated that cell-cell and 

protein-protein binding are complex processes137,138,139,140 which are influenced by 

several factors141,142,143. To delve into this intricate process of cellular extravasation, 

we meticulously designed a robust pipeline that facilitated various analyses, enhancing 

our comprehension of this phenomenon within distinct tissues. 

This comprehensive pipeline provided us with the capability to integrate data from 

diverse cell types and experimental conditions, fostering a holistic analysis. We 

evaluated six benchmarked algorithms for data integration, utilizing four key metrics to 

identify the most suitable integrated dataset for subsequent analyses. This pipeline is 

useful for integrating data from public repositories and harmonizing different batches 

generated from experiments. 

Our differential expression analysis yielded the identification of well-established cell-

type markers linked to various stages of the extravasation process. We confirmed the 

elevated expression of Mfsd2a in BrainEC, a key player in transcellular diapedesis. 

Despite its known plasma membrane localization, the absence of enrichment in the 

Cellular Component category is intriguing. Likewise, our analysis successfully 

pinpointed Glycam1 and Ccl21a, both essential for cell adhesion. Their lack of 

enrichment in the Cellular Component category suggests that their subcellular 

localization may extend beyond the cell surface. 

Our co-expression analysis unveiled intricate gene networks associated with diverse 

functions, including cell adhesion and integrin binding. Furthermore, we effectively 

correlated these expression patterns with specific cell types. Notably, our analysis 

illuminated that processes occurring in the brain are more complex and distinct 
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involving the concerted action of numerous genes, in contrast to HEV, where fewer 

genes are involved in similar processes, as evidenced by caveola formation and integrin 

binding. Moreover, we successfully identified shared expression patterns between BBB 

and HEV by identifying overlapping modules. 

Our cell-cell communication analysis resulted in identifying the unique binding partners 

of key players in the lymphocyte extravasation. We successfully validated the existing 

knowledge and unearthed novel candidates like Ezr and Msn, which play an important 

role in this process but were not previously mentioned in the context of cellular 

extravasation, opening new avenues for further research. 

We aimed to extend the application of our pipeline to a distinct dataset, conducting a 

comprehensive analysis of brain endothelial cells under both control and inflamed 

conditions. Our objective was to gain a profound understanding of the unique molecular 

interactions governing the extravasation process, particularly between an activated 

endothelium and activated T-cells. 

Our differential expression analysis of the inflamed and control endothelial cells of the 

brain resulted in the upregulation of cell-adhesion markers like Icam-1, and Vcam-1 

which are established in the literature. Ackr1 has previously been reported to increase 

in expression in an in-vitro model mouse model for neuroinflammation. The 

upregulation of this gene in the inflamed BBB validates the previous finding. Another 

interesting observation was the upregulation of Nectin2, a cell-adhesion molecule, 

under inflammation. The co-expression analysis yielded two gene co-expressing 

modules mapped to BBB and T-cells indicating that the gene expression profiles were 

more similar between the control and diseased condition. The cell-cell communication 

analyses yielded 9 novel interactions between the inflamed endothelium and activated 

T-cell.  

We observed contradictions in gene expressions for similar conditions between the 

current analysis and the previous one, strengthening our conviction that a larger dataset 

is necessary to validate our findings. Nevertheless, the establishment of this pipeline has 
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empowered us to conduct various analyses, facilitating the validation of these results 

both in the experiments conducted by us and in future data availability. This work has 

fundamental impact on the design of drug delivery systems for identification of targeting 

moieties144,145,146,147,148,149,150, the design of cell capture 

technologies151,152,153,154,155,156, and in aiding fundamental mechanistic interpretation 

of biological experiments157,158,159,160,161.  

Future directions for this research involve experimental validation of our findings. To 

further strengthen our results, we can explore the translation of gene expression into 

protein levels by conducting proteomics studies. This approach will provide a deeper 

understanding of the molecular mechanisms underlying lymphocyte extravasation.  
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